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Abstract

Copy number variations (CNVs) are rare genomic deletions and duplications that can affect 

brain and behaviour. Previous reports of CNV pleiotropy imply that they converge on shared 

mechanisms at some level of pathway cascades, from genes to large-scale neural circuits to the 

phenome. However, existing studies have primarily examined single CNV loci in small clinical 

cohorts. It remains unknown, for example, how distinct CNVs escalate vulnerability for the same 

developmental and psychiatric disorders. Here we quantitatively dissect the associations between 

brain organization and behavioural differentiation across 8 key CNVs. In 534 CNV carriers, 

we explored CNV-specific brain morphology patterns. CNVs were characteristic of disparate 

morphological changes involving multiple large-scale networks. We extensively annotated these 

CNV-associated patterns with ~1,000 lifestyle indicators through the UK Biobank resource. 

The resulting phenotypic profiles largely overlap and have body-wide implications, including 

the cardiovascular, endocrine, skeletal and nervous systems. Our population-level investigation 

established brain structural divergences and phenotypical convergences of CNVs, with direct 

relevance to major brain disorders.

A chief goal of modern neuroscience is understanding how genetic variation impacts brain 

organization and inter-individual differences in behaviour. Advances in genomic microarray 

technology streamlined the detection of copy number variations (CNVs)–deletions or 

duplications of chromosomal segments of >1,000 base pairs1,2.

Kopal et al. Page 2

Nat Hum Behav. Author manuscript; available in PMC 2023 November 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



This class of genetic mutations opens a unique window into the investigation of 

how neurogenetic determinants shape human behaviour, cognition and development3,4. 

Pathogenic CNVs that reoccur across individuals provide opportunities to study groups 

of individuals who carry the same deletion or duplication of a well-defined set of genes5. 

Moreover, CNVs have larger effects on phenotype than the low effect-size single-nucleotide 

polymorphisms often identified by genome-wide association studies6. Concretely, CNVs 

overall have been shown to detrimentally affect cognition and raise the risk for psychiatric 

conditions4,7. Nevertheless, it remains unexplained why many different CNVs escalate 

vulnerability for the same developmental and psychiatric disorders4,8,9.

The vast majority of large recurrent CNVs have been linked to more than one 

clinical diagnosis, including intellectual disability, autism spectrum disorders (ASD) and 

schizophrenia (SZ)10–12. These findings make a case that circumscribed genetic changes 

are rarely exclusively associated with a single clinical diagnosis13. Further, CNVs have 

demonstrable consequences even in seemingly unaffected middle and old-age carriers who 

show no overt signs of early-onset neuropsychiatric disorders. Recent evidence points to 

a broader spectrum of impacts from CNV status, ranging from physical traits to diabetes, 

hypertension, obesity, renal dysfunction3,14,15, as well as psychopathology16. Understudied 

body-wide CNV effects may contribute to the links of SZ-associated CNVs with diminished 

academic qualifications, occupation or household income17. In summary, this class of 

genetic variants affecting distant parts of the genome can be associated with various 

behavioural and clinical phenotypes18,19.

Despite many advances in genomic profiling, investigations into the corresponding brain 

signatures have only been performed for a few CNVs and mostly focused on a single variant 

at a time20,21. These parallel approaches to catalogue CNVs highlighted a wide spectrum 

of robust effects on brain structure22,23. Although distinct rare CNVs are associated with 

a range of brain alterations, they have been suggested to lead to a degree of similarity in 

associated behavioural phenotypes9,24. However, it remains unknown how similar CNVs are 

in terms of their effects on the brain and the phenome. Since deleterious CNVs are rare, such 

as 1 in 3,000 for 22q11.2 deletion25, previous investigations suffered from small samples 

of participants and a lack of phenotypic depth. Therefore, previous studies were chronically 

underpowered to paint a complete picture of CNVs in medicine. There is a need for a 

systematic investigation of intermediate brain measures and their phenotypic associations 

across several CNVs by means of a large well-phenotyped patient pool. The recent advent 

of population cohorts with rich phenotypic assessment batteries26,27 represents an untapped 

opportunity to conjointly examine a set of CNVs and characterize them at an unprecedented 

scale.

In the present study, we interrogated the largest existing biomedical data resource, the 

UK Biobank28, which allowed a head-to-head comparison of an envelope of CNVs. As 

a first step, we leveraged tools from machine learning, including linear discriminant 

analysis (LDA), to isolate CNV-specific brain morphology signatures from a multisite 

clinical cohort. These individuals carried 1 of 8 recurrent CNVs that are among the 

most widely studied CNV loci so far11,23,29. Deletions and duplications at loci 1q21.1, 

15q11.2, 16p11.2 and 22q11.2 strike a balance between being frequent and having a 
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significant impact on brain and behaviour23. Subsequently, the advantageous properties 

of LDA allowed us to carry over the CNV-specific whole-brain signatures from the 

clinical cohort to the large-scale UK Biobank cohort. The UK Biobank is ideally suited 

to tease apart the commonalities in phenotypic indicators across CNV alterations due to 

the breadth of available phenotypic annotations. We directly linked a rich portfolio of 

phenotypes to 8 CNV brain signatures in ~40,000 UK Biobank participants. Specifically, 

we performed separate phenome-wide association studies (PheWAS) for the 8 CNV-brain-

imaging signatures across 977 phenotypes from 11 categories. In this way, we provide 

a population-level characterization of what unites and divides the 8 CNVs by detailing 

convergences and divergences from genomic variants to brain morphology to phenome. In 

an attempt to establish cornerstone evidence for the community, such a study can illuminate 

fundamental links between genetic variation and brain organization, with still unknown 

consequences to bodily systems.

Results

Dissecting different CNV effects on whole-brain morphology

We systematically analysed volumetric measures derived from brain-imaging scans in 

the clinical cohort comprising 846 total participants: 534 carried 1 of 8 recurrent CNVs 

(deletions and duplications of 1q21.1 distal, 15q11.2 BP1-BP2,16p11.2 proximal or 22q11.2 

proximal), while 312 controls did not carry a CNV (Table 1). We parsed volume measures 

from these structural brain scans using a 400-region anatomical definition (Schaefer-Yeo 

reference atlas; see Online methods). To account for variation outside of our current primary 

scientific interest, each brain region volume was adjusted for intracranial volume, age, age2, 

sex and acquisition site for all downstream analysis steps. A schematic flow of all analysis 

steps is depicted in Supplementary Fig. 1.

As a first step, we compared the effects on brain region volume measures for the 8 CNVs. 

Specifically, after normalizing (z-scoring) brain volumes across groups, that is, across the 

respective CNV carriers and controls, we examined the extent of volumetric divergence 

between carriers of each single CNV and controls by computing Cohen’s d (giving an effect 

size for the group difference) for each individual brain region (Fig. 1a). In doing so, for 

each examined CNV, we obtained a brain map of Cohen’s d effect sizes that summarizes 

magnitudes of CNV-induced structural abnormalities across the brain’s grey matter. We 

noted widespread smaller volumes in the majority of the examined atlas regions for the 

1q21.1 deletion, 15q11.2 duplication, 16p11.2 duplication and 22q11.2 deletion. Conversely, 

a preferential increase in most regional volumes became apparent for the 1q21.1 duplication, 

15q11.2 deletion, 16p11.2 deletion and 22q11.2 duplication. These findings align with well-

known regional alterations identified in cohorts with patients carrying neurodevelopmental 

disorders22.

Each target CNV locus was characterized by an overall constellation of grey matter 

changes–a brain-wide CNV map of how particular CNV carriership results in systematic 

brain deviations from controls. To delineate the similarity among effect-size brain maps, we 

computed Pearson’s correlations between all 400 regional Cohen’s d values corresponding 

to each pair of CNVs (Fig. 1b). Statistical significance was assessed using a spin 
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permutation test across the whole brain surface. We found a large disparity between Cohen’s 

d maps evidenced by the wide spectrum of Pearson’s correlations ranging from −0.51 

to 0.63. We noted certain similarities, such as for deletions of 22q11.2 and 15qll.2 (r = 

0.63, PFDR-adj = 0 .03). Further, we observed a strong mirroring effect with significant 

anti-correlations between deletions and duplications of the same locus. Mirroring effects 

were strongest for 22q11.2 (r = −0.51, PFDR-adj = 0.03), followed by 16p11.2 (r= −0.39, 

PFDR-adj = 0.03). The average volumetric similarity measured by the average absolute 

Pearson’s correlations was r =0.23. Taken together, this cursory analysis indicated that 

spatial distributions of mutation-induced changes in brain morphology differed considerably 

across CNVs.

