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Highlights

Online transfer learning strategy for enhancing the scalability and
deployment of deep reinforcement learning control in smart build-
ings

Davide Coraci, Silvio Brandi, Tianzhen Hong, Alfonso Capozzoli

• Transfer learning enhances the scalability of DRL controllers in build-
ings

• The online transfer learning outperforms RBC and online DRL con-
troller

• Online transfer learning does not require modeling effort compared to
offline DRL
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Abstract

In recent years, advanced control strategies based on Deep Reinforcement
Learning (DRL) proved to be effective in optimizing the management of in-
tegrated energy systems in buildings, reducing energy costs and improving
indoor comfort conditions when compared to traditional reactive controllers.
However, the scalability and implementation of DRL controllers are still lim-
ited since they require a considerable amount of time before converging to a
near-optimal solution. This issue is currently addressed in literature through
the offline pre-training of the DRL agent. However this solution results in two
main critical issues: (1) the need to develop a building surrogate model to
perform the training task, and (2) the need to perform a fine-tuning process
over several training episodes to obtain a near-optimal control policy.

In this context, this paper introduces an Online Transfer Learning (OTL)
strategy that exploits two knowledge-sharing techniques, weight-initialization
and imitation learning, to transfer a DRL control policy from a source office
building to various target buildings in a simulation environment coupling
EnergyPlus and Python.

A DRL controller based on discrete Soft Actor-Critic (SAC) is trained on
the source building to manage the operation of a cooling system consisting
of a chiller and a thermal storage. Several target buildings are defined to
benchmark the performance of the OTL strategy with that of a Rule-Based
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Controller (RBC) and two DRL-based control strategies, deployed in offline
and online fashion. The strategy adopted for OTL emulates the real world
implementation with a simulation process by implementing the transferred
DRL agent for a single episode in the target buildings. Target buildings have
the same geometrical features and are served by the same energy system as
the source building, but differ in terms of weather conditions, electricity price
schedules, occupancy patterns, and building envelope efficiency levels. The
results show that the OTL strategy can reduce the cumulated sum of tem-
perature violations on average by 50% and 80% respectively when compared
to RBC and online DRL while enhancing the energy system operation with
electricity cost savings ranging between 20% and 40%. The OTL agent per-
forms slightly worse than the offline DRL controller but it does not require
any modeling effort and can be implemented directly on target buildings
emulating a real-world implementation.

Keywords: online transfer learning, homogeneous transfer learning,
intra-agent transfer learning, building adaptive control, deep reinforcement
learning, energy efficiency

Nomenclature

α Boltzmann temperature coefficient

β Temperature term weight of reward function

χi Internal heat capacity [kJ/m2K]

δ Electricity cost term weight of reward function

γ Discount factor

µ Learning rate

At Control action at control time step t

cE Electricity buying price [e/kWh]

DS Source domain

DT Target domain
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ECHILLER Chiller energy consumption [kWh]

Ecost Electricity cost [e]

EPUMP Circulation pumps energy consumption [kWh]

f(·) Objective predictive function

g Solar heat gain coefficient

Qcap Capacity of chiller [kW]

RE Electricity cost term of reward function

RT Temperature term of reward function

rt Reward at control time step t

RBCCF Rule-based controller part choosing whether to supply cooling en-
ergy to the building

RBCOM Rule-based controller part choosing the operation mode of the en-
ergy system

St+1 Environment state at control time step t+1

St Environment state at control time step t

SOCTES State-Of-Charge of the water storage

SPINT Indoor air temperature setpoint [°C]

Tch Chiller supply temperature [°C]

TINT Indoor air temperature [°C]

TLOW Lower threshold limit of temperature comfort range [°C]

Ts,max Storage temperature upper boundary [°C]

Ts,min Storage temperature lower boundary [°C]

TS Source task

TT Target task
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TUPP Upper threshold limit of temperature comfort range [°C]

Tviol Temperature violation [°C]

Twxyz Target building configuration code

UOP Thermal transmittance of the opaque envelope [W/m2K]

UTR Thermal transmittance of the transparent envelope [W/m2K]

Acronyms

AHUs Air Handling Units

BESS Battery Energy Storage System

BCVTB Building Control Virtual Test Bed

CF Cooling Fraction

COP Coefficient of Performance

DDPG Deep Deterministic Policy Gradient

DNNs Deep Neural Networks

DRL Deep Reinforcement Learning

HVAC Heating, Ventilation and Air Conditioning

IES Integrated Energy Systems
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IL Imitation Learning

KPIs Key Performance Indicators

LfD Learning from Demonstration

MILP Mixed-Integer Linear Programming

ML Machine Learning

MPC Model Predictive Control

OM Operation Mode

OTL Online Transfer Learning

PID Proportional-Integrative-Derivative

PV Photovoltaic

RBC Rule-Based Controller

RES Renewable Energy Sources

RL Reinforcement Learning

SAC Soft-Actor-Critic
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SC Self-Consumption

SOC State-Of-Charge

TES Thermal Energy Storage

TL Transfer Learning

TOU Time-Of-Use

TPE Tree-structured Parzen Estimator

VAV Variable Air Volume

1. Introduction

Building energy consumption currently amounts to approximately 40%
of global primary energy, of which more than 50% is related to the use of
Heating, Ventilation and Air Conditioning (HVAC) systems [1]. In this con-
text, the introduction of advanced energy management strategies is required
to support the widespread adoption of Integrated Energy Systems (IES),
consisting of Renewable Energy Sources (RES), such as Photovoltaic (PV)
system [2], and Battery Energy Storage System (BESS) that aims to im-
prove the Self-Consumption (SC) of the energy produced on-site from PV
[3]. Moreover, buildings can exploit other flexibility sources on the thermal
side, such as Thermal Energy Storage (TES) and building thermal inertia,
that allows to shift or curtail energy demands for HVAC. However, such IES
requires appropriate management [4], due to the need of adapting their oper-
ation to exogenous factors continuously evolving, as weather conditions, oc-
cupancy patterns or electricity tariffs. Although the commonly implemented
ON/OFF and Proportional-Integrative-Derivative (PID) control strategies
in buildings can be easily implemented and exhibit robust operation, they
are reactive and not capable to adapt to changes in the environment to be
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controlled [5, 6]. To overcome such limitations, researchers have explored the
application of advanced control strategies that enable the management of en-
ergy systems by optimizing multi-objective functions [7]. Among advanced
controllers, Model Predictive Control (MPC) is the most widely investigated
in recent applications, as it can automatically adapt to changes in boundary
conditions thanks to its predictive capabilities [8, 9]. MPC has gained con-
siderable attention in the building industry [10] since it has demonstrated
a remarkable ability in managing energy systems to enhance indoor comfort
conditions while reducing energy consumption [11, 12]. However, the general-
ized implementation of MPC in buildings fails to emerge as its operation relies
on the definition of a model for the optimization of the control problem [13],
which is a time-intensive process. As a result, MPC deployment is limited
in the building industry [14]. In that context, Reinforcement Learning (RL)
emerges as a promising technique due to its model-free and data-driven na-
ture, as the agent directly learns the optimal control policy by interacting
with the system through a trial-and-error approach [15]. One particular
family of algorithms, named Deep Reinforcement Learning (DRL), couples
RL with Deep Neural Networks (DNNs) [16]. In this framework, DNNs are
employed to approximate RL policy functions and enable the resolution of
real-world problems, which are complex and require the definition of a large
number of states and actions to properly represent the control problem [17].
In the context of building energy management, RL-based controllers have
been implemented in HVAC systems to regulate the fan speed [18, 19] or to
manage the indoor temperature set-point [20, 21] and the supply water tem-
perature at generation level [13, 22, 23]. Furthermore, RL exhibited excellent
capabilities in managing thermal storage by controlling their temperature set-
point [24] or charge/discharge process at single [16, 21] and multiple building
scale [25, 26]. Certain applications in literature evaluate the use of an online
training technique to emulate the direct implementation of RL controllers
without offline pre-training. The online RL control strategy requires that
the optimal control policy is learned while the system is actively controlled
[7]. However, this strategy is inefficient since the initial performance of the
controller is usually very poor and, as a consequence, a significant training
time is required to interact with the environment and achieve a near-optimal
control policy. Conversely, the strategy mostly explored in literature fore-
sees an offline pre-training setup of the RL controller before its deployment.
Such approach involves the definition of a building surrogate model that can
be either data-driven [19] (i.e., building dynamics approximated by means
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of neural networks) or physics-based [23], developed with modeling software
such as Modelica [27] or EnergyPlus [28]. However, the offline pre-training
of DRL controllers can not be performed in buildings with no available (e.g.,
new buildings) or limited amount of data [29], since a considerable amount of
data is required to build the surrogate model of the building. It results that
these control strategies are less scalable and generalizable, performing prop-
erly only for specific building configurations. In addition, the definition of a
model is needed for each building to be controlled, as in the case of the MPC.
To address this gap, Transfer Learning (TL) emerges as a promising tech-
nique for increasing the scalability of advanced controllers in buildings. TL
is a Machine Learning (ML) method that allows the sharing of pre-acquired
knowledge for a particular task (i.e., source task) in a different but related
problem (i.e., target task) with similar or different domains [30]. The imple-
mentation of TL results in a dramatic reduction of the training time required
by machine learning models to converge towards a near-optimal solution and
is usually applied at the beginning of the training process in the target do-
main, mainly in the context of supervised machine learning applications
[31]. Since ML algorithms suffer from some issues (e.g., the lack of data to
adequately train the models) [32], training machine learning-based models
to address different tasks (e.g., load forecasting) is challenging [33]. Initial
applications of TL are related to image recognition [34, 35], game playing
[36] and natural language processing [37, 38]. However, reusing previous
knowledge from various sources could be beneficial in the context of smart
buildings. Therefore, in recent years TL was implemented in smart buildings
in the context of load prediction [39, 40, 41], occupancy detection and ac-
tivity recognition [42, 43], building dynamics [44, 45, 46] and system control
[47, 48].

In the next section, reference studies about the use of the TL for the
sharing of the control policy in buildings are reviewed. Furthermore, the
motivations and the novelty of the present contribution are provided.

