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To my parents, for letting me stay home from school whenever I wanted to play with
Legos or read Calvin and Hobbes in the backyard instead.
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EPIGRAPH

“The scientific enterprise as a whole does from time to time prove useful, open up new
territory, display order, and test long-accepted belief. Nevertheless, the individual engaged
on a normal research problem is almost never doing any one of these things. Once engaged,
his motivation is of a rather different sort. What then challenges him is the conviction
that, if only he is skilful enough, he will succeed in solving a puzzle that no one before has
solved or solved so well. Many of the greatest scientific minds have devoted all of their
professional attention to demanding puzzles of this sort. On most occasions any particular
field of specialization offers nothing else to do, a fact that makes it no less fascinating to
the proper sort of addict.”

Kuhn (1962)

“[T]he key is not the stuff out of which brains are made, but the patterns that can come to
exist inside the stuff of a brain.”

Hofstadter (1979)

“Tell me how all this, and love too, will ruin us.
These, our bodies, possessed by light.
Tell me we’ll never get used to it.”

Siken (2005)
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ABSTRACT OF THE DISSERTATION

Building Mental Models of Others Over Repeated Interactions

by

Erik Brockbank
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Professor Judith Fan, Co-Chair
Professor Edward Vul, Co-Chair

Human interaction relies on the ability to form accurate internal models of other

people. What is the structure of our mental representations of others? Existing theories

in psychology broadly fall into two classes: those which view people as constructing rich

generative models of those around us, and those which argue for more simplified predictive

representations based on past behavior. In this dissertation, I explore the conditions

under which people employ different representations of others and the constraints they

face in each case. My work probes dyadic behavior across repeated interactions, thereby

exposing the precise structure of the representations that people form in diverse settings.

xiv



In Chapter 1, I begin by investigating how people develop predictive models of others

based purely on simple, sequential patterns in their previous actions. I present evidence

that in mixed strategy equilibrium (MSE) games, people acquire an adaptive model of

their opponent over many interactions and argue that behavior in such games offers a

novel perspective on people’s opponent modeling. In Chapter 2, I present two studies

characterizing the basis of people’s opponent modeling in MSE games and exploring the

scope of this ability. Results suggest that people show substantial limitations in their

capacity to develop predictive models of others using patterns in their behavior alone.

In light of these findings, Chapter 3 explores the process by which people develop more

abstract and sophisticated representations of others in domains where they have rich

mental models of their own. Specifically, this work focuses on how people incorporate

the competence of another agent into collaborative interactions in a physical task. I first

show that people infer latent and dynamic properties of others’ behavior in this setting;

in a second study, I show that such inferences extend to features of their collaborator’s

internal model of the task. Broadly, this work suggests that our representations of others

can take on surprisingly diverse forms but their complexity is heavily context-dependent.

I conclude with a discussion of future directions aimed at understanding the structure

of people’s representations of others and how they calibrate these representations to the

context at hand.
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0.1 Overview

What form do our mental representations of others take? The ability to leverage

sophisticated yet flexible internal models of those around us to predict and explain

their behavior is central to a range of uniquely human activities, from coordination and

complex planning to communication and forming meaningful relationships. Researchers in

psychology and artificial intelligence have long been interested in understanding human

intuitive psychology (Heider, 1958), yet only recently has the scale of modern computation

and developments in cognitive modeling allowed for robust and fine-grained tests of distinct

theories about how we represent the actions and mental states of others (Alanqary et al.,

2021; Baker et al., 2017). The work in this dissertation explores this exciting intersection

of computational methods and social psychology to understand how we represent those

around us in diverse contexts. I investigate dyadic behavior over repeated interactions in

both adversarial and cooperative settings to better understand how we develop internal

models of those around us and what these internal models are made of; this work exposes

the precise structure of our internal models of others in these settings, as well as the

constraints people face in forming such representations. The results point the way towards

future work aimed at providing a broad account of the representations underlying our

intuitive psychology.

0.2 “Behaviorist” and “cognitivist” intuitive psy-

chology

Over the last 100 years, the field of experimental psychology underwent a dramatic

shift in methodology and theoretical stance, often referred to as the “Cognitive Revolution”

(Mandler, 2002; G. A. Miller, 2003). At stake in this transition to what we now consider

modern psychology was what kind of mental representations could be attributed to people

on the basis of their behavior. The predominant paradigm prior to the Cognitive Revolution,
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behaviorism, was primarily concerned with explanations for human and animal behavior

based on learned associations between stimuli and rewards (Skinner, 1938; Thorndike,

1911; Watson, 1924)—this account reflects a notable sparsity of mental representation.

In contrast, proponents of the new cognitivist view argued that predominant features of

human psychology such as syntax (Chomsky, 1957), working memory limitations (G. A.

Miller, 1956), and problem solving (Newell et al., 1958) could not be explained without

recourse to cognitive operations or mental states that extended beyond the purview of

learned associations. This emphasis on unobservable mental states and operations as

causes of behavior was central to the subsequent rise of cognitive science and is now a

broadly accepted view among psychologists (Gardner, 1987; Núñez et al., 2019). However,

the role of reinforcement learning and other computational approaches which owe their

origins to behaviorism in modern cognitive neuroscience (Dayan & Niv, 2008) and artificial

intelligence (Sutton & Barto, 1998) underscores the fact that foundational contributions

from behaviorism remain relevant even today.

The tension between behaviorism and cognitivism centered on the empirical psychol-

ogy of humans (and other animals) interacting with their environment. However, it offers

an instructive framework with which to view current research into our intuitive psychology.

What kind of mental states and representations do we attribute to others as the cause

of their behavior? At one extreme, we might imagine other people the way behaviorists

imagined people; our internal model of those around us could make no use of mental

representations at all, instead viewing others as merely exhibiting learned associations

between stimulus and reward. For example, if we see a co-worker arrive at the office with

a jacket, we might infer that they brought a jacket because it was raining at their house

when they left, or simply because they always bring a jacket to work (see Figure 1). At

the other end of the spectrum, our internal model of others might align with contemporary

psychological accounts of individual planning and decision-making, where actions reflect

the joint influence of a host of interconnected mental states: goals, beliefs, and subjective
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costs and rewards (Callaway et al., 2022; M. K. Ho et al., 2022; Zhi-Xuan et al., 2020).

On this view, when a co-worker arrives at the office with a jacket, we might infer that they

believe it will rain at some point today, regardless of what the weather was like when they

left (Figure 1). Finally, people’s internal model of others may fluctuate between these two,

sometimes relying on more simplistic behaviorist representations of others which require

minimal mental state reasoning, and other times leveraging a more cognitivist framework

which permits rich inferences about the mental states that produce others’ behavior.

In short, just as behaviorism and modern cognitive psychology offer credible but

distinct accounts of how an agent might learn and choose actions in their environment

(each with strong formal and theoretical underpinnings), they can just as equally serve

to anchor theorizing about our internal models of other decision-makers. And just as

individual behavior might at times reflect more of one model or the other (Kahneman,

2011), we can just as easily ask under what conditions people’s representation of others

reflects a more behaviorist or cognitivist intuitive psychology. In fact, as I discuss below,

this contrast between behaviorism and cognitivism may be even more relevant in theorizing

about how we represent others, since reasoning about other minds poses a costly and

challenging computational task above and beyond one’s own planning and decision-making

(Jara-Ettinger, 2019), which could at times tip the scales more towards behaviorist

representations of those around us.

The work in this dissertation has been strongly influenced by the perspective that

our representations of others may be structured in ways similar to competing theoretical

accounts of individual reasoning from the recent history of psychology. However, it’s

important to note that this is not the only way of distinguishing between distinct models

of others’ behavior which propose differing amounts of underlying mental representation or

planning. For example, the behaviorist-cognitivist distinction closely mirrors that of model-

free and model-based reinforcement learning (Sutton & Barto, 1998). Such alternatives can

likely be employed interchangeably in what follows, though the model-free/model-based
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structure is traditionally used in the context of Markov Decision Processes (Bellman,

1957), whereas the current analysis is meant to extend to reasoning about others in a

broader range of settings. In addition, this conceptualization has been used in existing

work; Bigelow and Ullman (2022) for example describe people’s evaluations of other agents

as reflecting “intuitive behaviorism” and “intuitive cognitivism”. My own thoughts about

this were developed independently, though the underlying concepts are likely similar.

Behaviorist  
intuitive psychology

Cognitivist  
intuitive psychology

S A B
A

D

Figure 1. Theoretical framework for intuitive representations of others. At left, behaviorist
intuitive psychology models represent others’ actions as simple learned associations between
stimulus (S) and action (A). At right, cognitivist models represent others’ actions (A) as
resulting from mental states like beliefs (B) and desires (D).

In what follows, I review prior findings examining how our representations of others

are structured, with particular attention to what these results tell us about behaviorist and

cognitivist mental models. I describe questions that remain unanswered in this literature

and which the work in this dissertation attempts to address. Finally, I offer a brief outline

of the results from my work and how this may support a broader and more comprehensive

account of how we represent others across diverse settings and contexts.
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0.3 Children are “born cognitivists”

Where does our intuitive psychology come from, and does its ontogeny show any

sort of adherence to cognitivist or behaviorist mental models? An extensive body of work

has sought to pin down the early structure and developmental origins of our theory of mind

(ToM) (Premack & Woodruff, 1978); broadly, this is the idea that others have mental

states like beliefs and desires which play a causal role in their subsequent actions. Though

adults can and often do use this cognitivist model of others (see below), its development

in children is typically slow and piecewise (Goodman et al., 2006; Gopnik & Wellman,

1992; Onishi & Baillargeon, 2005; Wellman et al., 2001).

Children’s theory of mind is primarily studied with tasks that probe whether

participants can recognize when another person has a false belief (Wimmer & Perner,

1983). The notion that another’s beliefs can be subjective and inconsistent with our own

and further that people’s actions will reflect this false representation rather than our

own knowledge or perceptual experience is a defining feature of beliefs as mental states

that uniquely guide behavior. Critically, this understanding differentiates young children

from adults; while adults have no trouble predicting how somebody with a false belief

will behave in canonical false belief tasks, children undergo a dramatic developmental

shift in this ability (Onishi & Baillargeon, 2005; Wellman et al., 2001). Gopnik and

Wellman (1992) describe this developmental change as a gradual theory revision process

between around two and five years of age, in which children’s model of others’ mental

states proceeds from being largely restricted to desires and perceptions, to one in which

others are understood to have beliefs but these are treated as veridical reflections of the

world, to one in which beliefs are subjective and otherwise resemble the adult concept of

a belief. This account, which describes an increasingly complex understanding of others’

mental states from the get-go, leaves little room for the possibility of a behaviorist theory of

mind, even in development; the authors address this question explicitly (emphasis added):
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The 2-year-old is clearly a mentalist and not a behaviorist. Indeed, it seems
unlikely to us that there is ever a time when normal children are
behaviorists... It seems plausible that mentalism is the starting state of
psychological knowledge (p. 150).

Thus, while the historical progression from behaviorist to cognitivist theories offers

an intuitive prediction about human development, it’s not clear that children’s increasingly

sophisticated intuitive psychology follows this trajectory. Instead, it may be that the

ability to conceptualize of others as behaving according to simple learned associations

like habits or rules is only available later in development, or that the bias to attribute

behavior to mental states must be overcome with experience.

0.4 Cognitivist intuitive psychology permits com-

plex mental state inferences and behavior

Though decades of research has explored adults’ tendency to infer goals and desires

from others’ behavior—even when such behavior provides very sparse visual cues to

agency (Heider & Simmel, 1944)—it is only recently that inroads have been made on the

computational underpinnings of this process (Baker et al., 2017). This work sheds light on

the structure of adults’ cognitivist representations of others, and has spurred corresponding

investigations into these same representations in children. Recent computational accounts

of how we reason about others rely on inverse planning as a model of inferring the

mental states that caused another agent’s actions (Baker et al., 2017; Baker et al., 2009;

Jara-Ettinger et al., 2018; Ullman et al., 2009). This work proposes that we tend to

view others as rational planners ; this assumption allows reasoners to back out the kinds

of goals and beliefs that best account for others’ actions. Formally, these results rely

on tasks in which other agents’ behavior in simple grid worlds can be modeled using

Markov Decision Processes (Bellman, 1957); reasoning about those agents’ mental states is

then achieved through Bayesian inference over parameters in the MDP. In these settings,

people’s judgments about the goals and beliefs of agents often align closely with the inverse
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planning model, suggesting that our cognitivist representations of others are undergirded by

the assumption that people will tend to plan their actions roughly optimally ; deviations from

optimality license inferences such as that the agent has a mistaken belief or is pursuing an

alternative goal (Baker et al., 2017).

However, adults routinely make inferences not only about goals and beliefs, but

also about others’ utilities, i.e., the costs and rewards they incur when pursuing their

goals. In this vein, a similar approach to the inverse planning model has also been used to

account for inferences about others’ preferences from their actions (Jern et al., 2017; Lucas

et al., 2014). Here, the model is based on the assumption that others will choose among

options in ways that maximize utility. Features of their utility function (e.g., preferences)

can then be inferred based on their choices through Bayesian inverse decision-making.

Collectively, these results, along with more recent work which combines inverse planning

and inverse decision-making have come to be known as the näıve utility calculus model of

intuitive psychology (Jara-Ettinger, 2019; Jara-Ettinger et al., 2017; Jara-Ettinger et al.,

2016; Jara-Ettinger et al., 2020). The theoretical thrust of this account is that people’s

intuitive psychology is built around an expectation that those around them will act to

maximize expected utility. That is, they will set goals, choose among alternatives, and

even choose what not to do using a process which approximates rational planning. The

job of the observer trying to make sense of their actions is to infer the most likely beliefs,

goals, intentions, and subjective costs and rewards which would make their actions utility

maximizing (Jara-Ettinger et al., 2020).

In practice, experimental tests of this theory probe people’s social inferences

in relatively simple grid world paradigms where agents choose among various goals to

balance cost and reward. Nonetheless, the näıve utility calculus model has been shown to

qualitatively capture a wide range of everyday social inferences (Jara-Ettinger et al., 2016)

and to offer a precise account of more fine-grained judgments about the causes of others’

behavior (Baker et al., 2017; Jara-Ettinger et al., 2020). Further, it is supported by a
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large body of developmental research suggesting that children are sensitive to cost, reward,

and other atomic components of this account beginning in early infancy (Jara-Ettinger

et al., 2017; Jara-Ettinger et al., 2016; Jara-Ettinger, Gweon, et al., 2015; Jara-Ettinger,

Tenenbaum, et al., 2015; Liu & Spelke, 2017; Liu et al., 2017); this work offers a plausible

explanation of how such a rich inferential paradigm in adults gets off the ground. Indeed,

the strength of this account lies in part in its flexibility; while the full model captures a

wide range of intuitive inferences and predictions about others’ behavior even in simple

settings, ablated versions of the model which represent simpler, heuristic decision processes

often fail to fully capture the range of responses, and systematic errors, that participants

make (Baker et al., 2017; Jara-Ettinger et al., 2020). This suggests that, in the settings in

which the näıve utility calculus model is tested, behaviorist mental models based on static

heuristics about the causes of others’ behavior may be insufficient to capture the range of

social inferences people are capable of.

Beyond its usefulness in describing people’s predictions and inferences about others,

having a richly structured internal model of those around us may be critical for many forms

of interaction. For example, M. Ho et al. (2022) argue that a cognitivist theory of mind

offers a unified solution to predicting others and planning one’s own actions which will

have desired outcomes involving others. By viewing others’ actions as determined by goals

and beliefs, we can not only predict their behavior, but select actions that will change their

behavior, e.g., by trying to modify their goals. In addition, a large body of recent work

has explored people’s representation of others’ mental states in social learning contexts

(for a recent review, see Gweon (2021)). This work proposes that our ability to learn

from others rests on a rich internal representation of how a teacher’s intentions and beliefs

guide their behavior, and further, that teachers rely on similarly sophisticated mental

models of learners when choosing what information to convey (Aboody et al., 2023; Gweon,

2021; Shafto et al., 2014; Vélez & Gweon, 2019, 2021). In line with this, children’s social

learning appears to be supported by a representation of adults as intentional agents even

9



as infants (Csibra & Gergely, 2009). Thus, in broad strokes, a central narrative in recent

work exploring how we represent those around us is that social reasoning is founded on

rich cognitivist internal models of others : we predict and interpret their behavior as if they

are optimal planners given their own beliefs and knowledge, and we choose interventions

and pedagogical demonstrations based on inferences about their underlying knowledge

and goals.

0.5 Use cases for behaviorist intuitive psychology

While cognitivist models of intuitive psychology such as the näıve utility calculus

provide a flexible account of how we represent others based on their behavior, the complexity

of these models poses a number of challenges that might in principle be resolved by simpler

behaviorist mental models. Here, I review some of these challenges and what alternatives,

if any, have been proposed to address them. Broadly, these concerns fall into two classes:

settings in which observers may fail to reason accurately about others’ mental states

(even if they should), and settings in which people’s behavior—or the best explanation for

it—falls outside the domain of cognitivist mental models.

0.5.1 Failures of cognitivist intuitive psychology

First, the expectation that others are rational (or even approximately rational) poses

computational challenges for the observer, even if it is the “right” model. Experimental

validation of the näıve utility calculus account has relied primarily on grid world settings

where individual agents can be modeled using Markov Decision Processes (Bellman, 1957).

The observer then makes mental state inferences by performing inverse reinforcement

learning (IRL) over the actions of others (Jara-Ettinger, 2019). In spite of recent gains in

computational power to support these models, IRL remains a computationally challenging

process, especially in domains outside the simplified grid world paradigm (Jara-Ettinger,

2019). While it’s been argued that approximate solutions may be both tractable and
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sufficient for modeling human inferences in other settings (Baker et al., 2017), this remains

an open challenge.

Consistent with the computational overhead imposed by reasoning about others as

optimal planners, experimental work has shown that in less deliberative settings, people

find theory of mind reasoning effortful and may forego it altogether (Epley et al., 2004;

Keysar et al., 2000; Keysar et al., 2003; Lin et al., 2010). For example, in one such study

(Keysar et al., 2003), participants were paired with a confederate for a reference game in

which the confederate would give the participant repeated instructions to move different

objects between slots in a vertical grid placed between them. Before the experiment began

(and unbeknownst to the confederate), participants were instructed to hide a particular

item (e.g., a roll of tape) in a paper bag and place it in one of several slots in the grid

that were occluded from the confederate. Then, during critical trials throughout the

experiment, the confederate would instruct participants to move a mutually visible item

using instructions that were ambiguous when also considering the hidden item, but not

ambiguous with respect to what the confederate knew about the grid. For example, the

confederate might instruct the participant to move a cassette tape that was visible to

both, saying simply, “move the tape” (since the confederate was unaware of the hidden

roll of tape, this could only refer to the cassette). Across the eight critical trials, 71%

of participants attempted to move the hidden item at least once and 46% did so in at

least half of the trials (Keysar et al., 2003). Such behavior seems to reflect a failure to

incorporate the confederate’s beliefs into participants’ own decisions, despite having full

awareness that the confederate can see one of the items and is unaware of the ambiguous

second item. The authors argue that in situations where people have less time or resources

for deliberative processing, people are “mindblind” (Lin et al., 2010), failing to exhibit

theory of mind reasoning about others’ beliefs that they are fully capable of otherwise.

However, a failure to optimally integrate others’ beliefs into one’s own behavior

has been shown in more deliberative contexts as well; for example, recent work by Aboody
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et al. (2023) finds that in pedagogical settings where participants were instructed to choose

informative examples to illustrate how a machine worked, participants failed to account

for the full set of beliefs that learners held about the machine. Thus, research on failures

of traditional cognitivist intuitive psychology suggests that in domains where the space of

mental states is vast (e.g., beliefs about how a machine works) or the task itself admits

less opportunity for deliberation, people may struggle to infer others’ beliefs or integrate

these beliefs into their own actions. However, it remains unclear to what extent, if at all,

people employ a simpler behaviorist internal model of others in these settings.

0.5.2 Predicting habits and other patterned behaviors

At a high-level, research on people’s representation of others has largely focused on

settings where inferring others’ mental states such as goals or beliefs is useful by design. But

what about settings where this is not the case, where people’s actions are best explained

by simpler heuristics, habits, or other processes? One concern frequently addressed by

proponents of the näıve utility calculus centers on the underlying assumption that others

are rational decision-makers. One might object that this is a misguided hypothesis about

our representations of others since people often fail to exhibit rational behavior in the first

place. People make mistakes, they forget where they left their keys, and they display a

complex and well-documented suite of biases and judgment errors when making decisions

(Kahneman, 2011; Tversky & Kahneman, 1974). We know this about ourselves and those

around us; if rational action is a poor fit to individual behavior, what makes it a reasonable

hypothesis about how we represent others? Proponents of the näıve utility calculus point

out that a model of others need not have perfect fidelity to be useful and that in fact,

our tendency to view others this way might explain why some violations of rationality

are so surprising (Baker et al., 2017; Jara-Ettinger et al., 2016). Recent work has also

explored the use of boundedly rational generative processes within this same framework to

account for scenarios where people fail to show optimal behavior due to confusion of goals,
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misguided planning, or errors in action execution (Alanqary et al., 2021).

However, there are well-known settings where people’s behavior is not a result of

rational (or even boundedly rational) planning; intuition suggests that our representations

of others can accommodate this. Consider for example somebody acting out of habit.

Habits are a regular and important part of our day-to-day behavior (Bargh & Chartrand,

1999) and are often modeled as actions that result from simple, learned associations

with rewards in our environment (Daw et al., 2005; Dolan & Dayan, 2013; K. J. Miller

et al., 2019; Wood & Neal, 2007). Thus, habitual action is likely best understood using a

behaviorist intuitive psychology. Gershman et al. (2016) found that people’s predictions

about whether an agent would choose a habitual action or a non-habitual (but more

optimal) action were sensitive to many of the features that underlie habitual action in

the first place: repetition, consistency with other tasks, decision time, and cognitive load.

In short, people’s intuitive psychology of habitual behavior appears closely aligned with

empirical and formal treatments of it. Critically, these results also show that people can,

and do, apply a behaviorist internal model of others—in place of a cognitivist, mental-state

driven model—when predicting habitual action.

Habits are not the only form of individual action that might be interpreted with

a behaviorist model of others. Looked at more broadly, a great many human behaviors

exhibit strong statistical regularities which could form the basis for predicting actions.

In some activities, like tennis or other fast-paced sports, it seems unlikely that people

can perform the requisite cognitivist predictions at the speed that would be needed, yet

statistical structure in an opponent’s shot patterns might allow for reasonable prediction.

Other activities, such as cooking dinner, occur at a pace that permits mental state

inferences, yet these may not be strictly necessary for predicting action; adding pasta

to a pan after boiling the water likely has little to do with desires or beliefs per se, but

simply the scripted nature of this behavior. To what degree do people reason about others’

actions using a behaviorist mental model in such settings?
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Early work on human statistical learning highlighted infants’ ability to detect

structure in transition probabilities between novel syllables (Saffran et al., 1996), as well

as non-linguistic tones (Saffran et al., 1999); in adults, these findings have been extended

to visual sequences as well (Fiser & Aslin, 2002; Turk-Browne et al., 2005), providing a

foundation for behaviorist intuitive psychology. But do we leverage this ability for social

inferences? Prior work has shown that adults and toddlers can predict the subsequent

actions of individuals who are playing when these people show statistical regularities in

their action sequences (Monroy et al., 2017). In fact, some have argued that infants’

success on theory of mind tasks may be at least partially supported by statistical learning

(Ruffman et al., 2012). Critically, predicting others based on known statistical regularities

may be something we do for a broad range of everyday actions; Thornton and Tamir (2017)

find that people have calibrated estimates of transition probabilities between emotional

states and that this gives them the ability to predict several steps forward in large datasets

of experienced emotions. Building on these results, the authors explore people’s ability to

predict action transitions from among a large set of naturalistic behaviors. Given prompts

such as, “how likely is someone to start running, given that they are currently stretching?”

they find that people are well calibrated relative to naturalistic sequences extracted from

movie scripts, the American Time Use Survey, WikiHow, and other similar resources

(Thornton & Tamir, 2021).

The finding that people are sensitive to the development of habit in others, and

to predictive regularities underlying a host of day-to-day activities, suggests that people

are capable of leveraging a behaviorist mental model in many settings where doing so is

useful. When considering the range of other ways in which individual action might be

predicted using learnable patterns rather than mental states like goals and beliefs—norms

(Sarathy et al., 2017), conventions (Hawkins et al., 2019), or scripted behavior (Schank &

Abelson, 1977)—it may be that behaviorist mental models play an even broader role in

our social reasoning. They may also serve to reduce the computational costs of inferences
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about others when full-fledged cognitivist mental models are overly cumbersome. However,

as the results above suggest, existing literature lacks a coherent framework for how and

when people rely on a behaviorist intuitive psychology, what the limits of this ability are,

and how intelligent reasoners might trade off between more cognitivist and behaviorist

representations. The work presented here attempts to make strides in this direction.

0.6 Current work

The research presented in this dissertation takes up the broad question discussed

at the outset: what is the structure of our mental representations of others? I argue

that we can arrive at a useful conceptual framing of this question by appeal to existing

work in psychology on how individuals make decisions—our representations of others

should at some level corroborate our best understanding of the ways people themselves

act. To this end, I describe two models of individual behavior that have predominated

cognitive psychology and artificial intelligence for the last 100 years: behaviorism and

cognitivism. While the way people infer mental states like beliefs and goals—the basis for

their cognitivist representations—has received considerable attention, spurred by recent

advances in computational cognitive modeling, we lack a coherent account of how and

when people might rely on more behaviorist models of others. Yet existing work provides

evidence that this is both possible and useful for everyday prediction (Gershman et al.,

2016; Thornton & Tamir, 2021).

What might a good test of pattern-based, behaviorist mental models look like? In

Chapter 1, I propose that repeated interactions using mixed strategy equilibrium (MSE)

games like rock, paper, scissors presents an ideal use case for understanding how people

build up mental models of an opponent based only on patterns in their prior actions. This

approach differs from the research described above in several important ways. First, unlike

statistical regularities in everyday action sequences, patterns in repeated games must be
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detected from scratch. Second, unlike experimental settings used in prior theory of mind

work, in which people might plausibly use a combination of cognitivist and behaviorist

representations, the only way to succeed over many rounds of interaction in MSE games is

to build up a predictive model based on regularities in the opponent’s moves. Finally, an

important contribution of this work is to show how the patterns that might form the basis

for people’s opponent modeling can be clearly spelled out at increasing levels of complexity.

Thus, while prior work has largely ignored the question of how complex our behaviorist

mental models can be, results in chapter 1 illustrate how MSE games provide a tractable

way to approach this question. This work was originally published in Brockbank and Vul

(2021) and is re-printed here with minor edits.

Empirical results analyzed in chapter 1 suggest that people do indeed build up

predictive internal models of their opponents over many rounds of interaction in MSE

games. This raises questions about the underlying content of people’s behaviorist mental

models in this setting. What kinds of sequential patterns are people capable of adapting

to in their opponent’s moves? And what kinds of patterns can they revise in their own?

In chapter 2, I address these questions with results from two studies where people play

many rounds of rock, paper, scissors against an algorithmic opponent. These opponents

display a range of increasingly complex patterns in their move choices (experiment 1)

and try to exploit a range of patterns in participant move choices (experiment 2). By

studying participants’ success against these opponents, we are able to map out the space

of sequential patterns that people can adapt to and reduce in their own moves. In this way,

we provide an initial answer to the underlying structure of people’s behaviorist mental

models. The work in this chapter has been submitted for publication and is currently

under revision (Brockbank & Vul, 2023).

