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Abstract

Metabolic engineering offers the potential to renewably produce important classes of chemicals, 

particularly biofuels, at an industrial scale. DNA synthesis and editing techniques can generate 

large pathway libraries, yet identifying the best variants is slow and cumbersome. Traditionally, 

analytical methods like chromatography and mass spectrometry have been used to evaluate 

pathway variants, but such techniques cannot be performed with high throughput. Biosensors - 

genetically encoded components that actuate a cellular output in response to a change in 

metabolite concentration - are therefore a promising tool for rapid and high-throughput evaluation 

of candidate pathway variants. Applying biosensors can also dynamically tune pathways in 

response to metabolic changes, improving balance and productivity. Here, we describe the major 

classes of biosensors and briefly highlight recent progress in applying them to biofuel-related 

metabolic pathway engineering.

Introduction

Metabolic engineering of microbes holds the promise of producing many classes of 

chemicals, including fuels, from renewable feedstocks [1]. However, to compete with 

established production methods, engineered organisms must be highly productive, efficient, 

and robust at industrial scales. Many factors, such as the enzymes employed, regulatory 

proteins and genetic regulatory elements, can affect these phenotypes, and so a fundamental 

aspect of pathway engineering is identifying the complex genetic alterations required to 

create an optimized strain. While there are numerous ways to engineer genetically diverse 

strain libraries - in both random and/or directed fashions [2,3] - there are few assays that 

scale with the bandwidth of modern genetics (Figure 1). As such, it is critical to develop 

novel detection technologies in order to bring the full power of genetics to bear on 

metabolism.
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An effective screening tool must be specific, high throughput, and sensitive to relevant 

metabolite concentrations. Most metabolites, except for special cases or by the use of 

exogenous chemical dyes (reviewed in [4]), cannot be measured using rapid optical 

methods. Chromatography and mass spectrometry (MS) are thus the only analytical tools 

available for measuring most biofuel-related metabolites despite their low throughput. 

Biosensors, genetically encoded components that respond to an input signal (e.g. metabolite 

concentration) and transduce that signal into a detectable output (e.g. fluorescence or gene 

expression), are emerging as a high-throughput alternative for measuring metabolite 

concentrations in vivo. Often adapted from natural proteins or aptamers, biosensors can be 

specific, sensitive, and non-destructive.

Here, we provide an introduction to biosensors and their use in modern metabolic 

engineering. As a point of comparison, we start with recent advances in analytical chemistry 

(reviewed in greater detail in [5]) and contrast this with the commonly employed classes of 

biosensors. We then focus in detail on the applications of specific biosensors to biofuel-

related metabolic engineering.

State-of-the-art in analytical metabolite detection

Analytical chemistry methods, including chromatography and MS, are the gold standard for 

measuring metabolism. These methods are label-free, sensitive, and can detect many (e.g. 

100+) metabolites in a single measurement [6]. However, these methods require time- and 

labor-intensive metabolite extractions that result in destructive, bulk measurements that are 

generally low throughput (101–103 per day). Two emerging MS-based platforms that may 

aid in overcoming these limitations are the RapidFire high-throughput MS system from 

Agilent Technology, Inc. [7] and surface-based MS techniques, such as Nanostructure-

Initiator MS (NIMS) [8].

RapidFire uses robotics to automate the metabolomics workflow. Samples in microtiter 

plates are purified by solid-phase extraction and directly injected into an MS instrument. The 

instrument can processes a single sample in less than 15 s, which is over 100x faster than 

traditional liquid-chromatography-MS measurements [7]. NIMS is a surface-assisted laser 

desorption/ionization technique that requires little sample preparation and uses a liquid 

“initiator,” instead of a co-crystallization matrix, to produce spectra with high sensitivity and 

lower noise in the metabolite mass region. NIMS was recently used to screen >100 

glycoside hydrolases (enzymes important for biomass hydrolysis) with a wide range of 

substrates and reaction conditions to generate more than 10,000 data points [9]. Although 

surface and automated MS techniques are not yet widely used, it is likely they will continue 

to increase in throughput and find applications in metabolic engineering.

Classes of genetically encoded biosensors

Biosensors are genetically encoded components that convert an input signal (e.g. metabolite 

concentration) into a measurable output like fluorescence or gene expression (Figure 2). In 

the following sections, we introduce common classes of biosensors constructed from 

fluorescent proteins, RNA, cytosolic transcription factors (TFs), G-protein-coupled receptors 
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(GPCRs) as well as two-component systems and discuss their inherent advantages and 

disadvantages.

