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What Should I Do Now?
Using Goal Sequitur Knowledge to Choose the Next Problem Solving Step !

Michael Redmond
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332-0280
E-mail: redmond@pravda.gatech.edu

Abstract

Many problems require multi-step solutions. This is true of both planning and diagnosis. How
can a problem solver best generate an ordered sequence of actions to resolve a problem? In many
domains, complete pre-planning is not an option because the results of steps can vary, thus a large
tree of possible sequences would have to be generated. We propose a method that integrates the use of
previous plans or cases with use of knowledge of relationships between goals, and the use of reasoning using
domain knowledge to incrementally suggest the actions to take. The suggestion process is constrained
by heuristics that specify the circumstances under which an instance of a particular reasoning goal can
follow from an instance of other reasoning goals. We discuss the general approach, then present the
suggestion methods and the constraints.

1 Introduction

There are many problems for which a multi-step solution must be generated. Such problems occur both
in planning and in diagnosis. For instance, in automobile troubleshooting, a possible sequence of actions
includes clarifying the complaint, verifying the complaint, generating hypotheses in some order, testing
hypotheses, interpreting the test results, carrying out repairs, and testing the repairs. Complete pre-planning
of troubleshooting steps may be inefficient. The number of possible choices and the variety of possible results
of the actions can lead to a large, very bushy tree of possible paths. Generation of the complete trouble-tree
for the given car and problem would be an expensive task to do, and might not even be possible. In addition,
one action may not directly follow from the previous action. The question raised is how to best generate an
ordered sequence of actions to resolve a problem.

For example, for a stalling car, a possible sequence of actions is shown in Figure 1. The problem solver
first hypothesizes a loose spark plug and a test of the hypothesis finds it not to be true. The problem solver
hypothesizes that the carburetor is malfunctioning, then refines that guess to the more specific hypothesis of
the idle mixture being lean. This is tested and the result suggests that the idle mixture is probably not the
problem. Next, the problem solver generates a hypothesis that the carburetor is flooding, refines that to a
hypothesis that the float level has become set too high, and tests for that. However, the test result indicates
that that is not the problem. The problem solver generates another refinement, that the carburetor needle
valve is leaking, allowing fuel in when it should not. This is tested, and is found to be true. A repair is done,
and is tested, and results in the elimination of the problem.

These actions are not independent. Results of early actions influence future actions, and results cannot be
predicted with certainty. If the spark plugs turned out to be loose, a repair would be done at that point and
the problem solving would be complete if that is the only problem. If the needle valve is not leaking, further
steps would be necessary beyond those in Figure 1. If, as a by-product of the test of the float level being
high, it was determined that the fuel level in the carburetor was not too high, a different hypothesis would
have been pursued opportunistically, instead of continuing to pursue the carburetor flooding hypothesis.

This example illustrates several points. First, it shows a situation where complete pre-planning would
be inefficient. Not only can the number of possible choices and the variety of possible results of the actions
lead to a large, very bushy tree of possible paths, but in many problems much of the tree would not be used.
Second, it illustrates that when choosing the next action to take, the next action may not follow from the

1 This research has been supported by the Army Research Institute for the Behavioral and Social Sciences under Contract
No. MDA-903-86-C-173, and by DARPA contract F49620-88-C-0058 monitored by AFOSR. The author wishes to thank Janet
Kolodner for her advice and guidance, and Tom Hinrichs, Steve Robinson, and Joel Martin for helpful comments on earlier
versions of the paper.
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most recent action. For example, step 7 follows from step 3. In addition, following a trouble-tree would not

suggest taking advantage of unexpected opportunities, such as following up of the by-product of a test, as
seen above.

Case Header - Car Stalls I

4.-"""-'—-
[ 1. Hyp - Loose Connected Spark Plug J | 3. Hyp - Malfunction Carburetor ]
1 2. Test - Loose Connected Spark PlugJ | 7. Hyp - Carburetor Flooding |

E
I 4. Hyp - Lean Idle Mixture | 8. Hyp - High Float Level | [ 11. Hyp - Carburetor Needle Valve Leaks J

rs. Test - Temperature of Engine When Stall J I 9. Test - High Float Level J Fz. Test - Catburstor Nesdle Valve Leaks ]

| 6. Interpret - Rule Out Lean ldle MixJI 10. Interpret - Rule Qut High Float ] [ 13. Interpret - Rule In Needle Valve Leaks ]

l 14. Repair - Replace Carburetor Needle Valve ]

The nodes represent the different goal instances that have been pursued. They are numbered in the temporal order in
which they occurred. The links represent the relationships of which goal instance followed from which goal instance.