Chapters 1 and 2 focus on people’s ability to learn increasingly complex represen-

tations of others’ sequential behavior. In chapter 3, I ask how people might build up

the sophisticated mental models of others typical of more cognitivist representations. In
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this chapter, I also seek to widen the scope of my inquiry by focusing on cooperative

interactions in a physical inference task where people have a high degree of domain knowl-

edge. This chapter begins by asking how people learn single latent parameters which

guide a confederate’s behavior (in this case, their accuracy); I focus on people’s ability to

dynamically update these estimates with collaborators that improve and worsen over time,

and how much they show evidence of relying on this latent parameter estimate to guide

collaborative behavior. In a second study, I explore people’s ability to learn information

from their partner’s behavior which is diagnostic of their partner’s underlying model of

the task. In this way, my co-authors and I explore the limits of people’s ability to develop

richly structured, task-based models of another agent. Study 1 was previously published in

an earlier form (Brockbank et al., 2022); this chapter includes new work and is currently

being prepared for submission.

Taken together, the work in these three chapters shows that by studying repeated,

dyadic interactions in settings which allow for complex behavior and sophisticated mental

models of others, we achieve insights about the structure of people’s representations of

those around them. In the final chapter, I conclude with a brief discussion of what these

results tell us, and how they might inform future work aimed at addressing several key

questions: a) how people model those around them at the right level of complexity for a

given situation, b) how people form more stable, abstract representations of others, and c)

how people transfer their representations of others to novel tasks or contexts. The work in

this dissertation offers novel experimental and computational approaches to addressing

these questions and a set of results which support deeper inquiry into our remarkable

ability to represent other humans in rich and flexible ways.
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calculus: Computational principles underlying commonsense psychology. Trends in
cognitive sciences, 20 (8), 589–604.

20



Jara-Ettinger, J., Gweon, H., Tenenbaum, J. B., & Schulz, L. E. (2015). Children’s
understanding of the costs and rewards underlying rational action. Cognition, 140,
14–23.

Jara-Ettinger, J., Schulz, L. E., & Tenenbaum, J. B. (2020). The naive utility calculus as
a unified, quantitative framework for action understanding. Cognitive Psychology,
123, 101334.

Jara-Ettinger, J., Sun, F., Schulz, L., & Tenenbaum, J. B. (2018). Sensitivity to the
sampling process emerges from the principle of efficiency. Cognitive Science, 42,
270–286.

Jara-Ettinger, J., Tenenbaum, J. B., & Schulz, L. E. (2015). Not so innocent: Toddlers’
inferences about costs and culpability. Psychological science, 26 (5), 633–640.

Jern, A., Lucas, C. G., & Kemp, C. (2017). People learn other people’s preferences through
inverse decision-making. Cognition, 168, 46–64.

Kahneman, D. (2011). Thinking, fast and slow. macmillan.

Keysar, B., Barr, D. J., Balin, J. A., & Brauner, J. S. (2000). Taking perspective in
conversation: The role of mutual knowledge in comprehension. Psychological Science,
11 (1), 32–38.

Keysar, B., Lin, S., & Barr, D. J. (2003). Limits on theory of mind use in adults. Cognition,
89 (1), 25–41.

Lin, S., Keysar, B., & Epley, N. (2010). Reflexively mindblind: Using theory of mind
to interpret behavior requires effortful attention. Journal of Experimental Social
Psychology, 46 (3), 551–556.

Liu, S., & Spelke, E. S. (2017). Six-month-old infants expect agents to minimize the cost
of their actions. Cognition, 160, 35–42.

Liu, S., Ullman, T. D., Tenenbaum, J. B., & Spelke, E. S. (2017). Ten-month-old infants
infer the value of goals from the costs of actions. Science, 358 (6366), 1038–1041.

21



Lucas, C. G., Griffiths, T. L., Xu, F., Fawcett, C., Gopnik, A., Kushnir, T., Markson,
L., & Hu, J. (2014). The child as econometrician: A rational model of preference
understanding in children. PloS one, 9 (3), e92160.

Mandler, G. (2002). Origins of the cognitive (r) evolution. Journal of the History of the
Behavioral Sciences, 38 (4), 339–353.

Miller, G. A. (2003). The cognitive revolution: A historical perspective. Trends in cognitive
sciences, 7 (3), 141–144.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological review, 63 (2), 81.

Miller, K. J., Shenhav, A., & Ludvig, E. A. (2019). Habits without values. Psychological
review, 126 (2), 292.

Monroy, C., Meyer, M., Gerson, S., & Hunnius, S. (2017). Statistical learning in social
action contexts. PloS one, 12 (5), e0177261.

Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human problem
solving. Psychological review, 65 (3), 151.
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Chapter 1

Formalizing opponent modeling with
the rock, paper, scissors game
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Abstract

In simple dyadic games such as rock, paper, scissors (RPS), people exhibit peculiar

sequential dependencies across repeated interactions with a stable opponent. These

regularities seem to arise from a mutually adversarial process of trying to outwit their

opponent. What underlies this process, and what are its limits? Here, we offer a novel

framework for formally describing and quantifying human adversarial reasoning in the rock,

paper, scissors game. We first show that this framework enables a precise characterization

of the complexity of patterned behaviors that people exhibit themselves, and appear to

exploit in others. This combination allows for a quantitative understanding of human

opponent modeling abilities. We apply these tools to an experiment in which people

played 300 rounds of RPS in stable dyads. We find that although people exhibit very

complex move dependencies, they cannot exploit these dependencies in their opponents,

indicating a fundamental limitation in people’s capacity for adversarial reasoning. Taken

together, the results presented here show how the rock, paper, scissors game allows for

precise formalization of human adaptive reasoning abilities.

Keywords: adversarial reasoning, sequential reasoning, competition, rock-paper-scissors
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1.1 Introduction

At a basic level, human conflict and coordination is rooted in the ability to predict

the behavior of others and make plans accordingly. While this may sometimes involve

ad-hoc coordination from first principles, such as well-known Schelling point behavior

(Schelling, 1960), more often we find ourselves in repeated interactions, wherein we have

the opportunity to adapt to past outcomes. Everyday life is replete with such dynamics,

whether playing basketball or chess, or simply commuting in traffic among other drivers

that are all trying to get home as fast as possible. Broadly, competitive interactions

highlight our ability to anticipate and respond to others in diverse settings. What cognitive

processes underlie our remarkable ability to anticipate and adapt to the behavior of others

around us across repeated interactions? We argue that this question can be addressed by

examining people’s behavior in repeated adversarial games, such as rock-paper-scissors,

where success is a matter of outsmarting one’s opponent, often by identifying predictable

patterns in their choices.

To better understand how people manage the cognitive challenges of adapting to

others in adversarial interactions, researchers have traditionally turned to iterated zero-sum

games. Zero-sum games have the unique character that any player’s gain comes at a loss

to their opponent: they are the “limiting case of pure conflict” (Schelling, 1958). Here,

we focus on the game of rock, paper, scissors (RPS), or roshambo. In this game, two

players simultaneously produce a hand signal indicating their choice of “rock”, “paper”,

or “scissors”. The rules are simple: “rock” beats “scissors”, “paper” beats “rock”, and

“scissors” beats “paper”. The game is perhaps most popular with children, but it has

been used in official contexts to settle court disputes (Liptak, 2006) and art auctions

(Vogel, 2005). Large scale RPS tournaments have been held with human entrants (Hegan,

2004), while the potential to test a diverse set of algorithmic strategies has also inspired

tournaments modeled after Axelrod (1984) in which various bots compete against each
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other (Billings, 2000a, 2000b) (and more recently on the data science site Kaggle, see:

https://www.kaggle.com/c/rock-paper-scissors). Finally, the dynamics of the game have

made it popular for modeling diverse biological ecosystems (Allesina & Levine, 2011;

Claussen & Traulsen, 2008; Kerr et al., 2002; Kirkup & Riley, 2004; Sinervo & Lively, 1996;

Zhang et al., 2013), offering predictions in evolutionary game theory (Garrido-da-Silva &

Castro, 2020; Hu et al., 2019; Szolnoki et al., 2014; Toupo & Strogatz, 2015; Yang et al.,

2017), and even studying large scale market behavior (Cason et al., 2005; Hauert et al.,

2002; Hopkins & Seymour, 2002; Lach, 2002; Lakhar, 2011; Noel, 2007; Semmann et al.,

2003).

Beyond its role in popular culture and in various academic disciplines, the rock,

paper, scissors game offers a unique means of studying human adversarial behavior during

repeated interactions. Here, our focus is on decision making across many iterated rounds

against a stable opponent—often hundreds, rather than the “best of 3” used to resolve

household disputes. In such laboratory studies of rock, paper, scissors, the large number

of interactions allow people to detect and adapt to potentially complex patterns in their

opponent’s behavior. In fact, due to the game’s simple rules and constrained space of

choices, better performance by one individual over many rounds will not likely be a result

of general game “expertise”, but rather a result of superior reasoning about dependencies

in their specific opponent’s move choices. This reliance on adaptation to a particular

opponent, rather than general game expertise, distinguishes RPS from other adversarial

games like chess, and makes it a purer form of adversarial reasoning. Finally, RPS, like

other mixed strategy equilibrium games, is characterized by its Nash Equilibrium solution

(Nash, 1950) which dictates random move selection, a strategy which presents unique

cognitive challenges for human players. For these reasons, a large body of literature has

examined human behavior over repeated interactions in the rock, paper, scissors game,

motivated by diverse questions about the nature of human learning, sequential behavior,

and perceptions of randomness (Budescu & Rapoport, 1994; Dyson, 2019; Zhou, 2016).
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In the present work, we argue that the rock, paper, scissors game represents an

ideal means of studying human adaptive, adversarial reasoning capacities, i.e., the ability

to outwit another person by discovering patterns in their behavior, and offer a novel set of

results illustrating the limits of this ability. First, we briefly examine the findings from

previous literature on the rock, paper, scissors game with an eye to what existing results

tell us about human adversarial reasoning. We argue that by focusing on failures of Nash

Equilibrium and on coarse heuristics, prior work has largely overlooked the question of

how people adapt to a fallible human opponent over repeated interactions. In this vein,

we next discuss how the structure of the game offers a tractable way of describing the

flexibility and limitations of people’s adaptive reasoning capacities. To illustrate this, we

present an analysis of existing results which suggests that the ability to recognize and

exploit sequential patterns in RPS is highly constrained, revealing the limits of human

adaptive reasoning.

1.2 Human RPS behavior reflects adversarial rea-

soning

First, we consider what is known about human behavior in iterated rock, paper,

scissors games. This literature often starts with the behavioral economics perspective of

comparing human behavior to optimal play and, upon finding a difference, seeks to explain

it in terms of human heuristics or biases. In RPS, optimal behavior is taken to be uniform

random choices, and failures to achieve such randomness are explained as human failures

to generate random sequences. Here we instead argue that the deviations from optimality

documented in this literature are more consistent with people attempting to adapt to,

and outwit, their opponent, rather than trying and failing to generate truly random move

choices. In short, we argue that the existing literature supports the claim that human

RPS behavior reflects adaptive adversarial reasoning.
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1.2.1 Normative strategies

The starting point for exploring human behavior in the rock, paper, scissors game

has traditionally focused on whether people adhere to the normative standards of Nash

Equilibrium (Nash, 1950), in which a strategy is chosen to optimize performance under

the assumption of an equivalently rational, optimizing opponent. RPS belongs to the class

of zero-sum cyclic dominance games (Morgenstern & Neumann, 1953). Their cyclic nature

is best illustrated with the well-known rules of RPS, where “rock” beats “scissors” and

“paper” beats “rock”, but “paper” is beaten by “scissors” (see Figure 1.1 for an illustration

of this). Thus, every choice is dominated by one other and no choice is better than another,

unless you have some information about what the opponent will choose. Such games are

not limited to three-choice paradigms like RPS; cyclic games with many more choices

provide a unique means of studying large-scale group behaviors (Frey & Goldstone, 2013).

Given that no move is better than any other in a cyclic dominance game, how

should one make strategic decisions in rock, paper, scissors? The zero-sum nature of the

game ensures that for a single player, their opponent’s win is always their loss, so any

degree to which a player’s decisions are predictable will allow their opponent to exploit

them for a greater gain. Therefore, the best strategy for a rational player paired with an

equally rational opponent is to choose moves so as to not create any exploitable patterns

in their choices: to choose the three options randomly, with equal probability. Cyclic

dominance games belong to the broader class of mixed strategy equilibrium (MSE) games

(see Camerer (2011) ch. 3 for review), with a single Nash Equilibrium (NE) (Nash, 1950)

that requires a mixed strategy of playing each move (e.g., “rock”, “paper”, and “scissors”)

in equal proportion, with no conditional dependence from one game to the next. Indeed,

the appeal of studying decision making in RPS and other similar games has been in large

part due to the fact that they impose such strong, testable constraints on optimal play;

constraints that human behavior often fails to exhibit.
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Figure 1.1. The rock, paper, scissors game. (a) Shows the cyclic dominance relations of
the three move choices: “rock” beats “scissors”, “scissors” beats “paper”, “paper” beats
“rock”. (b) These cyclic dominance relations mean that the relationship between one move
and the next can be characterized into one of three “transitions”: a “positive” transition or
shift “up” to the move that would beat the previous move (+), a “negative” transition or
shift “down” to the move that would lose to the previous move (−), and a “stay” transition
which repeats the same move (0).

1.2.2 Human behavior exhibits sequential patterns

Some of the earliest research in mixed strategy equilibrium games like RPS puzzled

over whether people could in fact meet the high standards of random play under the

Nash Equilibrium strategy (Brown & Rosenthal, 1990; Kalisch et al., 1954; O’Neill, 1987);

for an overview of significant early results, see Camerer (2011) ch. 3. A large body of

work has shown that in rock, paper, scissors and other MSE games, people exhibit a

range of sequential regularities or dependencies in their move choices that run counter to

equilibrium play. A full review of these results is beyond the scope of the current paper,

but here we offer a sample, surveying evidence for sequential dependencies in order of

increasing behavioral complexity (Dyson, 2019).

A first pass analysis of people’s behavior in the rock, paper, scissors game often

looks at whether their overall distribution of move choices is consistent with the mixed

strategy equilibrium proportions of 1/3 for each move. In repeated games of RPS, a
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number of studies have found people to have a slight overall bias towards “rock”, though

this is not always significant (Dyson et al., 2020; Dyson et al., 2016; Forder & Dyson,

2016; Wang et al., 2014; Xu et al., 2013). Further, other results have observed a modest

preference for “paper” or “scissors” (Aczel et al., 2012) and in many cases people show

no distinguishable preference at all (Cook et al., 2012; Kangas et al., 2009; Lie et al.,

2013; Stöttinger, Filipowicz, Danckert, et al., 2014). In the broader space of MSE games,

Camerer (2011) notes that marginal choice probabilities tend to align with equilibrium

proportions.

Though marginal move distributions are often approximately consistent with equi-

librium random selection, a key feature of the Nash Equilibrium strategy is that players

not display any conditional dependence on their own or their opponents’ previous moves.

Thus, a player that continually cycles from “rock” to “paper” to “scissors” will produce

an overall distribution of moves that appears identical to the mixed strategy equilibrium

but the statistical dependence on their own previous move will be highly exploitable by

a perceptive opponent. Following prior work (Dyson, 2019), we will refer to a transition

from one move to the move that beats it (e.g., “rock” to “paper”) as shifting up (denoted

with a + in tables and figures); a transition from one move to the same move (e.g., “rock”

to “rock”) as staying (denoted with a 0 in tables and figures), and a transition from one

move to the move that loses to it (e.g., “rock” to “scissors”) as shifting down (denoted

with a − in tables and figures). See Figure 1.1 for a complete illustration of the transitions

between moves.

Evidence of transition dependencies in people’s moves is not widespread, but Wang

et al. (2014) find a slight overall preference for staying compared to shifting up or down

which diminishes with the relative value of wins over ties, suggesting that stronger reward

incentives may improve people’s tendency to approximate equilibrium play. Indeed, related

work has argued for a relationship between transition dependencies in competitive settings

and limitations in executive control; Baek et al. (2013) found that people with schizophrenia
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had a strong dependence on their opponent’s previous move, tending to select moves that

would beat what their opponent had just played (this is often referred to as a Cournot

Best Response strategy (Cournot, 1838)). Finally, Dyson et al. (2016) find evidence for a

stickiness of transition dependencies, namely that participants who shifted up in a previous

transition were more likely to continue shifting up and participants who shifted down in a

previous transition were more likely to shift down again (no such persistence was found

for staying).

The best documented higher-order move dependencies in rock, paper, scissors

are transitions conditioned on prior outcome. This is exemplified by win-stay, lose-shift

(WSLS) behavior. In the context of rock, paper, scissors, such a strategy amounts to

changing the rates of particular transitions (+, −, 0) depending on whether the preceding

game outcome was a win, loss, or tie. The appeal of WSLS as a possible explanatory

mechanism for people’s decisions in games like RPS comes from its prominence in other

settings where it can be seen as a computationally simple heuristic that enables broadly

adaptive behavior (Gigerenzer & Goldstein, 1996; Posch, 1999). A number of studies have

found evidence of outcome-dependent transition behavior in rock, paper, scissors (Cason

et al., 2014; Hoffman et al., 2012; Wang & Xu, 2014; Wang et al., 2014; Xu et al., 2013).

Subsequent work has further explored the separability of win-stay and lose-shift behaviors

(Forder & Dyson, 2016), as well as the factors mediating their respective magnitudes

(Dyson et al., 2020; Dyson et al., 2018; Dyson et al., 2016).

Finally, Brockbank and Vul (2020) find that in many rounds of paired human dyad

play, people exhibit a range of additional dependencies, with more complex dependencies

being more pronounced. Taken together, these results have broad agreement that people’s

move choices exhibit unique sequential dependencies which violate NE. This raises an

important question: given the failure to implement equilibrium strategies in mixed strategy

games like RPS, what accounts for people’s behavior, particularly the various sequential

dependencies in their move choices?
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1.2.3 Existing accounts of empirical behavior are insufficient

The most prominent account of why human behavior in rock, paper, scissors and

other MSE games displays such sequential dependencies focuses on people’s misappre-

hensions about what it means to be random in the first place. A large body of work on

subjective randomness has revealed that people often have poor intuitions about what

constitutes a random sequence (Bar-Hillel & Wagenaar, 1991; Lopes, 1982). Concretely,

when prompted to evaluate or produce a sequence of simulated coin flips (or simulate any

other random variable) people tend to favor sequences that (i) have an equal number of

heads and tails, (ii) under-represent “runs” (e.g., HHH) and (iii) over-represent alternations

(HTH) (Lopes & Oden, 1987; Tversky & Kahneman, 1971). In a series of studies exploring

these biases in adversarial settings, Rapoport and Budescu propose a model in which

randomness is a matter of “local representativeness” across a limited memory of prior

events (Budescu & Rapoport, 1994; Rapoport & Budescu, 1992, 1997). Essentially, their

model suggests that behavior in mixed strategy equilibrium games like rock, paper, scissors

represents people doing their best to produce random outcomes. With only a limited

memory for prior events, participants will make choices that exemplify the features of

subjective randomness exhibited in prior literature.

While there is ample evidence that our judgments of random events depart sys-

tematically from true randomness, this is unlikely to explain human behavior in repeated

games of rock, paper, scissors. Empirical support for behaviors that show a conditional

dependence on opponent choices and prior outcomes suggests that people are doing some-

thing more complicated than merely attending to the (subjective) randomness of their own

move choices (see West and Lebiere (2001) for discussion of complex opponent-responsive

properties). What then can explain people’s behavior, particularly the sequential patterns

they exhibit, in repeated MSE games?

Another common explanation is that people may be using stable heuristics that
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produce winning, or at least adequate, outcomes in the long run. For instance, win-stay,

lose-shift (WSLS) is a “fast and frugal” decision rule (Gigerenzer & Goldstein, 1996)

that can be applied in a variety of adversarial settings; indeed, WSLS outperforms the

well-known “tit-for-tat” strategy in evolutionary Prisoner’s Dilemma simulations (M. A.

Nowak & Sigmund, 1992). This finding fits within a broad literature on the evolution

of cooperation examining the strength of various heuristic-based strategies across many

interactions, though such findings typically describe population dynamics rather than

individual behavior (Axelrod, 1984; M. Nowak & Sigmund, 1993; M. Nowak & Sigmund,

1990; M. A. Nowak & Sigmund, 2004). Nonetheless, fixed heuristics like WSLS might

drive people’s choices in repeated adversarial interactions and may explain behavioral

regularities in the rock, paper, scissors game (Dyson et al., 2016; Wang et al., 2014; Zhou,

2016). Dyson et al. (2018) propose a variation of a stable heuristic like win-stay, lose-shift,

suggesting that it is not one heuristic, but a result of two independent heuristic processes

that separately react to reward and loss. Consistent with this, participants respond more

quickly to losses than wins (Dyson et al., 2018) and exhibit fairly distinct EEG signatures

when responding to different game outcomes (Dyson et al., 2020; Dyson et al., 2018).

Further, it appears that win-stay behavior may not arise as consistently as lose-shift

(Dyson et al., 2020; Dyson et al., 2016) and may be more vulnerable to fluctuations in

game rewards (Forder & Dyson, 2016). Whether win-stay and lose-shift reflect a single

mechanism or not, this class of accounts suggests that human behavior in the rock, paper,

scissors game is best explained by a conjunction of stable heuristics.

While win-stay, lose-shift and other heuristic strategies may offer people a simple

decision process, they are also insufficient to explain human behavior in repeated games

of rock, paper, scissors. For one, dependencies in people’s move choices extend beyond

such heuristics to a variety of other complex sequential regularities which cannot be as

easily accounted for (Brockbank & Vul, 2020). Second, an emphasis on heuristics as a

basis of people’s decision making in repeated RPS interactions fails to address the ways in
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which people exhibit more dynamic, adaptive behavior, such as exploiting biases in their

opponent’s choices (Kangas et al., 2009; Lie et al., 2013; West & Lebiere, 2001).

Recent results suggest people are trying to outwit their opponents

A complete account of human behavior in repeated MSE games like rock, paper,

scissors should accommodate the adaptive character of people’s decision making over

many interactions. Consider, for example, playing repeated games with an opponent

that simply plays “rock” over and over. Here, subjective randomness or win-stay, lose-

shift responding would be surprising. Though trivial, this illustrates a critical underlying

dynamic in repeated MSE games: Optimal play depends on the predictability of the opponent.

Heuristics or subjectively random behavior may be adaptive against an unexploitable

opponent, and may serve as a useful fallback when one is losing, but they are not the best

policy when facing a fallible opponent. In large scale algorithmic RPS tournaments, random

strategies often under-perform precisely because they fail to detect stable dependencies in

their opponent’s moves that could be exploited (Billings, 2000a, 2000b).1

Despite its intuitive appeal, the role of adaptive, adversarial reasoning in repeated

RPS interactions has been largely overlooked in the prior literature. Most empirical studies

of rock, paper, scissors behavior pair participants either against automated opponents

employing a random strategy (Dyson et al., 2020; Dyson et al., 2018; Dyson et al., 2016;

Forder & Dyson, 2016; Gallagher et al., 2002; Kangas et al., 2009; Lie et al., 2013;

Stöttinger, Filipowicz, Danckert, et al., 2014), or against a shuffled group of human

opponents (Frey & Goldstone, 2013; Hoffman et al., 2012; Wang & Xu, 2014; Wang et al.,

2014; Xu et al., 2013). In both cases, participants cannot adapt to the dependencies of their

opponent. Random computer choices are simply unexploitable, while random assignment

of opponents ensures that sequential choices are independent and identically distributed,

and thus equally unexploitable through more sophisticated adversarial reasoning. Thus,

1Successful algorithmic strategies in a recent Kaggle RPS tournament highlight this dynamic:
https://www.kaggle.com/c/rock-paper-scissors.
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these results cannot address whether decision-making over repeated interactions, including

the sequential regularities observed in prior empirical work, may result from an effort to

outwit one’s opponent.

What happens when people play against opponents that are exploitable, such

as stable human adversaries? A handful of recent studies asking this question yield

behavior consistent with flexible, adaptive reasoning, rather than simple heuristics or

subjective randomness. First, in repeated interactions with opponents that exhibit a strong

bias towards certain moves, people often show an above-chance capacity to exploit the

opponent (Kangas et al., 2009; Lie et al., 2013) consistent with basic reinforcement learning

mechanisms (Sepahvand et al., 2014). Notably, this adaptability appears to be limited to

very strong opponent biases, even over many trials (Danckert et al., 2012; Filipowicz et al.,

2016; Stöttinger, Filipowicz, Marandi, et al., 2014). However, efforts to outwit a stable

opponent extend beyond reinforcement learning and draw on more structured pattern

recognition abilities when opponent behavior is more nuanced. Stöttinger, Filipowicz,

Danckert, et al. (2014) find that people adapt to bots that exhibit a Cournot Best Response

transition strategy, but their ability to do so is limited by prior exposure to an opponent

with a simple move bias, suggesting a strong role of context in adversarial reasoning.

West and Lebiere (2001) provide a relatively thorough investigation of people’s ability

to adapt to neural network opponents with a memory for various numbers of previous

moves, showing that people are reliably able to beat a lag1 opponent whose moves are

primarily based on the previous move, but behave more similarly to a lag2 opponent

that draws on the two previous rounds. However, recent work has found that people can

detect even more complex transition and outcome-dependent transition strategies over

many rounds (Brockbank & Vul, 2023; Dyson et al., 2020; Dyson et al., 2018). Finally,

results in Brockbank and Vul (2021) indicate that when paired with opponents that

exploit regularities in participants’ own move choices, people are able to counteract such

exploitation for simpler behavioral dependencies. Taken together, these results suggest
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that over many RPS interactions with a stable opponent, people are highly attuned to the

structured dependencies which make players themselves and their opponents exploitable.

In sum, recent results suggest that people’s behavior over many rounds against a

potentially exploitable opponent can be explained by the desire to outwit that opponent,

rather than merely attempting to respond randomly or relying on stable heuristics. But

how flexible is this ability, and what are its limitations? What sorts of hypotheses

about behavioral structure can people entertain and track on the basis of an opponent’s

sequential decisions? Addressing these questions requires characterizing the space of

uniquely identifiable strategies that may be exploited, and estimating whether people

attend to these regularities when playing repeated rounds of RPS. The rest of the paper

focuses on these technical challenges.

1.3 RPS behavior reveals structure of adversarial

reasoning

Human behavior during repeated interactions in mixed strategy games like rock,

paper, scissors may be explained by ongoing attempts to outwit one’s opponent. However,

it remains an open question how people are able to adapt to regularities in an opponent’s

behavior. What kind of dependency structures can people detect and respond to? Prior

work has examined the ways that different sequential patterns in RPS can be categorized

(Dyson, 2019). Building on these results, we begin by providing an overview of how the

complex dependencies observed in people’s move decisions are structured and show how

people’s exploitability along these dimensions can be quantified. We then demonstrate

how such measures can be used to explore which behavioral regularities people successfully

exploit against a stable opponent. We apply these methods to experimental data from prior

work by Brockbank and Vul (2020) to explore how well different sequential regularities

predict people’s move decisions and the degree to which they successfully exploit regularities
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in an opponent’s behavior. In this way, we show that behavior in the rock, paper, scissors

game offers novel insights into how people perform adaptive, adversarial reasoning.