1.1. Related works on TL applications for advanced controllers in buildings

Applications of TL to system control are limited if compared to the others
investigated in the context of smart buildings and are mainly dated back to
the last three years. Moreover, the implementation of TL in the control field
mainly refers to agents based RL, as in the case of robotics [49] or automo-
tive [50]. In the context of building system control, the implementation of
TL provides multiple advantages, since it allows the transfer of information
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between advanced controllers, easing the deployment of such algorithms that
are commonly tailored for specific control problems and scaling up the ap-
plication of such algorithms in buildings with a limited amount of historical
data. In addition, TL techniques could lead to the online implementation of
RL-based controllers, ensuring acceptable performance from the early stages
of deployment. However, the current state of the art concerning TL appli-
cations for DRL controllers evaluates the performance of the controller by
applying a fine-tuning process performed over several episodes on the target
building, as highlighted in the few published papers related to the applica-
tion of TL for sharing control policy in buildings. Lissa et al. [51] proposed
a methodology based on TL to enable the sharing of a RL control policy
operating on a HVAC system between different rooms in the same building.
In particular, a series of experiments were carried out to evaluate the vari-
ance in RL performance compared to the case without TL, as a function of
the geometrical and geographical differences of the various rooms, as well as
the different sizes of the HVAC system. This approach improved the indoor
comfort conditions by reducing the discomfort time of the occupants. A sim-
ilar methodology was employed by Fang et al. [52] to investigate the cross
temporal-spatial transferability of a DRL controller in a HVAC system con-
sisting of a chiller and three Air Handling Units (AHUs) to enhance indoor
temperature conditions while reducing energy consumption. In detail, the
authors develop a TL methodology to assess the effect of the climate and
the number of neural network layers on the knowledge sharing process. As
a result, the transfer process is effective when the DRL agent is transferred
between buildings located in similar climatic conditions, exhibiting better
performance by sharing two of the five layers of the neural network that ap-
proximates the control policy in the source building. Furthermore, Xu et
al. [53] evaluate TL performances when a RL control policy was transferred
from source to target buildings in different climates and with different enve-
lope features and HVAC configurations. This study is the only one in which
the use of heterogeneous TL was evaluated since it assessed the possibility
of transferring a control policy between buildings with different numbers of
thermal zones. Zhang et al. [54] implemented a strategy to transfer a library
of RL multi-agent control policies from a multi-zone source building to a
target building. Before transferring the control policy, the authors designed
a strategy to choose the best pre-trained RL policy among those obtained
on the source building for the management of zone temperature setpoints in
a Variable Air Volume (VAV) system. As a result, 40% of the energy con-
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sumed by the HVAC system was saved on the target building compared to
the baseline controller and 50% compared to the RL controller trained from
scratch over 5000 episodes. Tsang et al. [55] developed a framework to share
the DRL optimal control policy between agents managing the electrical de-
vices in an autonomous household. In detail, dependent devices are grouped
to avoid scalability issues and the source controller knowledge is shared with
the devices in the same group to advise the control action choice. This ap-
proach ensured a reduction of the training time of target device controllers
by around 25%. Similarly, the transfer of a RL agent controlling appliances
was investigated by Zhang et al. [56]. In this case, the use of TL resulted in a
reduction of the RL controller training time on the target buildings, improv-
ing its performance from the early stages of implementation compared to the
case without transfer. The RL control agent was trained on a benchmark
home with the same number and type of appliances and then fine-tuned on
the target buildings. TL was evaluated for transferring battery management
control policies between similar buildings with an integrated energy system
in [57]. In particular, the building similarity was assessed by considering
K-shape clustering to group buildings according to their energy consumption
patterns. The operation of batteries was planned using a RL controller and
transferred to target buildings in the same cluster. This approach allowed to
achieve performances in target buildings similar to those of a Mixed-Integer
Linear Programming (MILP) controller in 10 days. To conclude, the policy
transfer for RL controllers was evaluated at microgrid scale in [47, 48]. Fan et
al. [47] have developed a methodology to transfer between microgrids a Deep
Deterministic Policy Gradient (DDPG) controller, reducing the training time
in target building to achieve a near-optimal control policy. The optimal con-
trol policy is learned during a training phase developed in the source building
to reduce operating costs by learning an optimal scheduling microgrid strat-
egy. Lissa et al. [48] proposed an intra-transfer learning method, named
parallel transfer learning, which allowed knowledge to be shared between five
different agents during their training process without waiting until the end.
This transfer approach was implemented in a microgrid with five homes, each
with its energy system consisting of a PV system and a heat pump, and with
its DRL controller managing the heat pump for minimizing energy costs. As
a result, training time was reduced by a factor of 5 and energy savings of
10% were achieved compared to the case without transfer.
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1.2. Novelty and contributions of the paper

A fundamental gap emerged from the analysis of the current scientific
literature about the application of TL to control policies in buildings. An-
alyzed applications evaluate the performance of a transferred control policy
in a target building by applying a fine-tuning process over multiple episodes.
In typical energy and building applications one episode usually represents
an entire season (either heating or cooling) if not even a whole year. Thus,
following this approach in a real-world context, a transferred control agent
could still require multiple episodes before converging to acceptable solution
which could translate in several years of implementation. In order to effec-
tively enhance the scalability of DRL controllers in buildings it is desirable
that a transferred agent is capable to achieve acceptable performance shortly
after its implementation in the target building.

Therefore, it is required to develop an Online Transfer Learning (OTL)
approach capable to rapidly perform the fine-tuning of the control policy
pre-trained in the source building while its already implemented in the tar-
get building. A similar approach was previously exploited only to transfer
supervised learning models. In [58], the authors shared the knowledge of a
pre-trained offline classifier on a source scenario to different targets. In [59],
the authors transferred a classification and regression model to predict the
building dynamics. To the best of our knowledge, an online transfer learn-
ing strategy was not yet explored in the context of building control policy
transfer.

Following these considerations, the present paper proposes an online trans-
fer learning methodology to share the control policy of a DRL agent, based
on a formulation of Soft-Actor-Critic (SAC) introduced by Christodoulou
[60] capable of handling discrete action spaces. The SAC agent was firstly
pre-trained on a source building to minimize electricity cost and enhance
indoor temperature conditions.

Since the performance of DRL controllers is strongly influenced by hy-
perparameters, their implementation requires the definition of a method to
obtain the optimal set of hyperparameters. Therefore, during the training
phase of the DRL agent on source building an automated procedure was car-
ried out to optimize the set of hyperparameters using Optuna [61]. Then, the
best source DRL controller was transferred to several target buildings, de-
rived from the source building by varying the weather conditions, electricity
price schedules, occupancy schedules and building thermophysical properties.
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The pre-trained control agent was implemented and fine-tuned in each
target building through the proposed methodology. The proposed controller
was benchmarked in terms of electricity cost and temperature violations
against an online DRL controller and an offline pre-trained DRL controller.
Moreover, an additional RBC strategy was introduced as a benchmark to
provide a comparison with a traditional control strategy.

The experiments were carried out by means of a simulation environment
combining EnergyPlus and Python, as in [13, 23]. According to the TL classi-
fications discussed in [29, 30], the knowledge-sharing methodology developed
in this paper is classified as homogeneous transductive transfer learning, as
the transfer process is implemented in buildings where DRL controllers op-
erate in a similar domain (i.e., same geometry and energy systems) and with
an identical objective function. The knowledge sharing was performed ex-
ploiting a model parameter-based TL technique, named weight-initialization,
since the target model weights are initialized using the pre-trained model
weights. Furthermore, according to [31], our TL method is labelled as intra-
agent transfer learning, since the target agents do not know the possible
future implications of a new training process for the source agent after the
knowledge sharing process. Based on the literature review on transfer learn-
ing of DRL controllers in buildings, the main innovative contributions of this
paper can be summarised as follows:

• An online transfer learning strategy, based on homogeneous transduc-
tive TL, was developed to transfer a DRL controller pre-trained on a
source office building to minimize electricity cost while enhancing in-
door temperature conditions. The review of the literature shows that
transfer learning approaches have been poorly explored for DRL control
systems in buildings and the knowledge sharing approaches adopted
have been rarely identified with respect to theoretical statements of
transfer learning. Moreover, to the best of the authors’ knowledge, an
online transfer learning approach has not been explored in the frame-
work of building control systems.

• A pre-trained DRL agent transferred on several target buildings and
online deployed was benchmarked with other two DRL control strate-
gies, offline and online deployed without any prior knowledge of the
environment to be controlled. Moreover an additional RBC strategy
was introduced to benchmark OTL performances. To the best of our
knowledge, the implementation of transfer learning in the context of
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control systems in buildings has not been compared yet with an online
DRL strategy. The comparison among OTL and online DRL was the
fairest to highlight the benefits of applying transfer learning. In fact
the online DRL controller was developed to emulate the direct imple-
mentation of a controller that does not require the development of a
simulation model of the controlled environment to perform pre-training.

• Several target building configurations were designed, where the best
controller pre-trained on the source building was transferred to speed
up the training process in target controllers. The source and target
buildings differ in terms of weather conditions, electricity price sched-
ules, occupancy schedules and building thermophysical properties, but
have the same geometry and energy system. As a result, the effect of
each variable on the performance of transfer learning can be indepen-
dently quantified.

The rest of this paper is organized as follows. In Section 2 the theoretical
foundations of DRL controllers and TL are described. Section 3 introduces
the formulation of the control problem while Section 4 describes the method-
ological framework. Implementation details concerning source and target
buildings, the online transfer learning and the controllers developed in this
paper are provided in Section 5. Section 6 outlines the results obtained while
Section 7 discusses them before providing conclusions and future directions
in Section 8.

2. Methods

This section describes the methods adopted in this paper. However, only
theoretical foundations regarding transfer learning are described in detail.
Theoretical aspects concerning DRL and the discrete SAC algorithm applied
in this paper can be found in [15, 60, 62, 63].