Visualizing CNV differences in low-dimensional signatures

A drawback of the approach based on Cohen’s d lies in its univariate character, which 

considers each region separately, ignoring the respective remaining atlas regions. Hence, 

we next used dimensionality reduction techniques to obtain holistic summaries of the 

CNV carriers’ morphological profiles. We set out from the possibility that CNVs cause 

coordinated volume changes distributed across the entire brain. Therefore, we expected 

that an intrinsically brain-spanning pattern could be extracted that faithfully captures 

the induced morphological differences. Principal component analysis (PCA) is the most 

commonly used multivariate tool that is demonstrably most effective at representing linear 

latent factors. PCA can be interpreted as computing a new coordinate system such that 

the axes are oriented in the directions of the largest variation across the 400-region 

volume measures. We thus used PCA to project all CNV carriers’ regional volumes onto 

the two dominant directions of coherent whole-cortex variation (Fig. 1c). In the ensuing 

two-dimensional participant embedding, CNV carriers were scattered randomly without 

an apparent systematic relationship with each other. In other words, the results suggested 

that CNVs were not the primary source of the inter-individual variation in whole-cortex 

morphology in our cohort. Hence, a method without access to CNV-carriership status, such 

as PCA, could not provide a satisfying overall description of what drives structural brain 

deviations induced by specific CNVs.

Consequently, we turned to LDA as a pattern classification algorithm that is naturally 

capable of recovering a low-dimensional representation explicitly aimed at maximizing 

the separation among the 8 CNVs on the basis of the individuals’ brain morphometry 

measures. We re-expressed the brain-wide regional volumes as the two primary dimensions 

of structural variation under the LDA model (Fig. 1d). In particular, the leading dimension 

of the LDA-derived participant embedding captured the differences between 16p11.2 

deletions and duplications. The second most explanatory dimension of the LDA-derived 

embedding mainly captured the differences between 22q11.2 deletions and duplications. 

This distribution of a single CNV locus along a single dimension again points at similar 

structural effects with opposite directions. In summary, LDA formed a new low-dimensional 

space in which the brain morphology of CNV carriers could be effectively identified, 

quantified and subsequently examined in further detail.
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Deriving CNV-specific intermediate phenotypes

To supplement the multi-CNV classification model which explored differences between 

CNVs (described above), our next analysis step was to extract robust whole-brain signatures 

specific for each CNV that we could then use to study unseen participants in any number 

of external cohorts. Therefore, we constructed 8 LDA models of order one dedicated to 

the 8 CNVs. Notably, there was a considerable imbalance between the number of controls 

and CNV carriers (from 2-fold for 15q11.2 duplication to 22-fold for 1q21.1 duplication). 

Moreover, the number of model parameters to be estimated (at least 400 parameters 

associated with the 400 atlas regions) was larger than the number of participants. To 

remedy the challenges of this data scenario, our analysis pipeline combined bagging and 

regularization to prevent overfitting of the model hyperparameters (see details in Online 

methods). We evaluated the model performance indexed by out-of-sample prediction in 

brain scans unseen by the model using the Matthews correlation coefficient. All CNVs 

were successfully classified with a consistent above-chance accuracy (Fig. 2a). Chance-level 

accuracy was defined as the performance of an empirical null model obtained by label 

shuffling. High classification performance provides empirical evidence that these CNVs are 

characteristic of robust volumetric signatures.

After extracting predictive principles of structural brain deviations by means of LDA, 

each model included a collection of 400 coefficients associated with the atlas regions 

(Fig. 2b). These coefficients encapsulated a multivariate prediction rule which maximized 

the difference between controls and CNV carriers. In other words, each CNV-specific 

LDA model encapsulated an intermediate phenotype–a brain-wide volumetric signature 

that characterizes each CNV. To quantify the similarity between the derived intermediate 

phenotype representations, we compared them using Pearson’s correlation coefficient. 

Again, we observed certain similarities across the 8 CNVs, as well as mirroring effects 

between reciprocal CNVs (Fig. 2c). However, the wide range and low strength (average 

similarity r = 0.2) of obtained CNV-CNV similarities indicated that LDA models reflected 

the sizable diverging effects of CNVs on brain morphometry. The identified intermediate 

phenotypes bore a degree of similarity to the Cohen’s d brain maps (Fig. 2d). The strong 

positive Pearson’s correlations between the intermediate phenotypes and Cohen’s d brain 

maps were significant for all CNVs. In other words, LDA-derived (brain-global) patterns 

capture certain volumetric effects highlighted by previous (region-local) Cohen’s d analysis. 

Along with the high prediction accuracy, a degree of similarity with estimated region-wise 

Cohen’s d maps is an important step towards characterizing derived signatures in another 

dataset.

We further inspected the 400-region coefficients of each LDA model that captured the 

influence of each CNV on each brain region. By carrying out a one-sample bootstrap 

hypothesis test independently for each CNV, we assessed which region-specific model 

coefficients are robustly different from zero and, thus, robustly affected by CNVs. 

Specifically, during the learning of the coefficients of 1 of the 8 CNV-specific LDA models 

in 100 resampling iterations, we drew a different set of participants by drawing participants 

with replacement from the control participants and corresponding CNV carriers. Statistically 

relevant coefficients were robustly different from zero if their two-sided confidence interval 

Kopal et al. Page 6

Nat Hum Behav. Author manuscript; available in PMC 2023 November 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(according to the 2.5/97.5% intervals of the bootstrap-derived distribution) did not include 

zero. Different CNVs affected (displayed statistically relevant coefficients) different cortical 

parcels that correspond to the 7 large-scale brain networks populating the cortex, as 

defined by our atlas (Fig. 3a). For example, while 16p11.2 duplication primarily affects 

20% of all regions in the limbic network, 22q11.2 deletion affected 20% of regions 

in the salience ventral attentional network as well as more than 10% of regions in the 

limbic, dorsal attentional and default-mode networks. Across all examined CNVs and target 

brain networks, the 16p11.2 deletion affected the largest number of brain regions, while 

15q11.2 duplication affected the lowest number of regions. Higher-order network circuits 

showed, on average, the relatively highest number of significant coefficients. Concretely, 

the limbic network had the highest relative number of affected regions, followed by the 

salience and default-mode networks (Fig. 3b). Together, the wide range of effects on the 

large-scale networks again highlights the diverging consequences of different CNVs on brain 

morphometry.

To further explore characteristic relationships among the 8 CNVs, we probed for a linear 

relationship of the number of salient LDA coefficients with LDA classifier performance and 

average brain-wide Cohen’s d. We found a significant positive Pearson’s correlation with 

classifier performance (r = 0.74, P = 0.04) (Fig. 3c) and mean absolute effect size (r = 0.75, 

P = 0.03). Furthermore, when we included sample size in the testing scheme, we found only 

a negative linear association with average Cohen’s d (r = −0.80, P =0.02), calling for careful 

interpretation of effect sizes, owing to the estimation of population mean in small samples. 

In sum, our collective findings highlighted how LDA models reflect CNV-specific changes 

in large-scale brain networks to form distinctive intermediate phenotypes.

Lifting over phenotype patterns from the clinical cohort

We built 8 separate LDA models that encapsulated CNV-specific intermediate phenotypes. 

By doing so, we could quantify the presence of each intermediate CNV phenotype for each 

participant. Hence, as an illustrative example, we compared the expression level of 16p11.2 

duplication intermediate phenotype between the carriers of that CNV and controls. On the 

basis of a two-sample bootstrap hypothesis test for the difference of means with 10,000 

bootstrap iterations (see Online methods), the resulting means of the intermediate phenotype 

expressions differed significantly between CNV carriers in the clinical sample and controls 

(P < 10-4) (Fig. 4a). As a critical step in our analysis, the CNV-specific volumetric signatures 

derived from our clinical population using LDA could be used in a phenotypically richer 

population data repository.