1.3.1 Sequential dependencies in RPS can be systematically
described

Individual dependencies

The level at which people are able to outwit their opponents (i.e., the scope of their

adversarial reasoning abilities) is reflected in the structure and complexity of the sequential

dependencies they can detect and exploit, and how much they do so over many rounds.

How can we define this structure, and how do we then assess whether these dependencies

are exploited by a savvy player? In the rock, paper, scissors game, the space of exploitable

dependencies can be described in increasing order of complexity based on the number of

prior events that impact a player’s move choices (Brockbank & Vul, 2020; Dyson, 2019).

In other words, sequential dependencies in a player’s RPS moves are expressible in terms

of how the probability of a particular decision—either a move selection or a transition

between moves—is statistically impacted by some form of previous event : the player’s

own previous move, their opponent’s previous move, etc. If a player or bot is behaving

randomly, the probability of any decision will be equal no matter what previous event

is considered; every move or transition is just as likely given every previous move or

outcome. However, to the degree that a player’s behavior is exploitable, they will exhibit

non-uniform move or transition probabilities conditioned on a particular event, such as

their previous move. The greater the departure from a uniform distribution conditioned on

the prior event, the more exploitable a player is, i.e., the more they exhibit this dependency.

Broadly, the more prior events required to evaluate the dependency, the more complex

it is. Questions about a person’s adversarial reasoning abilities in RPS therefore come

down to measuring whether and how much they can recognize these dependencies in their

opponent.
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Figure 1.2. Schematic of dependency variants exhibited during rock, paper, scissors
play. Above are three distinct versions of an outcome-dependent transition dependency
like win-stay, lose-shift. Shaded squares indicate gradations in the probability of a given
transition (column) given each prior event (row).

To illustrate, the tables in Figure 1.2 show how outcome-based transition depen-

dencies like win-stay, lose-shift can be represented. Here, each state of a dependency event

like previous outcome is given a unique row on the left side of the table. The dependencies

in Figure 1.2 have a row for each possible outcome from the previous round—win (W), tie

(T), and loss (L)—but a simpler dependency based on, e.g., one’s own previous move might

instead have a row for “rock”, “paper”, and “scissors”. Each column indicates a possible

decision based on that row-wise dependency event. In Figure 1.2, these decisions are move

transitions: shift up (+), stay (0), or shift down (−). Once again, a simple dependency

in which move choices are based on one’s own previous move could be expressed with
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possible move decisions (“rock”, “paper”, “scissors”) in each column instead of transitions.

Each cell in the tables in Figure 1.2 then represents the probability that the player chooses

the action in the cell’s column following the dependency event in the corresponding row.

If players did not exhibit any dependency on a row-wise outcome, the probabilities in each

cell in that row would be 1/3, signaling that each transition (column value) is equally

likely given that row value. However, the more a player exhibits a particular dependency,

the greater the disparity between their transition probabilities given each possible outcome.

This encoding of patterned behavior therefore allows us to express each unique class of

dependencies that a player could exploit in their opponent through the choice of different

row-wise events and column-wise actions. The ability to express RPS dependencies in

this way is not limited to outcomes affecting transition choices, as in Figure 1.2, but

applies at every level of behavioral complexity. This structure for expressing classes of

sequential patterns therefore provides a formal mechanism for outlining the hypothesis

space of behavioral regularities people exhibit and can adapt to. In the next section, we

discuss this space, in particular, the relationship between different dependencies.

Combining dependencies

Critically, the various classes of sequential dependencies that a player can exhibit

in their move choices are not independent, but rather are arranged in an expressive

hierarchy. Dependencies exhibited at one level will affect other levels that rely on the same

information. For example, a player’s distribution over moves given the previous move

subsumes their marginal distributions over transitions and moves—any pattern in their

overall move or transition distributions will be reflected in the distribution of moves given

the previous move. Why is this important when describing people’s adaptive behavior?

If a player exhibits a tendency toward a particular move following each previous move,

this will in part reflect any lower level biases in their moves and transitions. Describing

their behavior as following a strategy of gravitating toward particular moves after each
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previous move must factor in the degree to which they are simply favoring some moves or

transitions. Similarly, if a player is able to exploit an opponent seemingly on the basis of

regularities in the opponent’s moves following each previous move, we want to know that

they are not primarily sensitive to simpler dependencies in the opponent’s transition or

move base rates. Broadly, the dependency signal for a given dependency structure will

include the dependency signal from its lower level subsidiaries.

Figure 1.3. Schematic for quantifying complexity of dependencies exhibited during rock,
paper, scissors play. On the left are three levels of increasing complexity for regularities
in players’ move choices. In the middle and right columns are equivalent complexity
levels for dependencies players exhibit in their transitions between moves, either relative
to their own previous move, or relative to the opponent’s. The arrows illustrate the
hierarchical relationship across these regularities, indicating for example how second-level
move dependencies carry some of the dependency signal captured by first-level move and
transition dependencies.
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The schematic in Figure 1.3 shows the inheritance relationship among increasingly

complex sequential move and transition dependencies. As the dependencies become more

complex, they inherit from a greater number of simpler regularities. While this does

not show the full space of possible regularities (such a space is technically infinite), we

include any behavioral dependencies that have been observed in prior work (i.e., all of

those discussed in our review of existing literature) or in previous attempts to frame these

structures (Brockbank & Vul, 2021; Dyson, 2019). For researchers attempting to quantify

how much people are exploitable or are successfully exploiting opponents on the basis

of these dependencies, this structure poses a credit assignment problem: how to identify

when a dependency is being exploited above and beyond the lower level dependencies it

is based on? The key to attributing behavior at the right level of complexity is to use

this hierarchical dependency structure when evaluating the regularities in people’s move

choices. In other words, to untangle the unique contribution of a higher-order dependency

structure from the exploitability arising from its subsidiaries, we partial out the subsidiary

dependencies based on the relationships in Figure 1.3. This allows us to ask how much

each dependency contributes to explaining individual behavior. As we show below, this

logic can be applied not only to estimating a given player’s level of exploitability within a

given structure, but also to estimating how much this dependency is exploited by their

opponent.

1.3.2 Quantifying how much people exhibit and exploit se-
quential dependencies

In the previous section, we showed that the exploitable dependencies people exhibit

over repeated rounds of rock, paper, scissors can be described in terms of how events like

previous moves or outcomes impact the probability of subsequent move decisions. We

further showed that the relationship among different dependencies of this sort prevents

us from treating them independently without correcting for the shared structure across
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dependencies. How then can we quantify how much a player exhibits a given dependency

and, relatedly, how much their opponent is able to exploit it?

Measuring exploitability with information gain

Wemeasure how predictable a player’s behavior is subject to a particular dependency

via conditional entropy and information gain. In rock, paper, scissors, the player has three

choices, a1−3 ∈ A. This action space A can either represent the move choices (“rock”,

“paper”, and “scissors”), or the transitions (+, −, 0) relative to the player’s previous move

or relative to the opponent’s previous move (the set of transitions encodes additional

information about either the player or their opponent’s previous move but is otherwise the

same). A player’s propensity to make some choices more than others in a given context

c (i.e., how exploitable they are in this context), can be summarized as the probability

distribution P (ai | c). The Shannon entropy (Shannon, 1948) of the distribution over

those choices describes how unpredictable they are:

H(A | c) = −
3∑

i=1

P (ai | c) log2 P (ai | c)

,

and will take on a value, in bits, between 0—for completely deterministic behavior,

where one of the three actions is always chosen in a given context—and log2 3 for uniform

behavior where all three actions are equally likely.

In the base case, where the context, c is an empty set, this definition is sufficient,

and reduces to entropy over actions H(A). However, for all non-trivial contexts, we

calculate the Shannon entropy for each possible state in the context and average over

them. For instance, a strategy such as “win-stay, lose-shift” describes a distribution over

self-transitions that varies with context defined as the outcome of the preceding round.

Our entropy calculation must factor in the full partition over contexts C that a dependency
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structure imposes. In the case of win-stay, lose-shift, the relevant dependency structure

defined by the context partition is: C = {win, loss, tie}. The unpredictability of choices

given a context partition is therefore given by the conditional entropy marginalized over

the contexts in that dependency structure:

H(A | C) =
∑
c∈C

P (c)H(A | c)

.

To characterize how much behavioral regularity may be captured via a particular

dependency structure defined by the partition over contexts (C), we ask how much

information is gained about actions by taking that dependency structure into account.

Specifically, we can subtract the conditional entropy under that dependency structure

from a uniform distribution over choices, to calculate the information gained by using that

dependency structure to predict a player’s moves or transitions:

I(A | C) = log2 3−H(A | C)

.

Intuitively, this measure quantifies the improvement gained by predicting a player’s

moves or transitions using a particular dependency relative to a random baseline. Large in-

formation gain for a given dependency structure suggests that a player is highly exploitable

via that dependency. Low values suggest that their behavior is not easily distinguished

from random choices given the prior events in C.

While information gain provides an intuitive measure for how much a player exhibits

a particular dependency, it fails to reflect the hierarchical structure of dependencies

described previously. In other words, the information gain associated with a given

dependency structure will not capture just the information unique to that structure. For

instance, if a player shows a bias toward choosing “rock”, that predictable dependency
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will also show up in the information gain over each move conditioned on the previous

move. To uniquely identify the information gained for a particular dependency structure,

we must consider the hierarchical structure of different dependencies shown in Figure 1.3.

Given the hierarchical relationship among dependency structures in Figure 1.3, we

can define an operation Φ(C) which yields all the upstream nodes (parents, grandparents,

etc.) of a given dependency structure. For instance, the dependency structure capturing

the tendency to choose “rock”, “paper”, or “scissors” given one’s previous choice has two

parents: an overall move bias to choose “rock”/“paper”/“scissors”, and a preference for

particular self-transitions (+/−/0). Using this, we can calculate a corrected information

gain for a particular dependency structure by subtracting the information gained from the

parent dependency structures:

I∗(A | C) = I(A | C)−
∑

B∈Φ(C)

I∗(A | B)

.

This calculation yields a measure of the information about actions that can be

uniquely captured in a given dependency structure. The ability to attribute sequential

patterns in behavior to a particular dependency structure is critical for understanding the

cognitive processes underlying adversarial reasoning in the rock, paper, scissors game. Prior

work has shown that certain patterns of outcome-based transition behavior (i.e., win-stay,

lose-shift) are isomorphic to much simpler patterns of Cournot best responding when a

player’s self-transitions are re-cast as transitions relative to their opponent’s previous move

(Dyson, 2019). Because of this isomorphism, conclusions about whether a savvy player is

exploiting complex outcome-based patterns in their opponent, or is simply sensitive to

the pattern of Cournot transition responses may be ambiguous. Here, by correcting the

information gain for a given dependency structure to reflect all upstream parents, we can

identify the extent to which people exhibit dependencies of a certain complexity, without
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being misled by the possibility of a complex dependency being mimicked by a simpler one.

More broadly, this provides a means of quantifying how much players exhibit rich and

complex patterns in their move choices over many rounds. Answering this allows us to

then address questions at the heart of adversarial reasoning in the rock, paper, scissors

game: which behavioral patterns do people exploit in their opponents? Generally, what is

the relationship between how much people exhibit a particular behavioral regularity and

how much their opponents are able to exploit it?

Measuring how much players are exploited with expected win count
differentials

To understand the relationship between a player’s exploitable behavior patterns

and whether their opponent in fact uses these patterns to their advantage, we extend

the information gain measure described previously to reflect the outcomes that might

be expected by fully exploiting a given dependency in a player’s moves. Intuitively, the

level at which a player’s decisions over repeated rounds are exploitable can be thought

of as the number of games their opponent could expect to win by taking advantage of

the patterns their choices exhibit. We refer to this as the expected win count differential

for a given dependency structure. The win count differential is simply the number of

games that one player wins over the course of many rounds minus the number of games

won by their opponent. A positive win count differential for one player indicates that

they were able to win more often than their opponent and higher win count differentials

indicate more successful exploitation of the opponent. The expected win count differential,

then, captures how much advantage a player could theoretically obtain by choosing moves

which maximally exploit a particular dependency in their opponent’s moves. Given a

non-uniform (exploitable) distribution over an opponent’s actions P (ai | c), a player’s

expected win count differential for a given action aj is equal to
∑

i P (ai | c) · v(ai, aj),

where v(ai, aj) ∈ {−1, 0, 1} is the outcome of playing a particular move aj against the
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opponent’s move ai: increasing the player’s win count by 1, decreasing by 1, or tying for a

change of 0. Given this, the player has an optimal action j∗ that maximizes their expected

win count differential over all possible opponent moves:

j∗ = argmaxj
∑

i P (ai | c) · v(aj, ai).

This optimal choice in turn yields an expected win-count differential of: E[v | c] =∑
i P (ai | c) · v(j∗, ai). And averaging over all contexts (for example, the set of all previous

moves by the player), this yields:

E[v | C] =
∑
c∈C

E[v | c]P (c)

.

The expected win count differential for a given dependency context C captures

how exploitable a player is along that dimension, much like the information gain measure

described previously. In fact, the difference between the expected win count differential

and the information gain for a particular dependency structure is often small, since lots

of information in a given dependency will translate directly into expected win count

differentials. However, not all low-entropy distributions are equally exploitable. For

instance, a player that chooses their moves with the distribution 60% “rock”, 30% “paper”,

and 10% “scissors”, can be exploited to achieve an average win count differential (per

round) of 0.5 by playing “paper”. Meanwhile, a move distribution of 60% “rock”, 10%

“paper”, and 30% “scissors” only yields an expected win count differential of 0.3 (by

playing “scissors”; playing “paper” yields an expected win count differential of only 0.2).

These two distributions have the same entropy and information gain, but one is nearly

twice as exploitable as the other, in terms of the achievable win count differential. Thus,

expected win count differential tells us not just how much information is available at a

given dependency structure, but how exploitable such information is.

As a measure of how exploitable a player’s behavior is, expected win count differen-

48



tial also enables us to investigate the relationship between how much a player’s opponent

could theoretically exploit patterns in their behavior, and how much their opponent

actually did so. This is because expected win count differentials can be directly compared

to observed win count differentials in dyads, indicating whether regularity at a particular

dependency structure might explain the observed pattern of advantage seen in a pair of

players. Given a set of many repeated RPS games between pairs of stable opponents, we

can use each player’s level of exploitability for a given dependency—their expected win

count differential—as predictors in a regression over the true win count differentials in each

dyad. This provides a first approximation of how much of the variance in empirical win

count differentials can be explained by the different ways that players exhibit exploitable

behavior across many dyads.

However, this approach faces the same fundamental challenge as the uncorrected

information gain measure described earlier; expected win count differentials for different

behavioral regularities will be influenced by the rich interdepencence of these regularities

shown in Figure 1.3. Thus, predicting empirical win count differentials using raw expected

win count differentials fails to accommodate the role of lower level dependencies in higher

level expected win count differentials. In this context, to correct expected win count

differentials for upstream dependencies, we cannot simply subtract them, as we can for

information gain. Instead, we correct for the hierarchy in Figure 1.3 within the observed

win count differential regression itself. To illustrate, when predicting observed win count

differentials across experimental dyads, we only use the simplest dependencies in Figure

1.3 as direct predictors. To partial out the role of these lower level dependencies in more

complex dependencies, we include the residuals from separate regressions of expected

win count differentials for each higher level dependency predicted by expected win count

differentials for the dependencies they inherit from. For example, a player’s level of

exploitability using 2nd-level move strategies in Figure 1.3, such as their choice given their

prior choice, can be predicted based on their exploitability using 1st-level move strategies
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(base rate of “rock”, “paper”, and “scissors”) and 1st-level transition strategies (base

rate of +, −, and 0 transitions). The residuals from this prediction using expected win

count differentials indicate how much of the variance in a given 2nd-level move strategy

cannot be accounted for by the 1st-level strategies. These residuals can then serve as

predictors for the 2nd-level variables in the original regression of observed dyad win count

differentials. In this manner, we can isolate the unique dependency arising at a certain

level of behavior, rather than attributing lower level dependencies to the more abstract,

higher-order structure.

To summarize, we have argued that behavior in repeated games of rock, paper,

scissors provides a window into how people perform the sort of adaptive, adversarial

reasoning that allows them to outwit a stable opponent. We first showed that a player’s

exploitable behavior—patterns that their opponent might use to their advantage—contains

structure illustrated in their conditional move or transition probabilities subject to various

contingencies like their previous move. We further showed how these regularities are

hierarchically arranged. Given this, we next showed how a player’s exploitability, i.e.,

the degree to which they exhibit a given dependency structure, can be quantified using

measures of information gain and expected win count differential. The former indicates

exactly how much signal is contained in a player’s patterned behavior, and the latter

incorporates the way this signal can be exploited. Finally, we showed how the level of

exploitability that a player exhibits can be used to investigate which sources of exploitability

contribute to the observed pattern of players exploiting their opponents, thus providing

clues about the underlying nature of people’s adversarial reasoning in this setting. In the

next section, we show how these measures can be applied to empirical data to explore the

flexibility and limitations of people’s ability to outwit an opponent.

50



1.4 Adversarial reasoning in RPS relies on detect-

ing simple regularities

In the previous section, we showed how sequential regularities in people’s move

decisions in rock, paper, scissors can be formally described and quantified. This might

serve as the basis for a more precise characterization of the dependencies people exhibit

in their own behavior in adversarial settings, as well as the patterns they can detect and

exploit in opponents. In other words, this framework offers a unified view of the decision

making biases shown in rock, paper, scissors move choices (Baek et al., 2013; Brockbank

& Vul, 2020; Dyson et al., 2016; Wang et al., 2014), and the complexities of modeling

opponent behavior in the same setting (Brockbank & Vul, 2023; Brockbank & Vul, 2021;

Dyson et al., 2018; Stöttinger, Filipowicz, Danckert, et al., 2014; West & Lebiere, 2001).

Here, we show how the measures from the previous section can be applied to

empirical data from a set of rock, paper, scissors dyads. Brockbank and Vul (2020) paired

116 participants into stable dyads and collected data for 300 rounds of rock, paper, scissors

in each dyad. Because participants in this experiment were playing with the same opponent

for 300 consecutive rounds, players had ample time to try and learn sequential patterns in

their opponent’s moves. Indeed, the authors find that the distribution of empirical win

count differentials across the 58 dyads is overall significantly larger than would be expected

under random play, suggesting that players found ways to outwit their opponents. How did

some participants perform the adaptive, adversarial reasoning necessary to gain a steady

advantage over their opponents? Here, we attempt to answer this question using the

measures outlined in the previous section. We first examine the average information gain

for a range of sequential dependencies proposed in Brockbank and Vul (2020) to quantify

how much participants exhibited exploitable patterns. Next, we explore the relationship

between observed win count differentials and expected win count differentials to assess

which patterns best explain participants’ ability to outwit their opponents.
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1.4.1 People exhibit complex behavioral dependencies

Figure 1.4. Change in average information gain (bits) as a result of incorporating
the hierarchical structure in Figure 1.3. The information gain reflects how exploitable
individuals were for each of the dependencies shown. For more complex dependencies,
individual exploitability decreases when corrected for simpler low-level dependencies. Error
bars show one SEM.

The data from Brockbank and Vul (2020) suggest that across 300 rounds, people

exhibit stable predictable behaviors that might form the basis of exploitation by their

opponents. Here we ask how predictable their behavior was for a range of sequential

regularities. In particular, we ask how the Shannon entropy over RPS choices for a given

player is reduced when conditioning on some prior dependency. As outlined above, the

reduction in entropy compared to chance behavior represents the information gain from

taking each dependency structure into account. Figure 1.4 shows average information gain

across participants for eight different dependency structures that increase in complexity

from left to right. We plot the “Uncorrected” information gain values for each dependency
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alongside the “Corrected” information gain to account for the hierarchical structure of

these dependencies as described previously. Larger information gain (in bits) indicates

a greater level of predictability for that particular dependency. The uncorrected values

show a steady increase in information gain as the complexity of the dependency increases

on x, suggesting greater and greater predictability for more complex sequential patterns.

However, the corrected values suggest that some of this increase can be attributed to

higher level patterns carrying signal from lower level ones. Nonetheless, the complex

dependencies at the right retain some signal even after correction, providing evidence that

people’s move choices are exploitable using a range of sequential patterns that vary in

their complexity.

1.4.2 Players exploit simple behavioral dependencies in their
opponents

Across repeated games of rock, paper, scissors with a stable opponent, Brockbank

and Vul (2020) show that some players are able to reliably outwit their opponents. But

among dyads that exhibit higher win count differentials, what kinds of regularities in one

player’s move choices form the basis of this exploitation by their opponent? In other words,

which dependencies do people successfully exploit?

As described in the previous section, we can begin to address this question by

exploring the relationship between the observed win count differentials in each dyad

and the average expected win count differentials in each dyad for each of the sequential

dependencies that players may have relied on to exploit their opponent. Critically, we

correct for the hierarchical relationship among dependencies using the residuals from

separate regressions for complex dependencies where some of the predictability may derive

from simpler underlying dependencies. Using the dyad results from Brockbank and Vul

(2020) as the basis for this regression, we find that expected win count differential based

on transition dependencies (the transition base rate (+/-/0)) and opponent previous
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move dependencies (player’s choice given opponent’s prior choice) are both significant

predictors of empirical win count differentials in each dyad (Transition: β̂ = 0.19, p =

0.027; Opponent previous choice: β̂ = 0.45, p = 0.015). In other words, the degree to

which players exploit their opponents over 300 rounds is best explained by simple biases

that players in the dyad exhibit toward particular transitions, as well as regularities in

player moves given their opponent’s previous move.

Figure 1.5. Change in the relationship between expected win count differential for each
behavioral dependency and empirical win count differentials as a result of incorporating the
hierarchical structure in Figure 1.3. For more complex dependencies, the role they play in
exploitation among dyads decreases when we factor in the role of lower level dependencies.
Error bars show one SEM.

But what might the regression look like if we did not correct for the hierarchical

structure of the dependencies? Figure 1.5 plots the correlation between expected win count

differentials—how much players in each dyad exhibited each dependency—and true win

count differentials, i.e., how much players in each dyad exploited their opponents overall.
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Critically, we first plot these correlations using the expected win count differentials for each

dependency (“Uncorrected” correlations), and then substitute them for the the residuals

as described in the previous section (the “Corrected” correlations). Figure 1.5 illustrates

the importance of this correction; revised correlations are broadly lower across the board,

but especially for the most complex dependencies on the right. Therefore, incorporating

the hierarchical structure of the dependencies into the correlation shows that people’s

use of complex regularities when exploiting their opponent may in fact draw heavily on

simpler, low-level behavioral patterns.

1.5 Discussion

Here we argued that games like rock, paper, scissors offer a precise and tractable

way to study adaptive, adversarial reasoning. We started with the observation that human

play in simple cyclic-dominance games, such as matching pennies or rock, paper, scissors,

systematically deviates from the mixed strategy Nash Equilibrium of purely random play.

In particular, people exhibit a range of sequential regularities in their move choices that

are most consistent with an intuitive, but understudied account: people are constantly

trying to outwit their opponents, and behavioral dependencies arise from such adaptive

reasoning.

How can we make sense of the behavioral regularities that emerge as a result of

adaptive reasoning in the rock, paper, scissors game? Building on prior work exploring

the cognitive and computational resources required to identify such dependencies (Dyson,

2019), we outline a schema for formally describing the ways that rock, paper, scissors

behavior can reflect stable patterned regularities. We show that the predictability and

subsequent exploitability of a given dependency can be precisely quantified using measures

of conditional entropy and expected win count differentials. Prior work in this space

raised important concerns about the identifiability of complex dependency structures in a
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player’s behavior due to isomorphisms between different patterns in behavior which make

distinctly different cognitive demands of an adaptive opponent (Dyson, 2019). To overcome

this challenge, we introduce analytical techniques that can correct for the hierarchical

inheritance structure among different dependencies, and can thus identify both the extent

to which people exhibit, and exploit, complex behavioral patterns.

Finally, we validate our approach by applying the proposed measures of exploitability

and adversarial reasoning to a large empirical dataset comprised of repeated rock, paper,

scissors games between a set of stable dyads from Brockbank and Vul (2020). Our results

show that incorporating the hierarchical structure of sequential dependencies into analysis

of human behavior allows for a clear description of how each dependency is reflected in

individual decisions. Concretely, our results offer two key findings which highlight the

value of repeated rock, paper, scissors interactions in understanding human adaptive

reasoning capacities. First, we show that over many rounds against a stable opponent,

people exhibit a range of exploitable dependencies, including some that reflect a high level

of complexity. These however, are attenuated by the expression of simpler dependencies.

Next, we show that despite the range of predictable behavior patterns in people’s decisions,

their opponents largely fail to exploit these same dependencies. Instead, people rely on

simple transition and previous move dependencies in order to outwit their opponents, an

intuitive finding that our results provide concrete, quantitative support for.

The current results show that the rock, paper, scissors game can be fruitfully

used to study the flexibility of human adversarial reasoning. In particular, we show how

people’s behavior across repeated interactions reveals the limits of our capacity to detect

and adapt to sequential behavior patterns. Critically, rock, paper, scissors presents just

one avenue by which these and other similar questions can be addressed. Applying a

similar approach to other mixed strategy equilibrium games, or even a broader set of

strategic interactions altogether, may reveal further insights about adversarial reasoning.

In particular, one interpretation of the current results is that the failure to exploit more
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complex dependencies arises from limits in memory. Prior work has considered the impact

of memory length on strategic behavior in a range of domains including RPS (Posch, 1999;

West & Lebiere, 2001); the current results may open the door to a more precise account of

such resource limits in adversarial reasoning.

Together, our results show how the simple game of rock, paper, scissors can support

a quantitative perspective on the rich adaptive reasoning and opponent modeling that

underlies human competition. What kinds of complex, patterned behavior can people detect

and adapt to in strategic settings, and how does dyadic behavior reflect exploitation of

these patterns across repeated interactions? We hope that our framework for constructing

and analyzing dependencies in rock, paper, scissors allows researchers to better characterize

human adaptive adversarial capacities.
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Chapter 2

Repeated rock, paper, scissors play
reveals limits in adaptive sequential
behavior
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INTERIM SUMMARY

In the previous chapter, I argued that mixed strategy equilibrium (MSE) games

offer a unique lens with which to study people’s opponent modeling abilities over many

repeated interactions. MSE games like rock, paper, scissors have a Nash Equilibrium

(Nash, 1950) strategy of random play because any non-random dependency in one’s moves

can be exploited by a rational opponent. As a consequence, people playing a potentially

fallible opponent are incentivized to look for and exploit such patterns. I argued that

rock, paper, scissors is an ideal (and novel) environment for studying this exact ability

because the space of possible patterns a player might exhibit or exploit in their opponent

can be clearly and precisely spelled out, and people’s ability to detect these patterns

identified through their behavior and game outcomes. I first presented an overview of this

structure which extends beyond any discussed in prior literature. Next, I analyzed data

previously published in Brockbank and Vul (2020) indicating that people do empirically

show evidence of exploiting opponents over many rounds in human dyads; I applied novel

methods outlined in this work to investigate which patterns people exhibit and which ones

their opponents likely take advantage of.

Having established that people can in fact build simple behaviorist models of their

opponents in this task, the natural question is how? What patterns are they relying on?

