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EXCLUSION PROCESSES IN HIGHER DIMENSIONS:
STATIONARY MEASURES AND CONVERGENCE

BY M. BRAMSON1 AND T. M. LIGGETT2

University of Minnesota and University of California, Los Angeles

There has been significant progress recently in our understanding of the
stationary measures of the exclusion process on Z. The corresponding situ-
ation in higher dimensions remains largely a mystery. In this paper we give
necessary and sufficient conditions for a product measure to be stationary for
the exclusion process on an arbitrary set, and apply this result to find exam-
ples on Zd and on homogeneous trees in which product measures are station-
ary even when they are neither homogeneous nor reversible. We then begin
the task of narrowing down the possibilities for existence of other stationary
measures for the process on Zd . In particular, we study stationary measures
that are invariant under translations in all directions orthogonal to a fixed
nonzero vector. We then prove a number of convergence results as t → ∞ for
the measure of the exclusion process. Under appropriate initial conditions,
we show convergence of such measures to the above stationary measures. We
also employ hydrodynamics to provide further examples of convergence.

1. Introduction. In this paper we consider the stationary measures and con-
vergence for the exclusion process ηt on the countable set S with (stochastic)
transition probabilities p(x, y). This is the Markov process on {0,1}S in which
a particle at x ∈ S attempts to move to y ∈ S at rate p(x, y). The move takes place
if y is vacant and does not take place if y is occupied. The exclusion process has
been very heavily studied since its introduction by Spitzer [18] in 1970. For an
account of many known results about it, see the books by Liggett [13, 14], and
Kipnis and Landim [8], and the references therein.

In spite of the tremendous success that the study of the exclusion process has
seen, relatively little was known about the existence and structure of nonexchange-
able and nonreversible stationary measures for the translation invariant exclusion
process on Zd until 2001. (The only truly general result that was known is that
all extremal translation invariant stationary measures are of product form—see
Theorem 3.9 of Chapter VIII in [13].) This is still the case if d > 1. In one di-
mension, however, the papers by Ferrari, Lebowitz and Speer [5], Bramson and
Mountford [2] and Bramson, Liggett and Mountford [1] made significant progress
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on this problem. The present paper is a first attempt to develop a corresponding
theory in higher dimensions.

We begin by summarizing some of the one-dimensional results, since they pro-
vide a model for what we would like to prove in higher dimensions. The main
assumptions are S = Z, p(x, y) = p(y − x),

∑
x |x|p(x) < ∞, and the process is

irreducible. [Throughout this paper, irreducibility will mean that, for each x, y ∈ S,
there is positive probability that the Markov chain with transition probabilities
p(·, ·) goes from x to y in some number of steps.] First, two definitions: A prob-
ability measure µ on {0,1}Z is said to be a blocking measure if it concentrates on
configurations η satisfying∑

x<0

η(x) < ∞ and
∑
x>0

[1 − η(x)] < ∞,

and it is said to be a profile measure if

lim
x→−∞µ{η :η(x) = 1} = 0 and lim

x→+∞µ{η :η(x) = 1} = 1.

Every blocking measure is a profile measure, but not conversely. As usual, if 0 ≤
ρ ≤ 1, νρ will denote the homogeneous product measure with density ρ.

Without loss of generality, we may assume
∑

x xp(x) ≥ 0. We then have the
following results:

1. Either the extremal stationary measures consist exactly of

{νρ,0 ≤ ρ ≤ 1}(i)

or of

{νρ,0 ≤ ρ ≤ 1} ∪ {µn,n ∈ Z},(ii)

where µ0 is a profile measure, and µn is the shift of µ0 by n units.
2. If

∑
x xp(x) = 0, then case (i) occurs.

3. If
∑

x xp(x) > 0 and p(·) has finite range, then case (ii) occurs and µ0 is a
blocking measure.

4. If
∑

x xp(x) > 0; p(x) and p(−x) are decreasing for x = 1,2, . . . ; p(x) ≥
p(−x) for all x ≥ 1; and

∑
x<0 x2p(x) < ∞, then case (ii) occurs and µ0 is a

blocking measure.
5. If

∑
x<0 x2p(x) = ∞, there exists no stationary blocking measure.

Statements 1, 4 and 5 were proved in [1], statement 2 appears on page 391 in [13],
and statement 3 is due to [2]. An important open problem that remains in one
dimension is to determine whether nonblocking stationary profile measures ever
exist.