2.1. Transfer Learning

Transfer Learning is a machine learning method, emerging as a promising
technique to reuse the knowledge acquired in a particular task for improving
performances in a different but related problem [29]. Knowledge sharing hap-
pens at the beginning of the learning process, to accelerate the convergence
process of machine learning models over the situation in which learning is
performed from the beginning without prior knowledge. The mathematical
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definition of TL requires the description of the concepts of domain and task,
as described by [30]. Specifically, the domain consists of a feature space
X and a marginal distribution probability P (X), while the task consists of
the label space Y and an objective predictive function f(·). This function
is learned from the training data (represented by a pair (xi,yi)) and used to
approximate the conditional probability P (y|x) as well as to predict the label
of new instances. The transfer process can occur between multiple domains,
however research has focused on the case where knowledge sharing occurs
between a source domain DS = (xS1 , yS1), ..., (xSnS

, ySnS
) and a target do-

main DT = (xT1 , yT1), ..., (xTnT
, yTnT

). Thus, according to [29, 30], TL is
defined as the process that improves the learning of the predictive function
in the target domain DT with learning task TT , using the acquired knowledge
in the source domain DS with task TS. In general, domains and tasks can
be the same or different. TL foresees that knowledge can be shared where
source and target have different or similar domains, tasks and solutions. In
this regard, according to [29], it is possible to identify some classifications
concerning the similarity of tasks (i.e., label classification), features and la-
bels (i.e., space classification), and knowledge sharing modalities (i.e., solu-
tion classification). The label classification splits into three categories TL
depending on task similarity and label availability:

• inductive transfer learning, considering the availability of labelled data
in source and target domains and that source and target tasks are
different, without any interest in domain differences;

• transductive transfer learning, considering that source and target do-
mains are different but with the same tasks. In this case labelled data
are available only for source domain;

• unsupervised transfer learning, considering the unavailability of la-
belled data in source and target domains (that could be different or
not) and different tasks between source and target.

The differences in source and target features (i.e., spaces) and labels are
accounted within the space classification. In this case, TL is classified as
homogeneous when source and target spaces and labels are identical. Oth-
erwise, TL is classified as heterogeneous when spaces and/or labels differ
between source and target. Moreover, TL is classified according to the knowl-
edge sharing method adopted in solution classification: instance-based TL,
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feature representation-based TL, relation knowledge-based TL and model
parameter-based TL. Details about the first three categories are provided
in Pinto et al. [29], being outside the scope of this work since it was imple-
mented the model parameter-based TL. This kind of knowledge sharing is
widely used for neural networks and involves the sharing of certain param-
eters or their distributions between source and target tasks, such as model
weights. The model parameter-based TL can be divided into 3 sub-categories
according to model parameter sharing modes:

• feature-extraction, where weights from pre-trained model are used for
some layers that are not domain dependent and do not require further
fine-tuning;

• weight-initialization, where the target model weights are initialized us-
ing the pre-trained model weights. In this case, an additional fine-
tuning process could be performed;

• relational knowledge-based, considering the sharing of data relationship
in case of similarity among the source and target datasets.

2.1.1. Transfer Learning for RL applications

In the context of RL, [31, 64, 65] give some indications about possible ap-
plications of TL for this algorithm. However, to classify TL applications for
RL according to the previous categories, it is necessary to establish the corre-
spondence between domain, label space and task defined for generic machine
learning problems and state-space, action-space and reward function in the
case of RL. In this case, the input feature space (i.e., domain) corresponds
to the state-space in the RL framework, while the label space is equivalent
to the RL action space. As indicated in [29], in RL the task corresponds
to the combination of action space, reward function and transition function.
Using this definition, RL applications can be categorized using labels and
space classification for general machine learning problems. In detail, this
paper explores the use of homogeneous transductive transfer learning, as the
state and action spaces are the same between the source and target buildings,
while the transition function changes due to differences between the domains
in climatic conditions, electricity price schedules, occupancy schedules and
building thermophysical properties. Furthermore, the knowledge sharing be-
tween RL agents is carried out considering model parameter-based TL: a
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comparison between feature-extraction and weight-initialization is reported
in Figure 1.

Figure 1: Model parameter-based TL for RL agents: comparison between feature-
extraction and weight-initialization

In this paper, the weight-initialization TL method is employed as knowledge-
sharing strategy between source and target agents. The differences associated
with the source of knowledge, availability and required domain knowledge
enable the identification of an additional classification for transfer learning.
According to Da Silva and Costa [31], it is possible to define:

• Intra-Agent TL, representing transfer methods that do not require ex-
plicit communication for accessing to internal knowledge of the agents.
In this case, it transferred the knowledge acquired by the source agent
up to that moment (whether or not the training process has been com-
pleted) without the target agent knowing the possible future implica-
tions of new training process for the source agent.
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• Inter-Agent TL, describing transfer methods to reuse the knowledge
from communication with other agents. In this case, it transferred the
knowledge already available from another agent at any time during
the training process of the source agent, and the knowledge may be
transferred bidirectionally, from target to source and vice-versa.

According to this classification, our work is categorized as Intra-Agent
transfer learning, with the adoption of knowledge transfer named Mentor/Observer
[31]: the target agent (i.e., observer) learns an optimal policy by observing
the successful optimization of the control problem performed by the source
controller (i.e., mentor). To conclude, [31, 65] indicate different settings of
knowledge reuse in addition to transfer learning, such as:

• Imitation Learning (IL), where the agent in the target domain learns
an optimal strategy on a particular task by observing an expert (e.g.,
RBC) that optimizes the same task. In this case, the target agent is
aware of the transitions from the expert (and could store them in a
buffer) but is not informed about the chosen set of actions and reward
signals.

• Learning from Demonstration (LfD), similar to imitation learning, but
in this case the expert controller could inform the target agent about
the chosen set of actions and the target policy could be improved by
accessing reward signals.

In this work, the source agent knowledge is reused by combining Transfer
Learning and Imitation Learning, since the target agent policy is initialized
using weights from pre-trained source policy, and the target agent buffer is
initialized with the transition from RBC warm-up.

3. Control problem formulation

In this paper, homogeneous transfer learning is implemented to share the
control policy between a source office building in Turin, Italy, and different
target buildings. Source and target buildings are characterized by the same
geometry and the same energy system. However, targets derived from the
source building are located in different weather conditions and have different
electricity price schedules, occupancy patterns and envelope features: further
details are provided in Section 5.1. The proposed application is carried out
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for a cooling season lasting 3 months (i.e., from 1 June to 29 August). The
case study is conceived to benchmark the performance of transfer learning
for a DRL-based controller system with that of RBC and two particular ad-
vanced control strategies, offline DRL and online DRL. The building is served
by a cooling system consisting of an air-to-water chiller and a cold thermal
storage acting as a buffer between the building and chiller. The energy sys-
tem was modeled using EnergyPlus with available features for chiller and
TES. The energy system provides cooling energy to the building through
the electric chiller, operating at constant cold water temperature setpoint
Tch, or the TES, operating at constant cold water flow rate. The thermal
storage operates between a minimum temperature Ts,min and a maximum
temperature Ts,max, which match respectively the maximum and minimum
TES State-Of-Charge (SOC). The cooling energy is delivered to the envi-
ronment using zone terminals, connected to the carrier fluid circuit in which
the cold water flows by means of circulation pumps. Moreover, thermostatic
control is considered in this case study, since the supply of energy to the
building depends on indoor temperature conditions. A simplified scheme of
the analyzed energy system is shown in Figure 2.

Figure 2: Simplified scheme of the cooling energy system

The DRL controller is developed to reduce electricity cost associated with
the operation of the chiller and circulation auxiliary while maintaining the
indoor temperature inside an acceptability range defined between [25, 27] °C,
which corresponds to [-1, +1] from the desired indoor temperature setpoint
of 26 °C by:

• optimal managing the cooling system by choosing between different
operation modes as detailed below;
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• choosing whether or not to supply cooling energy to the thermal zones.

The controller can manage the energy system according to three cooling
operation modes, as shown in Figure 3:

1. Discharging mode (operation mode = -1), where the cooling energy
required by the building is delivered by discharging the thermal storage.
In this setting, the energy system operates at variable supply water
temperature.

2. Chiller mode (operation mode = 0), where cooling energy is provided
to the building exclusively by the chiller. In this operation mode, the
energy system operates at constant supply water temperature.

3. Charging mode (operation mode = 1), where cooling energy is pro-
vided simultaneously to the storage and the building (if needed). In
this setting, the energy system operates at constant supply water tem-
perature.

The system operation modes are conceived to avoid that cooling energy
is supplied to the building by both the chiller and the cold thermal energy
storage simultaneously.

Figure 3: Operation modes of the cooling energy system
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4. Methodology

This section outlines the methodological framework employed in this pa-
per, offering insights concerning the TL process and the advanced controllers
adopted to benchmark TL performance. The methodological process is or-
ganized into four stages, as shown in Figure 4.

4.1. Design of control problem

The first stage of the methodological process involves the development of
the RBC and the DRL controller implemented in the source building.

4.1.1. Design of rule-based controller

The RBC is made up of two parts, one that chooses whether to supply
cooling energy to the building (i.e., RBCCF ) and the other which decides the
operating mode of the energy system (i.e., RBCOM). These two agents are
not independent, since the mode of operation of the energy system depends
on whether cooling energy is delivered to the zone. Further details on the
RBC design are provided in Section 5.3.

4.1.2. Design of DRL controller

DRL controller is developed to reduce electrical cost and maintain ade-
quate indoor temperature conditions during occupancy hours. The develop-
ment of the DRL controller involves the definition of its main components,
i.e. the action space (which includes all possible actions to be selected by the
control agent), the state space (containing all the observations required by
the agent to optimize the control policy) and the reward function, intended
to be representative of the control problem objective.

4.2. DRL training phase on source building

During the second methodological step, the DRL controller is trained on
the source building in an offline manner. Details about this training method
are provided in Subsection 4.4.1. During the DRL agent training process,
an automated procedure is performed via Optuna [61] to find the optimal
configuration of control algorithm hyperparameters since the performance of
DRL controllers is considerably influenced by the choice of such variables. As
a result, it is identified the best control agent among the analyzed controllers:
this is employed during the next stage involving the transfer of the control
policy to the target buildings. Further details on the DRL training phase are
provided in Section 5.5.
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Figure 4: Methodological framework adopted in this work

4.3. Transfer of DRL control policy

The third step of the framework involves the development of a method-
ology for the implementation of TL for control policy sharing. In this way,
it is shared the optimal control policy of the best agent trained on source
building to the controllers to be implemented in the target buildings. The TL
strategy employed in this paper is categorized as homogeneous transductive
TL according to Section 2.1, since controllers implemented on the source and
target buildings address the same task and the same state and action spaces
but different probability distribution for state space (i.e., different domains).
Furthermore, the transfer strategy employed is the weight-initialization as
the knowledge transfer is linked to the sharing of neural network parame-
ters between source and target controllers. In detail, the weights of Actor
and Critic networks of the target controllers are initialized using the weights
of the pre-trained source agent. Then, a fine-tuning process is performed
to enable the updating of the neural network weights allowing the agent to
adapt the control policy to the new conditions existing in the target build-
ings. However, TL approaches available in literature evaluate a fine-tuning
process carried out in an offline manner, i.e., repeating this procedure several
episodes consecutively. As a result, the scalability of the TL process is lim-
ited since it is required the development of a model for each target building
to which source agent control policy will be transferred. Therefore, an online
transfer learning methodology, described in Subsection 4.4.3, is developed to
transfer the source optimal control policy.
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4.4. Performance benchmarking on target buildings

In the last methodological step, a robust benchmark with two advanced
strategies is provided for OTL with the offline and online (not transferred)
DRL controllers which belong to the same family of advanced controllers.
Moreover, the RBC was introduced to provide a benchmark with a traditional
control strategy that is commonly implemented in real buildings.