In essence, what is the structure of behaviorist mental models in this setting? The dyad

experiment analyzed in the previous chapter, and the methods outlined there, provide only

an approximate answer to these questions because dyad play is inherently adaptive. In

chapter 2, I engage seriously with the question of just what it is people could be modeling

in their opponent’s moves, and which patterns they can adaptively modify in their own

moves. I present results from two studies in which people play against algorithmic bot

opponents that exhibit stable patterns in their moves or try to exploit patterns in human

participants’ own moves. This enables fine-grained control over the set of sequential

66



dependencies that people are presented with and that their opponents adapt to, allowing

for a precise specification of the complexity and structure of people’s behaviorist opponent

models. Results suggest that people can flexibly adapt to simple transition patterns in

an opponent’s moves and modify such patterns in their own moves, but fail to represent

more complex dependencies, placing behaviorist intuitive psychology at odds with the rich,

cognitivist mental models of sequential behavior explored in chapter 3.
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Abstract

How do people adapt to others in adversarial settings? Prior work has shown that

people often violate rational models of adversarial decision-making in repeated games. In

particular, in mixed strategy equilibrium (MSE) games, where optimal action selection

entails choosing moves randomly, people often do not play randomly, but instead try to

outwit their opponents. However, little is known about the adaptive reasoning that underlies

these deviations from random behavior. Here, we examine strategic decision-making across

repeated rounds of rock, paper, scissors, a well-known MSE game. In experiment 1,

participants were paired with bot opponents that exhibited distinct stable move patterns,

allowing us to identify the bounds of the complexity of opponent behavior that people can

detect and adapt to. In experiment 2, bot opponents instead exploited stable patterns

in the human participants’ moves, providing a symmetrical, matching bound on the

complexity of patterns people can revise in their own behavior. Across both experiments,

people exhibited a robust and flexible attention to transition patterns from one move to

the next, exploiting these patterns in opponents and modifying them strategically in their

own moves. However, their adaptive reasoning showed strong limitations with respect to

more sophisticated patterns. Together, results provide a precise and consistent account of

the surprisingly limited representational complexity of people’s adaptive decision-making

in this setting.

Keywords: adaptive reasoning, adversarial reasoning, opponent modeling, rock-paper-

scissors
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2.1 Introduction

People’s ability to reason strategically and adapt to others in adversarial interactions

lies at the heart of sports and games and is a hallmark of entertainment and storytelling;

at a larger scale, it is crucial to negotiations and international relations. In these settings,

examples of people’s creativity, flexibility, and strategic sophistication abound. For

instance, tennis star Andre Agassi famously beat world-class opponent Boris Becker by

recognizing that every time he served the ball, Becker unknowingly stuck his tongue out

in the direction he was about to serve.1 On the other hand, our adversarial reasoning

is constrained by challenges like remembering previous decisions (Rapoport & Budescu,

1997), recursive reasoning about others (Moulin, 1986), or merely searching a large space

of potential actions. These limitations have allowed artificial intelligence systems to beat

human competitors in a wide range of adversarial games, even those once thought to be

far beyond the reach of strategic algorithms (Silver et al., 2016). What kind of reasoning

processes do people rely on in repeated adversarial interactions with others? And how does

their behavior in such interactions reflect basic cognitive constraints?

These questions have primarily been informed by prior work in game theory and

behavioral economics, which uses decision-making in repeated games to formally describe

how people balance risk and reward in adversarial and cooperative interactions (see,

e.g., C. F. Camerer (2011)). For example, perhaps the most well-known application

of game theory to understanding human behavior is the use of iterated choices in the

Prisoner’s Dilemma to describe the emergence of cooperation and reciprocity (Axelrod,

1984; Rapoport & Chammah, 1970). However, decision-making in repeated games has

formed the basis for exploring an array of additional behaviors central to human intelligence

and social inference, from recursive theory of mind (Moulin, 1986) to trust (C. Camerer &

Weigelt, 1988). Adversarial and cooperative reasoning is frequently studied using repeated

1https://www.facebook.com/watch/?v=1249137535168463 - January 18, 2017
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games in part because the existence of Nash Equilibrium (Nash, 1950) solutions provides

a rational model of behavior in these settings, subject to particular assumptions about the

players involved. In this way, the Nash Equilibrium is not just a mathematical formalism

but offers a benchmark for understanding human decision-making; people’s choices across

repeated interactions are often characterized in terms of their departures from optimal

reasoning or from the underlying assumptions of equilibrium play (C. F. Camerer, 2011).

To illustrate, in mixed strategy equilibrium (MSE) games like rock, paper, scissors,

or matching pennies, people’s behavior over repeated interactions often fails to reflect the

Nash Equilibrium. Nash Equilibrium play in MSE games requires that players choose their

moves randomly ; any non-random dependency in their behavior (e.g., a bias toward rock) is

exploitable by a rational opponent. However, a large body of work on subjective randomness

suggests that people exhibit poor performance when asked to either generate random

sequences or detect them (Bar-Hillel & Wagenaar, 1991). Instead, people typically rely on

simple biases like an over-representation of alternations relative to repeats (Lopes & Oden,

1987; Tversky & Kahneman, 1972). More recent work has proposed that perceptions of

randomness may in fact reflect rational statistical inference about the absence of detectable

patterns (Griffiths et al., 2018). However, biased judgments about what constitutes a

random sequence are nonetheless at odds with Nash Equilibrium behavior in MSE games;

a savvy adaptive player can outwit an opponent who relies on such biases when selecting

their moves. Indeed, prior work exploring people’s behavior in repeated MSE games found

that while adversarial settings may improve people’s ability to produce unpredictable

sequences of actions, the same underlying biases about randomness persist (Budescu &

Rapoport, 1994; Rapoport & Budescu, 1992).2 These biases are so ingrained that patterns

associated with subjective randomness arise even in decisions by professional athletes,

who are highly incentivized to avoid such predictability (Palacios-Huerta, 2003; Walker

& Wooders, 2001). Thus, MSE games represent a setting in which adversarial reasoning

veers sharply and predictably from the Nash Equilibrium even when people do their best
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not to.

How then can we explain people’s non-random adversarial behavior in mixed strategy

equilibrium games? Consistent with the broader literature on subjective perceptions of

randomness, early accounts of decision-making in MSE games largely focused on the

kinds of iterated reasoning about one’s own moves that might produce seemingly random

behavior (Rapoport & Budescu, 1997). More recent work has emphasized the use of

generic heuristics such as “win-stay, lose-shift,” which offer simple decision procedures

and may reflect intuitive responses to losses and gains (Dyson et al., 2018). For example,

people show evidence of win-stay, lose-shift behavior in repeated rock, paper, scissors

games against bot opponents that choose their moves randomly (Dyson et al., 2016; Forder

& Dyson, 2016), perhaps reflecting the intuitive response to an unexploitable adversary;

recent work has also found that such heuristic responding is prevalent against shuffled

human opponents (Wang et al., 2014) and stable human opponents (Brockbank & Vul,

2020). Given the role that such heuristics play in other forms of learning and inference

(Bonawitz et al., 2014; Gigerenzer & Goldstein, 1996), these simple, stable strategies likely

form an important part of people’s adversarial behavior, especially against an unexploitable

opponent.

However, accounts of adversarial behavior that are based on stable heuristics limit

the role of adaptive processes that underlie much of our strategic adversarial reasoning

(recall, for example, Andre Agassi’s insight about Boris Becker described above). In other

words, it is clear that people playing MSE games do not implement a Nash Equilibrium

strategy when choosing moves, but accounts of this deviation that invoke heuristics alone

may overlook the learning processes and online reasoning about an opponent that people

can recruit in this setting (Brockbank & Vul, 2021). In fact, prior work suggests that

flexible and adaptive reasoning forms an important part of people’s responding in repeated

2The persistence of people’s subjective randomness judgments led Rapoport and Budescu (1992) to
conclude: “Cognitive psychology has engendered few examples of so much support for and agreement
among researchers about the prevalence of a cognitive bias” (p. 352).
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MSE games. When paired with rock, paper, scissors opponents that favor a particular

move, people typically learn to exploit them so long as the bias is sufficiently strong

(Kangas et al., 2009; Lie et al., 2013). More recent work has suggested that people can also

exploit opponents that exhibit more complex patterns in their move choices contingent on

prior moves (Dyson et al., 2020; Dyson et al., 2018). But how much does this behavior

reflect ongoing adaptive reasoning? Stöttinger et al. (2014) found that when paired

with multiple bot opponents that displayed distinct biases towards particular moves or

transitions between moves, people successfully exploited these patterns from one opponent

to the next, though their ability to do so was sensitive to what kind of opponent they

had previously encountered. The ability to outwit an opponent whose moves are based

on novel but predictable underlying patterns requires flexible learning processes to detect

and exploit such patterns. And this adaptive reasoning appears to extend to more fluid

and dynamic interactions with human opponents as well. In Brockbank and Vul (2020),

participants played 300 rounds of rock, paper, scissors against another human participant.

Among the dyads, one player was able to consistently beat their opponent significantly

more often than would be expected by chance. Taken together, these results suggest that

in repeated MSE games like rock, paper, scissors, people exhibit adaptive adversarial

reasoning about their opponent. However, these results lack a systematic account of

people’s adaptive behavior in this setting: Which patterns in another player’s actions can

they successfully learn and which ones are out of reach? And how well can people avoid

being similarly exploited?

The finding that people’s behavior in mixed strategy equilibrium games recruits

adaptive reasoning about their opponent is consistent with many other adversarial in-

teractions which may involve flexible, on-the-fly decision-making (e.g., games like chess).

What, then, can behavior observed in MSE games like rock, paper, scissors tell us about

how people adapt to an adversarial opponent? Critically, RPS offers little opportunity for

expertise, thus differentiating it from games like chess or tennis. This means that in a
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laboratory setting, RPS can be used to explore people’s adaptive, adversarial reasoning

abilities independent of prior experience. Instead, the game’s simple rules and small set

of available actions present participants with a seemingly trivial challenge: Over many

repeated interactions, beating one’s RPS opponent is a matter of detecting exploitable

patterns in that person’s moves while minimizing such exploitability in one’s own choices.

The scope of the behavioral patterns or dependencies that people can reliably detect in

an opponent’s moves and in their own can therefore inform our understanding of the

representational flexibility of people’s adaptive reasoning. Finally, because of the relatively

simple structure of the game, the sequential patterns in a player’s moves can be carefully

measured and compared (Brockbank & Vul, 2021; Dyson, 2019). In this way, we not only

ask what patterns people can adapt to in an opponent or minimize in their own actions,

but what kind of underlying formal structure is shared across these patterns.

The current work explores these questions using people’s behavior in repeated

rounds of rock, paper, scissors with an algorithmic “bot” opponent. In experiment 1, we

pair participants with one of seven stable bots, each of which exhibits a different sequential

dependency in its move choices. These dependencies vary in their underlying complexity,

allowing us to precisely assess the degree to which people track and exploit different

behavioral contingencies affecting an opponent’s moves. We find that people are highly

adaptive against opponents that exhibit simple transition patterns, but otherwise show

minimal adaptation to more complex opponents. In experiment 2, we ask whether these

same limits hold for detecting and revising exploitable patterns in one’s own behavior.

Participants were once again paired with a bot opponent, but this time each bot chose its

moves by trying to exploit a unique pattern in the participant’s moves. Here, we examine

people’s ability to avoid or counteract such exploitative behavior. Once again, we find

that people are strongly adaptive against bots that track simple transition patterns in

participant moves, but show little flexibility otherwise. Together, our results suggest that

the hypothesis space of behavioral patterns people draw on in this setting to understand
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their opponent’s moves or their own is limited, but that adaptive reasoning is flexible

within these limits.

2.2 Experiment 1: Stable Bot Opponents

Experiment 1 pitted participants against predictable bot opponents that chose

their moves by following one of seven increasingly complex sequential dependencies. If

participants can reliably beat a bot opponent that exhibits a stable pattern in its moves,

this suggests people are able to adapt to that particular dependency in an adversarial

setting. We investigate the level of behavioral complexity that people can detect and

exploit across repeated interactions with a bot opponent.

2.2.1 Participants

Participants were a convenience sample of 218 University of California, San Diego

undergraduate students who received course credit for their participation. One student’s

data was removed due to technical issues during data collection which prevented completion

of the experiment. Our sample size was chosen to have a minimum of 30 participants in

each condition (i.e., against each bot opponent). This gave us 90% power to detect an

effect size of d = 0.61 in our estimate of participant win rates against each bot; under

a conservative assumption of uniformly distributed win rates, this effect size amounts

to an average win rate of approximately 51%. Informed consent was obtained from

all participants in accordance with the Institutional Review Board’s approved protocol.

Participants completed the experiment in a web browser online.3

2.2.2 Task Overview

Participants began by clicking through a set of instructions introducing the game

of rock, paper, scissors and noting that they would be playing 300 rounds against a fixed

3The data and code for this experiment and for all analyses reported here can be found on github at:
https://github.com/erik-brockbank/rps-bot-manuscript-public.
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opponent (they were told it would be the same opponent the whole time but were not

told anything more about the opponent’s identity). Upon completion of the instructions,

participants were randomly assigned to one of seven bot opponent conditions, described

in detail below. In each round, they were shown a set of clickable “cards” with rock,

paper, and scissors icons and instructed to choose a move (Figure 2.1). They were given

10 seconds to choose their move each round. Once a participant had chosen a move, they

could not change their selection. After selecting a move, participants were shown a results

screen indicating their own move, their opponent’s choice, the results of the round, and

the points each player received for that round (see Figure 2.1). Participants were given 3

points for a win, 0 points for a tie, and −1 points for a loss. These values were chosen to

maintain engagement by giving participants greater opportunity for positive accumulation

of points. However, this imbalanced allocation of points across outcomes does not impact

the optimal play for participants; since there is a single move every round that would give

them a high probability of winning (see below), playing the move that’s expected to win

is best under any setup in which wins offer more points than ties or losses. At the end of

each round, participants could view the results of the round for as long as they wanted

before clicking a button to proceed to the next round.

Throughout the game, participants were shown a graphic illustrating each move’s

relation to the others, a tally of rounds completed towards the total, and the cumulative

points each player had accrued so far (see Figure 2.1). The displayed scores and rounds

completed served to motivate participants to best their opponent over the 300 rounds,

while the graphic of each card’s relationship to the others minimized the risk of them

misunderstanding or forgetting the rules. Most participants completed the RPS game in

under 30 minutes (mean time from round one to round 300: 691s, SD: 259s).

Following completion of the game, participants completed a brief post-experiment

questionnaire with a free response prompt asking about how they had chosen their moves

(“Please describe any strategies you used to try and beat your opponent”) and a set of five
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slider scale questions further assessing their strategic decision-making during the task. The

first question probed participants’ beliefs about their opponent (“My opponent was a real

person and not a robot”), the next three probed participants’ motivation and whether they

were watching for patterns in their opponent’s moves, and the final question asked about

their explicit awareness of any patterns in their opponent’s move choices (“There were

noticeable patterns in my opponent’s moves that allowed me to predict their next move”).

Response options ranged from 1 (‘Strongly disagree’) to 7 (‘Strongly agree’). We do not

analyze these responses here but the data is available at the repository linked above.

Figure 2.1. The stages of each rock, paper, scissors round. Top left: participants had
10s to select their move by clicking one of the three “cards.” Bottom right: participants
were shown the results of the round, along with updated points for each player, before
clicking to proceed to the next round.
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2.2.3 Bot Opponent Behavior

Participants were paired with one of seven bot opponents that exhibited a distinct

sequential pattern or “strategy” in its move choices. Concretely, each bot’s strategy

dictated a particular move each round based on events from the preceding round(s). Bots

chose this move 90% of the time and each of the other (non-strategic) moves 5% of the

time to allow for some noise in their strategy. The differing complexity of the bot strategies

can be described in terms of the previous events that dictated their move choice each

round; in this way, the bot strategies form a hierarchy with an increasing number of events

affecting their move choices. These sequential dependencies in the bots’ decisions were

chosen to encapsulate the full range of patterns that we expected human players to be

able to detect and exploit in an opponent. The patterns have been formally described

in prior work (Brockbank & Vul, 2021; Dyson, 2019) and have been shown to arise in

repeated games of rock, paper, scissors among human dyads (Brockbank & Vul, 2020),

suggesting that people may be sensitive to these patterns in strategic adversarial settings.

We walk through this “strategy space” below (see overview in Figure 2.2).

Transition dependencies

The simplest level at which the bots exhibited dependencies in their move choices

was based on a single previous move. This transition dependency can be expressed in three

possible ways. A “positive” or “upward” transition (+) bias amounts to favoring a move

that would beat the previous move (e.g., playing “paper” most often following “rock”).

A “negative” or “downward” transition (−) bias involves instead choosing the move that

would lose to the previous move, for example transitioning most often from “rock” to

“scissors”, “scissors” to “paper”, and “paper” to “rock”. Finally, a “stay” transition (0)

bias is one in which a bot is most likely to repeat the same move again. Critically, such

transition biases can be exhibited relative to one’s own previous move or an opponent’s

previous move. Thus, a bot that repeats moves more often than either alternation (+/−)
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Figure 2.2. Experiment 1 overview.

can be described has having a “stay” (0) bias in its self-transitions and a bot that most

often plays what its opponent played in the previous round can be described as having a

“stay” (0) bias in its opponent-transitions.

Outcome-transition dependencies

The transition dependencies above can be expanded by including prior events or

contingencies that affect a player’s transition bias (see Figure 2.2). The simplest such

extension involves a bias towards different transitions depending on the previous game’s

outcome. For example, a player might prefer to repeat the same move when it is successful

(after a win) but transition up (+) or down (−) after a tie or loss. Biases towards win-stay,

lose-shift responding described in human play against random or shuffled opponents (Dyson

et al., 2016; Wang et al., 2014) falls under this level of dependency. Critically, while a

simple transition bias can be described as occupying one of three possible states (favoring
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up, down, or stay relative to a previous move as described above), outcome-dependent

transition patterns involve biases across nine contingent states: three possible transitions

(+, −, 0) for each previous outcome (win, loss, or tie; see Figure 2.2). It is worth noting

that because an outcome is a function of the player’s previous move and their opponent’s,

outcome-dependent transitions can be equivalently stated in terms of self-transitions and

opponent-transitions (e.g., a positive (+) self-transition after a win is equivalent to a

negative (−) opponent-transition after a win). We describe all bot outcome-transition

dependencies below in terms of their self-transition biases after each outcome.

Dual outcome-prior-transition dependencies

In addition to the previous round’s outcome, a player’s transition from one round

to the next might show a further dependency on their previous transition. For example,

if they transitioned up (+), down (−), or stay (0) in the previous round and won, this

might lead them to make the same transition again in the next round (i.e., transitioning up

and then winning might make another up transition more likely). Here, the bias towards

a particular self-transition in each round is contingent on nine unique previous event

combinations (a previous up transition and a win, a previous up transition and a tie,

...), leading to 27 different directions that transitions may be biased based on these prior

events (see Figure 2.2). Dependencies described at this level are therefore significantly

more complex than the simple transition biases outlined above.

Although further expansions of RPS move dependencies are possible, the patterns

outlined here represent a principled approach to capturing the full range of structured

behavior that people might adapt to in adversarial interactions: an opponent’s previous

move (transition dependencies), the combination of both players’ previous moves (outcome-

transition dependencies), and a further inclusion of the opponent’s choice two moves prior

(dual outcome-prior-transition dependencies). Below we describe how the bot opponents

in the present experiment spanned these behavioral complexity levels.
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Bot strategies

The seven bot opponents that participants faced in the current experiment were

chosen to encapsulate the full range of behavioral dependencies described above. The

bot “strategies” are illustrated in Figure 2.2 and outlined below in increasing order of

complexity.

Transition strategies:

• Previous move (+) bot most often chose the move that constituted a positive or

upward transition relative to its own previous move, i.e., the move that would beat

what it had previously played.

• Previous move (−) bot favored the move each round that constituted a negative

or downward transition relative to its own previous move, i.e., the move that would

lose to what it had previously played.

• Opponent previous move (+) bot favored the move each round that constituted

a positive transition relative to its opponent’s previous move. In other words, it

typically chose the move that would beat what its opponent had just played.

• Opponent previous move (0) bot primarily chose the move each round that

constituted a “stay” transition, once again relative to its opponent’s previous move,

essentially copying its human opponent from one round to the next.

Outcome-transition strategies:

• Win-stay lose-positive bot favored stay self-transitions (0) after a win, positive

self-transitions (+) after a loss, and negative self-transitions (−) after a tie.

• Win-positive lose-negative bot made positive self-transitions (+) after a win,

negative self-transitions (−) after a loss, and stay self-transitions (0) after a tie.
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Dual outcome-prior-transition strategies:

• Previous outcome, previous transition bot favored distinct self-transitions

based on each unique combination of its previous self-transition and the previous

round outcome that had resulted from its previous self-transition.

The seven bot strategies in this experiment represent a strategic sampling of all

the possible transition dependencies, outcome-transition dependencies, and dual outcome-

prior-transition dependencies described above that can be enumerated for a given player.

Though many such biases are possible within each of these categories, we have chosen

only those which satisfy two additional criteria. First, the bot strategies above cannot be

described at a simpler complexity level (for example, an outcome-transition agent that

transitions up most often after every previous outcome is no different from a simpler

transition agent; see Dyson (2019) for further discussion of this). Second, we have

excluded several potential bot strategies that could be exploited in simple ways without

sensitivity to the underlying pattern in the bot’s behavior. For example, among the

opponent-transition dependency bots described above (Opponent previous move (+)

and Opponent previous move (0)), a third strategy not included here involves favoring

downward transitions (−) relative to an opponent’s previous move each round. However,

pitted against such a strategy, a player can exploit their opponent by simply playing the

same move over and over. In this case, it might be argued that a human paired with a bot

implementing this strategy did not so much adapt to the bot’s dependence on the human’s

previous move as discover the success of playing the same move repeatedly without any

regard for the bot’s moves. In other words, exploiting the bots above requires an adaptive

response that extends beyond merely playing the same move over and over (or beating a

bot that does the same). The seven bot strategies in this experiment therefore include

both a broad sampling of the patterns people might adapt to, as well as a selective or

diagnostic set of patterns for understanding people’s ability to adapt to their bot opponent.
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2.2.4 Measuring adaptive reasoning

To understand how sensitive people were to stable patterns in their opponent’s

behavior, we measured participants’ win percentage against each bot opponent. If partici-

pants fail to adapt to the sequential pattern exhibited by their bot opponent, we expect

them to perform at chance, winning 1/3 of rounds in a given block of trials. Win rates

greater than 33% indicate successful exploitation by participants. Together, we compare

participants’ win percentage against each of the seven bot opponents to better understand

the level of behavioral complexity that people can adapt to over repeated interactions

with their opponent. Which bot strategies do participants successfully exploit over 300

rounds and which ones do they fail to adapt to?

2.2.5 Results

Adaptation to bot strategies

How well did people detect and adapt to regularities of varying complexity when

playing bot opponents? Figure 2.3 (Left) shows overall participant win percentages against

each bot strategy across the 300 rounds. Participants were highly successful at exploiting

the four simple transition bots (Previous move (+), Previous move (−), Opponent

previous move (+), and Opponent previous move (0)). Average win percentages

ranged from 59.1% (SE = 3.28%) to 66.5% (SE = 3.01%) against these opponents. Not

surprisingly, participant win percentages were significantly higher than chance in these

conditions (Previous move (+): t(31) = 11.05, p<.001; Previous move (−): t(29) =

8.99, p<.001; Opponent previous move (+): t(30) = 7.84, p<.001; Opponent previous

move (0): t(31) = 9.97, p<.001). In contrast, participants showed only moderate success

against the outcome-transition strategies (Win-stay lose-positive and Win-positive

lose-negative). Average win rates against these strategies were 41.3% (SE = 2.07%)

and 39.7% (SE = 2.09%), respectively. Though participants performed above chance
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overall in these conditions as well (Win-stay lose-positive: t(29) = 3.82, p<.001;

Win-positive lose-negative: t(30) = 3.06, p = .005), they were far less successful than

those matched with the transition bots. Finally, participants performed poorly against

the most complex dual outcome-prior-transition strategy (Previous outcome, previous

transition); average win rate was 34.1% (SE = 0.7%) and did not differ significantly from

chance (t(30) = 1.04, p = .31). In this way, the seven strategies tested here decompose

adaptive reasoning into patterns that can be detected and exploited strongly, partially,

and not at all.

Figure 2.3. Performance against RPS bot strategies. (Left) Overall participant win
percentage against each bot. (Right) Participant win percentage against each bot over
the course of the experiment. Error bars reflect standard error of participant averages.
Dashed lines indicate chance performance, while solid lines indicate optimal performance.
Participants were highly successful at detecting and exploiting transition dependencies
but showed little adaptation to more complex behavior patterns.

Participants’ learning trajectories against each bot tell a similar story. Figure 2.3
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(Right) shows win rates against each strategy over 10 sequential segments. For the simple

transition bots (Previous move (+), Previous move (−), Opponent previous move

(+), and Opponent previous move (0)), participants rapidly detected the opponent’s

strategy and successfully exploited it for the majority of the experiment; learning rates and

maximum performance are similar against all four transition dependencies. Meanwhile,

people’s ability to exploit the outcome-transition bots (Win-stay lose-positive and

Win-positive lose-negative) arose only in the last 100 rounds of the experiment,

and never reached performance levels comparable to the transition strategies. This

suggests that the outcome-transition strategies were only partially exploitable (we describe

this further below). Finally, consistent with aggregate performance, participants never

succeeded above chance against the dual outcome-prior-transition bot (Previous outcome,

previous transition).

Decomposing adaptive behavior

What explains participants’ failure to adapt to the outcome-transition dependencies

as effectively as the simpler transition bots? Incomplete exploitation of a complex bot

strategy could arise from selective learning of the dependency, wherein only part of the

opponent’s contingency structure is effectively used against them, or degraded overall

learning such that participants exploit the full scope of the dependency, albeit noisily.

These constitute distinct accounts of the learning process underlying people’s adaptive

reasoning in this setting. Figure 2.4 shows human win rates during the last 100 rounds

against the transition and outcome-transition bots, separated by each of the individual

dependencies that dictate the bot’s move choice. This illustrates the degree to which

participants exploited the full dependency structure of their bot opponent. Against the four

simple transition strategies (Figure 2.4 A–D), win percentages were significantly greater

than chance following all bot or participant previous moves (all ps<.001) and win rates

following each previous move were not significantly different from each other for three
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Figure 2.4. Participant win percentage against bot opponents following each of the
prior events that dictate the bot’s move choice. (A)-(D) Conditional win rates against the
transition strategies based on each previous bot or participant move. (E)-(F) Conditional
win rates against the outcome-transition strategies based on each previous bot outcome.
Error bars reflect standard error of participant averages. Dashed lines indicate chance
performance, while solid lines indicate optimal performance. People showed uniformly
successful adaptation against the transition dependencies; partial adaptation to the
outcome-transition dependencies was primarily based on exploiting individual contingencies
in each bot’s strategy (behavior after ties).
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of the four transition opponents (Previous move (+): F (2) = 0.73, p = .49; Previous

move (−): F (2) = 1.53, p = .23; Opponent previous move (+): F (2) = 0.19, p = .83;

Opponent previous move (0): F (2) = 5.10, p = .01), suggesting a fairly uniform win

rate in each condition. Thus, participants paired with the transition bots exploited the

full contingency structure of their opponents’ behavior.