Fluorescent protein biosensors

Genetically encoded biosensors based on Förster resonance energy transfer (FRET) or single 

fluorescent proteins are promising tools for the analysis of metabolic pathways and their 

products. FRET biosensors consist of a ligand-binding domain (LBD) attached to a pair of 

fluorescent proteins that have overlap in their emission and excitation spectra, capable of 

FRET (Figure 2) [10]. Binding of a metabolite to the LBD alters the distance between the 

two fluorophores and changes the energy-transfer efficiency, measured as a ratio of 

fluorescence. While FRET biosensors have been developed for many different metabolites 

[11,12], they typically exhibit low dynamic ranges (e.g. tens of % change in signal) that 

significantly impede their use in screening applications. Single fluorescent protein 

biosensors (SFPBs) are fluorescent proteins that either directly detect input signals or are 

inserted within the primary sequence of a conformationally-labile LBD such that ligand 

binding affects fluorescence intensity (Figure 2) [13]. While genetically encoded SFPBs 

have high dynamic range (e.g. 10-fold) and are used in cell biology studies [14,15], they are 

not widely used in metabolic engineering [16••]. There are currently few available SFPBs 

due to the difficulty in engineering the coupling between an LBD and a fluorescent protein 

partner. Methods enabling rapid SFBP engineering may therefore be useful to increase the 

availability of this promising class of biosensors [17].

RNA biosensors

Riboswitches are naturally evolved ligand-responsive RNA elements that possess two 

components: a sensor (aptamer) domain that detects metabolite binding and a regulatory 

domain that converts binding-induced conformational changes into changes in gene 

expression (Figure 2) [18]. RNA-based biosensors also benefit from known techniques (e.g. 

SELEX) for generating aptamers against new metabolites [19] and have been adapted as 

biosensors for engineered pathways [20–22]. To date, however, use in metabolic engineering 

has been limited, likely from the challenges of recapitulating in vitro behavior within the 

cellular environment.

Cytosolic transcription factor (TF) biosensors

TF-based biosensors detect environmental changes, such as metabolite levels, and alter gene 

expression in response (Figure 2). The most widely used are bacterial TFs, which are 

composed of an LBD that controls the engagement of a cognate DNA-binding domain to 

promoter/operator sites associated with target genes. Depending on the TF, DNA binding 

may lead to gene repression or activation. These biosensors can offer high sensitivity and 

dynamic range; small changes in ligand concentration are amplified through gene expression 

into large changes in protein abundance.

An early implementation of TF–based biosensors was the development of whole-cell 

biosensors where expressed reporter genes (e.g. luciferase or β-galactosidase) were used to 

detect environmental pollutants [23]. Subsequently, TF-biosensors have been used in high-

throughput strain evaluation by linking metabolite levels to fluorescence [24,25] and growth 
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advantages such as antibiotic resistance [24,26,27•]. More recently, TF-biosensors have been 

linked to regulatory or pathway genes to provide dynamic feedback within engineered 

pathways [28–31••]. This modularity of input and output domains in TF-based biosensors 

makes them attractive for many metabolic engineering applications.

Despite the increasingly widespread adoption of TF-based biosensors for metabolite sensing, 

there are potential disadvantages. First, there is a large difference in the timescales of 

metabolite turnover (~1 sec) and those of transcription and translation (~1–10 min [32]), 

which makes real-time sensing impossible when using TF-based biosensors. Additionally, 

TF-based biosensors are not always robust; bacterial TFs may not be portable to eukaryotes 

due to fundamental differences in the transcriptional process. Finally, expression of a non-

native TF may have unanticipated side-effects, including non-specific binding to DNA and 

interfering with transcription.