Figure 1: A Multi-step Solution in Automobile Troubleshooting.

The problem to be addressed in this paper is three-fold:

1. How can a problem solver efficiently generate successive goals and actions in a multi-step solution?
2. What knowledge is needed to generate the succeeding goals and actions?
3. How should the generation process be controlled and suggestions selected?

We address this problem in the task domain of automobile troubleshooting. QOur program, CELIA
(Cases and Explanations in Learning; an Integrated Approach), solves problems by generating and achieving
reasoning goals. As in the example above, often later goals cannot be generated until earlier ones have been
achieved. In addition, the program learns by understanding and explaining the statements and actions of
a teacher.? The same process that generates goals during problem solving generates them during learning,
where they act as expectations of what the teacher will do or say next.

As we will show, our approach integrates the use of four important types of knowledge to generate
goals: previous solutions or cases (as in Case-based Reasoning [Kolodner and Simpson 1984]), knowledge of
relationships between reasoning goals (in this case, knowledge of the troubleshooting process), and causal
knowledge, including structural and functional knowledge of the domain. We will discuss generation of
suggested actions, and control of the process, and then present an example.

2 Generation of New Subgoals and Actions

We have found four types of knowledge useful for generating subgoals and actions:

1. Case knowledge.

2. Causal knowledge of components, mainly functional knowledge.

3. Structural knowledge of component parts, including part/whole and adjacency relationships.
4. Knowledge of how to do the task, or the relationships between reasoning goals.

2Not natural language.
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Case Knowledge: Case-based Reasoning (CBR) is a method of using previous episodes to suggest
solutions to new problems. CBR is an important problem solving technique because it allows a reasoner
to solve problems efficiently when previous similar experiences are available and complete knowledge is not
present. In this type of problem, a case provides an ordered set of actions that have worked in the past.
Thus remembering a part of a case, or snippet, suggests the next action. A next action can be suggested by
the case the reasoner is currently reasoning from, or if context changes, by another case that becomes more
relevant.

Causal knowledge: A next action or subgoal can also be suggested by causal knowledge. A causal
link from a previous action can make the suggestion. Some aspect of the previous goal, for example the test
done, the test result, the hypothesis generated, the fix done, something ruled out, is the starting point for
the reasoning. The reasoning can proceed from that point forward toward effects of that aspect, or backward
toward causes of that aspect.® The furthest point of progress in the causal reasoning is suggested as the
value for the instance of the reasoning goal to be suggested. The causal reasoning uses both functional and
structural knowledge of the domain.

Structural knowledge of components: Part/whole and topological knowledge of components involved
In a previous action can suggest the next action. For example, a problem with the electrical system might
be due to a problem with the battery. If the most recent instance of a generate hypothesis goal was that the
electrical system is faulty, the next appropriate goal instance might be the generation of a hypothesis that
the battery is faulty.

Knowledge of how to solve problems in the domain: How problems are normally solved is also
important to generating goal and action sequences. Our method uses heuristic knowledge in the form of a
set of the types of reasoning goals, or goal types, which can follow from each reasoning goal type, called goal
sequitur knowledge, or sequitur knowledge for short.* ® For example, hypothesis generation goals can be
followed by tests of hypotheses, or by further hypothesis generation.

In general, there are many possible succeeding goals a problem solver might generate at any time. Good
problem solvers generate goals that can lead them toward their final destination in the most opportune way.
In the remainder of this paper we will present a way to choose the next goal or step wisely. We will show
that the fourth type of knowledge listed above, knowledge of the problem solving task, is primary to this
endeavor, providing guidance for moving toward a solution.

Our method uses three main types of heuristics for this task: suggestor heuristics suggest new steps,
resirictor heuristics constrain the behavior of the suggestors, and selector heuristics choose the best of the
suggested next steps.

We begin by presenting the four main types of suggestor heuristics:

1. Case Sequential Access
2. Case Direct Access

3. Causal link

4. Refinement (Part/Whole)

The suggestor heuristics, or suggestors, indicate ways to generate possible instances of the consequent
goal type.® Running these heuristics results in a set of possible succeeding reasoning goals and actions.

3Reasoning is uncoupled from the reasoning goal involved. Given a hypothesis that the fuel mixture is too lean, reasoning
proceeds from the state that the fuel mixture is too lean (which may or may not be true), not from the hypothesis that the
fuel mixture is too lean. Thus the causal reasoning does not depend on the reasoning goals involved in the domain, or vary
depending on those involved.