However, against the two outcome-transition strategies (Figure 2.4 E–F), partic-

ipants only won reliably after a tie outcome, indicating that they effectively learned

individual components of the opponent’s strategy. To illustrate, win percentages follow-

ing each previous outcome varied significantly by outcome (Win-stay lose-positive:

F (2) = 3.77, p = .03; Win-positive lose-negative: F (2) = 3.29, p = .04). These

non-uniform win percentages were driven by the fact that for both of these strategies, win

percentages differed significantly from chance following a tie (Win-stay lose-positive:

t(29) = 4.34, p<.001; Win-positive lose-negative: t(30) = 3.30, p = .003) but not

following a win or loss. This selective adaptation suggests that for strategies participants

partially exploited, their dependency learning lacked the representational complexity to

exploit the full scope of the strategy, instead exploiting specific behaviors within the more

complex strategies.

2.2.6 Discussion

In this experiment, we explored the basis for people’s adaptive adversarial reasoning

abilities in a simple mixed strategy equilibrium game. Participants played 300 rounds

of rock, paper, scissors against a bot opponent that exhibited one of seven distinct

patterns in its move choices. These patterns increased in complexity from simple transition

dependencies based on the bot’s own or the participant’s previous move, to intermediate

outcome-transition dependencies where transition biases varied across prior outcomes (e.g.,

“win-stay, lose-shift”), to the most complex bot opponent, whose transitions from one round

to the next were contingent on both the previous outcome and the bot’s own previous
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transition. We examine how well participants exploited their bot opponent to better

understand the complexity of people’s adaptive reasoning in this setting.

Results contain two key findings. First, the seven sequential dependencies in bot

moves provide a clear continuum of patterns that people can adapt to. Participants

learned rapidly and were highly successful against the transition opponents, showed some

success against the outcome-transition bots (primarily in the final third of the game), and

performed at chance against the complex dual outcome-prior-transition strategy. Second,

a close examination of participants’ conditional win rates following each round outcome

shows that people were not adapting to the two outcome-transition strategies uniformly.

Instead, their partial success appeared largely isolated to exploiting individual transitions

in the bot’s strategy (i.e., those following a tie).

Broadly, these results suggest that participants were only sensitive to the simplest

patterns in their opponent’s behavior. The bots exhibiting self-transition dependencies

based on their own prior move (Previous move (+), Previous move (−)) were primarily

cycling through moves from one round to the next (“rock”, “paper”, “scissors”, “rock”, ...).

This was likely a salient pattern for participants. Participants’ strong performance against

the opponent-transition bots (Opponent previous move (+) and Opponent previous

move (0)) suggests that the bot copying their previous move or choosing a move that

would have beaten the participant’s previous move may have been a clear pattern as

well. In all of these cases, the complexity of the adaptive response was minor—optimal

exploitation of these bots can be achieved by participants implementing particular self-

transition biases in their own moves. However, participants showed little ability to adapt

to opponents that exhibited additional complexity in their move strategies. Despite the

fact that “win-stay, lose-shift” behavior has been observed in people’s own move choices

over repeated games against bot opponents (Dyson et al., 2016; Forder & Dyson, 2016),

shuffled human opponents (Wang et al., 2014), and stable human opponents (Brockbank &

Vul, 2020), participants adapted minimally to these dependencies in the outcome-transition
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bots. Taken together, results suggest that people have a limited hypothesis space for

representing sequential structure in an opponent’s moves, but will readily and flexibly

exploit the simplest structures when they are present.

However, a central challenge for outwitting the bot opponents in the current task

comes from the fact that participants must search for dependencies in their opponent’s

moves while also ostensibly avoiding predictable patterns in their own actions. One

explanation for the seemingly small set of opponent behaviors that participants successfully

exploited in the current experiment is that adaptive responses against stable bots are only

half of the picture; the current experiment ignores the kinds of patterns people might be

attending to in their own decisions. It may be that the representational complexity of this

self-monitoring is far more expansive than the patterns that participants adapted to in

their bot opponents’ moves. A complete account of adaptive adversarial reasoning should

therefore consider people’s ability to detect and modify sequential patterns in their own

moves. Experiment 2 addresses this second aspect of strategic decision-making.

2.3 Experiment 2: Adaptive Bot Opponents

In experiment 1, participants paired with stable bot opponents successfully adapted

to dependencies in their opponent’s move choices under simple conditions, but largely

failed to exploit more complex sequential dependencies. However, it may be that people

show a greater ability to represent complex regularities in their own behavior relative to

their opponent’s. In essence, sophisticated adaptive reasoning may be driven primarily

by trying to generate or avoid predictable behavior patterns in one’s own moves while

responding to only the most glaring patterns exhibited by an opponent. The more complex

behaviors displayed by the bots in experiment 1 arise in people’s own move choices against

human and bot opponents (Brockbank & Vul, 2020; Dyson et al., 2018; Dyson et al., 2016;

Wang et al., 2014), suggesting that people are potentially vulnerable to exploitation of
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these patterns. In light of this, the current experiment tests whether people are capable of

greater adaptive introspection about their own behavior and therefore able to temper or

modify complex regularities in their actions, even though they fail to exploit these same

patterns in others. Or, are the dependencies people can alter in their own moves just as

limited as the ones they reliably exploit in an opponent?

We test these questions by once again evaluating people’s behavior over 300 rounds

of rock, paper, scissors against a bot opponent. However, rather than choosing their moves

according to a fixed dependency structure as in experiment 1, the bots in the current

experiment adapted to the human participants. Concretely, each bot tracked a distinct

sequential regularity in its human opponent’s moves over the course of the game and

tried to exploit this regularity. On every round, the adaptive bot identified its human

opponent’s most likely move based on the particular pattern it was tracking, then chose

its own move accordingly. Thus, for participants to succeed against their adaptive bot

opponent required reducing the degree to which they exhibited the particular pattern

the bot was exploiting. The patterns that the adaptive bots exploited in their opponents

mirrored the structure of those exhibited by the stable bots in experiment 1 and varied

in their underlying complexity. This allows us to precisely characterize the robustness of

people’s capacity to revise increasingly complex sequential patterns in their own decisions.

2.3.1 Participants

Participants were 194 undergraduate students who received course credit for their

participation. One participant was removed because of technical error and a second

was excluded due to clear evidence of not trying (i.e., choosing the same move to their

own detriment in the vast majority of rounds). Participants were randomly assigned to

one of eight adaptive bot conditions, described in further detail below. Our sample size

was chosen to have a minimum of 20 participants in each bot condition. This gave us

90% power to detect an effect size of d = 0.77 in our estimate of bot win rates against
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each participant (or, symmetrically, participant win rates against each bot), an average

win rate of roughly 55% assuming uniformly distributed win rates. Informed consent

was obtained from all participants in accordance with the Institutional Review Board’s

approved protocol. Participants completed the experiment in a web browser online.4

2.3.2 Task Overview

The procedure for the experiment was identical to experiment 1 (Figure 2.1) with

the notable exception that participants were now paired with an adaptive bot opponent.

This opponent chose its moves in an effort to maximize expected win probability in each

round, using the participant’s decisions on prior rounds to predict their next move (see

Figure 2.5). As before, participants were not told anything about their opponent’s identity.

All additional aspects of the experiment were identical to experiment 1, including the way

points were allocated to wins (3), losses (−1), and ties (0). As in experiment 1, this point

allocation does not impact participants’ optimal strategy in the task. We compare human

performance against each of the bot opponents to understand the complexity of patterns

participants can modify in their own moves.

2.3.3 Bot Opponent Behavior

Participants were paired with one of eight adaptive bot opponents for the duration

of the experiment. Each bot had an identical decision policy of choosing the move that

would beat whatever move it estimated was most likely for its human opponent in the

next round. In the event that multiple opponent moves were considered equally probable,

the bot sampled one at random and chose the move that beat the sampled move.5 What

differentiated the bots across conditions was how they determined their human opponent’s

most likely move over consecutive rounds—each bot relied on a particular sequential

dependency in its opponent’s choices to predict their next move. To illustrate, a näıve

4The data and code for this experiment and for all analyses reported here can be found on github at:
https://github.com/erik-brockbank/rps-bot-manuscript-public.
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approach would involve simply tracking a participant’s cumulative proportion of rock, paper,

and scissors, then selecting the move each round that would beat whichever opponent

choice had been most frequent so far. Given the simplicity of this dependency and the

fact that people are unlikely to show a strong ongoing bias towards a particular move,

we would not expect such a bot to perform particularly well against human opponents.

However, tracking more complex patterns in participants’ moves presents an opportunity

for more successful prediction and exploitation.

Figure 2.5. Experiment 2 overview.

The eight adaptive bots in the current experiment tested this idea by exploiting

a broad range of behaviors in their human opponents. These were chosen to encompass

the full scope of sequential regularities exhibited by the stable bots in experiment 1. This

allows for direct comparison between the complexity of patterns in opponent behavior
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that people successfully adapted to and those they are able to minimize in their own

moves. Further, these eight dependencies comprise various sequential regularities previously

observed in games among human dyads (Brockbank & Vul, 2020), so all of them are good

candidates for potentially exploiting participants over many rounds. For example, the

first bot described below (Self-transition) tracks the proportion of moves its opponent

makes corresponding to each self-transition (+, −, 0). If participants demonstrate any bias

towards self-transitions (like those they successfully adapted to against the Previous move

(+) and Previous move (−) bots in experiment 1 ), this bot will attempt to exploit such

a bias. The bot’s success against participants therefore provides an indication of how

rigidly people exhibit any kind of stable self-transition bias in their moves. Each of the

eight adaptive bot strategies are illustrated in Figure 2.5 and described in detail below in

order of increasing complexity.

• Self-transition bot, described above, tracks participant self-transitions and chooses

the move each round which beats its opponent’s most likely self-transition (+, −, 0).

• Opponent-transition bot chooses a move based on the participant’s most likely

opponent-transition (+, −, 0), i.e., the participant’s most likely transition relative to

the bot’s previous move.

• Previous move bot tracks the co-occurrence of every combination of participant

moves from one round to the next. For example, does the participant tend to play

rock after playing paper? This is similar to the Self-transition bot but allows

for the possibility that a participant’s most likely self-transition may vary at times

depending on their previous move (i.e., if they choose rock most often after rock,

but paper most often after scissors, these represent self-transition biases that differ

across prior moves).

5Bots were indifferent between moves that had a 50/50 chance of a win or tie, and those that had a
50/50 chance of a win or loss. In this way, the bots maximized expected win count, but did not maximize
expected win count differential (e.g., by favoring ties over losses).
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• Opponent previous move bot is identical to the Previous move bot above,

except that it exploits any pattern in participant moves based on their bot opponent’s

previous move rather than their own.

• Previous outcome bot tracks a participant’s most likely transition conditioned

on each previous outcome. “Win-stay, lose-shift” behavior or any other outcome-

transition dependency will be exploited by this bot.

• Previous move, opponent previous move bot tracks player move choices given

each combination of their own previous move and their bot opponent’s previous move.

This bot relies on the same information as the Previous outcome bot but once

again encodes the dependency more richly by tracking all unique combinations of

the two players’ prior moves and the participant’s subsequent move.

• Previous two moves bot chooses the move which beats its human opponent’s most

likely move given the participant’s move choices in each of the previous two rounds.

• Previous outcome, previous transition bot exploits any dependency participants

exhibit in their transitions each round, given both the outcome of the previous round

and the transition they made in the previous round. For example, if participants

were more likely to shift up after a round in which they shifted up and won, this

bot will detect such a pattern and exploit it; this bot adapts to patterns like those

exhibited by the dual outcome-prior-transition bot in experiment 1.

The adaptive bot strategies above capture a broad range of prior events that might

impact a participant’s move choices in predictable ways: their own previous move (Self-

transition and Previous move), their opponent’s previous move (Opponent-transition

and Opponent previous move), the two combined (Previous outcome and Previous

move, opponent previous move), the participant’s previous two moves (Previous two

moves), or the participant’s previous two moves alongside the opponent’s previous move
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(Previous outcome, previous transition). By comparing participant behavior against

each bot, we obtain a precise measure of people’s ability to adaptively modify their own

actions to avoid being exploited on any of these dimensions.

2.3.4 Adaptive Bot Complexity

Intuitively, the eight adaptive bots described above differ in the complexity of their

strategies, with some tracking simple regularities in their opponent’s moves and others

relying on a rich set of contingencies across rounds. We can quantify the complexity of a

bot’s strategy based on the memory demands of tracking the dependency it uses to predict

its opponent (see Figure 2.5). The simplest adaptive transition bots (Self-transition and

Opponent-transition) need only store and update three counts in memory: a 1x3 matrix

with the number of +, −, and 0 transitions they observe. Meanwhile, the next three

strategies above (Previous move, Opponent previous move, and Previous outcome)

have an intermediate complexity because they instead maintain nine counts in memory

using a 3x3 matrix of transition or move frequencies based on additional information from

the previous round (i.e., each possible previous move or previous outcome). Finally, the

most complex bots (Previous move, opponent previous move, Previous two moves,

and Previous outcome, previous transition) rely on a 9x3 (27 count) matrix which

tracks opponent moves or transitions given nine possible previous event combinations (two

previous moves or a previous transition and previous outcome) to estimate their opponent’s

most likely move. While this is not the only way to characterize the complexity of these

strategies, the memory required to generate opponent predictions offers a straightforward

description of how the strategies vary, which could account for differences in people’s

success against the bots. We therefore explore how people’s ability to adapt to each bot

changes with the complexity of the dependency the bot exploits.
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2.3.5 Results

Performance against adaptive bots

How successful was each of the adaptive bot strategies against human opponents?

In experiment 1, we plotted participant win percentages (Figure 2.3) to illustrate how well

participants exploited the stable patterns in their bot opponents’ moves. Here, we instead

examine average bot win count differentials across conditions (see Figure 2.6). The bot’s

win count differential is the number of times it beat its human opponent minus the number

of times the human opponent won; this indicates how effectively each bot was able to exploit

its human opponents, in essence revealing the degree to which participants were trapped in

particular move patterns. Values greater than zero suggest that participants were reliably

exploitable in that condition, while values close to zero indicate chance performance.

Values less than zero result from participants successfully counter-exploiting their bot

opponent. The bot win count differentials in Figure 2.6 illustrate a clear relationship

between each bot’s strategy complexity and how effectively that bot exploited participants.

First, the three bot strategies which tracked the most complex dependencies in

human move choices (27-cell memory) were able to consistently beat participants. Bot win

count differentials were significantly greater than zero for all of these strategies (Previous

move, opponent previous move: t(24) = 2.44, p = .02; Previous two moves: t(19) =

4.36, p<.001; Previous outcome, previous transition: t(25) = 5.68, p<.0001). For

the two bot strategies with the highest average win count differentials, only 4 out of

20 (Previous two moves) and 4 out of 26 (Previous outcome, previous transition)

participants had win count differentials greater than or equal to zero; this is significantly

fewer than would be expected by chance (binomial test p = .01 and p<.001, respectively)

and suggests that most people paired with these bots would not be expected to come out

ahead over many rounds. In short, participants exhibited the most complex regularities

enough for the adaptive bots to exploit them, and further, people were essentially trapped
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in these behavior patterns, indicating a clear limit to the structure they can minimize in

their own moves.

In the three intermediate (9-cell memory) bot conditions, participants were far less

exploitable. Two of the bots obtained win count differentials which were not significantly

different from zero (Previous move: t(23) = -1.63, p = .12; Previous outcome: t(21) =

0.07, p = .95) while bot win count differentials for the third were significantly less than

zero (Opponent previous move: t(27) = -3.11, p<.01). Intriguingly, given the evidence

from prior work that people often exhibit “win-stay, lose-shift” behavior over repeated

rock, paper, scissors rounds (Baek et al., 2013; Brockbank & Vul, 2020; Dyson et al.,

2018; Dyson et al., 2016; Wang et al., 2014), the current results suggest that this pattern

of outcome-dependent responding may be tempered when it is being actively exploited

by an opponent. Participants’ apparent success at evading exploitation in this way is

also interesting in light of their minimal ability to adapt to these same patterns in an

opponent’s moves in experiment 1. More generally, these results present a clear contrast

with those of the 27-cell strategies above; participants managed to avoid any kind of

systematic exploitation based on the previous outcome or their own prior move, leading to

chance performance over the 300 rounds in these conditions.

Finally, bot win count differentials in the simplest 3-cell memory conditions (along

with the Opponent previous move condition above) suggest highly successful adaptive

behavior by participants. Bot win count differentials were significantly less than zero

for the transition bots at the far left in Figure 2.6 (Self-transition: t(20) = -2.30, p

= .03; Opponent-transition: t(25) = -6.09, p<.01). At an individual level, bot win

count differentials were negative against 17 out of 21 (Self-transition) and 22 out of 26

(Opponent-transition) participants in these conditions, significantly more than would

be expected by chance (binomial test, p<.01 and p<.001, respectively). These results

suggest that participants reliably outwitted bot strategies that exploit simple transition

regularities. The only way to achieve this pattern of results is for participants to have
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discovered a way of counter-exploiting the bot opponents. How did they accomplish this?

Figure 2.6. Success of adaptive bot strategies against human opponents. Dashed line
indicates chance performance; error bars show standard error of the mean. Bot win count
differentials greater than chance reveal strategies that reliably outsmart human opponents,
while values less than chance indicate successful counter-exploitation by human players.
Participants were unable to eliminate complex regularities in their own behavior (far right),
but effectively counter-exploited the simpler bot strategies (far left).

Strategic responding to adaptive bots

The bot win count differentials in Figure 2.6 illustrate a surprising result: Bots that

chose their moves based on participants’ most likely self-transitions, opponent-transitions,

or, relatedly, based on participant move choices given their opponent’s prior move, lost

systematically. In short, people in these conditions selected actions that successfully

counter-exploited their bot opponents. What sort of strategic responding allowed them

to outwit these adaptive bots? Here, we present exploratory analyses aimed at better

understanding this question, focusing on the simplest (3-cell memory) transition bots.
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Given participants’ successful adaptation to stable transition patterns in experiment 1,

we investigate whether they might have leveraged similar transition biases in their own

moves to counter-exploit the adaptive bots here. Specifically, we examine evidence for

strategic use of self-transition biases against the opponent-transition tracking bot, and

opponent-transition biases against the self-transition tracking bot. In each case, we rely on

simulated game play to understand whether a particular transition bias had a theoretical

advantage against the relevant bot opponent; we then evaluate empirical behavior to

understand the extent to which people did in fact capitalize on the theoretical advantages

of a given transition bias. Our analyses suggest that there was a clear theoretical advantage

to favoring particular self-transitions against the opponent-transition adaptive bot and

that participants’ highly successful counter-exploitation of this bot reflected strategic use of

self-transition biases. However, the source of participant’s more moderate success against

the self-transition-exploiting adaptive bot remains less clear; here, opponent-transition

biases were not theoretically adaptive. Nonetheless, we do find evidence that participants

favored particular opponent-transitions against this bot, suggesting a potentially adaptive

use of these biases that our simulations are unable to detect.

In experiment 1, participants reliably beat the stable self- and opponent-transition

bots (Figure 2.3); in these conditions, a player’s best move was always a particular

transition relative to their own previous move. Thus, the previous experiment provides

evidence that people flexibly incorporated self-transition biases into their own moves when

doing so was adaptive. Might a similar strategy have worked in the current experiment?

We first examine whether exhibiting a strong self-transition bias could have performed

well against the bot that exploited opponent-transition dependencies, since participants

showed the greatest success against this bot (and a stable self-transition bias would not

have been effective against the Self-transition bot). To do this, we ran simulated

matches between the bot and 1000 simulated human players that exclusively chose a single

self-transition for 300 rounds.6 We ran separate 1000-person, 300-round simulations for
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each possible self-transition bias (+, −, or 0) against the Opponent-transition bot. We

then explored the outcomes for the 1000 “participants” in each simulation. Did favoring

a particular self-transition ever lead to systematic counter-exploitation of the bot that

tracked opponent-transition patterns?

Against the bot that exploited participants’ opponent-transitions, there was a

distinct potential advantage to participants for favoring a single self-transition. A stable

self-transition bias yielded a positive win count differential of 0.2 per trial for approximately

36% of simulated participants (across the 300 rounds, this corresponded to a total win

count differential between 40 and 80). For most of the other simulated participants, it led

to an average win count differential of 0, with a small fraction (roughly 10%) having a win

count differential of -1 per trial (i.e., losing every game). This latter outcome is dramatic,

but likely reflects the fact that for any two starting rounds in which the bot beats the

simulated participant both times (1/9 probability), subsequent reliance on a particular

self-transition by the simulated participant reinforces a stable opponent-transition pattern

that the bot can continually exploit. These results were similar for all three self-transition

biases (up, down, or stay). In other words, while favoring a given self-transition was

not always adaptive against the Opponent-transition bot, doing so could sometimes

maneuver the bot into move sequences that led to a substantially greater number of wins

and ties than losses for the simulated participant. This suggests one possible mechanism

by which our actual participants may have effectively counter-exploited the Opponent-

transition bot (Figure 2.6). Critically, because it is not always advantageous, it requires

that participants implement such a counter-exploitation strategy adaptively, i.e., only

when doing so produces consistently higher win rates.

Could favoring a particular transition lead to similar success against the Self-

transition bot? Exhibiting a stable self-transition bias would evidently not be effective,

6Code and results for all simulations can be found on github at: https://github.com/erik-brockbank/
rps-bot-manuscript-public.
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but it may be that an opponent-transition bias such as copying the bot’s previous move

or playing the move that would beat its previous move was helpful. We ran an identical

simulation as above with 1000 simulated participants playing 300 rounds against the Self-

transition bot. This time, simulated participants always chose a particular opponent-

transition (+, −, or 0). Here, we find that favoring a single opponent-transition did

not produce conditions for successfully counter-exploiting the bot. For roughly 40% of

simulated subjects, choosing a stable opponent-transition produced a per-trial win count

differential very close to 0 (all of these were positive but never more than 0.01). Most

of the remainder had a win count differential around -0.5 per trial, with roughly 10%

obtaining an average win count differential of -1 (as before, this reflects participant and

bot choices across the first two rounds wherein participants subsequently favoring an

opponent-transition also maintains a stable self-transition dependency the bot can exploit).

As with the self-transition simulations, this pattern held for all opponent-transition biases

(up, down, or stay). Thus, while favoring a particular opponent-transition against the

Self-transition bot might have allowed some participants to avoid exploitation by this

opponent, it is not clear that such a strategy could have enabled participants to successfully

counter-exploit it as they did (Figure 2.6).

In sum, there was a theoretical advantage for players adopting self-transition biases

against the Opponent-transition bot; against the Self-transition bot, any counter-

exploitation achieved by generating opponent-transition biases would have required a more

nuanced strategy than our simulations captured. However, it remains an open question

whether modifying self- or opponent-transition biases is in fact what participants did. To

test the degree to which participants relied on stable transition patterns to counter-exploit

their opponents, we evaluate whether they showed larger self-transition biases against the

bot that exploited opponent-transitions and increased opponent-transition biases against

the bot that exploited self-transitions.

The extent to which participants demonstrated a particular dependency over 300
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rounds can be precisely quantified in terms of the information gain for that dependency in

their moves (Brockbank & Vul, 2021). Briefly, information gain measures how much the

distribution of moves for a given dependency deviates from uniform. We use this measure

to compare how much participants expressed self-transition and opponent-transition biases

against different adaptive bot opponents. For example, given a sequence of participant

move choices X, the probability distribution over self-transitions T = {+,−, 0} will be the

number of times each self-transition appeared in X divided by |X|. Intuitively, the more

uneven this distribution is, the more participants exhibited an exploitable self-transition

bias in X. The Shannon entropy H (Shannon, 1948) of the distribution formalizes this

intuition: The lower the H value (less entropy) for a particular dependency, the more

evident that dependency is in the underlying move sequence. The information gain

IG(T ) is simply the distance between the Shannon entropy of a uniform distribution over

transitions and the entropy of the empirical distribution, H(T ):

IG(T ) = − log(1/3)−H(T ) = log(3) +
∑
i∈T

p(Ti) log(p(Ti))

This value will be larger the more non-uniform the distribution of transitions T

is; in short, IG quantifies how much a participant’s moves were predictable via a given

dependency, with larger values indicating that people demonstrated that regularity more.

How much did participants display stable self-transition and opponent-transition

biases against each of the adaptive bots? First, as above, we consider the strategic use

of self-transitions. Figure 2.7 (Top) shows the information gain for self-transition depen-

dencies exhibited by participants against each of the different adaptive bot opponents.

Here, a clear pattern stands out. Overall, participants showed very little self-transition

regularity, particularly against bot opponents that would have exploited any such regularity

(Self-transition and Previous choice). However, participants exhibited the highest

self-transition information gain in their moves against bots that tracked opponent-transition
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Figure 2.7. Participants’ exploitability for self- and opponent-transitions against each
bot opponent. (Top) Information gain for self-transition dependencies in participant move
choices against each bot opponent. (Bottom) Information gain for opponent-transition
dependencies in participant move choices against each bot. Dashed lines show chance
performance and error bars reflect standard error of the mean. Participants showed
evidence of modulating their self-transition and opponent-transition dependencies to
reduce exploitability and counter-exploit adaptive bot opponents.
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dependencies: Opponent-transition and Opponent previous move (and, to some de-

gree, Previous move, opponent previous move). There is a significant difference in

information gain for participants’ self-transition dependency between the Self-transition

and Opponent-transition bots (t(45) = -2.10, p = .04), which are otherwise matched in

the complexity of their strategies, as well as between the Previous move and Opponent

previous move bots (t(50) = -2.57, p = .01) which are similarly matched. Thus, par-

ticipants paired with opponent-transition-exploiting bots appeared to rely on increased

self-transition biases as a means to counter-exploit them. Consistent with our simulation

results, this strategy appears to have been successful; participants had the highest aver-

age win count differential in the Opponent-transition and Opponent previous move

conditions (Figure 2.6) where they also exhibited the greatest self-transition dependencies.

Do participants exhibit a similar effect for opponent-transition dependencies, namely

a greater opponent-transition bias against the bots that tried to exploit self-transition pat-

terns? Figure 2.7 (Bottom) shows information gain for participants’ opponent-transitions

against each of the adaptive bots; the pattern is qualitatively similar to Figure 2.7 (Top).

Participants displayed little opponent-transition bias against the bots that exploited

this pattern (Opponent-transition and Opponent previous move). In contrast, they

exhibited greater opponent-transition dependencies against bots that tried to exploit

self-transition biases (Self-transition, Previous move, and Previous two moves). In

line with similar effects above, there is a significant difference in information gain for

the opponent-transition dependency between the symmetrical Self-transition and

Opponent-transition bots (t(45) = 4.63, p<.001), as well as between the Previous

move and Opponent previous move bots (t(50) = -3.77, p<.001). Broadly, participants

showed increased opponent-transition dependencies against bots that sought to exploit their

self-transition biases, mirroring the pattern of increased self-transitions described above.

Despite the similar overall pattern, the magnitude of participants’ elevated opponent-

transition biases (Figure 2.7 (Bottom)) is reduced relative to the self-transition biases
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(Figure 2.7 (Top)). One reason for this may be that it was less adaptive. The simulation

results described previously suggest that stable opponent-transition biases did not permit

systematic counter-exploitation of an opponent tracking self-transition dependencies. Con-

sistent with this, participants did not counter-exploit the self-transition tracking bots as

effectively as participants paired with the opponent-transition tracking bots (Figure 2.6).

