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ABSTRACT: The bismuth hydride (2,6-Mes2H3C6)2BiH (1, Mes = 2,4,6-trimethylphenyl), which has a Bi−H 1H NMR
spectroscopic signal at δ = 19.64 ppm, was reacted with phenylacetylene at 60 °C in toluene to yield [(2,6-Mes2C6H3)2BiC(Ph)
=CH2] (2) after 15 min. Compound 2 was characterized by 1H, 13C NMR, and UV−vis spectroscopy, single crystal X-ray
crystallography, and calculations employing density functional theory. Compound 2 is the first example of a hydrobismuthation
addition product and displays Markovnikov regioselectivity. Computational methods indicated that it forms via a radical mechanism
with an associated Gibbs energy of activation of 91 kJ mol−1 and a reaction energy of −90 kJ mol−1.

The reactivity and use of bismuth and its derivatives in
synthesis and catalysis have undergone a renaissance that

owes much to the work of Cornella and co-workers.1 The
redox active nature of this heavy main group element has
recently been exploited in various chemical transformations,
including radical activation and coupling of redox-active
electrophiles,2,3 aryl−F bond formation,4,5 and transfer hydro-
genation catalysis.6,7 The last example is of particular interest
to us since preliminary mechanistic investigations implicated
the involvement of an elusive bismuth hydride, namely, I
(Figure 1). More detailed studies provided a comprehensive
mechanistic picture that explained the ability of bismuth to
perform transformations typical for transition metals and
allowed the realization of better, second-generation, catalysts
with improved properties.
Currently, the reactivity of bismuth hydrides is virtually

undeveloped due to the perceived instability of the [Bi−H]
unit. The parent bismuthine, II (Figure 1, IUPAC name,
bismuthane), was first synthesized by Amberger8 in 1961 and
characterized by Bürger in 2002.9 It decomposes to metallic
bismuth and gaseous dihydrogen at temperatures well below 0
°C. In 2002, Breunig and co-workers reported a dialkyl
bismuth hydride of the formula [Bi(H)(CH{SiMe3}2)2], III
(Figure 1).10 It was found to be thermally sensitive and readily
converted to the corresponding alkyl dibismuthane [Bi(CH-
{SiMe3}2)2]2 at room temperature via the release of
dihydrogen gas. To date, the only thermally stable complex
containing a Bi−H bond is [Bi(H)(2,6-Mes2C6H3)2], 1 (Mes
= 2,4,6-trimethylphenyl, Figure 1), synthesized by us in
2000.11 In this species, the [Bi−H] unit is protected by two
kinetically stabilizing terphenyl ligands, although the bulky
mesityl groups do not completely block reactivity and samples
of solid 1 convert to purple dibismuthene [Bi(2,6-
Mes2C6H3)]2 at temperatures >130 °C via loss of terphenyl
arene 2,6-Mes2C6H4 and subsequent dimerization of [Bi(2,6-
Mes2C6H3)].

12,13

Because 1 is the only compound with a [Bi−H] unit that is
kinetically stable at room temperature, we hypothesized that it
could perform hydrometalation of unsaturated organic
substrates such as acetylenes and olefins. Similar hydroaddition
reactions are known for other heavier pnictogens (Figure 1,
bottom). For example, hydrophosphinations employing both
catalyst14,17 and catalyst-free18 strategies have been reported,
with more recent advances focused on the use of the parent
phosphine in synthesis.19 Hydroarsinations are known to take
place in the presence of Zr-cocatalysts,15 while the first
example of an antimony hydride capable of a hydrostibination
of alkynes, alkenes, and other substrates was reported by
Chitnis and co-workers in 2019.16 Herein, we report the first
instance of a hydrobismuthation; this involves the reaction of 1
and phenylacetylene, which results in the Markovnikov
addition product 2 [(2,6-Mes2C6H3)2BiC(Ph)�CH2] (Figure
1, bottom).
Compound 2 was isolated in high yield (83%) as an orange