4 Goal types are general types of reasoning goals such as clarifying the complaint, verifying the complaint, generating hy-
potheses, testing hypotheses, interpreting the test results, carrying out repairs, and testing the repairs. They could also be
considered subtasks of troubleshooting. Goal instances are specific instantiations of goal types, such as the specific test used to
test a specific hypothesis.

5As non sequitur means an inference or conclusion that does not follow from established premises or evidence, we use sequitur
to refer to a goal or action that follows from a previous goal or action.

6The borrowing of the logical terms antecedent and consequent should not be taken as an indication that the second goal
logically follows from the first. The consequent only plausibly follows from the antecedent.
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2.1 Case Suggestors

As noted above, a case provides an ordered set of actions that have worked in the past. Thus remembering
a case appropriate to the current context suggests the next action. Multiple parts of multiple cases can be
useful in solving a particular problem. Useful parts can be accessed directly, by retrieving the relevant part
of a relevant case, or sequentially, by continuing to follow a previous case while it continues to be relevant.
The two suggestors that use parts of previous cases are based on these two methods.

2.1.1 Sequential Access

If the results of running a step in the new situation match those obtained when it was run in the previous
case, the next step in sequence in that case can be suggested. The Continue-following-link suggestor does
this.

2.1.2 Direct Access

If the results are different, however, the Case-snippet suggestor uses direct access to part of a different case
that can provide a suggestion of what to do next. Retrieval involves matching the current situation to the
case part, or snippet’s goal and context. In our system, CELIA, retrieval via direct access is first restricted
to snippets that are centered around the goal type being considered. Then a weighted similarity metric is
used, with matching occurring for all features within the context. The context includes the internal context,
the results of actions taken up to that point in problem solving, so the retrieved piece is influenced by the
results of goals pursued so far in this problem.

2.2 Causal Link Suggestors

Causal link suggestors use domain knowledge of function and structure to reason either forward or backward
from a clause in the preceding goal instance in order to suggest the main clause for the consequent goal
instance.

Variations in these heuristics include:

e Whether reasoning is forward or backward from the initial clause. For instance, reasoning backwards
can lead toward suggesting hypotheses that could be root causes. Reasoning forward can lead to
suggesting tests of hypotheses based on their potential effects.

e Which aspect of the previous goal instance to use as the initial clause. For instance, when reason-
ing from a test of a hypothesis a useful starting point is the test result. When reasoning from the
interpretation of a test useful starting points include things ruled in or ruled out.

e Whether the initial clause is returned as a result when no progress is made in the causal chaining.
When the consequent goal type is the same as the antecedent goal type, this is not appropriate.

e Whether to return a contradiction of the linked clause, or just the linked clause. For instance, a test
for a contradiction of something that follows from a hypothesis can be a good test of the hypothesis.

2.3 Refinement Suggestors

Refinement suggestors use part/whole knowledge to suggest a new goal instance through refinement of the
preceding goal instance. Either

¢ Its component is below the previous goal instance’s component in the partonomy, (a leak in the fuel
line is more refined than a leak in the fuel system). The previous goal instance’s component is refined
to a component that is part of the previous component. or

e The component is the same and the new predicate is more specific, (the ECM not being grounded
properly is more refined than a malfunction in the ECM). This requires use of knowledge of the functions
of the involved components. If the predicate is ‘malfunction’, then those predicates that are involved
in obstacles to the component’s function are considered as refinements of the previous predicate.
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Variations in these heuristics include:

e Whether a clause that is equally as refined is acceptable. When the consequent goal type is the same
as the antecedent goal type, this is not appropriate.

e Which aspect of the previous goal instance to use as the initial clause. For instance, refining the
interpretation of a test, useful starting points include things ruled in or ruled out.

3 Controlling Suggestions: Restrictors

There are, in general, large numbers of possible next steps that could be generated by the methods above.
Restrictors constrain the suggestion process so that effort is not expended trying to generate actions in
directions that will not prove fruitful. In general, restrictors rule out goal sequences that are sometimes
possible, but are not appropriate in the particular current circumstance. For instance, a test should not
follow from a hypothesis that has already been tested, and a hypothesis should not follow from a hypothesis
that has already been tested. However, a hypothesis can follow from a hypothesis that has already been
refined, it could be another refinement. These examples suggest two of the restrictor heuristics.