2.3.6 Discussion

In the current experiment, we tested people’s ability to minimize sequential patterns

in their move choices when being exploited by an adaptive opponent. Participants played

300 rounds of rock, paper, scissors against a bot that tried to predict the participant’s

most likely move based on prior moves and outcomes. We tested eight bot opponents that

varied in the complexity of the patterns they relied on to predict their human adversary;

these encapsulate the full range of stable dependencies exhibited by the bots in experiment

1, allowing for a direct comparison between the patterns people can adapt to in an

opponent, and those they can revise in their own moves. We first assessed participants’

overall success against the adaptive bots to understand how flexibly participants reduced

exploitable dependencies in their own decisions. Next, we looked at the degree to which

participants exhibited self-transition and opponent-transition dependencies against each

bot to understand the basis for their adaptive behavior.

Our results contain two central findings. First, overall performance against the

adaptive bots was consistent with the complexity of the behavioral pattern each bot

exploited. Against the most sophisticated adaptive bots, participants lost reliably over

the course of the 300 rounds. However, paired with bots that merely tried to exploit

simple transition dependencies in their opponent’s actions, participants showed evidence of

successfully outwitting them. Our second key finding concerns the nature of this counter-

exploitation. We find that participants exhibited increased self-transition dependencies

when paired with bots that exploited opponent-transition biases, and vice versa with bots
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that exploited self-transition biases. Though these results were exploratory, they suggest

that participants’ success against the simpler adaptive bots primarily revolved around

their ability to modify self-transition and opponent-transition patterns in their own moves.

However, our simulation results provide important context for these findings. Against

the bot that exploited opponent-transition biases, favoring a particular self-transition

led to systematic advantages for a subset of simulated participants; thus, participants’

empirical success against this bot must have relied on adaptive use of self-transition

biases, employing them only when advantageous. Against the self-transition tracking bot,

participants’ successful counter-exploitation, though less dramatic (Figure 2.6), is also

harder to explain, since our simulation results did not find a stable advantage for the

opponent-transition biases seen in participants’ empirical behavior.

Broadly, these results suggest that people are flexible in their use of self-transition

and opponent-transition patterns to adapt to a strategic opponent. And their use of

these patterns is unlikely to be random or thoughtless, since doing so is not always

advantageous. However, this adaptive ability appears limited to a choice among these

relatively simple transition-level behavioral dependencies. Against bots that exploited

more complex patterns, participants were essentially “stuck in their ways” and lost reliably.

Changes to one’s own behavior in this adversarial setting enabled people to effectively

counter-exploit simple opponents, but lacked the scope needed to adapt to more complex

opponents.

2.4 General Discussion

In this work, we address the question of how people perform adaptive reasoning in

an adversarial setting. Across two experiments using the game of rock, paper, scissors,

participants demonstrated a highly selective ability to exploit patterns in their opponent’s

moves and revise stable dependencies in their own moves. These adaptive responses
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exhibited a consistent reliance on detecting and modifying transitions from one move to

the next, but little ability to generalize to more complex patterns. In this way, results paint

a clear picture of people’s sequential, adaptive reasoning as flexibly utilizing a well-defined

but surprisingly limited set of behaviors.

In experiment 1, participants played 300 rounds of rock, paper, scissors against one

of seven bot opponents, each of which chose its moves according to a different sequential

dependency. Bot opponents varied in the complexity of their strategies based on the

number of prior events that determined their moves: the simplest self-transition and

opponent-transition bots followed reliable patterns in their transitions from one move

to the next, while intermediate outcome-transition bots favored particular transitions

depending on the prior outcome (e.g., “win-stay, lose-shift”), and the most complex

dual outcome-prior-transition bot chose a different transition depending on each unique

combination of prior outcome and prior transition. We measure participants’ ability to

successfully exploit each of these stable patterns in their opponent’s moves to better

understand the scope of sequential dependencies that people can adapt to in this setting.

We find that participants are highly successful against transition-level patterns over 300

rounds but struggle to adapt to more complex opponent behaviors. Despite a large body

of work demonstrating people’s tendency to exhibit win-stay, lose-shift responding in

this and other settings (Brockbank & Vul, 2020; Dyson et al., 2018; Dyson et al., 2016;

Wang et al., 2014), we find that the ability to adapt to this pattern in an opponent is

largely limited to exploiting individual transitions (those following a particular outcome)

rather than the full dependency structure. Broadly, the results suggest that the space of

behavioral regularities people can reliably exploit in an opponent over many rounds is

restricted to contingencies on either player’s previous move. While such patterns can be

readily exploited, additional events such as the previous outcome are mostly ignored, even

when they are predictive.

In experiment 2, we examine whether the limitations in adaptive behavior that
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participants exhibited in experiment 1 extend to revising patterns in one’s own actions.

This addresses the possibility that people have an easier time monitoring sequential

regularities in their own moves than exploiting them in others. Participants once again

played 300 rounds of rock, paper, scissors against a bot opponent. However, this time

the bot chose its moves in an effort to exploit different patterns that the participants

themselves demonstrated. These patterns were chosen to align with the dependencies

that the stable bots in experiment 1 displayed in their moves. We measure how reliably

each bot won against its human opponents to understand which exploitable patterns

people can eliminate in their own choices and which ones are outside their control. Our

findings are consistent with those obtained in experiment 1. Against bots that exploited

self-transition and opponent-transition patterns, participants won reliably over the 300

rounds. Follow-up analyses suggest that they did so by modifying self-transition and, to a

lesser degree, opponent-transition patterns in their own moves to outwit the bots. However,

their adaptive behavior was limited to this level of strategic complexity; participants lost

reliably to bots that exploited more complex sequential patterns. Broadly, results from

experiment 2 suggest that people can flexibly and adaptively modify the ways in which

they transition from one move to the next or respond to an opponent’s prior move, but

show little ability to revise their own actions in more sophisticated ways.

Results from experiment 2 reinforce and complement the findings from experiment 1.

In experiment 1, participants were highly successful against stable transition-level patterns

in their opponent’s moves; successfully exploiting these bots required that participants

implement self-transition biases in their own moves. We also find in experiment 1 that

participants’ success against the outcome-transition bots is primarily restricted to adaptive

responding after a tie outcome. This pattern of results can further be explained by

participants exhibiting stable self-transition biases, which leads to fewer losses for the

participants and disproportionate wins after a tie against the outcome-transition bots.

However, the increased self-transition biases in experiment 1 might have resulted primarily
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from people recognizing predictable patterns in their opponent’s moves and responding

accordingly. Results from experiment 2 show that people also manipulate transition

biases in their moves as a means of counter-exploiting an adaptive opponent. Collectively,

findings suggest that in repeated rock, paper, scissors interactions, people will successfully

outwit their opponent when doing so involves detecting or modifying simple move patterns.

However, this flexibility is restricted to a constrained set of such patterns. In essence, the

hypothesis space of structured behaviors people represent in this task appears to be quite

small.

Beyond adversarial interactions, the present results are informative for broader

questions about the nature of human social learning. The rock, paper, scissors game,

with its simple rules and lack of prior knowledge or strategy, represents a simplified and

distilled setting for reasoning about sequential structure in another person’s behavior.

Why then, did participants struggle to adapt to all but the most basic patterns in their

opponent’s moves and their own? One possible answer is that people’s ability to reason

about sequential regularities in others’ actions is highly constrained and the current results

simply expose those underlying limitations. However, a growing body of work suggests

that in many social learning settings, people rely on rich mental models of others to predict

and understand their behavior in nuanced ways (Vélez & Gweon, 2021). The capacity

for this learning relies on having a sophisticated theory of mind that forms the basis of

complex inferences about why others act the way they do (Baker et al., 2009; Jara-Ettinger

et al., 2016). This work offers a potentially useful lens for interpreting the current results.

Critically, traditional theory of mind reasoning is difficult to instantiate in the rock,

paper, scissors game for several reasons. First, the adversarial nature of the interaction

injects ambiguity into the possible causes of an opponent’s behavior—are patterns in their

moves a result of näıveté or a trap by a more sophisticated reasoner? More importantly,

the structure of the game makes it difficult to predict an opponent’s moves on the basis

of inferences about their mental states; instead, a player’s primary recourse is to search
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for exploitable patterns in their opponent’s moves across repeated rounds. The current

results suggest that people’s adversarial reasoning in a setting with such impoverished

mental-state attributions is highly limited. Understanding the source of these limitations

presents a clear opportunity for future work. Inferences about others’ behavior may not

always rely on a complete theory of mind (Burger & Jara-Ettinger, 2020), such as when

we infer that someone is acting out of habit (Gershman et al., 2016). When features of

the task or the environment limit the availability of robust theory of mind reasoning, how

do people interpret and adapt to others’ behavior? The current results offer one means by

which to address this question.

In sum, this work explores how people adapt in repeated adversarial interactions.

What kind of structured behavioral patterns can people predict and exploit in others?

And how well can they modify these patterns in their own actions to avoid similar

exploitation? By observing decision-making across repeated rounds of mixed strategy

equilibrium gameplay, we obtain a clear and precise account of the limits of people’s

adaptive adversarial behavior.
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Chapter 3

People update their mental mod-
els of other agents’ knowledge to
support collaborative physical judg-
ments
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INTERIM SUMMARY

In the previous two chapters, we first argued that repeated interactions in mixed

strategy equilibrium games like rock, paper, scissors offer a unique venue for studying

people’s behaviorist intuitive psychology. We showed evidence that people build up

predictive models of their opponents over many rounds of play which allow some people to

exploit their opponent reliably. In the previous chapter, we took a systematic approach to

understanding how people might go about doing this. Across two studies, participants were

paired with algorithmic opponents that exhibited a range of stable patterns in their moves,

or sought to exploit the same structures in participant moves. We analyze participants’

success against these bots to understand what kind of opponent models people can develop

in this setting and what kinds of patterns they can revise or limit in their own actions.

Intriguingly, results suggest that people show a highly constrained capacity for adapting

to complex patterns in their opponents. Our second experiment rules out the possibility

that this is due to a mismatch between patterns they can exploit in others and patterns

they can monitor in their own moves. Broadly, people seem unable to deploy highly

sophisticated statistical learning in service of choosing actions in this setting.

Is this because people are simply bad at recognizing structure in other people’s

behavior more generally? This seems unlikely. Much of the research on cognitivist intuitive

psychology described at the outset suggests that in fact, people can build remarkably

rich and complex representations of others based on their behavior. In the next chapter,

we investigate this process while taking a methodologically similar approach to chapters

1 and 2. Over a series of repeated collaborative interactions with a stable bot partner,

participants receive suggestions in a simple physics-based game. Here, instead of varying

the sequential patterns in the bot’s behavior, we manipulate latent parameters that affect

the bot’s suggestions in recognizable ways. In experiment 1, we modify the variance of

the bot’s suggestions. In experiment 2, we manipulate the bot’s own internal model of
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the task in a way that produces systematic biases in the bot’s suggestions. Thus, while

this work is framed quite differently from that in chapters 1 and 2, we retain the same

conceptual approach of investigating repeated interactions with a partner whose decisions

are parametrically manipulated in ways that cover a large space of structured behavior.

Just as we used people’s task success to probe their representations of these behaviors in

the previous chapters, here we use their interventions on their bot partner’s suggestions.

In the next chapter, I argue that this approach, applied to people’s collaborative behavior

with bots that vary in their competence, allows once again for a precise characterization of

people’s underlying representations of their bot partner on the basis of previous interactions.
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Abstract

How do people estimate the abilities of others across repeated interactions? We explore this

question in a collaborative physical reasoning task with artificial agents whose underlying

competence changes over time and whose knowledge reflects different internal models of

the task itself. This approach builds on prior work by exploring people’s dynamic social

inferences along with their ability to represent the internal model of another agent in a

physical task domain. Across two studies, participants played a physics-based video game

paired with an agent who suggested moves on every round. We measured participants’

decisions to accept or revise their partner’s suggestions to understand how people appraised

their partner’s ability from one round to the next. In study 1, agent partners varied in

whether they were reliable, unreliable, improving, or worsening. We find that participants

were sensitive to these changes in ability and that their intervention behavior reflected

latent estimates of their partner’s competence above and beyond the accuracy of their

partner’s suggestion on a given round. In study 2, we build on these results by probing

people’s ability to learn a stable feature of their partner’s physical world model, rather

than a simple latent parameter like accuracy. Results suggest that people successfully

inferred this underlying cause of their partner’s errors and could systematically correct for

it. Together, the findings offer a precise account of how people assess and update their

estimate of another agent’s abilities over time and integrate this information into their

own behavior in collaborative settings.

Keywords: social learning, artificial agents, theory of mind, competence, trust
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3.1 Introduction

Imagine being at a park with your young child and they ask if they can play on

the monkey bars by themselves. How do parents estimate whether this is something their

child can do safely? They might consider first and foremost whether their child has played

on monkey bars in the past; or, they might search for other activities their child has

done which require similar levels of coordination and may transfer to this scenario. They

might refer to conversations they’ve had with other parents (or, if the child has an older

sibling, whether the sibling was using monkey bars at this age). Or, they may reflect for

a moment on whether the child’s appraisal of their own ability can be trusted in this

setting, or ask the child questions about their plans to assess the child’s beliefs about the

nature of the task and whether these beliefs seem accurate. Thus, even a simple evaluation

about what might be safe behavior on the playground can, in principle, recruit a wide

range of cognitive strategies and mental inferences. In everyday life, reasoning about

what others know or are capable of is commonplace. Adults do this when coordinating

on physical tasks like moving furniture or when discussing whether somebody else is a

good party planner or dog sitter; teachers do this with their students; and children do

this with each other and with adults around them to determine who they can trust. How

do we represent the competence of others? The current work explores this question using

repeated interactions in a collaborative, physics-based task, allowing for precise estimates

of how people represent the abilities and underlying mental models of those around them.

Work on evaluations of competence sits at the intersection of several exciting areas of

research spanning social psychology, robotics and artificial intelligence, and developmental

psychology. Perhaps the most immediately relevant thread has explored people’s advice-

taking behavior; under what circumstances do people take others’ advice and how do they

incorporate what they know about their collaborator or the task into their subsequent

actions? Work in this space has shown that people can integrate not just the content
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of others’ advice but their confidence into joint decision making (Bahrami et al., 2010;

Pescetelli & Yeung, 2021) similar to “cue integration” in sensory domains (Ernst & Banks,

2002). However, unlike integration of low-level sensory information, people’s integration of

others’ advice is subject to systematic biases that can impact subsequent task performance,

such as inflating others’ expertise (Leong & Zaki, 2018). In addition, people appear to be

differentially sensitive to the timing and valence of advice—prior work has shown “primacy”

effects where early good advice is weighted more heavily (Staudinger & Büchel, 2013)

and a tendency to weight good and bad advice differently (Biele et al., 2009). Despite

the potential for such biases, the information that can be extracted from advice can be

arbitrarily rich; people can in principle communicate not only their recommended response

or their confidence but additional reasons for proferring the advice (e.g., their thought

processes) and listeners can further incorporate rich inferences about their collaborator

(e.g., their motivations or beliefs) into their behavior. However, work in this space has

only recently begun to explore such inferences as part of the advice-taking process. For

example, Vélez and Gweon (2019) find that when deciding whether to accept an algorithmic

collaborator’s advice in a simple card game, people’s behavior reflects inferences not only

about the advisor’s overall helpfulness but also what the advisor knows and whether their

recommendations tend to be risky or conservative.

A second prominent area where assessments of others’ competence has risen to the

fore is in evaluations of trust. Deciding who we can trust, and what we can trust them for,

is a critical social evaluation for children and adults alike and, increasingly, must also be

performed with respect to artificial agents. Interpersonal trust is a multi-faceted evaluation

but relies at least in part on judgments of whether others are capable of helping in the

first place. Prior work has shown that 4-5 year-olds’ judgments of adults’ competence are

sensitive to both task-based cues such as difficulty as well as agent-based cues such as time

to completion, but they struggle to integrate the two (Leonard et al., 2019); similarly, even

toddlers differentiate other agents based on the time and effort required to complete a goal
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(Jara-Ettinger et al., 2015). Together, this work suggests that even very young children

have a relatively abstract (though still incomplete) representation of others’ competence

as a basis for who is trustworthy.

This ability to assess what others are capable of develops into adulthood, where a

large body of work has explored the basis of people’s trust in artificial and robotic agents

(Chen et al., 2020; Soh et al., 2020; Xie et al., 2019). These investigations are largely

motivated by a desire for artificial agents themselves to have an accurate internal model

of when humans are likely to trust them. Broadly, this work emphasizes adults’ ability

to combine sophisticated judgments about the task and the agent when inferring their

competence. For example, people appear to rely on latent task representations to infer

that agents who are competent in one task are likely to be competent in similar tasks (Soh

et al., 2020). Further, their judgments about agent abilities and collaborative decisions

with these agents incorporate both accuracy and risk preference (Xie et al., 2019), as well

as riskiness of the task itself relative to the agent’s demonstrated abilities (Chen et al.,

2020). Thus, like the monkey bars example at the outset, adults’ decisions to collaborate

with artificial agents combine past performance, ability on similar tasks, and latent traits

like risk-aversion. However, as in the advice-taking literature, the information conveyed

through robot performance tends to be sparse, often revealing only task accuracy and

(indirectly) any latent attributes that impact their behavior. This places corresponding

limits on the kinds of inferences that people can make about these agents.

Finally, recent work on cognitive models of pedagogy has also wrestled with the

question of how we represent another agent’s knowledge or capabilities (especially when

they differ from our own). This work emphasizes the idea that when conveying knowledge,

teachers reason about what would be most helpful for learners and learners maintain a

similar model of the teacher that reflects their intention to provide helpful information

(Aboody et al., 2023; Bass et al., 2022; Bass et al., 2019; Bonawitz et al., 2011; Gweon,

2021; Shafto et al., 2014). While such mental models of teacher and learner appear critical
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to accounting for human social learning even in simple tasks, it is less clear how evaluations

of another agent’s knowledge impact collaborative behavior, particularly over repeated

interactions in which knowledge may change.

Taken together, recent work across psychology and artificial intelligence points to

people’s sophisticated ability to infer the competence of those around them and integrate

these inferences into their decision-making in collaborative settings. However, these

findings also suggest that much of the richness of our internal models of others remains

unaccounted for in existing tasks requiring evaluations of other agents. First, in everyday

settings, people’s abilities are rarely static. In the monkey bars example at the outset, a

parent’s decision today will likely have to be re-evaluated in weeks or months. The notion

of others as learners that is central to work in pedagogy should be incorporated into our

representations of others’ abilities in other collaborative settings—how fast collaborators

learn and what it is they’re learning may be just as important as their competence itself.

Second, people’s abilities in everyday settings are often rich and multi-layered. A person

is not merely a “good” piano player or scientific writer; rather, our representation of their

ability reflects a decomposition of the task into relevant skills and knowledge that people

may express to varying degrees. Thus, our evaluations of what others are capable of in

collaborative settings should reflect the richness of social inference more broadly (Gweon,

2021; Vélez & Gweon, 2021).

The current work aims to address both of these challenges. First, rather than

collaborating with an agent whose ability is static, we explore people’s behavior over

many interactions with agents whose competence changes over the course of the task.

Though far from reflecting the full richness of human learning, this work allows us to

ask how much another agent’s improvement plays a role in our representations of them

and in subsequent collaborative decision-making. Second, in contrast to prior work which

has explored collaborative behavior in fairly abstract domains such as games or stock

investing (Aboody et al., 2023; Leong & Zaki, 2018; Vélez & Gweon, 2019), the current
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work examines behavior in a physics-based setting where people’s decisions draw on a rich

internal model of the task’s underlying mechanics. As a result, collaborators’ actions can

reflect knowledge structures that differ from participants’ own in systematic and subtle

ways and, critically, participants’ own mental model may allow them to form more nuanced

ability judgments on the basis of their partner’s errors. In this way, we aim to align the

diverse research threads summarized above towards a more comprehensive account of how

we represent others’ competence in collaborative settings.

We investigate people’s ability to collaborate with an artificial agent across many

repeated interactions in a physics-based video game. Participants were tasked with

catching a ball launched from different locations around a circle by placing a paddle

where the ball would land. Each round, they were given a suggestion from their agent

partner about where to place the paddle to catch the ball. Building on prior work, we

use people’s decisions about whether to accept or modify their partner’s suggestions to

probe underlying representations of the partner’s competence (Chen et al., 2020; Xie et al.,

2019). In experiment 1, people’s agent partners differed in their true competence over time,

parameterized here as the variance of their suggestions. We first ask how much people’s

behavior in the game draws on their own physical judgments versus the suggestions of

their partner and how this varies based on their partner’s competence. Next, we ask

whether people’s intervention decisions reflect a dynamic representation of their partner’s

ability above and beyond the trial-specific context. In experiment 2, we incorporate a

richer notion of the agents’ competence by modifying their underlying representation of the

task environment. In two conditions where the agents’ beliefs about the mass of the ball

differ from the ground truth, their paddle suggestions exhibit systematic errors that are

diagnostic of this inaccurate world model. We investigate participants’ ability to correct

for these errors and, critically, whether they can do so using only the structure of the

errors themselves rather than their own mental model of the task.

Our results contain several key findings: First, rather than relying exclusively on
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their own physical judgments or the advice of their partner, people integrated both sources

of information in their interventions. Moreover, the degree to which they incorporated

their partner’s input was predicted by how reliable the agent had been in the past, not

just the quality of its current advice. In experiment 2, we find that people can accurately

correct for their partner’s biased suggestions and further, can integrate the underlying

structure of their partner’s error into intervention decisions in the absence of other cues.

Taken together, our results suggest that across repeated interactions, people’s collaborative

behavior reflects dynamic inferences about others’ abilities and even their internal models

of the task itself.

3.2 Experiment 1

3.2.1 Participants

256 adults recruited from Prolific completed the task online. Data from 12 par-

ticipants were excluded from subsequent analyses due to technical issues encountered

during the experiment, resulting in 244 participants with complete data (average age:

33.8 years, SD = 11.3; 127 male, 103 female, 13 non-binary; educational background

distributed across high school, 4-year college, and graduate degrees). The experiment

was designed to last roughly 25 minutes (average completion time: 23.3 minutes, SD

= 9.0) and participants were paid $14/hr based on this expected completion time. All

participants provided informed consent in accordance with the UC San Diego IRB.1

3.2.2 Human-agent collaboration task

In the experiment, participants tried to catch a virtual ball launched from a point

on a circle using a rectangular paddle positioned along the outside of the circle (see

Figure 3.1). Participants worked together with an artificial agent “partner” who was

1All code used to run the experiment, as well as code used in analyses below, can be found at:
https://github.com/erik-brockbank/physics agent manuscript.
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trying to help them on the task. On each round, the partner suggested a paddle location

based on the ball’s launch position; participants could either accept this suggestion or

adjust the paddle themselves before launching the ball.

Each trial began with participants’ agent partner suggesting a paddle location

that would catch the ball; the paddle was shown moving around the circle and a small

animation on the right showed the agent “thinking.” Once the agent had moved the

paddle to its suggested location, participants were given the opportunity to either adjust

the paddle with the arrow keys or keep their partner’s suggestion. If participants adjusted

the paddle, the agent’s original recommendation remained visible and marked in gray.

When participants settled on a paddle location, they launched the ball with the spacebar.

The ball’s path was animated and participants were shown a message indicating whether

they had successfully caught it before proceeding to the next trial. Every session consisted

of 96 trials divided into eight blocks of 12. This “block” structure was not visible to

participants; in each block, the ball appeared at locations sampled in a random order from

each of 12 bins of equal width along the circle’s circumference. The 96 launch locations

were determined before the experiment and were identical for all participants.

3.2.3 Manipulating agent ability

Participants were assigned to one of four conditions that manipulated the quality

of their partner’s suggested paddle locations: a reliable partner, an unreliable partner, an

improving partner, and a worsening partner. The agent’s suggested paddle location on

each trial was an angle θ sampled from a von Mises distribution (a circular approximation

to a normal distribution) with mean µ equal to the ball’s final landing angle ρ, and variance

σ2 determined by the agent’s competence level. The reliable agent had a low σ2 ≈ 10

degrees, ensuring that the sampled paddle suggestion was almost always close to the ball’s

true landing location. By contrast, the unreliable agent sampled its paddle locations from

a high-variance distribution with σ2 ≈ 48 degrees. The high and low-competence σ2 values
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were chosen to give the agents expected success rates of around 80% and 20%, respectively.

Meanwhile, the improving agent began with a σ2 value equal to the unreliable agent’s but

every 12 trials the variance decreased by a fixed amount so that during the final 12 trials,

it had a σ2 equal to the reliable agent’s. The worsening agent showed symmetrical changes

to its σ2 but in the opposite direction, beginning like the reliable agent and performing

like the unreliable agent in the final block.

Figure 3.1. Task and Experiment 1 Design. (A) Participants worked with an artificial
agent partner to catch a ball launched from the edge of a circle. Their partner began by
suggesting a paddle location which participants could either accept or modify. (B) The
agents chose suggested paddle locations from a distribution around the ball’s true landing
position. The variance of this distribution determined how reliable the agent’s suggestions
were. Participants were assigned to one of four conditions that varied the reliability of the
agent’s paddle suggestions over the course of the experiment.

3.2.4 Measuring human appraisals of agent ability

A core goal of our study was to investigate the impact of manipulating an agent’s

behavior on participants’ impressions of its competence, thereby impacting how they

approached collaborating with it. We measured participants’ appraisals of their partner’s

task ability as the degree to which they intervened before committing to a final paddle
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location on each trial. Intuitively, participants who judged their partner to be more

competent would be less likely to revise their partner’s suggestion, or do so to a lesser

extent. On each trial, we measured whether participants intervened to adjust the paddle’s

position away from their partner’s initial suggestion and the magnitude of this intervention.

If participants were maintaining an ongoing estimate of their partner’s task compe-

tence, their intervention behavior might be guided by this estimate above and beyond the

trial-specific accuracy of their partner’s suggestions. For example, participants might place

more confidence in the suggestions of the reliable agent relative to the unreliable agent,

even when the magnitude of the error in the agents’ recommendations are equal. To isolate

the impact of learned expectations about each agent’s ability on participants’ interventions,

we included a critical trial in each 12-trial block (unbeknownst to participants): Rather

than sampling locations as described above, the suggested paddle location on critical trials

was set to a fixed distance from the ball’s landing location (approximately 16 degrees)

that was close to the true landing angle yet would result in missing the ball unless the

participant intervened. Including these critical trials enabled direct comparisons between

conditions while controlling for the magnitude of the error in the agent’s suggestion.

3.2.5 Post-study questionnaire

After completing all 96 trials, participants were given a post-study questionnaire

to collect basic demographic information described above as well as two additional demo-

graphic variables we did not analyze here: prior physics courses taken and prior experience

with video games. Next, they were asked how often they thought they had intervened

on the previous trials and how often they would expect to intervene if they were to play

another 96 rounds with this same partner (both 1-100% scales). Finally, they were asked

to indicate how much they trusted the agent to catch the ball (five-point rating scale) and

to describe how they decided whether to intervene in the task. We do not analyze these

data in the current results but the full set of responses are available along with the trial
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data and experiment code.

3.3 Results

We begin by examining the performance of human-agent teams on the task overall.

They caught the ball on 73.8% (SD = 14.7%) of trials across all conditions, improving

from 55.9% in the first trial block to 82.8% in the final block. The root mean squared error

(RMSE) of the final paddle locations was 14.85 degrees (SD = 7.56 degrees). Together,

these findings suggest that while the task was challenging at the outset, participants were

nevertheless able to achieve reasonably high performance. However, our primary interest is

in how their behavior varied across conditions as a result of differences in their bot partner’s

ability. In the analyses below, we first ask what role the bot partner’s suggestions played

(if any) in participants’ final paddle placements: How much did participants incorporate

their partner’s suggestions into their decisions about where to position the paddle? Next,

we explore whether participants’ collaborative behavior also reflected broader inferences

about their partner’s ability; in other words, did their paddle placements rely not only on

the bot’s current suggestion, but on the accuracy of its prior suggestions?