G-protein coupled receptor (GPCR) and Two-component biosensors

An alternative to cytosolic TFs is GPCR-based biosensors expressed on the cell surface [33–

35]. For these biosensors, the binding of an extracellular metabolite to a GPCR results in 

signal transduction and, ultimately, changes in gene expression (Fig. 2b). As with TF-based 

biosensors, the modular nature of GPCR-based biosensors and the wide variety of molecular 

specificities [36] make them broadly useful for metabolite sensing. However, one potential 

caveat is that sensing only occurs extracellularly, which may limit applications. The analog 

of GPCRs for prokaryotes are the two-component regulatory systems in which one 

component acts as a transmembrane sensor and the second component acts as an 

intracellular response regulator. Studies demonstrating that the extracellular sensing domain 

of one transmembrane sensor could be fused with the intracellular domain of another to 

create a hybrid biosensor, as well as studies showing that the promoter for a particular 

response regulator could be used to control the expression of an arbitrary output of interest, 

have been met with excitement in the synthetic biology community [37,38]. However, the 

engineering of two-component systems has met with practical difficulties [39] and more 

studies will be needed to determine design principles of re-engineering ligand specificity 

[40].

Biosensor Applications

In the following sections we highlight recent applications of biosensors to the i) isolation of 

improved mutants and ii) dynamic control of metabolic pathways (Figure 3a). TF-based 

biosensors predominate in these examples as they have been the most widely adopted, to 

date, in biofuel-related metabolic engineering.

Biosensors with phenotypic output

Biosensors are often used to generate a phenotypic output that can be screened or selected 

(Figure 3a–b). The sensed ligand is generally an intermediate or the product of a desired 

pathway and the biosensor is used to isolate genotypes with higher titers and improved 

pathway flux. For example, malonyl-CoA production, the first committed step of fatty acid 

biosynthesis (Figure 3e), was targeted for improvement in S. cerevisiae using a TF-based 
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biosensor [25]. FapR, a TF that represses expression in the absence of malonyl-CoA, was 

used in a FACS screen to isolate genes from a cDNA library of ~106 variants that improved 

malonyl-CoA production (Figure 3a). Similarly, an SFPB for the fundamental co-factor 

NADPH was used to isolate production strains with more biosynthetic potential. This 

biosensor allowed rapid micro-well plate quantification of 624 computationally designed 

synthetic-pathway variants for high NADPH titer in E. coli [16]. When combined with a 

terpenoid biosynthetic pathway, the improved NADPH pool increased production by nearly 

2-fold (Figure 3e). The rapid screening achieved with these examples illustrates the 

advances that can be made when production strains are evaluated in high throughput.

Biosensors can also generate an output that imparts a growth advantage to cells, allowing for 

growth selection and increasing the potential number of testable designs by orders of 

magnitude (Figures 1 and 3b). Raman and coworkers optimized a TolC antibiotic-resistance 

output linked to a TF biosensor for the commodity chemical glucaric acid [26]. Selection of 

a 107 library after multiplex genome engineering led to a strain with 22-fold greater glucaric 

acid titer. Alternatively, an innovative biosensor design developed by Chou and Keasling to 

increase isopentenyl pyrophosphate (IPP, a terpene building block, Figure 3e) production 

had mutation rate as the output [27•]. Starting with a high mutation rate, an artificial TF 

decreased the expression of the mutD5 polymerase (mutator) as IPP concentration increased. 

This stabilized high IPP-producing genotypes, resulting in a ~17-fold improvement in 

lycopene (terpene) production over strains with no link between IPP concentration and 

mutD5. Coupling the appropriate biosensor with the right selection can therefore enrich 

immense libraries (>106 variants) to isolate improved strains.

Biosensors for dynamic pathway regulation

Metabolic pathways are complex and tightly regulated in their native context. Maximizing 

pathway yields requires careful balancing of pathway flux to prevent bottlenecks and/or the 

accumulation of toxic intermediates. Dynamic pathway regulation, using TF-based 

biosensors, allows for flux to be altered in response to changing cellular and environmental 

conditions (Figure 3c). A groundbreaking study in 2000 by Farmer and Liao demonstrated 

the utility of this approach by improving lycopene yield in E. coli using a biosensor for 

acetyl-phosphate [28]. The concentration of acetyl-phosphate is a proxy for glucose 

availability and reduced growth (Figure 3e). Lycopene pathway genes, which normally 

inhibit growth, were gradually activated by the TF-biosensor as cells exited exponential 

phase. This strategy improved lycopene titer by almost 20-fold over static expression. 

Pathway feedback can be especially beneficial when intermediates are toxic, preventing 

dangerous buildups. For example, a prominent study engineered a fatty acid ethyl ester 

(FAEE) pathway using a fatty acyl-CoA TF biosensor (FadR, [30]). The introduced 

feedback both reduced toxic ethanol accumulation and prevented depletion of cellular fatty 

acids, thereby creating a strain with 3-fold greater FAEE yield.