No-sibs restricts a goal following from a previous goal to contexts in which no action has already followed
from the antecedent.

Only-same-type-sibs restricts a goal following from a previous goal to contexts in which either no
action has already followed from the antecedent, or contexts in which only actions fulfilling the same goal
type have already followed from the antecedent.

Because some goal types should only follow from the most recent instance of some other goal types,
restrictors are necessary for that purpose. For example, an interpretation of a test should follow from the
most recent test instead of some previous test. This is clearly not the case for all goal sequences. For
example, a number of hypotheses could be advanced, then tested in order, thus the test would not follow
from the most recent hypothesis.

Most-recent restricts a goal following from another goal to contexts in which the previous goal was the
most recent instance of that goal type.

Also needed are restrictors that constrain what can follow from the interpretation of a test. After a
test result has been interpreted, what follows depends on the interpretation. If the hypothesis that is being
pursued has been ruled in, either the hypothesis can be refined further, or a repair can be made. If nothing
has been ruled in, and something ruled out, it is possible that the complaint should be further clarified. The
following two restrictors are used.

Prev-ruled-out restricts a goal following from a previous action to contexts in which the previous
actions included ruling out some condition.

Prev-ruled-in restricts a goal following from a previous goal to contexts in which the previous actions
included ruling in some condition.

4 Selectors

Even with restriction, several steps might plausibly follow the current situation. Selector heuristics choose
the best of those generated. Selectors work in two stages. Before suggestors are run, some selectors specify
allocations of computational effort to the different suggestors associated with each of the possible future goal
sequences. Then, after generation of plausible next steps, the best next step is chosen based on the rest of
the selectors, and the amount of the allocation used.

The selectors that influence allocations include:

1. Allocate more effort to generating possibilities following from more recent goals pursued.

2. Allocate more effort to generating possibilities following from a leaf node of problem solving.

3. Allocate more eflort to generaling possibilities following from a problem solving node closer to the
most recent goal pursued.
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These allocations serve to limit the processing suggestors can do before cutting off search. This is
important because it keeps the slowest heuristics, such as causal chaining, which can be intractable, from
slowing the process down too much.”

When suggestions have been made, the choice of what goal and action to take is based on the percentage
of allocated effort used in conjunction with the following preferences:

1. Favor possibilities generated using continue-following-link, then case-snippet, then other methods such
as causal chaining.

2. Favor possibilities generated using goal sequences judged more likely in our analysis of the diagnostic
task.

3. Favor possibilities generated from reasoning goals with more restrictor heuristics. These are less likely
to have inadvertently escaped restriction.

4. Favor possibilities generated from reasoning goals with fewer suggestor heuristics. These are less likely
to be low quality ‘shots in the dark’.

The combined effect of the selectors is to favor continuing following along from the most recent goal,
using a previously retrieved case snippet, or a newly retrieved case snippet. The preference is not absolute,
however. It does not make the easiest suggestor heuristics dominant, because the allocated effort can vary
widely based on the factors discussed above.

5 Example

We will illustrate the process of choosing the next action using the example shown in Figure 2. This is an
English-ized version of a sequence of problem solving steps generated by our program CELIA.® The problem
solver first clarifies the complaint, then verifies the complaint to make sure that the problem can be recreated.
The problem solver hypothesizes that the carburetor is malfunctioning, then refines that guess. The idle
speed is considered, and rejected. The idle mixture is considered, tested, and repaired, and yet the problems
remain. A further hypothesis of the throttle dashpot being out of place is generated, and tested.

. Clarify the complaint

. Verify the complaint

Generate a hypothesis - carburetor malfunction

Generate a hypothesis - low idle speed

Test hypothesis - temperature of engine when stalling occurs (warm)
Interpret Test - idle speed not a problem; idle mixture possible problem
Repair - Adjust idle mixture screw

Test Repair - engine still stall? (yes)

Interpret Test - idle mixture not the problem

. Generate a hypothesis - throttle dashpot out of place

. Test hypothesis - distance between throttle dashpot stem and throttle lever small? (no)

B O 6900 ShIgY N G0 B

——

Figure 2: Example Multi-step Solution in Automobile Troubleshooting.

After step 11, the problem solving can be illustrated by the large nodes of the tree shown in Figure 3.
Nodes represent goals that have been pursued so far. Links represent the sequencing relationships between
the goals. S-Verify-Complaint-118 corresponds to the first step, S-Gen-Hypoth-145 corresponds to step 3 -
Generating a hypothesis, in this instance a carburetor malfunction. The most recently completed action is
included in S-Test-Hypoth-151. At this point the next action must be generated.