The offline DRL strategy corresponds to that used during the DRL agent
training phase on the source building (i.e., offline deep reinforcement learn-
ing), while the online strategy is designed to emulate the direct real-world
DRL controller implementation without having any knowledge of the envi-
ronment to be controlled. Further details about these DRL training strategies
are provided in Subsections 4.4.1 and 4.4.2. The performances of these con-
trollers are assessed during their implementation on different target buildings,
derived from the source building by changing boundary conditions. In de-
tail, nineteen target buildings are evaluated, accounting for different weather
conditions, electricity price schedules, occupancy patterns, and envelope effi-
ciencies (i.e., changing the thermophysical characteristics of the opaque and
transparent envelope). Thus, a sensitivity analysis is performed to evaluate
the effectiveness of TL as a function of the differences between the source
and the target buildings. Further details on target building configurations
are provided in Section 5.1.

4.4.1. Offline deep reinforcement learning

The offline training strategy for a DRL agent, shown in Figure 5 (c),
foresees that the training period, named training episode, is repeated multiple
times to ensure a stable control policy for the agent. However, this process
exhibits a remarkable weakness although it guarantees a stable control policy:
in case of changes in the environment to be controlled, controller retraining is
required. This recursive training process is difficult to implement in practice,
as it would require several episodes (e.g., corresponding to several cooling
seasons in this study) before the agent would be able to upgrade the control
policy, as well as a significant modeling effort to obtain a model of the building
to be controlled.

4.4.2. Online deep reinforcement learning

The online DRL training strategy requires that the control agent con-
verges to the optimal policy while actively controlling the system [7].
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To imitate a direct real-time implementation, the training of the DRL
agent is carried out on a single episode and not for several episodes as in
the case of offline DRL. The advantage of this strategy relies on its model-
free nature, as it is not necessary to generate a model of the building to
be controlled. However, during the early stages of the training period the
agent does not have any knowledge of the control problem and the risk that
the actions chosen by the controller result in poor performance is significant.
The memory buffer of the online DRL agent is initialized with the transitions
obtained from the RBC operation (i.e., imitation learning). This procedure
is detailed in the Subsection 4.4.3. Moreover, a number of gradient steps
higher compared to the offline DRL agent is adopted to ease the exploration
process and speed up the learning process after the first week of online DRL
implementation [7].

However, a large number of gradient steps could involve the risk that
the control agent converges to an optimal but deterministic control policy as
the training process proceeds. To mitigate this issue, the value of the time
step in which the learning process takes place is increased compared to the
offline DRL strategy. A graphical representation of the online DRL strategy
is shown in Figure 5 (b) and further details are given in Section 5.6.

4.4.3. Online transfer learning strategy

The strategy adopted for OTL emulates a real-time implementation as
in the online DRL, but in this case the agent was pre-trained on the source
building. Then, the agent was further fine-tuned on the new environmental
conditions. The whole process is developed over a single episode. A represen-
tation of the implemented OTL strategy is shown in Figure 5 (a). In detail,
the knowledge reuse approach is organized into two phases: imitation learn-
ing and transfer learning with weight-initialization. The agent pre-trained
on the source building is transferred to initialize the target controller, but
it does not operate during the imitation learning phase, performed during
the first week of the analyzed period (i.e., from 1 June to 7 June), as the
RBC is implemented. During this phase, the memory buffer of the OTL
agent is initialized with transitions from RBC logical strategy described in
Section 5.3. Transitions are stored in the memory buffer during each control
time step. This process was found effective for enhancing the OTL agent in
learning during the first days of deployment the relation between the chosen
action, states (i.e., the evolution of the environment to be controlled), and
reward function (i.e., the electricity cost associated with the operation of
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energy system and the temperature violations).
As defined in Section 2.1, this knowledge reuse process is known as im-

itation learning. After this first phase, weights of the neural networks that
approximate the DRL control policy are initialized with those of the source
agent. Therefore, the controller is fine-tuned over the cooling season with a
strategy guaranteeing that the target agent updates its control policy with-
out completely overriding the pre-acquired knowledge in the source building
that could be useful to the target controller. Thus, the value of the learning
rate is decreased by half and the learning procedure is modified compared to
the training phase of the source DRL controller. As shown in Figure 5 (a),
the training period is alternated by steps in which the learning of the agent
occurs or not. Concretely, a learning step is defined every n days, starting
from the end of the warm-up period. Moreover, to avoid performance degra-
dation for the controller, it is adopted a number of gradient steps higher
compared to the offline DRL control strategy. The number of gradient steps
denotes the number of batches extracted randomly from the buffer memory
on which the gradient is updated at each control time step [7]. Detailed
information about the values chosen for the typical parameters adopted for
the OTL strategy is given in Section 5.6.
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Figure 5: Learning strategies deployed in target buildings: (a) online transfer learning,
(b) online deep reinforcement learning and (c) offline deep reinforcement learning

5. Implementation

This section discusses the implementation details for the source building
and configurations of target buildings. Moreover, it provides a detailed de-
scription of the developed simulation environment and the control strategies
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implemented on source and target buildings.

5.1. Implementation details on source and target building configurations

This section provides details about the source and target building con-
figurations in which RBC, offline DRL, online DRL and OTL controllers
are implemented. As specified in Section 3, source and target buildings are
characterized by the same geometrical features and cooling system.

In particular, these buildings consist of three spaces, two 10-person office
rooms and one 3-person control room, plus a technical room not served by
the air-conditioning system, with a total floor area of 196m2 and a net con-
ditioned area of 97m2. The office rooms and control room are occupied at
maximum capacity during the whole occupancy period. The average trans-
mittance values of the opaque and transparent envelope components for the
source buildings are 0.16 and 0.55 W/m2K respectively, with a window-to-
wall ratio of 7%.

The source building is occupied from Monday to Friday between 8:00
and 18:00. The price of electricity supplied from the grid to enable the
operation of the energy system in the source building is defined according to
a time-based tariff structure (i.e., Time-Of-Use (TOU)) commonly applied in
Italy, derived from the 0.143 e/kWh electricity average price for the period
June-September 2021 indicated by Italian grid regulating authority [66] (i.e.,
ARERA). In detail, three price bands were defined: low price, with a rate of
0.071 e/kWh (i.e., equal to one-half of the medium electricity price defined
by ARERA); medium price, with an electricity rate of 0.143 e/kWh (i.e.,
assuming a value equal to the medium electricity price defined by ARERA);
high price, with a rate of 0.214 e/kWh (i.e., equal to 1.5 times the medium
electricity price defined by ARERA).

The chiller capacity and the power delivered to each thermal zone are de-
termined from the ideal case where the building demand is considered as an
external disturbance of the system. According to the ideal-load EnergyPlus
calculation, the design cooling power to maintain an indoor temperature of
26 °C and a relative humidity of 55% during the occupancy period is 1.8
kW per each office zone and 1 kW for the control room. Moreover, the
chiller has a 12 kW design capacity Qcap. These design values are derived
for the source building from the sizing process when implementing the ref-
erence weather file available in EnergyPlus for Turin, Italy (ITA-TORINO-
CASELLE-IGDG.epw). Furthermore, the TES is sized considering 3 times
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the maximum ideal hourly cooling demand of the building. Therefore, ac-
cording to the ideal-load calculation, the TES size for the source building is
3m3. The same approach was adopted to find these design features for each
target building, according to each weather condition.

Other specifications for the TES and chiller are the same for source and
target buildings. In detail, the thermal energy storage operates between a
minimum temperature Ts,min of 10 °C and a maximum temperature Ts,max of
18 °C, which match respectively the maximum (SOCTES = 1) and minimum
(SOCTES = 0) state of charge. The design water mass flow rate during the
charging phase is 0.2 kg/s while for discharging phase corresponds to the sum
of the design mass flow rates of the office rooms and control room, equal to
0.35 kg/s. The chiller supply water temperature at the outlet is 7 °C, while
reference leaving and entering fluid temperatures are respectively 6.7 °C and
35 °C. These two features are employed by the EnergyPlus chiller model to
provide the reference Coefficient of Performance (COP) value, equal to 2.7.

Source and target buildings differ in terms of weather conditions, electric-
ity price schedules, occupancy schedules and building thermophysical prop-
erties, but have the same geometry and energy system. As a result, the effect
of each variable on the performance of TL can be independently quantified.
The target buildings were evaluated in four different cities (i.e., weather
conditions) and employed different electricity price schedules and occupancy
schedules to explore the capabilities of the transferred agent in adjusting the
pre-trained control policy from source building considering these changes.
The examined configurations of target buildings are shown in Figure 6.

Each target building configuration is denoted by the code Twxyz, where w
[0, 3] refers to the climatic conditions investigated, x [0, 1] and y [0, 1] to the
price and occupancy schedules and z [0, 4] to the building envelope features
considered. The impact of climate on the control policy transfer process was
evaluated considering the same (i.e., Turin) or similar (i.e., Paris) climatic
conditions as those of the source building, as well as very different conditions,
in warmer (i.e., Palermo) or colder (i.e., Helsinki) locations. These localities
were chosen according to the classification established by the European Com-
mission based on Cooling and Heating Degree Days. Each city represents a
particular climate type (e.g., mediterranean climate for Palermo) according
to the weather classification described in [67, 68].
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Figure 6: Source building and target building configurations

Furthermore, the target building configurations are distinguished by the
electricity price and occupancy schedules employed. In detail, two price
schedules were considered, as shown in Figure 7: the first schedule (i.e.,
0) is based on TOU as in the source building, while the other (i.e., 1) is
an on-off peak price scheme based on the Austin (Texas) electricity tariffs
[69]. Specifically, an off-peak rate (0.029 e/kWh) during the period 20:00
- 7:00 and an on-peak rate (0.063 e/kWh) during the daytime period 7:00
- 20:00 were assumed. Two occupancy schedules were implemented in the
target buildings and these differ in terms of weekdays and occupancy hours.
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The first occupancy schedule (i.e., 0) assumes that the building is occupied
during the period Monday-Friday 8:00-18:00, while the other schedule (i.e.,
1) evaluates the presence of occupants during the period Monday-Sunday
7:00-19:00.