As mentioned in the previous section, malonyl-CoA is a crucial intermediate for the 

production of biofuel-related molecules (Figure 3e). Because of this, it has been targeted in 

multiple efforts to implement biosensor-based regulation. Xu and Koffas used a single TF 

biosensor (FapR) to repress the acc operon (catalyzing acetyl-CoA carboxylation to 
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malonyl-CoA) and, in the presence of malonyl-CoA, induce a fatty acid biosynthesis operon 

(malonyl-CoA conversion to fatty acid) [31••] (Figure 3d). This combined regulation led to a 

>3-fold increase in fatty acid yield and improved cell growth as compared to the un-

regulated strain. Interestingly, while FapR naturally represses fatty acid biosynthesis in B. 
subtilis, this work serendipitously identified FapR activation behavior in the promoter region 

of gapA (glyceraldehyde-3-phosphate dehydrogenase A) within the E. coli host, providing 

both types of control in the engineered strain. To achieve the same positive control with 

FapR in E. coli, another group used a genetic invertor to regulate acc expression, thus 

avoiding the need to re-engineer the TF or operator [41,42]. The same bacterial TF was also 

recently employed as a biosensor in S. cerevisiae to provide negative control of mcr 
(malonyl-CoA conversion to 3-hydroxypropionic acid) [43]. Fatty acids and their 

intermediates are desirable end products and these successful biosensor engineering efforts 

point to exciting future possibilities. We expect further integration of new biosensors, such 

as those for NADPH [44], to improve yields.

Outlook

In addition to the biosensor designs discussed above, there have been several recent 

innovative approaches to biosensor construction. For example, Feng and colleagues 

developed eukaryotic biosensors based on protein lifetime that could be applied to biofuel-

related molecules [45]. In this approach, a library of mutagenized LBDs fused to a reporter 

are screened for high signal in the presence of ligand, due to conditional protein 

stabilization, and low signal in the absence of ligand, due to degradation by the proteasome. 

Enzyme-based biosensors are another alternative. Such biosensors enzymatically convert a 

metabolite of interest to a molecule that is directly detectable, or for which there is a pre-

existing genetically encoded biosensor [46, 47•,48]. SensiPath, a recently reported web-

based tool (http://sensipath.micalis.fr) that searches for enzymatic pathways that convert 

metabolites to detectable molecules, may be especially useful in trying to achieve these 

goals [49•].

Despite these promising approaches, we believe that there is significant potential for single-

component allosteric biosensors. Single protein molecules that link input and output 

domains via allostery, such as SFPBs, are powerful tools due to their genetic portability and 

fast response rates. We have already highlighted the benefit of biosensor-mediated feedback 

for pathway balancing and improved strain performance. However, to date, only multi-

component, TF-based biosensors have been used for this purpose. These biosensors respond 

on a timescale that is too slow for many metabolic applications, as metabolic fluctuations are 

10–100 times faster than transcription and translation [32]. In addition, delayed negative 

feedback can lead to oscillations in the concentration of regulated species [31••,50]. Using a 

pathway enzyme as an output in a single-component biosensor, as is common in natural 

metabolism [51], would dramatically improve the speed and robustness of feedback control. 

In this section, we highlight some of the future challenges and opportunities in developing 

this type of biosensor by focusing on techniques for the identification of novel input 

domains, the engineering of allostery and the exploration of new functional outputs.
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Input domains

A significant barrier to the development of biosensors is identifying novel LBDs. One 

approach to overcoming this problem is to mine the large numbers of naturally occurring 

proteins that are being identified in genome and metagenome sequencing projects (Figure 

4a). Vetting and coworkers recently highlighted this strategy by using high-throughput 

protein expression and differential scanning fluorimetry to screen 158 candidate LBDs 

against 189 ligands to identify 40 new ligand-LBD interactions [52••]. Alternatively, 

techniques such as substrate-induced gene expression screening (SIGEX), which involves 

inserting restriction enzyme-digested (meta)genome fragments upstream of a reporter gene, 

may also be adapted to identify previously uncharacterized LBDs [53].