To carry over the intermediate phenotypes from the clinical cohort to the UK Biobank, 

we quantified the expression of each intermediate CNV phenotype for all 39,085 UK 

Biobank participants (Table 2). We first extracted brain volume measures from the 400 

atlas regions, adjusting for several confound variables (see Online methods). We then 

calculated the participant-specific expression for all intermediate CNV phenotypes in the 

UK Biobank. It is important to stress that the intermediate phenotypes were derived in 

the clinical cohort. However, UK Biobank also contains several carriers of the analysed 

mutations. The generalizability of the derived intermediate phenotypes was indicated by the 
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difference between the intermediate phenotype expression level of non-carriers and CNV 

carriers in the UK Biobank (for 16p11.2 duplication, P < 10-4 using a test identical to that 

above; Fig. 4a). Notably, we obtained similar results for all other 7 intermediate phenotypes 

(Supplementary Fig. 2). Carrying over CNV-associated magnetic resonance imaging (MRI) 

profiles computed in the clinical cohort to the UK Biobank was a critical step that allowed 

us to identify phenotype correlates of the CNV-associated MRI profiles in a population >500 

times larger in participant number than our CNV cohorts.

Charting phenome-wide associations of CNV signatures

The UK Biobank is the largest existing uniform brain-imaging dataset in terms of participant 

sample size and breadth of available phenotypic annotations. It provides 977 unique 

phenotypes spanning 11 different categories (Supplementary Fig. 3). We performed an 

exploratory PheWAS for the purpose of generating new candidate hypotheses. PheWAS 

allows investigation of the overall patterns of connections by charting associations among 

hundreds of non-imaging phenotypes and imaging-derived phenotypes. Specifically, we 

calculated Pearson’s correlations between the derived participant-specific expressions of 

the 8 intermediate CNV phenotypes and each of the 977 phenotypes provided by the 

UK Biobank resource (Fig. 4b). In our recurring example of the 16p11.2 duplication 

intermediate phenotype, 55 associations surpassed Bonferroni correction for multiple testing 

(including comparative body size at age 10, education score, haemoglobin concentration or 

physically abused by family as a child), while 145 associations surpassed false discovery 

rate (FDR) correction. In other words, individuals with greater similarity to the 16p11.2 

duplication MRI profiles showed a stronger association with levels of education or blood 

assay biomarkers.

To gain additional insight, we summarized the phenotypic association profiles by domain. 

To this end, we calculated the relative number of association hits for each of the 11 

phenotypic domains (using the more stringent Bonferroni correction) as a ratio between 

the number of significant associations and the number of phenotypes in each category. The 

highest relative number of associations were in categories detailing physical measures, blood 

assays and early life factors categories (Fig. 4c). Among all examined CNVs, the 22q11.2 

deletion intermediate phenotype displayed the highest number of phenome-wide hits, with 

90 robust associations after Bonferroni’s correction for multiple comparisons (Fig. 4c; for 

further details, see Supplementary Figs. 4–11). The collective results showed that CNVs are 

associated with numerous rich and diverse phenotypes across all 11 categories.

Analogous to comparing volumetric signatures (cf. above), we examined the similarity 

of phenotypic profiles across CNVs. To this end, we calculated a correlation between 

the association profiles (Pearson’s correlations) from each PheWAS analysis (Fig. 5a). 

The definitive collection of brain signature-phenotype links reflected the linear association 

strength between CNV phenotypical profiles across 977 indicators (Fig. 5b). We found 

a strong resemblance (average similarity r = 0.62) among the 8 phenotypical profiles, 

with positive as well as negative correlations (Pearson’s correlations from r = −0.84 

to 0.82). We subsequently zoomed in on the strong convergence across the phenotypic 

profiles characterizing each CNV by computing the correlation between CNV-phenotypic 
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associations within each of the 11 considered categories (Fig. 5c). In particular, we found 

that bone density and sizes along with blood assay categories showed strong associations 

across CNV intermediate phenotypes, suggesting similar behaviour within these categories. 

Altogether, the strong correspondences among CNV pairs suggest that CNV brain profiles 

are linked to similar phenotypes across a rich portfolio of ~1,000 curated lifestyle indicators.

Detailing shared and distinct phenotypic associations

To shed light on which particular phenotypes are most strongly associated with CNV-

specific brain signatures, we calculated the mean absolute Pearson’s correlations across the 

8 PheWAS analyses. Across all CNVs, diastolic blood pressure, alkaline phosphatase and 

red blood cell count showed the strongest associations (Fig. 6a). Moreover, we examined 

which phenotypes are most consistently associated with CNV brain profiles. We found 8 

phenotypes associated with 6 CNV intermediate phenotypes and 11 phenotypes shared by 5 

CNV intermediate phenotypes (Supplementary Fig. 3b,c). The most consistently overlapping 

phenotype hits were from the blood assays category (for example, sex hormone-binding 

globulin (SHBG), insulin-like growth factor 1 (IGF-1), mean corpuscular volume), along 

with weight or home population density. In total, these robust and shared phenotypic 

associations point to the fact that CNV brain profiles are associated with similar systemic 

phenotypes.

Comparisons of the phenotypical profiles associated with each CNV intermediate phenotype 

revealed that there remains unexplained residual variance, as suggested by a maximum 

absolute association strength of r = 0.81. To access this remaining part of the variance, 

we computed new brain profiles adjusting for the other CNVs. Specifically, for each 

CNV-specific intermediate phenotype, we singled out the variation explained by the 

remaining seven. Thus, we obtained a set of eight unique intermediate phenotypes, each 

with the variation shared with other intermediate phenotypes removed. Subsequently, we 

used this new set to perform the PheWAS analysis and counted the relative number 

of associations surpassing the Bonferroni correction in each category. We still observed 

significant associations across CNVs and categories even after conditioning out the shared 

associations. In particular, 22q11.2 deletion showed a high relative number of associations 

in the physical measures category (Fig. 6c). As such, next to the substantial phenotypic 

similarity, CNVs also displayed some unique characteristic phenotypic associations relative 

to other CNVs.

Quantifying the path towards converging phenotypical profile

The observed magnitude of similarity between the phenotypic profiles of the CNV 

intermediate phenotypes, reaching Pearson’s r = 0.84, demonstrated a strong relationship 

between phenotypic profiles across the 977 indicators. In general, the phenotypic similarity 

(absolute Pearson’s correlation of PheWAS outcomes) between CNVs exceeded their 

morphological similarity (absolute Pearson’s correlation between Cohen’s d maps) (Fig. 6d). 

The dissonance between the two similarity measures was highlighted by Lin’s concordance 

correlation coefficient equal to -0.23, suggesting poor concordance. More specifically, 22 of 

28 CNV pairs showed stronger phenotypical similarity compared with volumetric similarity. 
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Thus, CNVs were characteristic of stronger phenotypic signature associations compared 

with associations among volumetric signatures or intermediate phenotypes (Fig. 6e).

Our collective analyses demonstrated that although each CNV displays largely distinct 

whole-brain morphometric signatures, they converged on similar phenotypic profiles. In 

proving this, we transferred the intermediate phenotypes derived in the clinical cohort 

to the UK Biobank population cohort with 39,085 participants. Using the participant-

specific expression levels of 8 intermediate phenotypes from 8 rare CNVs allowed us to 

characterize complex phenotypical profiles of each CNV, providing a detailed portrait of 

their commonalities and idiosyncrasies.

Discussion

CNVs offer a unique window of opportunity into the consequences of localized genetic 

variation on human traits. This is especially the case, given their known genetic architecture 

and typically high penetrance. In the present study, we built computational bridges between 

8 key CNVs in a multisite clinical dataset on the one hand, and their deep phenotypic 

profiling in 39,085 participants from the wider population on the other hand. To this end, we 

designed an analytic framework that can quantitatively dissect the impact of distinct genetic 

mutations on brain organization and behavioural differentiation. Bringing over derived CNV-

specific intermediate phenotypes to the population cohort revealed that the CNVs are tied 

to pleiotropic associations beyond physical and cognitive domains. This phenome-wide 

analysis across ~1,000 phenotypes revealed many ramifications for several body systems. 

Our collective analyses also reveal wide-ranging similarities between the PheWAS profiles 

of the 8 CNVs. Therefore, the phenotypic level appears to be the point of alignment 

for distinct long-segment genetic variants that we show to cause diverging morphological 

changes in brain morphology. Such late convergence in phenotypic consequences speaks to 

profound basic science questions regarding the organization of genetic influences on human 

brain and behaviour.

For a long time, inquiries targeting genetic influences have been limited by the lack of 

longitudinal and deep multimodal measures of brain and behaviour in large participant 

samples24. Studies aimed at elucidating genotype-phenotype links were challenged by 

several obstacles, including ascertainment bias, limited statistical power and patchy 

phenotypic coverage22. We are unlikely to have access to large enough clinical datasets 

soon–a condition sine qua non for definitive tests of phenotypic overlaps and differences 

between genetic variants. As a concrete example, ref. 30 highlighted the need for thousands 

of participants to obtain reproducible and reliable brain-wide associations. Therefore, to 

overcome several of these hurdles, we here put forward solutions that take advantage 

of intermediate CNV phenotypes, a term coined in research on psychiatric disorders31. 