While the above description is the starting point for our study of stationary mea-
sures in higher dimensions, one difference between one and higher dimensions can
be seen immediately in case (ii) above. In one dimension, the extremal spatially in-
homogeneous stationary measures are naturally indexed by a discrete parameter. In
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higher dimensions, the natural parametrization is continuous, rather than discrete.
Here is a simple example in two dimensions that illustrates this point. Suppose
p(e1) = p(e2) = p(−e2) = 1/3, where e1 = (1,0) and e2 = (0,1). Then, for each
s ∈ R, an extremal stationary measure µs is obtained in the following way. Letting
x = (x(1), x(2)) and s = n + σ for an integer n and 0 ≤ σ < 1, µs is the measure
for which η(x) ≡ 1 if x(1) > n, η(x) ≡ 0 if x(1) < n, and η(x) is i.i.d. with density
σ if x(1) = n.

We turn now to a description of the results of the current paper. Precise state-
ments and definitions appear later in the relevant sections. For the moment, S is
general. The first problem is to determine exactly when product measures are sta-
tionary for the process. Suppose that α(x) satisfies 0 < α(x) < 1 for all x ∈ S,
set

π(x) = α(x)/
(
1 − α(x)

)
,

and let να be the product measure on {0,1}S with marginals να{η :η(x) = 1} =
α(x). It is not hard to check that να is reversible for ηt if and only if π(x)p(x, y) =
π(y)p(y, x) for all x, y ∈ S—see page 34 in [6], for example.

Here we are interested in the issue of stationarity of να , rather than reversibil-
ity. Theorem 2.1 on page 380 in [13] says that να is stationary for ηt if ei-
ther (a) p(x, y) is doubly stochastic and α(x) is constant, or (b) π(x)p(x, y) =
π(y)p(y, x) for all x, y ∈ S. As mentioned above, in the latter case, να is in fact
reversible for the process. In the former case, να is reversible if and only if p(x, y)

is symmetric. In Section 2 we will show that an appropriate combination of condi-
tions (a) and (b) is necessary and sufficient for να to be stationary for ηt .

Section 3 applies this necessary and sufficient condition to the case of a trans-
lation invariant system on S = Zd . Under a mild assumption, Theorems 2 and 3
combine to show that να is stationary if and only if there is a v ∈ Rd so that
π(x) = π(0)e〈x,v〉 and p(z) = e〈z,v〉p(−z) for all z such that 〈z, v〉 
= 0. This al-
lows us to construct many examples of stationary product measures that are neither
homogeneous nor reversible. (Homogeneity of να corresponds to α being con-
stant.)

In Section 4 we begin by considering several examples in which p(x, y) are the
transition probabilities for a random walk on a homogeneous tree S. Again, using
the results of Section 2, we find examples of stationary product measures that are
neither homogeneous nor reversible. Then, we describe an example on a rooted
tree that exhibits a type of phase transition, where the extremality of the stationary
product measures among stationary measures depends on the value of a parameter.

In Sections 5 and 6 we return to S = Zd and study stationary measures that
are invariant under translations in all directions orthogonal to a fixed nonzero
v ∈ Zd . We suspect that all extremal stationary measures have this property for
some v ∈ Rd , but are quite far from being able to prove this. A measure that has
this partial homogeneity property and has density tending to 0 in the −v direc-
tion and to 1 in the +v direction will be called a v-profile measure. Theorem 4
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in Section 5 asserts that there are no stationary v-profile measures unless v and
the drift vector

∑
x xp(x) have nonnegative inner product. (Under an irreducibil-

ity assumption, “nonnegative” can be replaced by “positive.”) Other approaches to
this and related results under varying assumptions appear in Theorem 5 of Sec-
tion 5, Corollary 2 of Section 6 and Theorem 10 of Section 8 (the last based on
hydrodynamics). This rules out half of the possible directions v in which stationary
v-profile measures can exist.

Theorem 6 in Section 6 provides a way of showing that, if there exists a contin-
uous family of extremal stationary v-profile measures, then there can be no other
extremal stationary v-profile measures. This is applied in Corollary 1 to examples
from Section 3 in which families of stationary product measures are known to ex-
ist. Theorem 7 of that section provides some reasonable assumptions under which
any extremal stationary v-profile measure is a blocking measure, in the sense that
it concentrates on configurations η such that∑

k<0

η(kv) < ∞ and
∑
k>0

[1 − η(kv)] < ∞.