An alternative method for expanding the number of LBDs is to employ computational 

design approaches (Figure 4a). Tinberg and colleagues reported the design of a ligand-

binding protein for the steroid digoxigenin (DIG) by computationally designing the protein-

ligand interface and intramolecular interactions using a protein scaffold of unknown function 

that did not originally bind the target molecule. Of 17 designs that were experimentally 

characterized, two were functional for DIG-binding, and optimization of one of these 

constructs using site-saturation mutagenesis coupled with selections resulted in a 75-fold 

improvement in binding affinity [54]. Similarly, Taylor and coworkers have reported the 

redesign of the lac repressor transcription factor for a number of novel inducers using a 

combination of computational protein design, mutagenesis and gene shuffling [55]. As 

computational design of binding improves, a potential application of such work would be in 

tuning the affinity of a biosensor, and thus the operational range, for various applications. 

The utility of such biosensor tuning was demonstrated by the Frommer lab by developing a 

family of glucose biosensors with a range of affinities to visualize the different responses to 

glucose perfusion in various areas of the plant [56]. While still very challenging, continued 

advances in this area using de novo protein design, the redesign of existing LBD scaffolds 

and directed evolution will expand the number of LBDs and consequently the number of 

metabolite biosensors.

Allostery

Once an LBD is identified for a small molecule of interest, the greatest challenge in creating 

a single-component biosensor is often engineering the allosteric connection to the desired 

output domain. One proven method for doing so has been via domain insertion whereby one 

protein domain is inserted into another such that the functions of the two independent 

domains are coupled (Figure 4b). However, while this strategy has proven successful, for 

example, as demonstrated by Guntas and coworkers in the development of a maltose-

dependent β–lactamase biosensor [57], it is plagued by its low-throughput nature due to the 

difficulties in reliably predicting the insertion sites for linking the associated domains. To 

overcome this, our group recently reported a strategy for the rapid construction of biosensors 

termed domain-insertion profiling with sequencing (DIP-seq) [17]. In this approach, we 

created diverse libraries of potential SFPBs using modified transposons and then used high-

throughput activity assays to identify functional biosensors. While we have applied this tool 

to the rapid construction of SFPBs, it may also be applied to the generation of allosteric 

biosensors of any type and function [58].
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Engineering allostery through the redesign of protein surfaces to include ligand-binding sites 

may be another route (Figure 4b). Work from the Ranganathan group has shown that there 

are networks of physically connected and coevolving amino acids that link protein active 

sites to spatially distinct surface sites [59]. With continued computational advances, it may 

one day be possible to reliably predict these surface sites and further engineer them to 

include ligand-binding sites for the development of allosterically regulated biosensors.

Output domains

The majority of reported biosensors employ fluorescence as an output, which is effective for 

visualization and screening. However, given the availability of alternative functional output 

domains, there are likely many alternative novel biosensor applications (Figure 4c). As 

mentioned above, the use of selection over screening can enable testing of orders of 

magnitude more designs by linking metabolite binding to host fitness. For example, by 

allosterically coupling E. coli MBP to TEM1 β-lactamase, Guntas and coworkers developed 

maltose-dependent switches that conferred growth selection phenotypes in the presence of 

β–lactam antibiotics [57]. Similar strategies may also be adopted for biofuels by linking the 

detection of the desired molecule to the growth of the host.

Compared with most available biosensors that have only single detection channels, 

multiplexed biosensors could provide more information by increasing the number of 

available outputs that can be detected at the same time (Figure 4c). For biosensors that 

provide fluorescence readout, the most common form of multiplexing involves combining 

biosensors with different wavelengths but this approach is limited due to spectral overlap. 

However, combining intensity measurements with time-resolved measurements may provide 

a means to multiplex in both the wavelength and time domains. Employing such time-

resolved fluorescence lifetime biosensors are advantageous because they are quantitative and 

independent of biosensor concentration. Recently, Mongeon and coworkers demonstrated 

that Peredox, a previously reported SFPB for NADH:NAD+ ratio, could also be used as a 

fluorescence lifetime biosensor because it showed a large change in fluorescence lifetime 

over its sensing range [60].

Along with identifying and designing new ligand-binding domains, engineering methods for 

allosteric enzyme design are long-term goals that will benefit the field. We expect that future 

improvements in the identification of ligand-binding domains and in the predictable 

engineering of allostery in fluorescent proteins and enzymes will provide a biotechnological 

backbone that vastly improves our capacity to design, screen, and select pathway variants for 

the biological production of fuels. Ultimately, these improvements may enable biocatalysis 

to compete with fossil fuels in reliability and economic terms.
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Highlights

• Biosensors and their use in biofuel-related metabolic engineering are 

introduced.