These refer to biological traits that lie in between an individual’s external phenotype 

and innate genetic blueprint32,33. We captured CNV-specific intermediate phenotype 

representations as ‘genetics-first’ whole-brain signatures derived from our clinical boutique 

dataset. These signatures recapitulated previous findings on morphology alterations, such 

as the predominant decrease in regional volumes for deletions of 1q21.2 or 22q11.2, as 

well as the increase for 16p11.2 deletion23,34,35. We also observed reported mirror dose 
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responses, especially strong in the 22q11.2 locus22. Therefore, the validity of LDA-derived 

intermediate phenotypes is corroborated by recapitulating key findings from clinical studies.

The 8 analysed CNVs are known to differ in the resulting effects on brain architecture11,12. 

The magnitude of their effects has previously been associated with the number of affected 

genes and clinical outcomes. In concordance, we found 16p11.2 deletion to affect the 

largest number of regions. This CNV contains 29 genes and is associated with an almost 

40-fold increase in the odds of ASD29. Conversely, we found 15q11.2 duplication, which 

contains only 4 genes and is not formally associated with any disease, to affect the fewest 

number of regions. In addition, we provide a fresh look into the diverging CNV effects on 

brain morphology by summarizing the effects with respect to 7 large-scale Schaefer-Yeo 

networks. The network effects revealed a degree of similarity to functional connectivity 

alterations in CNV carriers21. We also observed effects in the default mode and limbic 

network for 22q11.2 deletion, as well as for ventral attention and motor network for 16p11.2 

deletion. Together, the structural and functional alterations showed significant overlap with 

alterations in idiopathic ASD and SZ36. The resemblance suggests that the risks conferred 

by genetic variants, structural alterations and the associated functional connectivity patterns 

represent important dimensions that are coupled with diseases.

In the present work, we demonstrate the added value of how intermediate phenotypes can 

be transferred for direct usage in other cohorts, including large-scale populational datasets. 

By transferring these brain-wide representations over to the UK Biobank and carrying 

out PheWAS, we obtained systemic phenotypic associations across 11 rich phenotypic 

categories that go beyond mere cognitive domains. The reported PheWAS associations of 

the intermediate CNV phenotypes were concordant with previous studies investigating more 

circumscribed links between CNV status and indicators of cognitive performance, including 

fluid intelligence score17, physical measurements such as weight or height3,15, common 

medical conditions such as hypertension or obesity and blood biomarkers such as indicators 

of cholesterol fat metabolism pathways37. As one of many examples, we demonstrated 

how intermediate phenotypes tied to 22q11.2 deletion relate to an array of phenotypes in 

blood assays as well as cardiac and blood vessel categories. It is important to stress that 

PheWAS only charts associations between imaging and non-imaging measures to generate 

testable hypotheses without providing causal links38. Even though there may not be a 

direct causative link between a brain phenotype and cardiac biomarkers, the thus revealed 

association suggests a hidden causal effect of the CNV on both traits (for example, on brain 

morphology and artery wall thickening39).

Similar to ref. 3, 6 of our 8 examined CNVs were associated with body weight, 

IGF-1, alkaline phosphatase and mean red blood cell volume. Therefore, these bodily 

alterations may not be mere secondary effects40. Instead, systemic manifestations could 

be a fundamental aspect of the primary biology of CNVs and brain disorders in general. 

Critically, bodily manifestations might also lead to a reduced life span, as suggested 

by the 63% probability of survival to age 50 in adult carriers of 22q11.2 deletion14,41. 

Similar to 22q11.2 deletion, psychotic disorders have been linked with 15–20 yr shorter 

life expectancy42. Most of this premature mortality is predominantly due to elevated 

cardiovascular risk factors43,44–causes that belong to the phenotype category with the most 
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consistent associations in our phenome-wide assays. Detected associations speak in favour 

of CNVs as a complex disorder with several manifestations outside the brain that have 

considerable deleterious impacts on various parts of everyday lives.

By combining hand-crafted analytic solutions with recently emerged data resources, our 

computational assays lay out pleiotropic associations in CNV carriers. These consequences 

include systemic associations outside the central nervous system. This underappreciated 

insight is reflected in our results, including strong brain-behaviour associations of the 

CNV profile in the UK Biobank population with blood pressure, cholesterol and weight. 

Since CNVs do not show complete penetrance in all cases45, such associations portray a 

necessary picture of a broad spectrum of outcomes later in life. Hence, the constellation of 

results advocates rebalancing the medical care of CNV carriers towards more comprehensive 

medical monitoring in a broader patient pool46.

In a similar way, previous clinical research has provided evidence that SZ and related 

psychotic disorders often affect multiple body systems (for example, nervous, immune or 

endocrine), even from illness onset47,48. Robust alterations in immune and cardiometabolic 

systems of a comparable magnitude to alterations in the central nervous system have been 

reported40. Further examples of major brain disorders accompanied by problems outside the 

brain include gastrointestinal disorders in autism49, loss of bone density in depression50 and 

cardiovascular symptoms in bipolar disorder51. Finally, a recent study showed that genetic 

liabilities for five major psychiatric disorders are associated with long-term outcomes in 

adult life, including sociodemographic factors and physical health52. Our findings thus add 

pieces of knowledge that illuminate how the nervous system is interlocked with the rest of 

the body in a way that affects general well-being.

More broadly, understanding pathophysiological disease mechanisms will be propelled by 

further disentangling the perplexing link between genes, brain and behaviour53. There is an 

active debate on the extent to which distinct gene dosage disorders can lead to different non-

overlapping phenotypical profiles24. This discourse was sparked by the observations that 

many single nucleotide polymorphisms and CNVs increase the risk for SZ or autism11,54. 

Polygenicity and pleiotropy, key features of the genetics underpinning brain disorders13,55, 

imply that genetic mutations can converge on shared mechanisms at some level of pathway 

cascades, from genes to large-scale brain networks to the phenome. Here we report a 

low similarity of intermediate phenotypes representing morphological CNV-specific brain 

signatures, in line with a documented broad diversity of regional morphometry patterns 

across genomic loci22,56,57. Conversely, the ramifications of carrying distinct CNV variants 

for cognition and behaviour have previously been hypothesized to be more similar than 

those of brain anatomy 9,24. We here find evidence for substantial convergence of phenotypic 

measures across CNVs quantified by increased phenotypical similarity. Specifically, we 

observed a high degree of similarity between the phenotypical profiles (mean similarity 

r = 0.46 as measured by Pearson’s correlation across the CNV’s corresponding PheWAS 

profiles), which largely exceeded the similarity of brain morphometry profiles (mean 

similarity r = 0.2 as measured by the correlation of volumetric Cohen’s d maps). Based 

on the presented strong resemblance of phenotypic profiles of the examined 8 CNVs, 

we speculate that the polygenic architecture of human phenotypic traits may be more 

Kopal et al. Page 12

Nat Hum Behav. Author manuscript; available in PMC 2023 November 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



related to genotype-phenotype convergence that occurs later than on molecular pathways or 

macroscopic brain networks.

This study has several limitations. One is that we did not investigate the effects of 

medication on derived CNV-specific brain signatures since medication information was 

not available for the whole clinical dataset. Nevertheless, previous studies have reported 

no significant effects of psychiatric comorbidities (for example, psychosis, ASD, attention-

deficit/hyperactivity disorder (ADHD), anxiety and mood disorder) and psychotropic 

medication on neuroimaging patterns36,58. We also did not study causal relationships 

between brain patterns and non-imaging indicators. Making causal inference requires 

proposing and defending a plausible causal structure by spelling out the assumed 

(directional) dependencies among the outcome, input variables and relevant confounding 

variables59. Future studies can start off from hypotheses generated by our catalogue of 

PheWAS links to find causal links between variables, for example, using structural equation 

modelling. Finally, given our data scenario (cf. 26,27, we resorted to linear models in 

combination with bagging and shrinkage to safeguard from overfitting.