Eventually, different combinations of envelope efficiency were assessed for
each target building, matching the thermophysical properties of the opaque
envelope (i.e., opaque thermal transmittance UOP and internal heat capacity
χi) and the transparent envelope (i.e., transparent thermal transmittance
UTR and solar heat gain coefficient g). The five envelope efficiency combi-
nations employed for target buildings are shown in Table 1. The envelope
efficiency configuration 0 refers to the source reference building, while the
others are defined according to the building standards of each locality in
which the requirements for the thermophysical features are specified. The
thermophysical properties values of the reference buildings for Palermo (i.e.,
efficiency configuration 1), Paris (i.e., efficiency configuration 2), Helsinki
(i.e., efficiency configuration 3) and Turin (i.e., efficiency configuration 4)
were chosen according to [70, 71, 72, 73].

Figure 7: Electricity price schedules employed for target buildings
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Table 1: Opaque and transparent envelope features for target buildings

Efficiency configuration UOP [W/(m2 ∗K)] χi [kJ/(m
2 ∗K)] UTR[W/(m2 ∗K)] Solar factor g

0 0.16 38.9 0.5 0.49
1 0.45 48.0 2.5 0.35
2 0.34 44.2 1.9 0.65
3 0.18 40.0 1 0.5
4 0.3 43.5 1.3 0.35

5.2. Simulation environment

The experiments were conducted via a co-simulation environment inte-
grating EnergyPlus [28] and a Python interface based on OpenAI Gym [74].
Figure 8 shows the architecture of the developed co-simulation environment,
modified from [16]. Building dynamics and energy system are modeled in
EnergyPlus. At each simulation time step, the EnergyPlus building model
receives in input the control actions from the Python side and information
about weather conditions from the EnergyPlus reference weather file. The
outputs of this model consist of information on the energy system (i.e., TES
SOC), indoor conditions (i.e., indoor air temperature, occupancy status) and
additional information (i.e., outdoor air temperature, weekday and hour of
the day) included on the state-space of the controller. Control systems are
developed in Python. In detail, the outputs from the EnergyPlus side and
information about the electricity price are provided as inputs to the Python
side, while the outputs are the control actions (i.e., cooling system opera-
tion mode and cooling fraction to thermal zones). The RBC and DRL agent
select the control action at each time step according to the state space in-
formation and the reward function. The two software are interfaced through
the Building Control Virtual Test Bed (BCVTB), operating as a middleware
[23], and the ExternalInterface function of EnergyPlus. The interaction be-
tween Python and EnergyPlus is dynamic and occurs during each simulation
time step. However, it can occur that the agent does not perform a control
action in each simulation time step. In this case, time steps are distinguished
between control and simulation. The simulation time step was set to 15
minutes since it ensures an optimal convergence of numerical results during
the EnergyPlus simulation. However, in this work the control time step was
not set equal to the simulation time step since it is not optimal to perform an
action every 15 minutes in an energy system including a TES. As a result,
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the control time step was set to 30 minutes to adequately take into account
for the thermal inertia of the TES. In this framework, each control action
(performed every 30 minutes) was applied to every two simulation time steps.
A similar approach was adopted in [13, 23].

Figure 8: Architecture of the simulation environment (modified from [16])

5.3. Rule-based control strategy

The RBC is made of two agents that decide to provide cooling energy
to the environment (RBCCF ) and the operation mode of the energy system
(RBCOM). The RBCCF control logic consists of two parts, a pre and post
first switch ON phase, where the agent starts to supply cooling energy to
the building according to specific indoor temperature conditions and the
time of the day during working days. The RBCCF starts to supply cooling
energy to the thermal zone according to the requirements shown in Table
2. The four combinations listed in Table 2 of start time window and indoor
temperature conditions resulted from a sensitivity analysis where different
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thresholds were tested to minimize temperature violations during the early
stages of the occupancy period.

Table 2: Time period and indoor temperature conditions in RBCCF for the starting phase

Combination Time period Indoor temperature

1 4 : 00 ≤ t < 5 : 00 TINT − TUPP ≥ 3◦C
2 5 : 00 ≤ t < 6 : 00 TINT − TUPP ≥ 2◦C
3 6 : 00 ≤ t < 7 : 00 TINT − TUPP ≥ 1◦C
4 t ≥ 7 : 00 TINT − TUPP ≥ 0◦C

After the starting phase, cooling energy is supplied to the building until
the indoor temperature falls below the lower threshold of the acceptability
range TLOW (i.e., 25 °C). Conversely, when the indoor temperature rises
over the upper threshold of the acceptability range TUPP (i.e., 27 °C), the
RBCCF agent starts again to provide energy to the building. The cooling
energy supply is interrupted when occupants leave the building (i.e., 18:00).
The second agent (RBCOM) manages the cooling energy system to select its
operation mode. In detail, when the electricity price is low and the SOCTES

is lower than 0.75 (i.e., corresponding to a TES temperature of 12 °C), the
RBCOM operates the cooling system in charging mode, until the electricity
price rises above the minimum value or the SOCTES reaches the maximum
value (i.e., SOCTES equal to 1 or TES temperature equal to 10 °C). When the
RBCCF decides to supply cooling energy to the building and the electricity
price is not low, RBCOM operates the cooling system in discharging mode if
SOCTES is not zero and in chiller mode if the storage is empty.

5.4. Design of DRL control strategy

In this section, details about the design of the reward function and state-
action spaces are provided. Furthermore, the setup of the agent during the
training phase on source building is discussed.

5.4.1. Design of state-space

The choice of observations to be included within the state-space is funda-
mental for the DRL controller as it enables the agent to understand the effect
of the selected action on the controlled environment. Furthermore, the state-
space should be constituted by variables easily measurable and that speed
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up the control problem optimization, increasing the chances of its real-world
implementation. The state variables used in this work are shown in Table 3,
with a detail relative to the reference time step (i.e., specified as a function
of the actual control timestep t). Incorporating the Outdoor air temperature
in the state space was required to evaluate its impact on building energy
consumption. Indoor temperature conditions were evaluated employing the
difference between the indoor setpoint temperature and the actual indoor air
temperature. This variable was observed at the current time step and at the
two previous timesteps (i.e., t-1 and t-2), to assess the temperature evolu-
tion in the building over time and account for the thermal dynamics effect
of the building and energy system [16]. For the same reason, the state of
charge of the cooling thermal storage (TES SOC) was evaluated during the
same timesteps. Introducing the SOC within the state space was required to
provide the agent with adequate information for better managing the cooling
system. Since it is required that the DRL agent reduces the cost of electricity
withdrawn from the grid, the Electricity price was included within the state
space. In addition, its perfect predictions over the next 12h were accounted
for enabling the agent to optimally choose the operation mode of the cooling
system. The information regarding the presence of occupants in the build-
ing was provided to the agent through the (0, 1) binary variable Occupants’
presence status, included in the state-space for the current time step and the
following 12 h. To conclude, the occupancy schedule could be recognized by
the controller by combining this feature with the last two variables contained
in the state-space, Day of the week and Time of the day.

Table 3: Variables included in the state-space

Variable Unit Timestep

∆T Indoor Setpoint - Mean Indoor Air °C t, t-1, t-2
SOCTES - t, t-1, t-2

Outdoor air temperature °C t
Time of the day h t
Day of the week - t
Electricity price e/kWh t, t+1, ...,t+24

Occupants’ presence status - t, t+1, ...,t+24
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5.4.2. Design of action-space

Considering that the discrete version of SAC was used as control algo-
rithm, the action space is of the same type. The action space could be
expressed as:

A = OMxCF = (om, cf) : om ∈ OM, cf ∈ CF (1)

In detail, the DRL controller chose an action in the range [0, 4], each
one corresponding to a combination of Operation Mode (OM) and Cooling
Fraction (CF). Therefore five possible actions could be selected by the agent
according to Table 4 to choose:

• the operation mode of the cooling system (i.e, discharging mode [-1],
cooling mode [0], charging mode [1]);

• whether [-1] or not [0] to supply cooling energy to the thermal zone.

Moreover, safety constraints were introduced to avoid that the system
operated in charging mode when the storage was fully charged (i.e., SOCTES

= 1) and in discharging mode when the storage was empty (i.e., SOCTES =
0). In these circumstances, the system operated in chiller mode.

Table 4: Details on action-space

Action Operation mode Cooling fraction

0 0 0
1 1 0
2 -1 -1
3 0 -1
4 1 -1

5.4.3. Design of reward function

The reward function must be defined according to the objectives of the
control problem. Therefore, in this case study the reward function was made
of two terms, an electricity cost-related term and a temperature-related term,
since the DRL controller was designed to reduce electricity cost of the cooling
system while improving indoor temperature conditions. Furthermore, the
two reward terms were weighted by introducing coefficients δ and β to adjust
their importance. The general expression of the reward was defined as follows:
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R = −(δ ∗RE + β ∗RT ) (2)

The electricity cost-related term refers to costs associated with the energy
withdrawn from the grid to feed chiller and circulation systems, and it was
expressed in the following way:

RE = cE ∗ (ECHILLER + EPUMP ) (3)

where cE [e/kWh] is the electricity price for buying defined according to
the implemented price schedule, while ECHILLER and EPUMP corresponds to
chiller and pumping system energy consumption, evaluated in kWh.

The temperature related-term was defined according to the presence of
the occupant and the indoor temperature conditions.