• The pros and cons of major biosensor classes are reviewed.

• Biosensors enable rapid screening and growth selection of diverse 

libraries.

• Dynamic pathway regulation with biosensors can improve productivity.

• Continued biosensor development will further accelerate bioenergy 

engineering.
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Figure 1. 
Biosensors enable rapid engineering of metabolism.

Biosensors enable rapid and single-cell quantitation of metabolites allowing for high-

throughput evaluation of pathway variants and improving the rate-limiting “test” step of the 

design-build-test-learn engineering cycle.
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Figure 2. 
Biosensor definition and types.

Biological input indicated as orange spheres. Ligand-binding component indicated in light 

blue. Biosensor output highlighted: Förster resonance energy transfer (FRET), energy-

transfer efficiency; single fluorescent protein biosensors (SFPB), emission; RNA, translation 

product; transcription factor (TF), transcription product; G-protein-coupled receptor 

(GPCR), signaling pathway product.
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Figure 3. 
Applications of biosensors.

(a) A biosensor with an output, such as fluorescence, can be used in a screen. The metabolite 

of interest (MOI, orange) is detected by a biosensor, which drives the expression of an 

output signal (green) in proportion to the MOI concentration. The output signal, often 

fluorescence, is used to isolate high-producing variants through screening (e.g. FACS or 

plate reader assays). (b) A biosensor with a selectable output. The MOI drives the expression 

of a protein (purple) that provides a growth advantage to the cell. As depicted, an enzyme 

that neutralizes an antibiotic (red) is expressed in a ligand-dependent manner. Growing 

variants under selective pressure (e.g. in the presence of antibiotic) enriches the population 

with high-producing variants. (c) Biosensors for dynamic regulation of pathways. The MOI 

(orange) is detected by a biosensor (not depicted – biosensor actions are represented by 

feedback symbols) which alters expression of enzymes in the MOI pathway. The cartoon 

illustrates balancing of a pathway intermediate (MOI, orange) by repressing the preceding 

enzyme and activating the subsequent enzyme in the pathway (similar to [31]). (d) 

Visualization of pathway balancing. Enzyme activity is represented by tubes (i.e. maximal 

flux that can be carried). Regulation of enzyme concentration (by TFs or degradation) or 

activity (allostery) alters the flux capacity between pathway intermediates. When enzyme 

flux is imbalanced (top two examples), starting materials or intermediates accumulate and 

product formation is limited. When flux is balanced (bottom two examples), accumulation 

does not occur at any step. (e) Potential biofuel pathways and biosensors. Binding proteins 

and transcription factors (or regulated promoters) are shown with colors designating: known 

binder with no biosensor use published; demonstrated use as a biosensor; or biosensor 

applied to screening, selection, or pathway-balancing. AlkR [61]; AlkS [62] AraC-mev [63]; 

BmoR [24]; DesT [64]; εFoF1 [65]; Erg20 [27]; FabT [64]; FadR [30]; FapR [31]; GlnK1 

[14]; Idi [27]; IclR (ecocyc.org); LldR [66], mBFP [16••]; MglB [67]; NRI [28]; PdhR [68]; 
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PgadE [69]; PGPD2 [70]; PHXT1 [71]; PrstA [69]; Rex [15]; rxYFP [72]; SoxR [44]; 

TTHA0766 [73].
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Figure 4. 
Future challenges and opportunities. (a) If no known Ligand-Binding Domain (LBD) is 

known for a molecule of interest (orange), techniques are needed to discover or create the 

necessary biosensor input. Uncharacterized potential LBDs from (meta)genome databases 

can be mined for the desired binding property. Alternatively, in silico approaches of creating 

new binding proteins or redesigning characterized LBDs can lead to a desired input domain. 

(b) Engineering allosteric communication between input and output domains is challenging. 

Methods that create and test many fusion variants have led to successful biosensor function. 

Computational analysis of coevolving residues in a protein can predict surface sites for 

functional allosteric fusions. (c) Many new output functions are available for exploration in 

biosensors. Enzyme output domains provide opportunities for growth selection as well as 

direct metabolic pathway feedback control. Detectable outputs that are orthogonal can be 

used in unique biosensors for multiplex measurements of different molecules of interest.
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