In conclusion, we have triangulated (1) a purpose-designed analytical strategy, (2) a 

roadmap for investigating rare brain pathologies employing intermediate phenotypes derived 

from smaller clinical datasets and (3) a framework for application in population-scale 

cohorts. Our results highlight the potential of using intermediate phenotypes as a device 

to study a wide variety of rare conditions and thus accelerate the pace of neurogenetic 

innovation. By building bridges between the broad population of the UK Biobank and 

carefully collected clinical datasets, we derived prediction models for CNV-specific brain 

phenotype expressions that can be used in other hospitals and healthcare institutions. Deep 

phenotypic profiling of these models clearly demonstrates that CNVs may have whole-

body manifestations. Therefore, our study shows that CNV effects go beyond relevance 

for childcare and psychiatry by potentially extending to other areas of medical care and 

treatment, which are blind spotted today. In addition, detected overlapping system-wide 

phenotype associations across multiple CNVs advance our understanding of genotype-

phenotype correspondences.

Methods

Multisite clinical cohort

Signed consents were obtained from all clinical participants or legal representatives before 

the investigation. The current study, which is purely analytical, was approved by the 

institutional review boards (Project 4165) of the Sainte Justine Hospital. UK Biobank 

participants gave written, informed consent for the study, which was approved by the 

Research Ethics Committee. The current analyses were conducted under UK Biobank 

application number 25163. Further information on the consent procedure can be found 

online (biobank.ctsu.ox.ac.uk/ crystal/field.cgi?id=200).

Our clinical dataset consisted of volumetric measurements derived from MRI brain scans 

of 860 participants: 548 CNV carriers and 312 controls not carrying any CNV (Table 

1). The here examined CNVs are among the most commonly studied CNVs60. Deletions 
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and duplications of 1q21.1, 15q11.2, 16p11.2 and 22q11.2 represent some of the most 

frequent risk factors for neuropsychiatric disorders identified in paediatric clinics19,20. That 

is why the target CNV loci were also selected by the Enhancing NeuroImaging Genetics 

through Meta-Analysis copy number variant (ENIGMA-CNV) in a study on their cognitive, 

psychiatric and behavioural manifestations23. These deletions and duplications strike a 

balance between occurrence in the population and their effect size. In other words, the 

selected CNVs are frequent enough so that we can start studying large enough sample sizes 

that allow for across-CNV comparison in the first place. At the same time, this class of 

CNVs has been shown to detrimentally affect cognition and raise the risk for psychiatric 

conditions23,25,35. Our CNV carriers did not carry any other large CNV.

An extensive description of methods and analyses is available in an already published study 

with an identical dataset60. In short, PennCNV and QuantiSNP were used, with standard 

quality control metrics, to identify CNVs. CNV carriers were selected on the basis of the 

following breakpoints according to the reference genome GRCh37/hg19: 16p11.2 proximal 

(BP4-5, 29.6-30.2MB), 1q21.1 distal (Class I, 146.4-147.5MB & II, 145.3-147.5MB), 

22q11.2 proximal (BPA-D, 18.8-21.7MB) and 15q11.2 (BP1-2, 22.8–23.0MB). Control 

individuals did not carry any CNV at these loci. The CNV carriers were either probands 

referred to the genetic clinic for the investigation of neurodevelopmental and psychiatric 

disorders or their relatives (parents, siblings and other relatives).

UK Biobank might represent the largest dataset of carriers affected by 15q11.2 deletions 

and duplications. Therefore, after identifying 15q11.2 deletions and duplications in the UK 

Biobank, we added the respective carriers to our clinical cohort. In other words, we excluded 

these participants from the UK Biobank and treated them as part of our clinical dataset. 

Sensitivity analysis concluded that including this CNV locus did not change our main 

findings (Supplementary Fig. 12). Controls were either non-carriers within the same families 

or individuals from the general population. Furthermore, controls were carefully matched for 

sex and age to CNV carriers.

Clinical MRI data recording and processing

We analysed a data sample of T1-weighted (T1w) images at 0.8–1 mm isotropic 

resolution. All T1w images included in the analysis were quality checked by a domain 

expert60. Data for voxel-based morphometry were preprocessed and analysed with SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/)61–63 running under MATLAB R2018b 

(https://www.mathworks.com/products/new_products/release2018b.html). Further quality 

control was performed using standardized ENIGMA quality control procedures (http://

enigma.ini.usc.edu/protocols/imaging-protocols/). Finally, neurobiologically interpretable 

measures of grey matter volume were extracted for all participants by summarizing whole-

brain MRI maps in the MNI reference space. This feature-generation step was guided by 

the topographical brain region definitions of the commonly used Schaefer-Yeo atlas with 

400 parcels64. The derived quantities of local grey matter volumetry resulted in 400 volume 

measures for each participant. As a data-cleaning step, derived regional brain volumes 

were adjusted for intracranial volume, age, age2 and sex as fixed effects and scanning site 

as a random factor, following previous research on this dataset60. In particular, we have 
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previously demonstrated that CNVs show independent effects on regional and total brain 

volumes35. Our current investigation is focused on how CNVs induce regional brain effects. 

Note that ancillary analyses revealed additional adjustments for total grey matter volume not 

to have any appreciable effect on subsequent analyses.

Population data source

The UK Biobank is the largest biomedical resource that offers extensive behavioural 

and demographic assessments, medical and cognitive measures, as well as biological 

samples in a cohort of ~500,000 participants recruited from across Great Britain (https://

www.ukbiobank.ac.uk/). The present study was based on the recent brain-imaging data 

release from February/March 2020. Our data sample included measurements from 39,085 

participants with brain-imaging measures and expert-curated image-derived phenotypes of 

grey matter morphology (T1w MRI) (Table 2). Among the participants, 48% were men 

and 52% were women, with age between 40 and 69 yr old when recruited (mean age 

±s.d.: 55 ± 7.5yr). We benefited from the uniform data preprocessing pipelines designed 

and implemented by the FMRIB, Oxford University, UK65, to improve comparability and 

reproducibility.

MRI scanners (3T Siemens Skyra) at several dedicated data collection sites used matching 

acquisition protocols and standard Siemens 32-channel radiofrequency receiver head coils. 

Brain-imaging measures were defaced to protect the study participants’ anonymity and 

any sensitive meta-information was removed. Automated processing and quality control 

pipelines were deployed38,65. To improve the homogeneity of the brain-imaging scans, the 

noise was removed using 190 sensitivity features. This approach allowed for the reliable 

identification and exclusion of problematic brain scans, such as those due to excessive head 

motion.

The structural MRI data were acquired as high-resolution T1w images of brain anatomy 

using a 3D MPRAGE sequence at 1 mm isotropic resolution. Preprocessing included 

gradient distortion correction, field of view reduction using the Brain Extraction Tool66 and 

FLIRT67, as well as nonlinear registration to MNI152 standard space at 1 mm resolution 

using FNIRT68. To avoid unnecessary interpolation, all image transformations were 

estimated, combined and applied by a single interpolation step. Tissue-type segmentation 

into the cerebrospinal fluid, grey matter and white matter to generate full bias-field-

corrected images was achieved using FAST (FMRIB’s Automated Segmentation Tool69). 

Finally, grey matter images were used to extract grey matter volumes in parcels according 

to the Schaefer-Yeo atlas with 400 regions64. Following previous work on the UK 

Biobank70,71, interindividual variations in brain region volumes that could be explained by 

nuisance variables of no interest were adjusted for by regressing out: body mass index, head 

size, head motion during task-related brain scans, head motion during resting-state fMRI 

scanning, head position and receiver coil in the scanner (x,y and z), position of the scanner 

table, as well as the data acquisition site.
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Statistical analysis for volumetric brain measures

All subsequent analyses were performed in Python v3.8 as a scientific computing engine 

(https://www.python.org/downloads/release/python-380/). We used Cohen’s d to quantify 

the effect size of the CNVs on individual regional volumes. For a given region, Cohen’s d is 

defined as:

d = x1 − x2

s1
2 + s2

2

2

,

where x1 corresponds to the mean region volume across CNV carriers, x2 corresponds to the 

mean region volume across controls. Similarly, s1 and s2 correspond to standard deviations 

of CNV carriers and controls.

Results from Cohen’s d analyses were confirmed by a nonparametric effect size measure 

(Supplementary Fig. 13).

We compared Cohen’s d volumetric brain maps (and intermediate phenotype brain maps) 

between different CNVs using Pearson’s correlation. Furthermore, we used spin permutation 

testing with 1,000 iterations to calculate empirical P values for the resulting correlation 

coefficient72.

Finally, we calculated Lin’s concordance correlation coefficient to quantify the agreement 

of similarities between volumetric Cohen’s d maps, intermediate phenotypes and PheWAS 

profiles. The degree of concordance between the two measures is thus calculated as:

ρC = 2s1, 2

s1
2 + s2

2 + (x1 − x2)2
,

where s1,2 corresponds to the covariance between x1 and x2.