powder after the removal of all volatile components. Orange-
yellow block-like crystals suitable for analysis by single crystal
X-ray diffraction could be grown from a concentrated hexane
solution of the powder at room temperature. The crystal
structure of 2 (Figure 2) was found to possess approximately
8% disorder as refined for the bismuth atom, which presumably
involving the two different orientations possible for the PhC�
CH2 fragment. However, the minor component of the
structure could not be located for the lighter carbon atoms,
for which they were refined with site occupancy factors equal
to unity.
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The structure of 2 displays a C(1)−C(2) bond length of
1.321(9) Å, in good agreement with a reference C�C bond
length of 1.34 Å from Pyykkö covalent radii.20 At 2.286(6) Å,
the Bi(1)−C(2) bond length matches the sum of single bond
covalent radii for carbon and bismuth, 2.26 Å,20 and is
statistically identical to a Bi−C bond in IV, 2.289(4) Å (Figure
3); the Bi−C bond in 2 is also comparable to related single
bonds in compounds where bismuth is three-coordinate and
the carbon atom belongs to a conjugated system, such as V and
VI at 2.260(4) and 2.293(3) Å, respectively.21−23 The three
C−Bi−C bond angles in 2 are dissimilar; with values of
89.2(2)°, 101.2(2)°, and 128.1(2)°, for a sum of 318.5(2)°,
consistent with trigonal pyramidal geometry at bismuth. The
two Bi···π arene centroid distances are 3.498 and 3.910 Å, of
which the former suggests the presence of a significant
intramolecular dispersion component. Interestingly, the
structure of 2 shows that the reaction has taken place with
Markovnikov regioselectivity, while the recent example of a
catalyst-free hydrostibination occurred with anti-Markovnikov
selectivity.16

The 1H NMR spectrum of 2 in C6D6 shows the expected
signals, including two broad singlets at δ(1Η) = 8.49 and 6.20
ppm that were assigned to the vinylic protons of the PhC�
CH2 fragment. Such a large difference between the two
chemical shifts can be explained by the distance of these nuclei
from the heavy bismuth atom, the proton closer being more
shielded and therefore shifted more upfield. While 1H DOSY
confirmed that the two singlets originate from the same
species, neither 1H−1H COSY nor 1H−13C HSQC provided
any additional information. The UV−vis spectrum of 2 in
hexanes showed a broad singlet in the UV-A area (λmax = 321
nm), which is consistent with the spectral characteristics of m-
terphenyl ligands.
Even though the single-crystal X-ray data originally reported

for 1 showed signals consistent with a disordered hydrogen
atom at 1.94(2) Å bonded to bismuth, the reliability of the
assignment is limited. Furthermore, no 1H NMR signal could
be detected for the hydridic proton at the time, and the
presence of a [Bi−H] unit was inferred from a strong IR
absorption band at 1759 cm−1 along with its isotopic shift
upon deuterium exchange. A computational (PBE1PBE-D3BJ/
def2-TZVP) optimization of the structure of 1 using density
functional theory (DFT) gave a Bi−H bond length of 1.778 Å
and a scaled Bi−H stretch at 1807 cm−1, while an NMR signal
corresponding to the hydridic proton was located at δ(1Η) =
19.64 ppm by employing a wider scanning window. Despite

Figure 1. Examples of [Bi−H] compounds (top)6,8,10,11 and group 15
hydroadditions (bottom),14−16 including the hydrobismuthation
reaction reported herein.

Figure 2. Single crystal X-ray structure of complex 2 with carbon
atoms of the mesityl groups shown in wireframe format and hydrogen
atoms not shown.Thermal ellipsoids are drawn at 50% probability
level. Selected bond lengths (Å) and angles (deg): C(1)−C(2) =
1.321(9), Bi(1)−C(2) = 2.286(8), C(9)−Bi(1)−C(2) = 89.2(2),
C(2)−Bi(1)−C(33) = 101.2(2), and C(2)−Bi(1)−C(9) = 128.1(2).