3.3.1 People combined information sources to make interven-
tion decisions

To understand how participants coordinated with their partner, we compare three

possible accounts: First, it may be that people trusted their bot partner completely,

regardless of its competence. On this view, participants’ own physical intuitions would

have played no role in their decisions. A second account takes the opposite perspective;

people may have ignored their partner’s suggestions entirely, simply choosing the best

paddle position each round without regard for the bot’s initial proposal. Finally, a third

possibility is that people’s behavior was somewhere in the middle. Rather than consistently

following their partner’s suggestion or unilaterally seeking the optimal paddle position
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each round, people may have relied on a combination of their own physical intuitions

and their partner’s recommendation to decide where to place the paddle. We consider

each of these options below; our results suggest that participants integrated intuitive

physical judgments with their partner’s guidance and that how much they incorporated

their partner’s suggestions was calibrated to their partner’s task performance.

Participants intervened to improve accuracy

We start by considering the first hypothesis above, that people merely acted in

accordance with their partner’s suggestions. If this were true, we would expect intervention

rates to be low and performance in each condition to closely match the ability of the

agents in that condition. Figure 3.2 (Top) shows average intervention rates (the percent

of trials in which each subject modified the agent’s original suggestion) in each trial block.

Notably, intervention rates were high in all conditions, even with the reliable agent, whose

suggestions would catch the ball on approximately 80% of trials. Figure 3.2 shows an overall

increase in intervention rates even in the reliable and unreliable conditions where agent

performance did not change. This seems most likely to be a result of participants’ overall

task improvement noted above. A generalized linear mixed effects model fit to participants’

intervention decisions (binary) with a random intercept and slope for each participant

showed that intervention rates differed significantly across trial blocks (χ2(1) = 40.76,

p < .001); further, there was a significant interaction between trial block and condition

(χ2(3) = 97.96, p < .001), indicating that changes in intervention rate over time differed

significantly between conditions. Thus, far from merely trusting their partner’s suggestions,

participants took an active role in intervening and calibrated their interventions to their

partner’s underlying ability.
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Figure 3.2. Performance with each agent partner. (Top) Paddle intervention rates by
trial block. Error bars show standard error of participant means. (Bottom) Distribution
of average participant error by condition. Positive values indicate responses whose offset
from the correct paddle location were in the same direction as the agent’s suggestion
and negative values indicate the opposite. Curves are based on kernel density estimation.
Colored vertical lines indicate medians in each condition.
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Intervention decisions incorporated agent suggestions

In light of the high intervention rates across conditions, one account of people’s

behavior is that they simply relied on their own intuitive physics to respond, moving

the paddle to their best guess about the ball’s landing place regardless of where the

agent first positioned it. On this view, the quality of their partner’s recommendations

would have been irrelevant. To test this possibility, we examine participants’ errors on

each trial—the distance (in degrees) of the paddle from the ball’s final landing location.

Intuitively, if people completely disregarded their partner’s suggestions, the distribution of

their errors would be centered on the ball’s true landing location. Alternatively, if people

took their partner’s suggestions into account, we might expect final paddle placements to

be systematically biased towards or away from the partner’s initial suggestion. Figure 3.2

(Bottom) shows the distributions of participants’ average error in each condition. Critically,

these distributions are signed relative to the agent’s paddle suggestion; error greater than

0 represents participants placing the paddle away from the ideal catching location in the

direction of the agent’s suggestion. Meanwhile, error less than 0 represents participants

placing the paddle away from the ideal location in the opposite direction of the agent’s

suggestion. Participants’ average signed error was significantly greater than 0 in all four

conditions, reflecting a stable bias toward their partner’s recommended paddle locations

(reliable: t(56) = 15.70; unreliable: t(66) = 8.13; improving : t(64) = 12.34; worsening :

t(54) = 14.20; all ps < .001). A linear mixed effects model fit to participants’ signed error

on individual trials with random intercepts and slopes for each participant showed similar

results: Signed error distributions were not significantly different between conditions

(χ2(3) = 6.06, p = .11) but 95% confidence intervals on the estimated marginal means

were greater than 0 in all conditions (reliable: mean = 4.04 degrees, 95% CI = [3.29,

4.80]; unreliable: mean = 3.28, 95% CI = [2.59, 3.98]; improving : mean = 3.09, 95% CI =

[2.39, 3.79]; worsening : mean = 4.20, 95% CI = [3.44, 4.97]). This suggests that people’s
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decisions about where to place the paddle were not merely an effort to find the best

location independent of the bot’s suggestion; rather, they showed a systematic anchoring

toward their partner’s recommendation.

Taken together, the results in Figure 3.2 suggest that people’s decisions about

where to place the paddle integrated multiple sources of information. They did not näıvely

trust their agent partner regardless of its competence, nor did they simply choose the best

move each round without consideration for their partner’s recommendation. However, the

agent’s suggestion on a given trial is not the only source of information that might help

participants decide where to ultimately place the paddle. Across repeated interactions,

agents in each condition offer ongoing evidence of their underlying competence through the

accuracy of their paddle suggestions. Participants can use this information to calibrate

how much their final paddle locations should be influenced by their partner.

3.3.2 People relied on past performance to guide interventions

Since agent partners varied across conditions in how helpful their paddle suggestions

were, we hypothesize that participants incorporated this information into their decisions

about how closely to follow their partner’s suggestions. To test this, we begin by looking

at the relationship between the agent’s paddle suggestion error and participants’ paddle

intervention magnitude across conditions. If participants were correcting for the agent’s

errors in a way that did not integrate the agent’s underlying ability, this relationship should

be similar across conditions (i.e., they should adjust for small errors less and larger errors

more in a similar fashion). We fit a linear mixed effects model of participant intervention

magnitude (on trials in which they intervened) as a function of agent recommendation error

and condition with a random intercept and slope for each participant. We find a significant

interaction between condition and agent error (χ2(3) = 351.9, p < 0.001), suggesting that

the agent’s competence played a critical role in the way people’s intervention magnitudes

varied with the bot’s initial suggestion error. However, this result could be driven in part
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by the fact that the underlying distribution of agent errors differed substantially across

conditions (by design). Thus, a more apples-to-apples comparison should examine people’s

intervention behavior for similar levels of agent error across conditions. For this, we turn

to the eight critical trials that each participant completed.

Critical trial interventions reflected differences in agent ability

If people’s responses combined their own estimate of the ball’s final location and

their partner’s suggestion—without considering their partner’s overall reliability—we

should not see any difference in intervention behavior on the critical trials, since the agent’s

paddle suggestion error on critical trials was the same across conditions. Figure 3.3 (Top)

shows average intervention rates on critical trials. Though participants intervened less

than they should have across the board, there is a clear difference between conditions

that aligns with differences in the bot partner’s competence: Participants intervened

more often with an unreliable or improving partner than they did with a reliable or

worsening partner. To quantify these differences, we fit a generalized linear mixed effects

model to participants’ interventions (binary) on critical trials with a random intercept for

each participant; intervention rates differed significantly across conditions (χ2(3) = 17.84,

p < 0.001). Estimated marginal mean intervention rates were similar to the averages

shown in Figure 3.3 (reliable: mean = 79.41%, 95% CI = [73.01%, 84.55%]; unreliable:

mean = 89.28%, 95% CI = [85.16%, 92.27%]; improving : mean = 90.38%, 95% CI =

[86.50%, 93.28%]; worsening : mean = 81.61%, 95% CI = [75.55%, 86.41%]) and differed

significantly between unreliable and reliable conditions (p = .01), as well as improving and

reliable (p = .003) and improving and worsening (p = .021). Thus, decisions about when

to intervene on critical trials were sensitive to differences in the agents’ abilities.

Participants’ decisions about how much to intervene on critical trials (Figure 3.3,

Bottom) shows a similar pattern; those paired with an unreliable or improving partner

made larger adjustments than participants whose partner was highly accurate (reliable)
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Figure 3.3. Intervention behavior on critical trials. (Top) Proportion of critical trials on
which participants chose to intervene. The dashed line indicates optimal behavior (critical
trials always required intervention to catch the ball). (Bottom) Distance participants
intervened on critical trials. The dashed line indicates the optimal intervention distance
on these trials. Error bars in both plots represent standard error of participant means.
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or started out accurate (worsening). We fit a linear mixed effects model to participants’

intervention magnitude with a random intercept for each participant, now looking only at

critical trials in which participants intervened. We found significant differences between

conditions in intervention distance on these trials (χ2(3) = 28.33, p < .001). As with

intervention rates, estimated marginal mean intervention magnitudes were similar to the

participant averages shown in Figure 3.3 (reliable: mean = 12.1 degrees, 95% CI = [10.4,

13.9]; unreliable: mean = 18.3, 95% CI = [16.7, 19.8]; improving : mean = 17.0, 95% CI =

[15.4, 18.6]; worsening : mean = 14.2, 95% CI = [12.5, 16.0]). These showed significant

differences between reliable and unreliable agents (p < .001), reliable and improving agents

(p < .001), and unreliable and worsening agents (p = .005). Thus, a complete account of

reasoning on this task suggests that people maintain an underlying assessment of their

partner’s competence over time and calibrate their decisions about whether to intervene,

and how much, based on this assessment.

3.4 Discussion

In this study, we address the question of how people evaluate an artificial agent’s

competence in a collaborative physical prediction task. Specifically, we investigated how

differences in an agent’s ability impacted people’s decisions to either trust their partner’s

recommendation or intervene to modify it. Our results contain two key findings. First, we

show that participants integrate their own physical judgments and the recommendations

of their partner, intervening frequently in a way that was often “anchored” toward their

partner’s suggestion. Second, we find that on trials in which the agents’ suggestions

were identical across conditions, participants differed significantly in the frequency and

magnitude of their interventions in a way that reflected their partner’s prior success.

This suggests that the process by which people integrate their partner’s recommendation

involves a dynamic inference about their partner’s ability ; people calibrate how much to
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defer to their partner based on the prior reliability of their partner’s suggestions and are

sensitive to changes in their partner’s performance over time.

What kind of representation of their partner’s competence did participants have?

In the current experiment, each bot’s ability could be distilled to a single parameter

which either varied over time or was constant. As a result, participants did not need to

form a sophisticated representation of their partner’s competence; it would have been

sufficient to maintain a simple dynamic estimate of the bot’s accuracy or the variance

of their suggestions. Yet in the real world, estimates of another’s abilities are far more

nuanced. Consider the reasoning a teacher must do about their students’ knowledge

to understand why they made certain errors on their homework, or the way a soccer

coach might evaluate a player’s behavior in games to identify areas of improvement. In

these settings, evaluations of competence extend far beyond a single parameter related

to task accuracy. Instead, they reflect rich inferences about another person’s internal

model of the task—what they know or are capable of and how they make decisions. How

do people develop these complex representations of others’ competence over repeated

interactions? To better understand this, we extend our first experiment to include agents

whose fundamental knowledge about the physical dynamics of the task differs from the

ground truth. As a result, these agents produce systematic patterns in their errors which

reflect their misaligned internal models. We once again measure participants’ intervention

behavior, now with the aim of better understanding how people represent another agent’s

model of the world and use this representation to support collaboration.

3.5 Experiment 2

In this experiment, we investigate people’s ability to collaborate with an agent

whose understanding of the physical dynamics of the environment differs systematically

from the ground truth. This represents a broader and more naturalistic inquiry into
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how people evaluate the competence of others. In experiment 1, we find evidence that

participants’ collaborative behavior—their decisions about when to intervene on their

partner’s suggestion, and how much—reflects an ongoing evaluation of their partner’s

underlying ability beyond mere trial-by-trial decision making. However, these results license

limited inferences about how richly participants represent their bot partner’s competence.

This is because the bot agents in the previous experiment differ only in the variance of

their suggestions around the ball’s true landing location. Therefore, on any given trial,

the bot agent’s competence can be captured by this single latent parameter. In this way,

the challenge for participants of inferring their partner’s ability in the previous experiment

could be as simple as updating this parameter estimate after each trial. This task of

estimating a latent parameter in the environment is interesting in its own right, and is likely

something we do often (consider for example grabbing a jacket on the way out of the house

based on the inference that it often rains this time of year). However, when evaluating

the competence of others, people are also capable of far richer representations of another

agent’s ability. Such representations serve a useful purpose: they allow for better prediction

and may generalize to other similar tasks. How people make such complex inferences

about others’ competence in service of collaborative goals remains an open question. The

current experiment approaches this broader question by requiring participants to make

more sophisticated inferences about their bot partner’s ability. We retained much of the

structure of the previous experiment, while making two key modifications.

First, the competence of the bot agents was manipulated through their knowledge

about the physical dynamics of the task itself, which led to systematic errors (in contrast,

the agents in experiment 1 had normally distributed errors which didn’t result from

differing knowledge about the task). Concretely, bot partners in the current experiment

had distinct beliefs about the mass of the ball being launched. In two conditions, these

mass estimates were higher or lower than the true mass of the ball; as a result, these

bots consistently over- or under-estimated the path of the ball, and the amount by which
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they did so varied depending on its launch location. Thus, while participants in the first

experiment could not extract anything from their bot partner’s errors other than a refined

estimate of the bot’s accuracy, participants in this experiment faced a more nuanced

inference problem. The bot’s suggestions revealed information about the bot’s internal

model of the task environment—namely its belief about the weight of the ball—which

could explain the errors it made. Participants who inferred this about their partner could

use such a representation to systematically correct their partner’s suggestions.

We are interested in whether participants’ intervention behavior reflected an under-

standing of this predictable structure in their partner’s errors. In the previous experiment,

we probed participants’ social inferences about their partner’s underlying ability, and

the role that these inferences played in their intervention behavior, using critical trials

in which bot error was equated across conditions. The second major change in the cur-

rent experiment is to extend those results by exploring whether participants inferred an

accurate predictive model of their partner’s paddle suggestions. In eight mystery round

trials throughout the experiment, the ball’s launch location was hidden from participants

using an occluder. Participants were told that their bot partner could see the ball’s true

launch location, but participants saw only the bot’s paddle suggestion. In the absence of

information about where the ball was being launched from, participants could not adjust

the paddle using their own inferences about the ball’s path. Instead, they needed to decide

whether to adjust their partner’s paddle placement, and how much, based only on the bot’s

own suggestion. Here, an understanding of how the bot generates its suggestions could

allow participants to intervene in the right direction, and roughly the right magnitude, just

based on the suggested paddle location. We assessed participants’ intervention behavior on

both normal trials and mystery round trials to understand how participants collaborated

with a partner whose knowledge differed from their own, and how well they inferred this

difference in knowledge to further support collaboration.
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3.5.1 Participants

180 adults were recruited from Prolific; two were excluded due to technical issues,

leaving 178 participants with complete data. Participants were native English speakers

from the United States and United Kingdom who had not participated in the previous

experiment. Average age was 40.7 years (SD = 14.08); 78 participants were female, 95

were male, and 2 were non-binary. Education spanned high school (49), two- and four-year

college (29 and 36), graduate school (36) and post-graduate (25). We anticipated the

experiment would last roughly 30 minutes and participants were paid $15.50/hr based on

this expected completion time (average completion time: 22.3 minutes, SD = 6.48). All

participants provided informed consent in accordance with the UC San Diego IRB.2

To determine our sample size, we ran a power analysis based on experiment

simulations that surfaced estimates for a key measure in our analyses. We simulated

N participants each completing eight mystery round trials with a true probability P of

moving the paddle in a direction that corrects for the bot’s underlying bias. We then ran

a one-sided t-test of the hypothesis that the true probability of correcting the bot’s bias

is greater than chance (50%) using the proportion of trials with a response in the right

direction for each of our N simulated participants. Based on 10,000 simulated experiments

repeating this process, we estimated that with 50 people in a condition, we would have

greater than 99% power to detect a true probability of correcting the bot’s bias of P = 0.6.

A probability of 0.6 represents a “small” effect size (Cohen’s h = 0.2) relative to a chance

probability of 0.5 (Cohen, 1977). Therefore, we aimed for 50 people in each condition for

a total of at least N = 150 participants across our three conditions. We recruited 180

in total to allow for the possibility of technical error and imbalances during condition

assignment.

2All code used to run the experiment, as well as code used in analyses below, can be found at:
https://github.com/erik-brockbank/physics agent manuscript.
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3.5.2 Task overview

The current experiment was structured nearly identically to experiment 1; partici-

pants completed 96 trials divided into eight blocks of 12 (participants were not informed of

this structure, only the total number of trials). In each trial, participants were shown the

ball’s launch location and angle, along with an animation of the bot’s paddle suggestion.

They were then given a chance to modify the bot’s suggestion before launching the ball.

After launching the ball, its path was animated and participants saw whether their paddle

placement was successful (see Figure 3.4A).

In the current experiment, participants also completed eight mystery round trials

(Figure 3.4B), one in the second half of each trial block. This was done to ensure that the

first mystery round occurred after participants had received some exposure to their bot

partner’s suggestions and that all subsequent mystery rounds were roughly equally spaced

throughout the experiment. The mystery round launch angles were selected from eight

of the 12 launch angle “bins” used in each trial block. The eight launch locations were

identical for every participant. The order of the eight mystery rounds was shuffled for each

participant and assigned to a random trial in the second half of each trial block. Mystery

round trials proceeded nearly identically to normal trials. At the beginning of the trial,

participants were shown a large quarter-circle occluder hiding the quadrant of the circle

from which the ball was being launched. They next saw their bot partner suggest a paddle

placement as in other trials; after deciding whether to revise the bot’s suggestion and

launching the ball, the occluder was removed to show the ball’s launch location for a brief

interval before animating the ball’s path and whether participants successfully caught it.

3.5.3 Manipulating agent ability

In the previous experiment, participants were paired with one of four bot partners

whose competence was reflected in the variance of their paddle suggestions around the
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Figure 3.4. Experiment 2 Overview. (A) Participants’ agent partners had a biased
estimate of the ball’s path which systematically influenced their paddle suggestions. (B)
On “mystery round” trials, the ball’s launch point was hidden from participants. They
were told that their partner could still see the launch location; their job was to adjust the
paddle using only their partner’s suggestion as a cue.

ball’s true landing location (Figure 3.1). In this experiment, we instead manipulated bot

ability through the bias in their suggestions. Participants were assigned to one of three

conditions. In all three conditions, the bot sampled its paddle suggestion each round from

a von Mises distribution centered at the angle ρ̂ where the bot estimated the ball would

land on that trial. The variance σ2 of this distribution was identical in all conditions and

was chosen so that roughly 90% of paddle suggestion angles sampled from this distribution

would in fact catch a ball landing at its center. Thus, all three bots provided reliable

paddle suggestions based on their estimate of the ball’s landing location. However, they

varied in the way they estimated where the ball would land.

In the heavy bias condition, the bot’s estimate of the ball’s mass was 50% larger

than its true mass. As a result, the bot consistently underestimated the path of the ball

and its corresponding landing location. Critically, the magnitude of these underestimations

varied depending on the ball’s launch location around the circle. For launch angles close

to the left and right center points (3 and 9 on a clock face), where the ball had the largest
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horizontal distance to travel, the bias was most evident. Meanwhile, for launch angles

close to the top and bottom center points (6 and 12 on a clock face), the bias was almost

non-existent, since an incorrect estimate of the ball’s mass does not impact where it lands

when launched straight up or down. This means that for participants in this condition,

correcting the bot’s suggestions was not a matter of learning a fixed adjustment magnitude

that would correct their partner’s bias in all cases, but rather a continuous mapping

between the launch angle and the bot’s corresponding underestimation.

The light bias condition was identical to the heavy bias condition, except that

the bot’s belief about the ball’s mass led it to consistently overestimate the path of

the ball through the circle. Concretely, this bot’s estimate of the ball’s mass was 50%

smaller than the ball’s true mass; in this condition, we also modified the bot’s estimate of

the ball’s launch velocity so that the magnitude of the bot’s overestimates matched the

underestimates in the heavy bias condition. In short, the light bias bot made symmetrical

errors to the heavy bias bot, but in the opposite direction.

Finally, in the no bias condition, the bot’s estimate of the mass of the ball reflected

the ground truth. Its paddle suggestions on each round were sampled from a von Mises

distribution centered at the ball’s true landing location rather than a biased estimate of

the ball’s landing location. This condition provides a control where the agent’s suggestions

lacked a systematic bias; instead, its error pattern can be thought of as resulting from

noise, similar to the agents in the previous experiment. We explore the way people infer

the competence of an agent who has a fundamentally different internal model of the world

in the two bias conditions, versus one who understands the environment similarly but may

sometimes act differently due to random error.

3.5.4 Measuring representations of agent ability

As in the previous experiment, our analyses focus on how participants intervened

on their bot partner’s paddle suggestions. On each trial, we recorded whether participants

141



intervened, the magnitude of their interventions, and the corresponding error of the bot’s

original suggestion as well as participants’ final paddle placements. We hypothesized

that the frequency and magnitude of participants’ interventions reflected not merely their

ability to collaborate with the bot on the task, but their underlying inferences about their

partner’s competence over the course of the experiment. Comparing these values across

conditions allows us to assess how participants’ appraisals of their bot partner’s abilities

played out in their collaborative behavior.

However, an important question in our results is how much participants’ behavior

truly reflected an underlying inference about their bot partner. Our results seek to disen-

tangle participants’ judgments about their partner from their own intuitions about the task,

which may develop independently of any reasoning about their partner’s abilities. In the

previous experiment, we compared responses on critical trials where the bots’ suggestions

were equated across conditions so that differences in behavior could be attributed to

different judgments about the bot partners across conditions. In the current experiment,

we are interested in whether participants developed representations of their partner’s ability

which reflected their partner’s internal model of the world ; this internal model differed

from participants’ own in the heavy bias and light bias conditions. To address this, we

evaluate participants’ behavior on the eight mystery round trials. As in the normal trials,

we recorded whether participants intervened, how large their intervention was, and the

magnitude of the resulting error along with the error of the bot’s original suggestion. We

hypothesized that participants’ decision to intervene on these trials, and the magnitude

and direction of these interventions, would reflect an understanding of the structured error

patterns (or lack thereof) in their partner’s suggestions.
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3.6 Results

In our analyses, we explore two central hypotheses about people’s collaboration

with their bot partner. First, we predicted that participants would systematically correct

for the bot’s misaligned world model in the heavy bias and light bias conditions. We test

this hypothesis in two ways. We begin by exploring participants’ rate of intervention

and overall accuracy between conditions to determine whether participants’ intervention

behavior reflected the differential abilities of their partner, and whether these interventions

resulted in lower error. In addition, we explore the relationship between bot error and

participant intervention magnitude within conditions to see whether participants were

able to revise their bot partner’s suggestions at a fine-grained level that was responsive to

the variance in their partner’s error.

The hypothesis above concerns participants’ adaptive behavior, but does not

address whether participants’ interventions relied on a representation of their bot partner’s

world knowledge or the bias that this inaccurate knowledge produces. However, as noted

previously, people’s everyday inferences about the competence of others often involve

reasoning about their internal model of a given task. We hypothesized that participants in

the current experiment would show evidence of such inferences by being able to correctly

adjust their partner’s suggestions even when using only the suggestions themselves as

cues. To test this, we examine intervention rate and error correction in the mystery round

trials, where participants had visibility into the bot’s suggestion but not the ball’s launch

location. Insofar as participants were able to systematically correct for their partner’s bias

without using the ball’s launch angle to estimate its endpoint in the light bias and heavy

bias conditions, this suggests participants had a richer representation of the generative

process underlying their partner’s suggestions.
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3.6.1 People systematically corrected for their partner’s
incorrect world model

We begin by asking how well participants were able to correct their partner’s

errors, particularly in the heavy bias and light bias conditions. This question has two

components: First, did differences in intervention behavior between conditions reflect the

different demands placed on participants by the three bot partners? And second, did

variation in intervention magnitudes within each condition align with variation in the bots’

suggestion error? We find evidence in support of both questions, suggesting that broadly,

participants were able to reliably and systematically correct for their partner’s incorrect

world model in the heavy bias and light bias conditions.

Participants intervened to improve accuracy

The bot partner in the no bias condition suggested paddle placements that would

catch the ball without any changes in approximately 90% of trials. Participants therefore

faced little pressure to modify the bot suggestions in this condition. In contrast, bot

suggestions in the heavy bias and light bias conditions were frequently distant from the

ball’s true landing location—to succeed in these conditions, participants needed to intervene

far more often and by larger amounts than in the no bias condition. Is this what they

did? Figure 3.5 (Top) shows average intervention rate—the proportion of trials in which

participants modified their partner’s suggestion—in each condition over the course of

the experiment. Intervention rates were relatively high in all three conditions and fairly

consistent from beginning to end; however, there are also clear differences between the

conditions. We fit a generalized linear mixed effects model to participant interventions

(binary) on normal trials with random slopes and intercepts estimated for each participant.

Consistent with the participant averages shown in Figure 3.5, estimates of marginal mean

intervention rates were 92.27% in the heavy bias condition (95% CI = [88.69%, 94.78%]),

89.96% in the light bias condition (95% CI = [86.00%, 92.88%]), and only 48.10% in the
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no bias condition (95% CI = [39.12%, 57.13%]). Not surprisingly, intervention probability

differed significantly across conditions (χ2(2) = 72.43, p < .001); pairwise comparisons of

the estimated marginal means showed that intervention rates were significantly higher in

the heavy bias and light bias conditions than in the no bias condition (p < .001 in both

cases), but not different between heavy bias and light bias conditions (p = .52).

But how successful were these interventions? Figure 3.5 (Bottom) shows the average

error of participants’ paddle placement (i.e., the distance in degrees between the ball’s

true landing angle and the paddle’s final angle) in each condition over the course of the

eight trial blocks. In all three conditions, participants struggled more in the first block

of trials but reached a fairly stable error level by the second block. Though a linear

mixed effects model fit to participant error with a random intercept and slope estimate

for each participant found significant pairwise differences between all three conditions (all

ps <.001), here we are most concerned with whether participants achieved reasonable

accuracy levels in each of the bot partner conditions. Estimated marginal mean error

values from the mixed effects model were low across all three conditions, in line with the

trend in Figure 3.5 (heavy bias: mean = 8.72 degrees, 95% CI = [7.97, 9.47]; light bias:

mean = 6.80, 95% CI = [6.10, 7.50]; no bias : mean = 5.20, 95% CI = [4.47, 5.94]).

Graded intervention behavior was sensitive to partner bias

The results in Figure 3.5 suggest that between the three experimental conditions,

participants were sensitive to differences in the overall magnitude of errors produced

by their bot partner. However, beyond these differences between conditions, successful

collaboration with each bot partner required correcting for variation in their suggestion

error. Here, we ask whether participants were calibrated to their bot partner’s errors

by exploring the relationship between bot error magnitude and intervention magnitude

within each condition. First, we examine whether participants consistently improved

their bot partner’s initial suggestion. How much participants improved their partner’s
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Figure 3.5. Behavior on normal trials by trial block. (Top) Paddle intervention rates.
(Bottom) Error of participant paddle placements on normal trials. Dashed lines represent
the average error of the bot’s suggestions in each condition. Error bars in both plots
represent standard error of participant means.
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suggestion on a given trial is reflected in how close they came to perfectly correcting

their partner’s error. We quantify this as the difference between the error of the bot’s

original suggestion (its distance from the ball’s true landing location) and the error of the

participant’s final paddle placement; we then scale this reduction in error by the error of

the bot’s original suggestion, resulting in a proportion of bot error corrected on that trial.