Charting complex association using PheWAS

We performed a rich annotation of the derived intermediate phenotypes by means of 

a phenome-wide association analysis benefitting from a wide variety of almost 1,000 

lifestyle factors. For a detailed description of phenotype extraction and analysis, refer 

to our previously published studies73. Feature extraction was carried out using two 

utilities designed to obtain, clean and normalize UK Biobank phenotype data according 

to predefined rules. Briefly, we collected a raw set of -15,000 phenotypes that we further 

processed by the FMRIB UKB normalization, parsing and cleaning kit (FUNPACK v2.5.0; 

https://zenodo.org/record/4762700#.YQrpui2caJ8). FUNPACK is designed to perform 

automatic refinement on the UKB data, which includes removing ‘do not know’ responses 

and filling the blank left by unanswered sub-questions. The FUNPACK-derived phenotype 

information covered 11 major categories, including cognitive and physiological assessments, 

physical and mental health records, blood assays, as well as sociodemographic and lifestyle 

factors. The output consisted of a collection of 3,330 curated phenotypes which were then 

fed into the PHEnome Scan ANalysis Tool (PHESANT74, https://github.com/MRCIEU/
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PHESANT) for further refinement in an automated fashion. PHESANT performs further 

data cleaning and normalization along with labelling data as one of four data types: 

categorical ordered, categorical unordered, binary and numerical. Categorical unordered 

variables were one-hot encoded, such that each possible response was represented by 

a binary column (true or false). The final curated inventory comprised 977 phenotypes 

spanning 11 FUNPACK-defined categories. Furthermore, we used Pearson’s correlation to 

quantify the association strength between these 977 phenotypes and participant-specific 

expressions of our 8 intermediate phenotypes (cf. below). To ensure that the correlations 

are not driven by a few outlying intermediate phenotype expressions, we first discarded 551 

participants on the basis of Tukey’s interquartile range rule for outlier detection.

Multiclass prediction model and intermediate phenotype extraction

Technically, our core aim was to derive robust CNV-specific representations of intermediate 

phenotypes from a clinical sample that could be transferred to a large population 

resource for deep profiling. We derived the intermediate phenotypes as systematic brain 

morphometric co-deviations attributable to each of our 8 target CNVs. To this end, we 

capitalized on LDA to extract separating rules between CNV carriers and controls on the 

basis of whole-brain volume measurements. LDA can be viewed as a generative approach 

to classifying CNV carriers, which requires fitting a multivariate Gaussian distribution 

to regional brain volumes and producing a linear decision boundary75. In particular, LDA-

derived discriminant vectors/functions represented CNV-specific intermediate phenotypes. 

Using a linear model represents a data-efficient and directly biologically interpretable 

approach to our analysis, especially in our boutique datasets with limited participant 

samples76. These datasets are characteristic of the low sample size regularly encountered in 

biology and medicine, which typically impedes the application of more complex nonlinear 

models that require high numbers of parameters to be estimated.

As another key model property of direct relevance to our present analysis goals, LDA can 

also be viewed as a dimensionality technique because this modelling framework enables 

the extraction of underlying coherent principles among our anatomical target regions that 

are most informative in telling apart CNV carriers from controls. To do so, LDA has 

access to class labels (CNV status in our case) and thus belongs to supervised techniques75. 

Specifically, LDA projects the input participants’ set of brain morphology measurements 

into a linear subspace, consisting of the directions which maximally separate our classes77. 

This dimensionality reduction quality of LDA was a prerequisite for extracting intermediate 

phenotypes from one dataset and transferring them to other datasets.

In our study, we used LDA models to classify between CNV carriers and controls. 

Specifically, we derived a single LDA prototype for each CNV status, which yielded 

8 CNV-specific models. The dimensionality reduction capability of the LDA framework 

provides biologically interpretable compact views on distinguishing the CNV carriers from 

controls on the basis of a linear combination of brain region volumes. As a general rule, 

the maximum number of dimensions equals the number of classes minus 1. Since each 

LDA model instance discriminated between two classes at hand (for example, controls and 

22q11.2 deletion), we obtained a one-dimensional vector encapsulating the 22q11.2 deletion 
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intermediate phenotype. This vector of coefficients revealed the concomitant contribution 

of each brain region volume towards the separability of the CNV carriers on the basis of 

whole-brain morphology measurements. Therefore, the coefficients provided quantitative 

information on the relative importance of the collective brain regions for CNV-health 

separation. Moreover, the LDA coefficients were estimated together with the other brain 

region volume effects, in contrast to the estimation of marginal or partial variable effects 

as in linear regression. Furthermore, to embed each participant’s brain morphology in a 

low-rank subspace that maximally separates 22q11.2 deletion carriers and controls, we used 

the LDA coefficient vector to re-express (that is, project) the set of 400 regional volumes 

of a given participant onto a single dimension representing 22q11.2 deletion intermediate 

expression level signature. Finally, as a step from dimensionality reduction to classification, 

these expressions of predictive participant brain morphology indicators were then used to 

construct a discriminant function.

Building and validating robust prediction models

To recapitulate, our goal was to derive 8 CNV-specific intermediate phenotypes using 

LDA. Therefore, we built separate CNV-specific LDA models designated to learn predictive 

principles to distinguish CNV carriers from controls. However, we faced the challenge of 

the low number of CNV carriers. This challenge is inherent to various boutique datasets 

of rare medical conditions. Consequently, our number of measured features (regional brain 

volumes) was higher than the number of observation samples (participants). Concretely, we 

disposed on average 67 participants per CNV class (cf. Table 1), while each participant 

was described by 400 regional volumes. Such a high-dimensional data scenario can lead 

to overfitting26, where the model learns the detail and noise in the training samples and 

performs poorly in group classification on unseen test samples75. Hence, we used bootstrap 

aggregation (bagging), an ensemble learning method that can be used to reduce overfitting78. 

Bagging gains its value by profiting from a wisdom-of-crowds strategy. Concretely, we used 

a set of trained LDA models to obtain a more robust and better predictive performance than 

could be obtained from a single trained LDA model in isolation78. Such a model-averaging 

design improves classification performance by reducing variance75.

We performed bagging during the derivation of LDA models separately for all 8 CNV 

classes. Specifically, we used the following analytical strategy for a set of participants 

consisting of a single CNV type and controls. In the first phase, a randomly perturbed 

version of the dataset was created by sampling the participant cohort with replacement. This 

bootstrap resampling served as the ‘in-the-bag’ set of samples (that is, participants). The 

number of ‘in-the-bag’ CNV carriers and controls equalled their number in the dataset. 

Furthermore, the LDA model was trained on this training ‘in-the-bag’ dataset. Model 

performance was then evaluated on all participants from the dataset that were not selected 

for the ‘in-the-bag’ dataset. These participant samples formed a testing ‘out-of-bag’ dataset. 

The performance (that is, classification accuracy) was based on the Matthews correlation 

coefficient, which has been reported to produce a more informative and truthful score 

than accuracy and the F1 score79. The coefficient ranges between −1 and +1, where a 

coefficient of +1 represents a perfect prediction, 0 a random prediction and -1 indicates total 

disagreement between prediction and observation.
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We repeated the bootstrap resampling procedure with 100 iterations. In so doing, we 

obtained different realizations of the entire analysis process and the resulting LDA model 

estimate. Concretely, the bagging algorithm resulted in 100 trained LDA models used to 

obtain 100 out-of-bag predictions in unseen participants. We calculated the final prediction 

accuracy as a mean across the 100 performance estimates. Critically, the average over the 

collection of separately estimated LDA discriminant functions served as our CNV-specific 

intermediate phenotype that provided the basis for downstream analysis steps. Finally, we 

characterized each participant by the intermediate phenotype expression level, which we 

calculated as the average one-dimensional LDA projection of regional volume sets across 

the 100 replications. In summary, the variance of local information in the 100 redraws of 

our original clinical participant cohort promoted diversity among the obtained candidate 

predictive rules, thus strengthening the fidelity of our ultimate predictions.

To further safeguard against the risk of overfitting, we optimized the shrinkage parameter of 

each LDA model. Shrinkage corresponds to regularization used to stabilize the estimation 

of model parameters, such as in covariance matrices during model training. The empirical 

sample covariance is a poor estimator when the number of samples is small compared with 

the number of features. The covariance matrix estimation involved an interpolation between 

the sample covariance matrix based on the maximum likelihood estimator and a weighted 

identity matrix, which amounted to the l2-penalization of the covariance matrix that then 

provided the basis for deriving a robust LDA solution.