Figure 3. Examples of Bi−C bond lengths in compounds IV−VI for
comparison with the Bi(1)−C(2) bond length. of 2.286(6) Å in
2.21−23
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the large quadrupole moment of the 209Bi nucleus (100%, I =
9/2, Q = −420(17) mb),24 the NMR signal is well resolved.
The observed chemical shift is in excellent agreement with
high-level theoretical predictions by Straka, Kaupp, and
Marek,25 who calculated δ(1Η) = 19.4 ppm for 1 using a
four-component Dirac−Kohn−Sham approach that includes
important spin−orbit effects largely responsible for the
observed chemical shift (δSO(1H) = 14.4 ppm). For
comparison, complex III (the only other bismuth hydride for
which NMR data are available) shows a broad 1H signal with
δ(1Η) = 3.24 ppm, which compares well with the theoretical
chemical shift δ(1Η) = 2.1 ppm (δSO(1H) = 0.7 ppm) reported
for the simple alkyl bismuth hydride Bi(H)(CH3)2.

25

The mechanism for hydrobismuthation was examined with
DFT. Similarly to the results of Chitnis and co-workers for
hydrostibination,26 all closed-shell pathways leading to 2 were
found to have significant energy barriers and are, therefore,
unfeasible under the experimental conditions. Consequently, a
radical mechanism was sought, which led to the character-
ization of transition states TS-1 for hydrogen transfer from 1 to
phenylacetylene (Figure 4). The Gibbs energy of activation for

this process was found to be 91 kJ mol−1 at room temperature.
The bismuthinyl and 1-phenylvinyl radicals thus formed were
found to associate to a weakly bound intermediate INT-1 that
resides 48 kJ mol−1 higher in energy than the starting species.
The Gibbs energy of activation for radical recombination
through TS-2 was found to be 17 kJ mol−1, giving 2 with a
relative Gibbs energy of −90 kJ mol−1.
In contrast the mechanism for hydrostibination follows a

pathway in which the stibinyl and 1-phenylvinyl radicals
separate, allowing the former to add to an equivalent of
phenylacetylene and undergo a second hydrogen transfer to
give the anti-Markovnikov product.26 In this context, the
dissociation of INT-1 to bismuthinyl and 1-phenylvinyl
radicals was calculated to be an entropy-driven process, while
the transition state associated with the addition of the
bismuthinyl radical to phenylacetylene was found to be
energetically on par with TS-1. Thus, the recombination of
bismuthinyl and 1-phenylvinyl radicals, as shown in Figure 4,
represents the minimum energy pathway and agrees with the
observed Markovnikov regioselectivity. We hypothesize that
the difference in regioselectivity between antimony and

bismuth originates from the different steric protection around
the group 15 element, which, in the case of 1 contributes to the
stability of INT-1 and allows facile formation of 2 rather than
separation of the radicals by an intervening molecule of
phenylacetylene.
Encouraged by the favorable reactivity of 1 with phenyl-

acetylene, we attempted the activation of other important
substrates, such as olefins. Recently, Cornella and co-workers
reported the only known activation of ethylene with a heavy
pnictogen species by coordinating it to a distibene which
formed a stibacyclopropane upon dissociation.27 In our case,
an ampule containing 1 dissolved in toluene was saturated with
ethylene gas using the standard freeze−pump−thaw method.
The mixture was heated to 60 °C, which resulted in the
initially colorless solution turning slightly yellow. A pale-yellow
powder was obtained upon removal of all volatiles, which was
dissolved in hexane and filtered. Over 12 h, the solution
became an intense dark purple color, indicating the formation
of dibismuthene [Bi(2,6-Mes2C6H3)]2.
Repeating the reaction of 1 with ethylene in a J. Young tube

allowed its in situ monitoring with 1H NMR spectroscopy
(Figure 5). This revealed that 1 does not add to ethylene at