When the building is not occupied, the temperature-term is:

RT = 0 (4)

During working hours, the temperature-term could have different expres-
sions:

• if TINT < TLOW − 2:
RT = 50 (5)

• if TLOW − 2 ≤ TINT < TLOW :

RT = (SPint − TINT )
3 (6)

• if TLOW ≤ TINT ≤ TUPP :
RT = 0 (7)

• if TUPP < TINT ≤ TUPP + 2:

RT = (TINT − SPint)
3 (8)

• if TINT > TUPP + 2:
RT = 50 (9)

The reward had a fixed value if the temperature was below 23 °C or above
29 °C to avoid convergence problems for the algorithm related to the high
magnitude of the reward, as in the SAC the learning process was influenced
by the definition of the Boltzmann temperature coefficient α as a function of
the reward magnitude.
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5.5. Training setup of DRL agent on source building

The DRL agent learns the optimal control policy on the source building
before sharing it with the target buildings in the case of OTL. During the
training phase the controller is trained in offline manner, whose implemen-
tation details are reported in the Subsection 4.4.1. The performance of DRL
algorithms depends significantly on the choice of several hyperparameters
which have to be chosen accurately. To this end, an automated procedure
was adopted to extract the optimal set of hyperparameters using the open-
source Python library Optuna [61]. The hyperparameters optimization was
performed only during the training phase of the DRL agent on source build-
ing. In particular, Optuna minimizes or maximizes an objective function by
performing the optimization of the set of hyperparameters provided as input
with the corresponding acceptability range. The hyperparameters and the
corresponding range values involved in the optimization process are listed
in Table 5. In this work, the Tree-structured Parzen Estimator (TPE) was
chosen among Optuna sampling algorithms [75] to optimize a multi-objective
function, since the DRL agent should minimize the electricity cost while re-
ducing the indoor temperature violations compared to the RBC strategy in
the source building. In this case an optimal Pareto-front solution set exists
[76], so it was employed the criterion of the minimum Euclidean distance
from the ideal point [77] (i.e., the non-real point whose coordinates have the
lowest values when separately considering the objectives in the target func-
tion). During the automated hyperparameter optimization procedure, twenty
agents trained for 30 episodes were considered, and a coordinate point [Ecost,
Tviol] indicating its performance was retrieved for each agent. Ecost repre-
sents the total electricity cost, calculated as the product of the electricity
cost withdrawn from the grid and the sum of the energy consumption of the
chiller and auxiliaries in kWh, and it is expressed as follows:

Ecost = cE ∗ (ECHILLER + EPUMP ) (10)

Tviol stands as the cumulated sum of the temperature violations during
the whole cooling season, as indicated in the following equation:

Tviol =

tend∑
t=0

Tviol,i (11)

A temperature violation Tviol,i is computed as the absolute temperature
difference between indoor temperature and the upper or lower limit of the
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temperature acceptability range [25, 27] °C, when the indoor temperature
falls outside this range during the occupancy period. Tviol,i could have dif-
ferent expressions according to the indoor temperature value TINT :

• if TINT < TLOW :
Tviol,i = TLOW − TINT (12)

• if TLOW ≤ TINT ≤ TUPP :
Tviol,i = 0 (13)

• if TINT > TUPP :
Tviol,i = TINT − TUPP (14)

Therefore, the Euclidean distance between the performance at the end
of the training phase of each source DRL controller and the ideal point
was calculated. Therefore, the solution with the lowest distance and the
best performance compared to the RBC in terms of total electricity cost and
cumulated sum of temperature violations was chosen as the best.

Table 5: Ranges of DRL hyperparameter values involved in the optimization

Hyperparameter Value

# Hidden layers [2, 4]
# Neurons per layer [64, 128]
Batch size [64, 128]
Discount factor γ [0.9, 0.95, 0.99]
Actor/Critic learning rate µ [0.00025, 0.0005, 0.00075, 0.001]
Reward electricity cost-term weight factor δ [2, 4, 6, 8, 10, 12]
Reward temperature-term weight factor β [0.015, 0.03, 0.045, 0.06, 0.075, 0.09]

A training episode includes 90 days, from 1 June to 29 August. Each
episode took on average 35 minutes to be simulated on a machine with an 8th
Generation Intel@CoreTMi7-8550U @ 4.0 GHz processor and 16.0 GB RAM.
The simulation of an episode (which corresponds to one cooling season) in-
cludes both EnergyPlus simulation and Python control process. During the
simulation, the exchange of information between EnergyPlus and Python was
handled through BCVTB. Thus, 35 minutes per episode refer to the time re-
quired to complete the simulation of one episode for the DRL controller on
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the source building. However, that time is not relevant in the framework of
OTL. In fact, the OTL strategy proposed in the present work was conceived
to emulate the real-world implementation of a DRL agent pre-trained on the
source building to different target buildings without any further modeling
effort.

5.6. Implementation details on online transfer learning and DRL learning
strategies

This section provides insights about the implementation of the OTL and
DRL offline and online learning strategies.

The automated optimization of hyperparameters, also including reward
weights δ and β and Boltzmann temperature coefficient α, was carried out
only for the DRL controller trained on the source building. The hyperpa-
rameters were not re-optimized in target buildings since their optimization
process should be performed over several episodes. However, in building ap-
plications one episode usually represents an entire cooling/heating season,
hence a re-optimization appears inconsistent with the online strategy imple-
mented in this work. Therefore, the hyperparameters δ, β and α are the
same as those optimized in the source DRL controller for all controllers im-
plemented in target buildings. However, the weight factor δ of the reward
electricity cost-term was doubled, after a sensitivity analysis, compared to
that of the source DRL agent when the price schedule implemented in the
target building was of the on-off peak type. This procedure was necessary
to balance the two reward function terms since the TOU price tariff imple-
mented in the source DRL agent is represented by a higher average weekly
electricity price than in the on-off peak tariff case.

The three advanced control strategies implemented in the target buildings
differ in terms of the value of some hyperparameters (i.e., batch size, learning
rate, learning step and gradient steps), as indicated in Table 6.

Compared to the controller trained on the source building, the period of
analysis is the same (i.e., June-August) and the complete set of hyperparam-
eters remains unaltered only for the offline DRL. In the offline DRL setting, a
training episode was repeated 30 times before obtaining an optimal solution,
with a control time step of 30 minutes and a batch size of 128. Conversely,
the online DRL and OTL strategies were implemented for a single episode
aiming to represent the direct application in the real system. Moreover, the
batch size value was reduced to 32 since a smaller data volume is available to
train the control policy. This results in a faster convergence speed towards
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a near-optimal solution [78], a prerequisite for a DRL agent directly imple-
mented on the system without offline pre-training. Furthermore, the online
DRL and OTL employ larger values of training steps (i.e., every 3 days) and
gradient steps (i.e., 20) when compared to the offline DRL strategy. In the
case of the OTL, this prevents that the pre-trained control strategy on the
source building is not entirely overwritten (i.e., also using a reduced learn-
ing rate value), while guaranteeing that the control policy can be optimized
according to the different boundary conditions in the target building to be
controlled. This approach avoids the over-exploration of the action space
since this might result in a deviation from the optimal control policy that
the agent may learn at the beginning of the training phase. In the case of
online DRL, the use of a gradient step equal to 20 is effective in accelerat-
ing the training process during the first weeks of implementation, since the
agent in the online DRL configuration has limited amount of available data
for training due to the limited experience stored in the buffer at the begin-
ning of the process. Furthermore, using a training step of three days results
in performance degradation in the early stages of training but ensures that
the control agent acquires a larger number of transitions before performing
the next learning stage. Thus, the performance level of the agent improves
moving forward in the training period.

Table 6: Hyperparameters selected for offline DRL, online DRL and OTL

Hyperparameter Offline DRL Online DRL OTL

Batch size 128 32 32
Actor/Critic learning rate µ 0.001 0.001 0.0005
Training Episodes 30 1 1
Learning step 30 min Every 3 days Every 3 days
Gradient steps 1 20 10

6. Results

This section outlines the results achieved by implementing the method-
ological framework described in Section 4. The result of the training on the
source building of the proposed DRL controller are presented in the first part
of the section. The second part describes the results of the proposed OTL
strategy and the relative comparison with RBC and DRL approaches.
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6.1. Training of DRL agent on source building

As introduced in Section 5.5, the values of the hyperparameters character-
izing the DRL controller were optimized through a procedure implemented in
the python library Optuna [61]. Twenty different configurations of hyperpa-
rameters were analyzed and listed in Table 7. All configurations were trained
on 30 episodes with a Boltzmann temperature coefficient α of 0.1. The best
configuration was selected according to the criterion of the minimum distance
from the ideal point [77] since the optimization process involves two differ-
ent objectives (i.e., minimization of total electrical cost and minimization of
cumulated sum of temperature violations). According to this criterion the
9th configuration, highlighted in yellow in Table 7, was the best among the
twenty analyzed configurations.

Compared to the RBC, the DRL controller achieved an electricity cost
saving of 19.6% (Ecost,DRL = 56.6 evs Ecost,RBC = 70.4 e), as well as a
significant enhancement in indoor temperature conditions, due to a 69%
reduction in the value of cumulated sum of temperature violations over an
entire cooling season (Tviol,DRL = 54.7 °C vs Tviol,RBC = 176.2 °C). Figures
9 and 10 provide details about the comparison between the DRL and RBC
controllers implemented on the source building. Figure 9 shows the indoor
temperature profiles obtained with the RBC and DRL agent during 15 days
of the analyzed period, while Figure 10 provides insights about the chiller
consumption (on the top panel) and SOC evolution (on the bottom panel)
for both controllers and during the same period evaluated in Figure 9, with
a detail on the electricity price tariff.
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Table 7: Configurations of DRL hyperparameters involved in the optimization

Configuration # Layers # Neurons Batch size γ µ δ β Ecost [e] Tviol [°C]

1 4 64 128 0.95 0.0005 10 0.075 57.5 402.6
2 4 128 128 0.99 0.00075 12 0.06 69.9 256.1
3 2 128 64 0.99 0.0005 12 0.09 59.1 218.9
4 2 64 64 0.9 0.00025 6 0.6 65.3 190.5
5 4 64 128 0.99 0.001 2 0.075 128.7 59.7
6 2 128 128 0.95 0.001 8 0.03 76.4 199.4
7 4 128 128 0.9 0.00025 10 0.045 96.3 348.1
8 2 128 128 0.99 0.00075 4 0.045 61.4 110.2
9 2 64 128 0.99 0.001 8 0.045 56.6 54.7
10 4 64 64 0.95 0.0005 2 0.015 59.3 134.8
11 4 128 128 0.9 0.00075 6 0.075 79.1 143.9
12 2 128 64 0.9 0.00025 10 0.03 64.1 452.1
13 4 128 128 0.99 0.001 12 0.015 72.3 392.4
14 4 64 64 0.95 0.0005 6 0.045 60.4 121.8
15 4 64 128 0.99 0.001 12 0.03 50.1 106.2
16 2 64 128 0.9 0.00075 4 0.075 69.2 90.7
17 2 128 128 0.99 0.00025 10 0.09 67.6 110.1
18 4 128 64 0.99 0.0005 8 0.06 72.3 129.3
19 4 64 128 0.95 0.001 2 0.015 87.2 116.9
20 2 64 128 0.9 0.00025 2 0.045 68.4 63.2
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Figure 9: Indoor temperature profile with RBC and DRL for the source building
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Figure 10: Chiller energy consumption and storage SOC evolution with RBC and DRL
for the source building

The DRL controller achieved better performance in terms of indoor tem-
perature control and reduction of electricity cost with respect to the RBC
through a more accurate management of the energy system. As shown in
Figure 9, the DRL agent scheduled in advance the supply of cooling energy
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to the thermal zones compared to RBC. Moreover, the DRL controller main-
tained a better control over the indoor temperature values during the day
limiting the number of times in which indoor temperature raised above 27 °C.
Although the building was not occupied, the implementation of DRL con-
troller results in some temperature drops during weekends. This pattern is
linked to the formulation of the reward function, since the temperature drops
are associated with the supply of cooling energy to thermal zones by means
of the activation of the chiller during low-cost hours, as indicated in Figure
10. As a result, the indoor environment is pre-cooled to ensure that the tem-
perature is maintained as close as possible to the temperature acceptability
range during the early stages of occupancy period on Monday. Moreover,
this behaviour allows to delay the operation of TES compared to RBC.