Indeed, our sample covariance matrix held 80,200 unique entries, almost 1,200 times more 

than the average number of CNV carriers available. Therefore, the vanilla estimation of the 

covariance matrix is singular and thus degenerates for downstream analysis steps, such as 

matrix inversion. To avoid such an inversion problem, we applied a dedicated shrinkage 

approach for the covariance matrix estimation step within LDA (ShrunkCovariance function 

from ‘sklearn’). Using a nested cross-validation architecture, we performed a rigorous 

search over 11 shrinkage hyperparameter choices between 0 and 1, in steps of 0.1, in 

each ‘in-the-bag’ bootstrap iteration (GridSearchCV function from ‘sklearn’). The optimal 

hyperparameter choice was based on a leave-one-out strategy. In this cross-validation 

technique, each sample of the ‘in-the-bag’ dataset was used once as a test set of unseen 

participants, while the remaining participant samples formed the training set.

Finally, we evaluated the significance of a cross-validated score and thus assessed whether 

our ensemble LDA model displayed above-chance classification performance. Specifically, 

we carried out a label permutation test to quantify whether our LDA model outperforms 

the empirical null model. The null distribution was generated by calculating the prediction 

accuracy of our LDA classifier on 100 different permutations of the dataset. In these, 

features remained unchanged, but class labels (that is, CNV carriers or controls) were 

randomly shuffled. Such a shuffling corresponded to the null hypothesis, which states 

no dependency between the features and labels. The LDA model displayed above-chance 

classification performance if its prediction accuracy was higher than the 97.5th percentile of 

the prediction accuracy coefficient distribution derived from 100 permuted models.
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Performing model inspection using feature importance

After deriving robust LDA classifiers, we inspected which brain regions were the most 

informative in distinguishing CNV carriers from controls. In other words, we aimed to 

contextualize and unpack the prediction rules of our ensemble LDA model. The bagging 

algorithm led to obtaining a collection of LDA models, resulting in a collection of estimates 

for each LDA coefficient and participant-specific intermediate phenotype expressions. Since 

each LDA model is trained on a different bootstrap population, it might happen that two 

distinct LDA models’ coefficients would carry opposite signs due to the sign invariance of 

LDA dimensionality reduction. Therefore, we aligned all LDA models by multiplying them 

with −1 or 1 to produce a positive correlation between LDA coefficients and a corresponding 

Cohen’s d map.

Furthermore, we designed a criterion to test which LDA coefficients are significant, meaning 

which features significantly contribute to the classification. Significant coefficients had the 

distribution of 100 LDA coefficients significantly different from 0. Specifically, they were 

robustly different from zero if their two-sided confidence interval according to the 2.5/97.5% 

bootstrap-derived distribution did not include zero.

Carrying intermediate phenotype expressions over for deep characterization in other data 
resources

One of the aims of this study is to use a population dataset to investigate derived 

intermediate phenotypes. To do so, we transferred the CNV-specific intermediate phenotypes 

carefully derived in our boutique dataset and quantified their expression in the general 

population (that is, UK Biobank). It is important to note that the derived intermediate 

phenotypes were not influenced by ASD or SZ diagnosis (Supplementary Fig. 14).

UK Biobank itself contains CNV carriers. Therefore, we aimed to validate the transferability 

of intermediate phenotypes by testing the difference in intermediate phenotype expression 

between CNV carriers and controls in both the clinical dataset and UK Biobank. 

Specifically, we tested the null hypothesis of no difference in the mean expression of 

intermediate phenotype in CNV carriers and controls. We adopted a two-sample bootstrap 

hypothesis test for means difference with 1,000 bootstrap replicates80.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Eight CNVs lead to largely distinct spatial patterns of abnormalities in brain morphology.
We analysed grey matter region volumes in 534 participants carrying 1 of 8 CNVs, and 

312 controls. Regional volumes were adjusted for intracranial volume, age, age2, sex and 

acquisition site. a, Cohen’s d brain map quantifies the magnitude of structural change for 

each CNV. We computed Cohen’s d between CNV carriers and controls separately for each 

of the 400 brain regions (Schaefer-Yeo reference atlas). Our analysis reveals increased (red) 

and decreased (blue) brain volumes depending on the variation type. The uncovered patterns 

of volumetric changes confirm established knowledge on the regional increase and decrease 

across CNV loci22,23. b, Examining associations between Cohen’s d brain maps rendered 

on brain surface from each pair of CNVs. The wide range and low magnitude of Pearson’s 

correlations show that CNVs have distinct effects on brain volumes (darker red = more 

similar, darker blue = more dissimilar). Average similarity stands for the mean absolute 

Pearson’s correlation across all CNVs. 22q11.2 and 16p11.2 deletions and duplications show 

strong mirroring (opposing) effects. Asterisk denotes FDR-corrected spin permutation P 
values. c, Projecting brain volumes onto two dominant dimensions of variation using PCA. 
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Although the first two dominant PCA components explain 18% of the variance, they are 

unrelated to differences between CNVs. The light and dark symbols represent deletions and 

duplications, respectively. The grey hexagonal bin plot represents the frequency of controls. 

Controls were not used to calculate the PCA and were projected post hoc. d, Projections 

of brain volumes to two dimensions using LDA. The first LDA dimension (LD1) mainly 

captures differences between 16p11.2 deletions and duplications, while the second LDA 

dimension (LD2) mainly captures differences between 22q11.2 deletions and duplications. 

Symbols and hexagonal binning plots were constructed in the same way as for the PCA 

approach. CNVs lead to distinct changes often represented by a predominant increase or 

decrease in the grey matter cortex that could effectively be described using low-dimensional 

representations derived by LDA models.
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Fig. 2 . Pattern-learning models extract distinct intermediate brain phenotypes from CNV status.
We estimated 8 LDA models to classify between controls and each of the 8 different 

CNVs. a, Classification performance of 8 distinct LDA models when telling apart controls 

and CNV carriers, given as Matthews correlation coefficient. All 8 CNVs are successfully 

classified on the basis of brain structure at above-chance accuracy as their performance 

exceeds that of an empirical null model (black line depicts upper 2.5 percentile threshold 

of the null distribution obtained by label shuffling). b, Prediction rule derived for each 

of the 8 CNV-specific LDA models projected on the brain (red/blue = positive/negative 

weight). The prediction rule is a CNV-specific brain signature and can be treated as an 

intermediate phenotype. c, Similarity between CNV-specific intermediate phenotypes. The 

wide range and low magnitudes of resulting Pearson’s correlations reflect the disparity 

in the captured intermediate phenotypes. Average similarity represents the mean absolute 

correlation across all CNVs. Asterisk denotes FDR-corrected spin permutation P values. d, 

Relationship between Cohen’s d brain maps and intermediate phenotypes. On the basis of 

FDR-corrected Pearson’s correlations, all 8 intermediate phenotypes appear to largely follow 

the respective Cohen’s d brain maps. LDA models identified and quantified CNV-specific 

intermediate phenotypes that effectively captured distinct morphometric differences between 
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CNV carriers and the general population. Asterisks denote FDR-corrected spin permutation 

P values.
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Fig. 3. Intermediate brain phenotypes track structural changes with distinct impacts on large-
scale networks.
We identified which aspects of the LDA-derived prediction rule robustly contributed to 

classification success by calculating 100 bootstrapped LDA models for each CNV while 

sampling CNV carriers randomly. a, Percentage of statistically relevant LDA coefficients in 

a CNV carrier group among all the regions that belong to each brain network (one-sample 

bootstrap hypothesis test for non-zero mean with 10,000 replicates). For example, 16p11.2 

deletion strongly affects most large-scale networks except the frontoparietal network. 