room temperature, but the [Bi−H] signal disappears within 15
min at 60 °C. A 1H NMR spectrum of the reaction mixture
showed quartet and triplet signals at δ = 3.27 ppm (3JHH = 7.0
Hz) and 1.12 ppm (3JHH = 7.0 Hz), respectively, correspond-
ing to the CH2 and CH3 moieties of a putatively assigned ethyl
group, suggesting the formation of 3 [(2,6-Mes2C6H3)2BiC-
(H)2CH3], albeit in low yield. Removal of unreacted ethylene
under reduced pressure and allowing the sample to remain in
C6D6 for 24 h permitted the identification of dibismuthene
[Bi(2,6-Mes2C6H3)]2 and terphenyl arene 2,6-Mes2C6H4,
by1H NMR spectroscopy. Interestingly, reappearance of
ethylene was also observed by 1H NMR spectroscopy, possibly
owing to decomposition of 3, although this is not readily
apparent from the spectral data.
The reaction of 1 with ethylene was examined with DFT

(Figure 6). The Gibbs energy of activation for hydrogen
transfer from 1 to ethylene was found to be 116 kJ mol−1 at
room temperature, which is in agreement with the stability of 1
under these conditions. Compound 3 was found to be only 36
kJ mol−1 more stable than the reactants, and no low-energy
pathway could be identified for its decomposition. In contrast,
the decomposition of 1 was found to have a Gibbs energy of
activation of 113 kJ mol−1 and, in the presence of ethylene, was
found to give bismacyclopropane [(C2H4)Bi(2,6-Mes2C6H3)]
and terphenyl arene 2,6-Mes2C6H4. Subsequent dissociation of
bismacyclopropane would not only provide a pathway to
dibismuthene [Bi(2,6-Mes2C6H3)]2 (dimerization) but would
also explain the reappearance of ethylene seen by 1H NMR. At
this point, the exact details of the reaction remain unknown,
and no experimental evidence for the intermediacy of

Figure 4. Calculated mechanism for the formation of 2. Relative
Gibbs energies refer to gas phase calculations at room temperature.

Figure 5. Synthetic route to bismuth-ethyl species 3 and the identified
side-products.
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bismacyclopropane exists. However, computational modeling
of possible pathways clearly shows that ethylene is a poor
substrate for hydrobismuthation because the formation of 3 is
equally likely as is the decomposition of 1, leading to a mixture
of products.
In conclusion, we have reported a 1H NMR chemical shift (δ

= 19.64 ppm) for the hydrogen of a Bi−H bond in [Bi(H)(2,6-
Mes2C6H3)2] (1), which is in excellent agreement with a
previous computational prediction (δ = 19.4 ppm). We have
also reported the first example of hydrobismuthation involving
the addition of phenylacetylene to 1 at 60 °C in toluene. The
reaction occurred with Markovnikov regioselectivity and gave
[(2,6-Mes2C6H3)2BiC(Ph)�CH2] (2). Density functional
theory calculations support a radical mechanism, whereby
hydrogen transfer from 1 to phenylacetylene generates
bismuthinyl and 1-phenylvinyl radicals that rapidly recombine
to form 2. We further attempted the hydrobismuthation of
ethylene with 1. At elevated temperatures, the reaction mixture
potentially generates small amounts of the bismuth-ethyl
species [(2,6-Mes2C6H3)2BiC(H)2CH3] (3), though dibismu-
thene [Bi(2,6-Mes2C6H3)] and terphenyl arene were also
identified along with regeneration of ethylene. Computational
analysis of possible reaction pathways indicated that ethylene is
a poor substrate for hydrobismuthation, as the barrier for its
addition to 1 is similar to that associated with the
decomposition of 1. The investigation of hydrobismuthation
insertions of other unsaturated organic substrates is continuing.
The results add further support to the notion that even the
heaviest main group metal hydrides can have a rich
chemistry.28
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