From Figure 10 can be observed how the DRL controller managed the
cooling system by operating the chiller in charging mode during low-price
periods (in light grey) to supply energy to the environment and to charge
the TES. In detail, the TES was fully charged at the end of the low price
period to operate the system in discharging mode during the medium or high
electricity price periods to save energy related to the operation of chiller by
maximizing the utilization of the TES. Contrarily, the RBC usually oper-
ated the system in chiller mode during high-price periods (dark grey) since
TES was discharged before the end of the occupancy period when the build-
ing required cooling energy to meet indoor temperature requirements. Fur-
thermore, during weekends (i.e., 07/03-07/04 and 07/10-07/11) RBC and
DRL controllers managed differently the cooling system. In particular, RBC
charged the TES during the early stages of weekend, while DRL controller
charged the TES by the end of the weekend. As a result, DRL minimized
TES losses as well as holding the maximum SOC at the beginning of the
occupancy period in contrast to RBC.

6.2. Performance benchmarking of online transfer learning with RBC and
DRL control strategies on target buildings

This section presents the results derived from the implementation for a
cooling season lasting 90 days (i.e., from 1 June to 29 August) of the OTL
strategy on the target buildings analyzed, providing a benchmark with the
performance achieved with the RBC and the offline and online DRL con-
trollers developed. OTL and online DRL were implemented over a single
episode as specified in Section 5.6. Conversely, offline DRL involved a train-
ing phase performed for 30 episodes followed by a testing phase performed
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for 1 episode in which the agent was statically deployed to evaluate the per-
formance of the learned control policy.

Table 8 summarizes the performance achieved from the implementation of
RBC, Offline DRL (Off-DRL), Online DRL (On-DRL) and OTL (highlighted
in yellow) in all target buildings in terms of electricity cost and temperature
violations. Each target building is denoted by the code Twxyz, where indices
refer respectively to the considered climatic condition (w), price schedule (x),
occupancy schedule (y) and envelope efficiency (z). Overall, it can be noticed
that the OTL agent performed better in terms of both total electricity cost
and cumulated sum of temperature violations with respect to RBC and online
DRL. However, the OTL agent was outperformed by offline DRL solution.
This pattern was expected since offline DRL controllers had at their disposal
several episodes (i.e., 30 episodes) for each target building to converge to the
optimal control policy. Conversely online DRL and OTL strategies relied
on a single simulation episode to emulate the direct implementation of these
controllers in physical systems.
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Table 8: Total electricity cost and cumulated sum of temperature violations for all inves-
tigated control strategies for each target building

Target
buildings

Total electricity cost CE [e] Cumulated sum of T violations Tviol [°C]

RBC Off-DRL On-DRL OTL RBC Off-DRL On-DRL OTL

T0100 26.0 22.6 32.2 25.4 175.4 60.4 504.9 71.5
T0010 95.5 82.3 116.9 84.7 288.3 106.8 607.6 125.0
T0110 40.9 34.4 42.5 34.6 288.3 123.0 652.6 127.1
T0114 34.5 31.0 40.3 31.4 297.0 111.6 790.2 128.3
T1000 115.9 88.1 135.9 92.8 234.5 33.9 579.4 108.6
T1100 40.9 37.4 47.8 38.1 237.7 36.6 550.8 89.4
T1010 141.6 108.8 173.7 122.5 352.2 99.3 855.9 180.0
T1110 54.2 47.4 61.4 48.2 352.7 34.4 657.1 148.6
T1111 57.4 48.7 62.8 50.3 362.9 57.0 634.9 144.0
T2000 64.1 56.2 34.8 56.9 158.5 56.8 703.6 71.7
T2100 23.9 23.5 32.9 23.7 165.3 82.4 673.7 106.1
T2010 93.5 84.8 110.4 87.1 278.3 90.1 714.6 116.6
T2110 36.6 33.5 40.6 34.0 275.7 102.1 607.0 108.3
T2112 29.8 28.0 48.4 28.4 319.2 169.7 774.3 178.4
T3000 61.3 54.2 89.7 57.5 153.6 54.9 550.2 108.7
T3100 22.6 21.3 31.8 22.4 153.4 23.9 673.7 106.1
T3010 90.2 77.9 121.2 83.3 276.0 117.5 871.1 179.1
T3110 35.0 32.5 54.7 33.5 275.5 65.1 639.9 161.6
T3113 36.1 33.3 43.0 34.8 276.8 40.9 810.4 145.4

In detail, OTL implementation led to an electrical cost higher between
1% and 13% as well as worse performance in terms of indoor temperature
control compared to offline DRL (e.g., cumulated sum of temperature vio-
lations are twice or three times higher than those obtained from the offline
DRL implementation for target buildings located in Palermo and Helsinki).
However, it should be mentioned that the offline DRL agent training process
involves the definition of a model that emulates the behaviour of the build-
ing, contrarily to the case of the OTL. Conversely, the OTL control strategy
performed better than the online DRL controller since it had at its disposal
information about the control policy pre-trained on the source building. In
particular, the OTL was capable to achieve better performance than the on-
line DRL since the boundary conditions between source and target buildings
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were similar. Thus, part of the knowledge of the control policy trained on
the source building was effectively exploited to reduce learning time in the
target buildings by the OTL agent.

As a result, OTL agent achieved cost savings ranging between 16% (target
building T2110) and 41% (building T2112) as well as ensured an average re-
duction of the cumulated sum of temperature violations over all experiments
up to 82% compared to online DRL agent. Furthermore, OTL controller
achieved savings up to 20% (building T1000) in terms of electricity cost and
a reduction between 30% and 60% in temperature violations compared to
RBC.

A more detailed overview of the results achieved by RBC, offline DRL and
OTL is provided in Figures 11 and 12. In these figures the target buildings
were grouped according to the implemented price tariff. These figures show
the target buildings arranged in ascending order with respect to the degree of
change in weather conditions from the source building. Therefore, from left
to right the buildings located in locations with equal (Turin), similar (Paris),
colder (Helsinki), and warmer (Palermo) climates are clustered.

Thereby, these figures show how the performance of the OTL agent varied
as a function of the differences between the source and target buildings. The
performance of the online DRL agent has not been reported in these figures
since it was worse compared to the other implemented controllers.

The scatter plot in Figure 11 displays the results in terms of total elec-
tricity cost and cumulated sum of temperature violations for the 7 target
building configurations in which the TOU price schedule was implemented.
Conversely, Figure 12 provides the same details for the 12 target buildings
in which on-off price schedule was applied.
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Figure 11: Total electricity cost and cumulated sum of temperature violations for target
buildings with TOU pricing schedule
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Figure 12: Total electricity cost and cumulated sum of temperature violations for target
buildings with on-off peak pricing schedule
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Figures 11 and 12 show that the performance of the control policy trans-
fer on target buildings matched or was slightly worse than those obtained
using offline DRL for the buildings located in Turin or Paris. Differences in
total electricity cost and cumulated sum of temperature violations increased
between the OTL and offline DRL controllers as weather differences (colder
and warmer climates than the source building climate) increase. Moreover,
considering the same climate but different occupancy schedules led to an in-
creased gap between OTL and offline DRL as well, but to a smaller extent
than modifying the weather conditions.

Following these considerations, weather differences between source and
targets were identified as the most important influencing factor of the per-
formance of the proposed transfer learning methodology. Since the analyzed
case study focuses on thermal energy management, the importance of weather
differences on the effectiveness of the proposed OTL methodology can be ex-
plained by the influence of the climatic conditions on the patterns of the
thermal loads of the considered building.

However, if the price schedule implemented was of the on-off peak type
and the climate was similar to the source building (i.e., Turin or Paris), the
trend was reversed, as the change of the building occupancy pattern from
schedule 0 to 1 causes a reduction in the performance gap between OTL and
offline DRL in terms of cost and temperature violations (e.g., T0100 vs T0110).

In the case of target buildings implementing the occupancy schedule 1
(i.e., building for which the y-value in the code Twxyz is equal to 1) the OTL
strategy achieved a greater improvement of the performance with respect to
the RBC strategy than in the case in which the occupancy schedule 0 was
selected considering the same weather conditions.

Figures 13 and 14 compare the cumulative curves of the daily total elec-
tricity cost and sum of temperature violations over the considered cooling
season for the online and offline DRL (at the 30th episode) controllers and
OTL controller. In particular, this outcome is shown for 4 particular target
buildings, each related to investigated weather conditions (Turin and Paris
in Figure 13 and Palermo and Helsinki in Figure 14) along with all possible
differences compared to source building: electricity price schedule, occupancy
pattern and envelope efficiency.
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Figure 13: Daily cumulative curve of electricity cost and temperature violation for target
buildings in Turin and Paris
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Figure 14: Daily cumulative curve of electricity cost and temperature violation for target
buildings in Palermo and Helsinki

For all target buildings examined, the costs linked to the implementation
of the online DRL controller were higher than those obtained via the offline
DRL agent and the controller trained with OTL strategy as expected, since
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it needed to explore behaviours in the early period that could be harmful,
lacking a priori knowledge of the system. Moreover, the cumulative cost
curves for OTL and offline DRL were similar over the cooling season. The
cumulative curve of daily temperature violations exhibited a similar trend in
all buildings analyzed in Figures 13 and 14 for the online DRL agent. In de-
tail, after the first week of RBC implementation, the slope of the cumulative
curve for online DRL agent (in blue) tended to infinity for approximately
10-15 days, due to the need for the controller to gain experience from inter-
acting with the environment. Thereafter, the slope of the cumulative curve
decreased since the control policy starts to converge to a near-optimal solu-
tion. For the OTL and offline DRL agents, the difference between the daily
cumulative violation value for these controllers reached a maximum in the
first 20 days of June, and then kept on the same deviation over the entire
period for buildings located in Helsinki and Palermo as represented in Figure
14 or decreased for those located in Turin or Paris as indicated in Figure 13.