Altogether, the estimated LDA coefficients represent the backbone of each intermediate 

phenotype. Large-scale networks correspond to 7 Schaefer-Yeo networks; Vis, visual; 

FrontPar, frontoparietal; SomMot, somatomotor; DorsAttn, dorsal attention; SalVenAttn, 
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salience ventral attention; Limbic; Default, default mode. b, Significant LDA coefficients 

grouped by the large-scale networks. The highest relative number of affected regions 

is in the limbic network. Conversely, regions in the frontoparietal network are targeted 

less frequently. c, Relationship between CNV effects and LDA performance. There is a 

significant positive correlation between the number of significant LDA coefficients and 

classifier performance, unlike for the sample size of the cohort (marker size). According to 

the 8 specific LDA models, CNVs affected predominantly high-level networks such as the 

limbic, salience and default-mode networks.
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Fig. 4. Using intermediate CNV phenotypes as a basis for phenome-wide association analysis.
We performed a PheWAS by computing Pearson’s correlations between the expression of 

each of the 8 intermediate CNV phenotypes and 977 phenotypes spanning 11 categories in 

39,085 UK Biobank participants. a, Letter-value (boxen) plot for the expression of 16p11.2 

duplication intermediate phenotype is shown for the sake of illustration. The boxen plot 

depicts the distribution of quantiles for the expression scores computed by quantifying the 

presence of derived 16p11.2 duplication intermediate phenotype in both the clinical cohort 

(left) and the UK Biobank (right). On the basis of a two-sample bootstrap hypothesis 

test for difference of means with 10,000 bootstrap replicates, the 16p11.2 duplication 

carriers significantly differed in the expression level from controls both in the clinical 

cohort (P < 10-4) and the UK Biobank dataset (P < 10-4). b, PheWAS study using the 

CNV-specific intermediate phenotype. We calculated the Pearson’s correlations between 

the expression of 16p11.2 duplication intermediate phenotype and each of977 phenotypes. 

After the Bonferroni correction for multiple comparisons (BON), there were 55 significant 

associations, such as education score, haemoglobin concentration or physically abused by 

family as a child. There were 145 significant associations exceeding FDR correction. c, 

The relative number of significant correlations summarized for each of the 11 categories 

for each CNV in the UK Biobank. Most CNVs are strongly associated with multiple 

categories and their respective phenotypes. For example, up to 35% of phenotypes in general 

physical measures show a significant correlation with 4 CNV brain signatures. The light 

and dark symbols represent deletions and duplications, respectively. As an insight from 

the performed phenome-wide association analysis, CNV brain signatures are linked with 

multiple phenotypes across most categories but mainly in the general physical measures, 

blood assays and early life factors categories.
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Fig. 5. Eight different CNVs converge on similar phenome-wide association profiles.
We carried out the PheWAS analysis for each intermediate phenotype to quantify the 

differences and commonalities in phenotypical consequences due to the 8 CNVs. a, 

Pearson’s correlations from PheWAS analysis for each CNV status. Among these, 22q11.2 

deletion shows the strongest associations with numerous phenotypes across categories. 

Colours indicate the 11 categories. b, Linear association strength between PheWAS 

outcomes across all CNVs. Strong Pearson’s correlations suggest that CNVs are linked with 

similar phenotypes. Average similarity exceeds those of volumetric Cohen’s d maps and 

intermediate phenotypes. Asterisk denotes FDR-corrected significant correlations. c, Linear 

association strength between category-specific Pearson’s correlations from the PheWAS 

analysis across all CNVs. Detailed visualization depicts the similarity of the impact of 

CNVs on all phenotype categories. The direction of the linear relationship tends to be 

identical across categories for a given CNV pair (strong negative or strong positive), unlike 

across CNV pairs for a given category. The 8 CNVs exhibited similar PheWAS profiles, 

especially in bone density, blood assays and general physical measures categories.
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Fig. 6. Detailing aspects convergence in phenome-wide portfolios across different CNVs.
For all 8 CNVs, we delineate the most prominent as well as distinctive associations among 

their PheWAS profiles in 39,085 UK Biobank participants. We also compare CNVs on the 

basis of their brain and behaviour similarities. a, Phenotypes from the PheWAS analysis 

most strongly associated with the 8 CNVs. We show 10 phenotypes with the strongest 

average Pearson’s correlations across all CNVs. The most prominent association across 

CNVs is with diastolic blood pressure. The boxplot displays the first quartile, median, 

third quartile and whiskers corresponding to the appropriate quartile plus 1.5 times the 

interquartile range. b, Phenotypes most consistently associated with the 8 CNVs. We find 8 

phenotypes associated with most (6) of the CNVs. Phenotypes are ordered according to the 

mean strength of the association. Most of the phenotypes are from the blood assays category. 

c, Number of significant hits per category for each intermediate phenotype conditioned 

on the shared phenotypical profile. For each of the 8 intermediate phenotype expressions, 

we regressed out the remaining 7. Even after conditioning on the shared phenotypical 

associations, each particular CNV still shows a specific set of distinct phenome-wide 

associations across various categories. For example, 22q11.2 deletion still displays a high 

number of associations in physical measures–general category. d, Concordance between 

brain volume effects and PheWAS effects. The absolute value of correlation between 

Kopal et al. Page 34

Nat Hum Behav. Author manuscript; available in PMC 2023 November 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Cohen’s d brain maps (Fig. 1a) is plotted against the absolute value of correlation between 

PheWAS profiles. Negative Lin’s concordance correlation hints at the disparity between 

volumetric and phenotypical similarity. Moreover, the majority of points lie above the 45° 

line suggesting that PheWAS similarities are more substantial than volumetric similarities. 

e, From diverging brain patterns to converging portfolios. Each line represents a similarity 

of Cohen’s d map, intermediate phenotype and PheWAS profile for a given CNV pair. 

Convergence on PheWAS profiles is demonstrated by the increase in similarity in 22 

of 28 CNV pairs. Hence, the similarity of CNV portfolios exceeded that of volumetric 

intermediate phenotypes.
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Table 1
Clinical dataset demographics

Loci Chr (hg19) start-
stop

nGenes 
(Gene) Type Participants Age (s.d.) Sex (M/F) ASD|SZ diagnosis Other 

diagnoses

1q21.1
chr1 7 Del 24 31 (18) 9 / 15 0|0 4

146.53-147.39 CHDIL Dup 15 33 (17) 7 / 8 3|0 2

15q11.2
chr15 4 Del 112 55 (7) 51 / 61 0|0 2

22.81-23.09 CYFIP1 Dup 146 54 (7) 69 / 77 0|0 6

16p11.2
chr16 27 Del 80 17 (12) 46 / 34 10|0 10

29.65-30.20 KCTD13 Dup 69 31 (14) 37 / 32 7|1 10

22q11.2
chr22 49 Del 69 17 (9) 33 / 36 8|2 29

19.04-21.47 AIFM3 Dup 19 19 (14) 12 / 7 2|0 5

Controls 312 26 (14) 179/133 1|0 12

CNV loci chromosome coordinates are provided with the number of genes encompassed in each CNV and with a well-known gene for each 
locus to help recognize the CNV. Other diagnoses included: language disorder, major depressive disorder, posttraumatic stress disorder, unspecified 
disruptive and impulse-control and conduct disorder, social anxiety disorder, social phobia disorder, speech sound disorder, moderate intellectual 
disability, specific learning disorder, gambling disorder, bipolar disorder, conduct disorder, ADHD, substance abuse disorder, global developmental 
delay, motor disorder, obsessive-compulsive disorder, sleep disorder, Tourette’s disorder, mood disorder, eating disorders, transient tic disorder, 
trichotillomania, pervasive developmental disorder, specific phobia, body dysmorphic disorder, mathematics disorder and dysthymic disorder. Del: 
deletion; Dup: duplication; Chr: chromosome; Age: mean age; nGenes: number of genes.
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Table 2
UK Biobank imaging demographics

Non-carriers 1q21.1 del 15p11.2 del 16p11.2 del 22q11.2 del

del dup del dup del dup del dup

Participants 38,731 12 14 117 155 4 7 5 47

Percent female 52 42 64 54 53 25 43 60 43

Age (s.d.) 55 (8) 51 (6) 54 (7) 55 (7) 54 (7) 58 (3) 55 (6) 53 (8) 54(8)

ASDa|SZb diagnosis 68|18 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0

Our data sample included measurements from 39,085 participants with brain-imaging measures and expert-curated image-derived phenotype. 
Based on the cohort’s sociodemographic, physical, lifestyle and health-related characteristics, UK Biobank participants are known to be close 

to the general population81. CNVs were identified using PennCNV and QuantiSNP. UK Biobank might represent the largest dataset of carriers 
affected by 15q11.2 deletions and duplications. Therefore, we excluded these participants from the UK Biobank and treated them as part of 

our clinical dataset. The remaining CNV carriers served for validation of derived LDA prediction patterns. aICD10 code, including diagnoses 

of SZ, schizotypal and delusional disorders (F20-F29). bICD10 code, including diagnoses of childhood autism (F84.0), atypical autism (F84.1), 
Asperger’s syndrome (F84.5), other pervasive developmental disorders (F84.8) and pervasive developmental disorder, unspecified (F84.9). Mean 
age is depicted along with the standard deviation.
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