The small ovals in Figure 3 show types of possible succeeding goals that can follow from the parts of the
problem solving to this point. The key for the different goal types is given.

The set of possibilities can be reduced significantly using the restrictor heuristics. Shaded ovals in Figure
3 show the effects of the restrictors. These are the directions restrictors have determined not to be fruitful.

TCausal chaining is constrained both by the strategy of trying to form a connection between actions rather than trying to
form a connection over the large space between complaints and root causes, and by selection allocations.

8 Actually, it was generated as predictions of what an expert would do by the learning component of CELIA using the same
methods as described for the problem solving component. The problem solving component has not yet had the equivalent
upgrade from the previous version.
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Figure 3: Remaining Possible Next Goal Types after restriction.

For each of the remaining possibilities there are several applicable suggestors, these are able to generate

26 possibilities including:

Goal Type Instance Following from Piece
G-Interp-Test (Incorrect (Position Throttle-Dashpot)) S-Test-Hypothesis-151
G-Gen-Hypoth (High (Contains Carburetor-Float-Bowl Fuel)) S-Verify-Complaint-118
G-Test-Repair (Small (Dist Throttle-Dashpot-Stem Throttle-Lever)) S-Replace-Fix-126
G-Test-Repair (Low (Position Idle-Mixture-Screw)) S-Replace-Fix-126
G-Test-Repair (Increase (Position Idle-Mixture-Screw)) S-Replace-Fix-126
G-Replace-Fix (Lean (Position Idle-Kixture-Screw)) S-Interpret-Test-171
G-Gen-Hypoth (Hole Carburetor-Barrel) S-Gen-Hypoth-145
G-Gen-Hypoth (Clogged Carburetor-Pipe-To-Venturi) S-Gen-Hypoth-145

Using Suggestor
Case-snippet
Case-snippet
Case-snippet
Un-Improve
Equivalent
Fault-Determination
More-Refined
More-Refined

From among these, the selector heuristics choose the first action, the interpretation of the test ruling out
the hypothesis of the throttle dashpot being out of place. This suggestion was chosen due to several factors:
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1. It was generated from the most recent previous goal and actions. Therefore, the suggestor which
generated it was allocated a high amount of processing, of which not much was used in retrieving the
case snippet that suggested the interpretation.

2. It was generated from a case snippet. Therefore it was favored at selection time.

3. Tests (of hypotheses or of repairs) need to be interpreted, so the judged likelihood of an interpretation
of a test following from a test of a hypothesis is high, favoring this suggestion.

6 Related Work and Conclusions

A number of other efforts share some flavor with our approach. Koton [1988] combines use of a number
of reasoning methods. First, associations formed from generalizations of cases are tried, then cases, and
lastly model knowledge. However, the strict ordering of methods used is less flexible. More importantly,
her approach does not generate steps for a multi-step solution, but rather a classification. Carbonell [1986]
generates steps for a multi-step solution using a previous case. Domain knowledge is used in adapting the
solution, but one case will either provide a whole solution or have to be abandoned or adapted. Parts of
multiple cases cannot be used. Allen and Langley [1989] generate multi-step solutions using a combination
of generalizations, cases, and domain knowledge (in the form of operators). However, they do not retain
relations between problems and subproblems, so their DAEDALUS system cannot use an entire previous
plan from memory.

Our approach combines the use of several types of knowledge and reasoning techniques. It takes advantage
of knowledge about the relationships between goal types to provide constraint on the problem of coming up
with the next action to do. The problem solving is flexible and can take advantage of the results of previous
actions when deciding what to do next, while remaining goal directed. The approach has three phases -
restrictors limit the number of possibilities to be considered, suggestors generate possible next actions, and
selectors chose the action to take. There are several advantages to the approach. It combines multiple
reasoning methods in a flexible manner. Problem solving is flexible enough to use whatever knowledge is
available, using cases when appropriate cases can be found, domain knowledge when it can be useful. It is a
flexible way of using parts of multiple cases in forming a solution that is a synthesis of steps. Problem solving
can change directions when the results of the problem solving make that necessary. A major side benefit
is that many of the suggestor heuristics can benefit when further knowledge is added to the system, in the
form of new cases or new domain knowledge. Our system, CELIA, is a learning system, and is designed to
acquire such knowledge. This makes problem solving more effective without having to learn new heuristics.
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