In summary, the implementation of the proposed OTL strategy achieved
acceptable performance during early stages of deployment in all target build-
ings. The OTL performed better in terms of both electricity cost and tem-
perature violations than the online DRL control strategy. This comparison
between OTL and online DRL is fair since for both strategies the offline
pre-training phase was not performed for the target buildings and highlights
the benefits of exploiting transfer learning techniques for DRL controllers.
The offline DRL performed better in terms of both electricity cost and tem-
perature violations than OTL. However, this comparison is not fair since
the offline DRL controller had the possibility to refine its control policy over
multiple episodes for the target buildings. Eventually, the results obtained
showed that differences in climatic conditions have the greatest impact on
the performance of the OTL, as the performance gap with the offline DRL
increases with the differences in climatic conditions between the source and
the target buildings.

7. Discussion

This paper focused on the development of an effective transfer learning
methodology to share a DRL-based control policy for the management of a
TES-based cooling system in office buildings.

A DRL agent was pre-trained offline on a source building to minimize
electricity cost associated to chiller operation while maintaining indoor air
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temperature conditions. To this purpose, the controller can decide the op-
erating mode of the cooling system and whether or not to supply cooling
energy to the thermal zone.

The best pre-trained control policy was transferred to several target build-
ings characterized by the same geometry and the same energy system of the
source but with different weather conditions, electricity price schedules, oc-
cupancy patterns and building envelope levels of efficiency.

The proposed transfer learning methodology was designed to enhance
the scalability and deployment of DRL-based control strategies for the built
environment that minimized utility costs while providing occupant comfort.

The innovative aspect of the proposed methodology with respect to the
current scientific literature relies in the approach adopted to transfer a pre-
trained control policy. Conventional applications of transfer learning re-
ported in literature evaluate the performance of the controller by applying
a fine-tuning process performed over several episodes. However, it is the
authors’ opinion that this approach is unable to fully demonstrate the appli-
cability of transfer learning in improving the scalability of a DRL agent in a
real-world context. If multiple episodes (i.e., a cooling season in the present
study) are required for the transferred control policy to reach acceptable
performance, then, in a real-world context, it would possibly take years of
deployment.

To overcome this limitation, an OTL controller was conceived to effec-
tively assess if a transferred control policy is capable to guarantee acceptable
performance within a reasonable amount of time thus enhancing the scala-
bility of DRL control strategies in real-world context.

The proposed OTL control strategy was benchmarked against an RBC, an
offline DRL controller (i.e., which corresponds to the same control strategy
employed during the training phase of the source DRL agent) and online
DRL controller. The proposed solution showed excellent performance on the
nineteen considered target buildings. The OTL controllers were capable to
reduce electricity cost and to enhance indoor air temperature control with
respect to RBC and online DRL controllers.

The online DRL control strategy was conceived to emulate the implemen-
tation of a control agent with no prior training in a real building. Considering
that the development of a simulation model of the controlled environment to
perform pre-training is not required, this strategy represents the fairest com-
parison for the proposed OTL approach to highlight the benefits of applying
transfer learning.
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Several KPIs were introduced in literature reviews on transfer learning
regardless of the application domain and type of transfer model. However,
for building control systems many Key Performance Indicators (KPIs) are
problem-dependent, so can not be used directly and should be readjusted
according to each case study. The KPI Performance with fixed number of
epochs defined in [65] can be employed to compare the performance of OTL
and online DRL controllers. Therefore, in this paper this metric was adopted
to assess the performance comparison between the online DRL agent and
OTL at the end of the single episode in which they were evaluated. This KPI
can be computed per each target building (and separately in terms of total
electricity cost and cumulated sum of temperature violations) as the relative
percentage difference between the performance of the OTL and online DRL
controllers reported in Table 8.

The offline DRL controller was developed to emulate the performance
of an agent pre-trained offline for several episodes. This strategy performs
better than the OTL strategy since it could learn a mapping between states
and actions that is more effective considering the opportunity of interacting
with the building for a longer time. However, the modeling effort required
to produce a model representing the environment to be controlled for the
offline DRL controller constitutes a drawback that prohibits its deployment
in real buildings even though it performs better than the other controllers.
The development of a building surrogate model demands an amount of time
not compatible with the real-time implementation of DRL controller, as well
as in-depth domain expertise.

In the present work, the offline DRL agent was trained from scratch and
requires several training episodes (i.e., several cooling season) to achieve the
same performance level that the online TL achieves in one cooling season. To
this end, Figure 15 shows a lollipop chart specifying for each target building
the number of episodes needed for the offline DRL to perform as well as the
OTL. Target buildings were arranged in ascending order with respect to the
degree of change in weather conditions from the source building (i.e., Turin,
Paris, Helsinki, Palermo). This analysis suggests that OTL implementation
was more effective as the number of episodes required for offline DRL to
achieve the same performance as OTL increases. It can be observed that
offline DRL requires a higher number of training episodes to achieve similar
performance to OTL when the climatic conditions of the target buildings
are more similar to those of the source building. In fact, the offline DRL
controller was pre-trained for almost 30 episodes to achieve performance in
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terms of electricity costs and indoor temperature conditions equal to OTL
for target buildings located in Turin and Paris (indicated in Figure 15 respec-
tively in dark green and light green). Conversely, the implementation of OTL
was less effective as weather condition differences increase, as in the case of
target buildings located in Helsinki (in blue) or Palermo (in orange), since
the offline DRL control strategy was trained for a lower number of episodes
to achieve OTL performance.

Figure 15: Number of training episodes required by offline DRL to reach OTL performance

As a result, climatic differences have the greatest impact on the quality
of the transfer learning process considering that they impact on the mag-
nitude and distribution of cooling load [46]. Therefore, the definition of
building archetypes by climate type could be useful to transfer the control
policy between buildings of the same group, improving the performance of
the developed knowledge sharing methodology.

Eventually, the results obtained demonstrate that the proposed OTL
methodology can lead to DRL agents performing better that their RBC coun-
terparts while considerably reducing the implementation effort compared to
the offline DRL training framework.
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8. Conclusion

The present paper proposes an OTL strategy for enhancing the gener-
alizability and scalability of DRL controllers in buildings. The proposed
methodology was employed to test the performance of homogeneous trans-
ductive transfer learning, considering that DRL controllers operate in office
buildings with the same geometry and energy system but different weather
conditions, electricity price schedules, occupancy patterns and building ther-
mophysical properties. This application exploits a simulation environment in
which the BCVTB operates as middleware between EnergyPlus and Python.
First of all, a DRL agent based on discrete Soft Actor-Critic was developed
for the control of a cooling system consisting of an electric chiller and a
cold thermal storage in a source building. The objective of the proposed
controller is to maintain adequate indoor temperature conditions during oc-
cupancy hours while reducing electricity cost with respect to a RBC, through
the management of the operation mode of the cooling system and deciding
whether to supply cooling energy to the building. An automated procedure
was performed during the training phase of the DRL controller in source
building to identify the best configuration of hyperparameters. As required
in the OTL framework, the best pre-trained agent was transferred to several
target buildings, initializing the weights of the networks that approximate
the control policy for advanced controller. Then, the agent is further fine-
tuned to update the control policy in relation to the boundary conditions
of each building. The performances of the OTL agent were benchmarked
with those of the RBC and two DRL control strategies, offline DRL and
online DRL. The best-trained agent on source building was more effective
than the RBC and provides a 20% reduction in total electricity cost while
enhancing the indoor temperature conditions through a 69% reduction in
cumulated sum of temperature violations compared to the RBC. Therefore,
the implementation of the OTL strategy on the considered target buildings
led to an average reduction in cumulated sum of temperature violations of
50% and total electrical cost of 10% compared to a RBC, as well as being
more efficient than the online DRL controller with electricity cost savings
of between 20% and 40% and an average reduction in the cumulated sum
of temperature violations of more than 80%. Conversely, the OTL agent
performed worse than the offline DRL controller, with total electricity cost
and cumulated temperature violations during occupancy hours higher than
those of the offline DRL agent with an average of 4% and 80%. However,
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this comparison is not fair, as the performance of the OTL agent is evaluated
on a single episode, while that of the offline DRL controller is the result of an
offline pre-training process on 30 episodes of an agent trained from scratch on
each target building. This feature constitutes the major advantage of using
transfer learning since the definition of a surrogate model of the environment
to pre-train the control policy is not required as in the case of the offline
DRL agent.

Future works will focus on the following aspects:

• Evaluation of OTL on more complex case studies, including the gener-
ation from renewable energy sources and batteries and extending the
analyzed period to the heating season.

• Comparison of the OTL with an advanced model-based optimization
method that ensures optimal solution instead of the rule-based con-
troller. In that case, the TL process for a model-based controller would
also involve the transfer of a model of system dynamics.

• Exploitation of the proposed methodology for heterogeneous and/or in-
ductive transfer learning, assessing the performance of the knowledge
sharing process when control policy is transferred between DRL con-
trollers operating in different domains (e.g., different energy systems or
different buildings) or having different objective functions.

• Definition of robust metrics and KPIs to benchmark transfer learning
performance and to quantify the similarity between source and target
buildings to avoid negative transfer learning, possibly leading to worse
performance in advanced controllers than in the case without transfer.

• Development of an accurate simulation environment, modeling the en-
ergy system through Modelica and integrating it with the building
model developed in EnergyPlus and the control system developed in
Python through the use of Spawn of EnergyPlus [79]. The use of
Spawn enhances the accuracy of the simulation results by providing
semi-realistic performance, since the energy system in Modelica and
the physical model of the building in EnergyPlus are represented in
detail.

• Implementation of the proposed transfer learning strategy in a real-
world testbed. In this case the development of an infrastructure to
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enable the implementation of DRL controllers, as well as their further
transfer process, will be required.
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