This proportion has several intuitive properties. Values less than 0 result from participants

making the bot’s suggestion worse, either by moving the paddle in the wrong direction

or by over-correcting more than the original error. Values of 0 signal that participants

made no changes to the bot’s suggestion or over-corrected by the exact same amount as

the original suggestion. Finally, values between 0 and 1 arise from participants improving

the bot’s suggestion by some fraction of the original error, with better corrections closer

to 1 (the proportion has an upper bound of 1 since the reduction in error achieved with

the final paddle placement cannot be more than 100% of the original error magnitude).

Figure 3.6 (Top) shows the distribution of participants’ average bot error correction

proportions in each condition. Because the proportion of error corrected is vulnerable to

large negative values in cases where the bot’s error is small to begin with and participants

intervene anyway, we remove trials in which the bot’s error was in the bottom 20% of

values before calculating these averages.3 Participants in the no bias condition primarily

made no change to their bot partner’s error, with interventions relatively balanced in

whether they improved or worsened the bot’s suggestion. In contrast, the distribution

of responses in the heavy bias and light bias conditions is shifted towards 1, reflecting

consistent overall improvement to the bot’s suggestions. To estimate the size of these

differences, we fit a linear mixed effects model to individual participant bot error correction

proportions with a random intercept and slope for each participant. When fitting the

model, we once again excluded trials in which the bot’s error was in the bottom 20%

of values. We found a significant difference between conditions in the proportion of bot

error corrected (χ2(2) = 177.57, p < .001); follow-up pairwise comparisons of estimated
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Figure 3.6. Participants’ sensitivity to their partner’s continuous error magnitudes.
(Top) Distribution of average bot error correction proportions for normal trials in each
condition after removing the bottom 20% of bot error trials. Values less than 0 result from
modifying the bot’s suggestion in the wrong direction; values of 0 represent no change in
bot suggestion error, while values of 1 (theoretical maximum) represent complete correction
of bot suggestion error. Vertical lines represent medians. (Bottom) Correlation between
bot suggestion error (degrees) and magnitude of participant interventions for normal trials.
Error bars represent standard error of participant correlations.

148



marginal means indicate that this is a result of significant differences between the no bias

condition and the heavy bias and light bias conditions (both ps < .001) but not between

the heavy bias and light bias conditions (p = .67). In line with the overall pattern in

Figure 3.6, the estimated marginal mean error correction proportions are close to 0 in

the no bias condition (mean = 2.37%, 95% CI = [-2.39%, 7.13%]) and are both similarly

shifted towards 1 in the heavy bias (mean = 52.84%, 95% CI = [47.98%, 57.71%]) and

light bias (mean = 55.76%, 95% CI = [51.22%, 60.31%]) conditions.

The bot error correction proportions in Figure 3.6 suggest that participants in the

heavy bias and light bias conditions frequently corrected their partner’s suggestions in the

right direction and with varying magnitudes as a proportion of the bot’s error. To better

understand how closely participant intervention magnitudes scaled with the accuracy of

their bot partner’s suggestions, we compute the pairwise correlation for each participant

between their partner’s suggestion error and their intervention magnitude on all non-

mystery round trials. Figure 3.6 (Bottom) shows the average of these individual correlations

for participants in each condition. In the heavy bias condition, these correlations were

significant for 75% participants; in the light bias condition, 89.1% were significant, and

in the no bias condition, only 39.7% were significant. In line with this variation, a one-

way ANOVA found that participant correlations differed significantly between the three

conditions (F (2, 241) = 52.47, p < .001); follow-up t-tests confirmed that this was a result

of significant pairwise differences between all three conditions (p < .001 for heavy bias and

light bias versus no bias ; p = .002 for heavy bias versus light bias).

To validate these results, we also fit a linear mixed effects model to participants’

intervention magnitudes on each trial as a function of bot error magnitude and condition,

with random intercepts and slopes for each participant (the linear relationship between

participant intervention magnitude and bot error magnitude estimated by this model at

3Findings reported here are not highly sensitive to this choice of cutoff; smaller cutoffs primarily
“penalize” error correction estimates in the no bias condition. Similar results are obtained when we instead
set an error cutoff around 3 degrees in all conditions.
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an individual trial level should be similar to the correlations above). Model comparison

revealed a significant interaction between condition and bot error magnitude (χ2(2) =

162.49, p < .001), consistent with the fact that the correlations computed above between

intervention magnitude and error magnitude differed significantly by condition. Broadly,

these results suggest a strong relationship between bot error and participants’ intervention

magnitude, particularly in the heavy bias and light bias conditions.

3.6.2 People intervened using the structure of partner error

Our results so far indicate that participants were able to correct for the potential

bias exhibited by their bot partner and were even sensitive to the continuous variation in

the magnitude of the bias. However, it remains unclear what kind of social inference about

their partner, if any, participants relied on to accomplish this. If they inferred that their

partner exhibited a systematic pattern of over- or under-estimating the ball’s path, they

could use this information to aid in correcting the bot’s suggestions. However, it’s also

possible that participants had a roughly accurate internal model of the physics of the game

which allowed them to correct the bot’s error without reasoning about the underlying

structure of these errors. To compare these possibilities, we examine participants’ behavior

on the mystery round trials; because these trials hampered participants’ ability to respond

using their own internal physics, success on these trials is more likely a result of inferences

about the structure in their bot partner’s error.

We first explore participants’ intervention rate on mystery round trials. Figure 3.7

(Top Left) shows the average proportion of mystery round trials in which participants

intervened on their bot partner’s suggestion. While participants in the no bias condition

rarely modified their partner’s suggestion in the mystery round trials, intervention rates

in the heavy bias and light bias conditions were very high. To estimate these values

more precisely, we fit a generalized linear mixed effects model of participant interventions

(binary) on mystery round trials with a random intercept for each subject. In this model,
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Figure 3.7. Intervention behavior on mystery round trials. (Top) At left, proportion of
mystery round trials in which participants intervened to modify the bot’s suggestion in
each condition. At right, proportion of mystery round trials among those participants
intervened in that were modified in the correct direction. The dashed line indicates chance
performance (50%). Error bars represent standard error of participant proportions in both
figures. (Bottom) Distribution of average error correction proportions in each condition for
mystery round trials only, after removing trials in the bottom 20% of bot error. Vertical
lines indicate medians.
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estimated marginal mean intervention rates exhibited even more dramatic differences

than the averages shown in Figure 3.7 (heavy bias : mean = 91.76%, 95% CI = [84.94%,

95.67%]; light bias: mean = 88.29%, 95% CI = [80.38%, 93.30%]; no bias: mean =

20.92%, 95% CI = [12.46%, 33.09%]). Intervention rate on mystery round trials differed

significantly between conditions (χ2(2) = 77.86, p < .001); follow-up pairwise comparison

of the estimated marginal means above found significant differences between the no bias

condition and the heavy bias and light bias conditions (p < .001 in both cases) but no

difference in mystery round intervention rate between heavy bias and light bias conditions

(p = .65). In the absence of information about where the ball was being launched from,

participants’ similarly high intervention rate in the heavy bias and light bias conditions

and low intervention rate in the no bias condition suggests that they had at least a basic

representation of their bot partner’s overall competence.

But did this representation extend beyond the mere need to intervene on these

trials? Modifications to the bot’s suggestion on a given trial can be classified as either

moving the paddle in the correct direction (towards where the ball will land) or the

incorrect direction (away from where the ball will land). Critically, in the heavy bias and

light bias conditions, this direction on a given trial can be inferred using only knowledge

of the bot’s bias. Did participants understand that their partner’s errors necessitated

adjusting the paddle in a reliable direction in each half of the circle? Figure 3.7 (Top Right)

plots the average proportion of mystery round trial interventions that participants modified

in the correct direction in each condition. If participants were merely guessing, they should

only get this right on roughly 50% of trials where they intervene, while bot suggestion

improvement rates greater than 50% suggest that participants were able to recognize the

directional structure of their partner’s errors. To compare the improvement rates across

conditions, we fit a generalized linear mixed effects model to mystery round trials in which

participants intervened with improvement or worsening of the bot’s suggestion (binary)

as the dependent variable and a random intercept for each subject. Consistent with the
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average improvement rates shown in Figure 3.7, estimated marginal mean improvement

rates were high in the heavy bias (mean = 71.24%, 95% CI = [64.66%, 77.05%]) and light

bias conditions (mean = 77.19%, 95% CI = [71.38%, 82.11%]) and near chance in the

no bias condition (mean = 46.16%, 95% CI = [35.78%, 56.88%]). Thus, condition was

a significant predictor of whether interventions improved the bot’s original suggestions

(χ2(2) = 25.19, p < .001); pairwise comparison of estimated marginal means showed that

this was a result of significant differences between the no bias and the heavy bias and

light bias conditions (p < .001 for both), but not between the heavy bias and light bias

conditions (p = .32). Broadly, participants not only intervened at rates that reflected

their partner’s ability; their interventions were more often in the right direction when the

necessary intervention direction could be inferred from the bot’s pattern of errors.

In light of the fact that participants in the heavy bias and light bias conditions

frequently intervened in the mystery round trials, and did so in the correct direction, a

natural question is whether the magnitude of their interventions was calibrated to the bot’s

error on these trials. We address this by once again analyzing the proportion of bot error

corrected by participants in each condition, this time looking exclusively at mystery round

trials. Figure 3.7 (Bottom) shows the distribution of participants’ average proportion

of bot error corrected on mystery round trials. As in the previous analysis with this

measure, we remove trials in which bot error is below the the bottom 20th percentile. The

distributions are qualitatively similar to those estimated for normal trials in Figure 3.6,

but attenuated in the mystery round trials. Participants in the no bias condition once

again primarily made no changes to their partner’s error; changes they did make were

symmetrical with respect to whether they improved the bot’s suggestion. Meanwhile,

participants in the heavy bias and light bias conditions showed a greater tendency to

improve on their bot partner’s original suggestion. We fit a linear mixed effects model to

the proportion of bot error corrected for participants’ mystery round trials with a random

intercept for each subject, once again removing trials where bot error was below the 20th
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percentile of all trials in each condition. Individual bot error correction proportions on

mystery round trials differed significantly across conditions (χ2(2) = 39.41, p < .001). As

in previous analyses, estimated marginal mean pairwise comparisons revealed that this

was a result of significant differences between the no bias and the heavy bias and light bias

conditions (p < .001 in both cases) but not between the heavy bias and light bias conditions

(p = .68). Estimated marginal means for the proportion of bot error corrected reflect these

differences: Mean proportion corrected was 29.95% for the heavy bias condition (95% CI

= [20.30%, 39.55%]), 35.53% for the light bias condition (95% CI = [26.50%, 44.55%]),

and -5.39% for the no bias condition (95% CI = [-14.90%, 4.09%]). Thus, participants in

the bias conditions not only modified their bot partner’s suggestions in the right direction,

but did so in a way that approximated the magnitude of their partner’s error.

3.7 Discussion

In this experiment, we explored people’s ability to collaborate with a partner whose

internal model of the task itself was fundamentally different from the ground truth, leading

to systematic patterns of error. Results contain two key findings. First, we show that

participants successfully collaborated with biased bots—they intervened frequently with

biased partners and achieved error levels similar to those in a control condition with a

highly accurate, unbiased bot. Furthermore, we find evidence that participants’ ability

to correct their partner’s bias was sensitive to the continuous, graded nature of the bias;

participants primarily corrected their partner’s errors in the right direction and there

was a strong relationship between magnitude of the partner’s error and the magnitude of

participants’ corresponding interventions.

Our second finding concerns the underlying competence evaluations that supported

participants’ adaptive behavior. One account of participants’ success on the task is that

they were merely adjusting the paddle based on where they expected the ball to land,
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without any reasoning about their partner. To explore whether participants could infer the

structure underlying their partner’s suggestions and use this to guide behavior, participants

were presented with eight mystery round trials in which the ball’s launch point was hidden

from them. Presented with the agent’s (informed) paddle location suggestion but not the

ball’s launch point, participants needed to decide where to place the paddle based on what

they knew about the relationship between the agent’s suggestions and the ball’s landing

point. We find that participants paired with both biased bots (but not the unbiased bot)

were significantly more likely to intervene on these trials and, when doing so, adjusted the

paddle in the correct direction. This ability to move the paddle in the direction which

corrected for the bot’s bias without knowledge about where the ball was being launched

from in the first place is difficult to explain without some understanding of the underlying

structure in the bot’s suggestions.

The current experiment therefore provides evidence that people’s competence

evaluations—their understanding of what their bot partner is capable of—extend beyond

mere assessments of accuracy or variance to recognizing structure in their errors that result

from an inaccurate model of the task. The ability to detect this structure and use it to

inform their collaboration with their partner places the current results closer to many

everyday evaluations of competence, in which we seek to develop a more comprehensive

understanding of other people’s internal model of an activity.

3.8 General Discussion

What kind of representation do people form of others’ abilities, and how do these

representations impact their collaborative behavior? Prior work has addressed this question

from a range of distinct theoretical and methodological perspectives across psychology

and artificial intelligence; broadly, this work emphasizes people’s ability to incorporate

sophisticated representations of the task as well as their collaborator’s knowledge, prior
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success, and strategy. The current work builds on these results in two key ways. First,

while prior research has largely relied on collaborators whose abilities are static, this

contrasts with many everyday interactions in which people can improve with practice or

worsen with fatigue. Intuitively, our representations of others’ competence are flexible

enough to accommodate this, yet the ways in which people represent an improving or

worsening partner remain largely unclear. Second, while some prior work has explored

the impact of people’s underlying task representations on judgments of competence or

trust (Soh et al., 2020), existing work tends to focus on collaborative interactions in fairly

abstract domains. In the current work, participants’ collaborative interactions occurred in

the context of a physics-based game in which people were likely to have rich mental models

of the basic mechanics of gravity and ball trajectories. In experiment 2, we leveraged

this to modify the bot agent’s internal model of the task, a manipulation which would

be challenging in more abstract domains. Further, whereas people’s own sparse internal

models may make it harder to detect this sort of manipulation in abstract tasks, we

hypothesized that people’s flexible ability to reason about physical interactions would

enable them to more easily detect their partner’s systematic error patterns.

Our results show that both of these key manipulations captured people’s intuitive

reasoning about the abilities of others in collaborative contexts. First, in experiment 1,

we find that people adapted their intervention behavior to accommodate the underlying

accuracy—and the changes in accuracy—of their partner. Participants were sensitive to

changes in the variance of their partner’s suggestions over time. Further, results from the

critical trials in experiment 1 indicate that people’s collaborative behavior was supported

by a latent estimate of their partner’s ability which influenced their interventions above

and beyond trial-level information. Put another way, we show that people incorporated

the past behavior of their partner into their intervention decisions. Future work should

explore this relationship more closely; how much does history matter?

Second, in experiment 2, we find that people were sensitive to their partner’s
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incorrect model of the task mechanics. Specifically, across the two bias conditions and the

no bias control condition, people were able to achieve high accuracy levels; in particular,

participants paired with the biased bots showed evidence of systematically correcting for

the varying magnitude of their partner’s errors. Critically, our results also suggest that

correcting their partner’s errors relied, at least in part, on the ability to represent their

partner’s incorrect world model. Participants intervened frequently, and overwhelmingly

in the correct direction, on trials in which the only information about the ball’s launch

point (other than the quadrant of the circle) came from the bot’s suggestion itself.

Taken together, these results suggest that physical task settings offer a promising do-

main in which to explore the representations of competence that underlie our collaborative

behavior. However, the current work is only a first step in this direction. People exhibit

a rich ability to simulate physical environments in service of prediction and explanation

(Battaglia et al., 2013) and rely on similarly rich mental models of others’ motivation and

actions (Jara-Ettinger et al., 2016). The current work presents an opportunity to explore

how these two systems might interact when forming representations of others’ knowledge or

abilities in physical task settings. To what degree can we simulate the physical knowledge

of others using our own internal physics? Or recognize an agent’s goals based on their

interaction with the physical world?

Future work might also expand on the kinds of latent parameters that people

use to represent others’ abilities alongside more detailed representations of competence.

For example, can people’s trust in another agent be represented by a single parameter

estimated from their previous behavior, similar to accuracy? Or is it more like a summary

statistic over the full mental model we have of others, describing them on the basis of

everything that is known about their knowledge and abilities in a domain? Though existing

work offers few answers to such questions, the ability to probe people’s behavior over many

interactions in rich task domains, and recent advances in computational modeling of social

inferences (Vélez & Gweon, 2021) offers a promising avenue for investigation.
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Finally, though intuition and prior work on pedagogical reasoning (Shafto et al.,

2014) suggests that people are highly attuned to the learning goals of others, the current

work is only a first step in understanding our representations of others’ learning processes.

Physical tasks which can be decomposed into relevant physical knowledge and competencies

(like knowing the correct mass of the ball in the current task) offer a chance to better

explore how people form representations of another agent’s learning in more discrete

and structured ways over the course of many repeated interactions. Altogether, current

results open the door to future work exploring how our representations of others’ abilities,

knowledge, and learning enable rich forms of collaboration over extended time periods.
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pedagogy breaks down: Adults rationally decide how to teach, but misrepresent
learners’ beliefs. Cognitive Science, 47 (3), e13257.

Bahrami, B., Olsen, K., Latham, P. E., Roepstorff, A., Rees, G., & Frith, C. D. (2010).
Optimally interacting minds. Science, 329 (5995), 1081–1085.

Bass, I., Bonawitz, E., Hawthorne-Madell, D., Vong, W. K., Goodman, N. D., & Gweon, H.
(2022). The effects of information utility and teachers’ knowledge on evaluations of
under-informative pedagogy across development. Cognition, 222, 104999.

Bass, I., Gopnik, A., Hanson, M., Ramarajan, D., Shafto, P., Wellman, H., & Bonawitz, E.
(2019). Children’s developing theory of mind and pedagogical evidence selection.
Developmental psychology, 55 (2), 286.

Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine
of physical scene understanding. Proceedings of the National Academy of Sciences,
110 (45), 18327–18332.

Biele, G., Rieskamp, J., & Gonzalez, R. (2009). Computational models for the combination
of advice and individual learning. Cognitive science, 33 (2), 206–242.

Bonawitz, E., Shafto, P., Gweon, H., Goodman, N. D., Spelke, E., & Schulz, L. (2011).
The double-edged sword of pedagogy: Instruction limits spontaneous exploration
and discovery. Cognition, 120 (3), 322–330.

Chen, M., Nikolaidis, S., Soh, H., Hsu, D., & Srinivasa, S. (2020). Trust-aware decision mak-
ing for human-robot collaboration: Model learning and planning. ACM Transactions
on Human-Robot Interaction (THRI), 9 (2), 1–23.

Cohen, J. (1977). Statistical power analysis for the behavioral sciences. Academic press.

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in
a statistically optimal fashion. Nature, 415 (6870), 429–433.

159



Gweon, H. (2021). Inferential social learning: Cognitive foundations of human social
learning and teaching. Trends in Cognitive Sciences, 25 (10), 896–910.

Jara-Ettinger, J., Gweon, H., Schulz, L. E., & Tenenbaum, J. B. (2016). The näıve utility
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Discussion
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The work in this dissertation is motivated by the broad question of how our

representations of others are structured. While answering this question is beyond the

scope of one dissertation (or many!), I argued at the outset that we can get traction

on the question—and on areas where current research leaves us guessing—by turning to

the history of how psychologists have thought about good scientific models of others. In

particular, I argued that behaviorist and cognitivist models of human reasoning offer two

well-described accounts of how we might think about representations of others in intuitive

psychology. Further, I argued that this distinction offers a useful way to evaluate existing

work on theory of mind reasoning and social reasoning more broadly. A review of the

literature on our behaviorist and cognitivist intuitive psychology suggests that while recent

developments in computational cognitive modeling have enabled a systematic inquiry

into the structure of our cognitivist representations of others as well as their ontogeny,

the space of behaviorist mental models is disparate and lacks a coherent account. While

a range of everyday human behaviors, from habits to sequenced actions to norms and

conventions might seem like candidates for a more “rule-governed” theory of mind, little

work has systematically explored people’s ability to reason about others in this way.

The first two chapters of the dissertation represent my own attempt to characterize

how people reason about structured sequential patterns in others’ behavior. In chapter 1,

I show that people’s behavior in mixed strategy equilibrium (MSE) games like rock, paper,

scissors represent a novel setting in which to do this for several reasons. First, the structure

of the game itself entails that looking for sequential patterns in an opponent’s behavior

is the only strategy available, assuming a fallible opponent. Second, the simple action

space of rock, paper, scissors allows for a systematic account of the different sequential

patterns that a player can display and that their opponent might in turn exploit. And

third, people can play many repeated rounds of the game, allowing ample time for players

to express such patterns and detect them in others. I present evidence that people are

able to exploit their opponents in this way over many rounds and illustrate the patterns
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that emerge in their moves when playing.

Chapter 2 builds on these results by attempting to characterize precisely what it is

people are doing when they acquire a behaviorist opponent model in this setting. Over

two studies in which people played repeated rounds against bot opponents that either

exhibited particular patterns in their moves or tried to exploit those same patterns in

participants’ moves, I show that there is a highly constrained space of patterns people can

reliably exploit or revise in their own moves. Thus, people’s behaviorist mental models

appear to have a limited capacity in this setting. This is counterintuitive and goes against

prior work showing that people’s statistical learning abilities are rich and sophisticated

(Saffran et al., 1996); it merits future work which might systematically tease apart the

reasons people struggle to reason about others’ behavior in this task.

However, one approach is by exploring what makes people succeed at developing

more cognitivist models of intuitive psychology. In chapter 3, I turn to the question of

how people develop representations of another agent’s competence to support repeated

collaboration. This question has relevance to existing work spanning developmental

psychology, social psychology, and robotics and artificial intelligence. Recent computa-

tional work exploring our social learning suggests that people can build rich and highly

structured mental models of other agents, particularly in service of collaborative goals

(Gweon, 2021; Vélez & Gweon, 2021). Chapter 3 extends earlier work in this vein by

exploring people’s ability to collaborate with agents whose abilities change over time and

who exhibit incorrect internal models of the task. Despite the difference in topics, the

methodological approach in this chapter, and the motivating interest in understanding

the precise structure of our representations of others as they unfold over time, is closely

aligned with chapters 1 and 2. Using repeated interactions with a bot partner whose

behavior was parametrically manipulated in broad ways, my co-authors and I show that

people develop a latent representation of their partner’s ability based on past trials which

influences their collaborative behavior and that this representation can be extended to
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include features of their partner’s own internal task model.

What do we learn from this work collectively? In one sense, the results from

chapters 1 and 2 stand in fairly stark contrast to those in chapter 3. While people

struggled to develop complex behaviorist mental models of their rock, paper, scissors

opponents, they made nuanced and sophisticated inferences about the structure in their

partner’s behavior in a collaborative physical task. In light of this difference, one apparent

take-away from these results is that our representations of others can take on

surprisingly diverse forms but their complexity is heavily context-dependent.

When collaborating in a physical task domain, participants built rich models of others’

behavior; in adversarial interactions with an abstract action space, people struggled to

infer the causes of their opponent’s behavior beyond simple contingencies. There are a

number of possible accounts for these differences that could be explored in future work:

the difference between collaboration and competition, the difference between abstract,

game-like action spaces and more grounded, physical actions, the type of pattern being

exhibited (sequential patterns versus bias and variance), or the error signal acquired from

actions (win, loss, or tie versus continuous error).

However, an important take-away from this work is not just the differences between

results, but the fact that people developed well-defined mental models of others in all of

these settings. This was by no means a guarantee and may be surprising given the large

set of differences outlined above. Thus, a central question that arises from these

results is how people are able to determine the right kind of mental model of

others for a given context. The idea that people deploy mental models of others at

different levels of granularity or complexity has been explored in recent work (Burger &

Jara-Ettinger, 2020; Rabinowitz et al., 2018), but what constitutes the hypothesis space

or the proper parameterization of these distinct models is far from clear. The work in this

dissertation offers one possible way forward: By identifying domains in which people can

and do exhibit distinct mental models of others and then experimentally manipulating
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the differences between these domains—the costs, time constraints, and complexity of

others’ behavior—we may be able to develop a more holistic account of how people weigh

the tradeoffs between computational complexity and predictive power when constructing

representations of others.

A second question that emerges from this work is how context-specific

people’s representations of others are, along with the learning and inference

mechanisms that support them. One possible account of people’s failures in detecting

patterned opponent moves in rock, paper, scissors, is that people struggle to recognize

patterns in abstract domains that they might easily identify in more familiar settings. For

example, Cheng and Holyoak (1985) famously showed that when a difficult propositional

logic task was reframed as a question about who should be asked to show their ID at a

bar, people found it trivially easy. They argue that permission schemas offer a means

of reasoning that the logical formulation of the original problem did not permit. Do

the schemas we invoke for interpreting others’ actions show a similar selectivity where

sequential patterns in behavior that evoke preferences or other familiar abstractions are

easily recognizable, while the same patterns expressed in rock, paper, scissors moves seem

inscrutable? In fact, questions about context-specificity arise in chapter 3 as well. One

intuitive aspect of our everyday inferences about the competence of others is that they

do not happen in a vacuum; if a child is able to brush their teeth on their own, they can

probably get dressed on their own as well. How do we perform such mappings between

everyday contexts, and where do they break down? What is the structure of our everyday

task embeddings and how do they support our representations of others’ abilities within

particular contexts?

Finally, a third question that arises from this work is how we might

further characterize the behaviorist and cognitivist mental models explored in

these chapters. First, consider the behaviorist intuitive psychology outlined in chapters

1 and 2. While sequential patterns in an opponent’s RPS moves represent a simple and
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structured way to explore such reasoning, everyday life is full of scenarios in which people

follow well-defined rules or scripts for behavior (Schank & Abelson, 1977). Consider, for

example, the actions of a barista taking somebody’s order in a coffee shop. Might the

notion of a behaviorist theory of mind be expanded to include the more general case of how

we reason about others’ behavior as a result of such well-defined rules or procedures? How

much of our everyday reasoning about others falls under this category and how distinct is

it from existing cognitivist mental models?

Second, when thinking about the representation that participants formed of their

bot partner in chapter 3 (experiment 1), it likely centered on a simple trait estimate like

how good or accurate the agent was. Recent computational accounts of theory of mind

such as the näıve utility calculus model focus on how we infer relatively transient mental

states like beliefs and desires, but largely ignore more stable and individually varying traits

like whether somebody is impatient or careless (Jara-Ettinger, 2019). Yet traits play an

important role in our intuitive psychology—when somebody cuts us off on the highway,

we accuse them of being negligent rather than assume that they are in a hurry—and the

relationship between traits and more context-specific causes has been one of the most

well-studied phenomena in social psychology (Jones & Harris, 1967; Ross, 1977; Walker

et al., 2015). Recent work has explored how we learn useful trait-like abstractions from

repeated interactions with others (Hackel & Amodio, 2018; Tamir & Thornton, 2018;

van Baar et al., 2022); how might this be extended to capture the range of trait inferences

people routinely make about those around them and how do these inferences support

predictions of future behavior?

I look forward to the opportunity to explore these questions and other

similar ones in future work (hopefully with members of this committee!), and

thank all of you for your time, support, and feedback along the way.
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