Theorem 8 of Section 7 provides sufficient conditions for convergence to a mix-
ture of stationary v-profile measures when the initial measure is v-profile. The
main assumption (besides the existence of an appropriate one-parameter family
of stationary v-profile measures) is that the initial measure have a finite expected
number of 1’s in the “negative half” of each strip oriented in the v direction (with
bounded cross section in the perpendicular directions), and a finite expected num-
ber of 0’s in the positive half of that strip.

Section 8 presents some applications of hydrodynamical results of Rezakhanlou
[16] to obtain explicit convergence results when the initial set of 1’s is a wedge
in Z2. In this case, the initial distribution is not v-profile. Another example with
such an initial distribution is discussed in Section 9. It provides an illustration of
how the asymptotic behavior of the process can depend on more than just the mean
of its transition probabilities.

This paper provides only an initial understanding of the stationary measures and
of convergence behavior for the exclusion process in more than one dimension.
There are a number of problems in this context that we are not able to solve at
this time. These are discussed in Section 10. There, we will also compare our
results and speculations with the much easier and well-understood situation for
independent particle systems on Zd .

2. Product stationary measures: the general case. In this section both S and
p(x, y) are general. Our objective is to give a necessary and sufficient condition
for a product measure to be stationary for the exclusion process. This is done in
the following theorem.
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THEOREM 1. Let α1, α2, . . . be the distinct values of α(x), πi = αi/(1 − αi),

and C1,C2, . . . be the partition of S determined by Ci = {x ∈ S :α(x) = αi}. The
following is a necessary and sufficient condition for να to be stationary for ηt :

(a)
∑

y∈Ci
p(x, y) =∑

y∈Ci
p(y, x) for all x ∈ Ci and all i,

and
(b) πip(x, y) = πjp(y, x) for all x ∈ Ci, y ∈ Cj and all i 
= j .

PROOF. Following the proof of Theorem 2.1 on page 380 in [13] up to dis-
play (2.7), we see that να is stationary if and only if the right-hand side of (2.7)
is zero for every finite A ⊂ S. Dividing by the product

∏
u∈A α(u), we see that a

necessary and sufficient condition for stationarity is that

∑
x∈A,y /∈A

α(y)[1 − α(x)]p(y, x) − α(x)[1 − α(y)]p(x, y)

α(x)
= 0(1)

for every finite A ⊂ S. Now fix a u ∈ S and consider (1) with A = {u}. This be-
comes

[1 − α(u)]∑
y

α(y)p(y,u) − α(u)
∑
y

[1 − α(y)]p(u, y) = 0.(2)

(Note that the terms corresponding to y = u in the above sums, which in principle
should not be included, cancel out.) Next, fix distinct v,w ∈ S and consider (1)
with A = {v,w}. This becomes

∑
y 
=v,w

α(y)[1 − α(v)]p(y, v) − α(v)[1 − α(y)]p(v, y)

α(v)

(3)
+ ∑

y 
=v,w

α(y)[1 − α(w)]p(y,w) − α(w)[1 − α(y)]p(w,y)

α(w)
= 0.

Subtracting (2) with u = v and (2) with u = w from (3) [after dividing these ex-
pressions by α(v) and α(w) resp.], (3) becomes

[α(w) − α(v)][π(w)p(w,v) − π(v)p(v,w)] = 0.(4)

Therefore, (1) holds for all singleton and doubleton A’s if and only if

(2) holds for all u and (4) holds for all v,w.(5)

Next, we will check that (5) implies (1) for all A, which gives us the equivalence
of (1) and (5). Let A be any finite subset of S. By (2), the left-hand side of (1) is

− ∑
x,y∈A

α(y)[1 − α(x)]p(y, x) − α(x)[1 − α(y)]p(x, y)

α(x)
,
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which can be written as

− ∑
x,y∈A

α(y)
π(y)p(y, x) − π(x)p(x, y)

π(x)π(y)
.

Interchanging the roles of x and y above and adding the two expressions, we see
that the left-hand side of (1) is

1

2

∑
x,y∈A

[α(x) − α(y)]π(y)p(y, x) − π(x)p(x, y)

π(x)π(y)
,

which is 0 by (4).
Finally, we note that (5) is equivalent to (a) and (b) in the statement of the

theorem. Statement (b) in the theorem is equivalent to (4). Given this, it suffices to
show that statement (a) is equivalent to (2) for all u. But the left-hand side of (2)
for u ∈ Ci can be written as

(1 − αi)
∑
j

(1 − αj )
∑

y∈Cj

[πjp(y,u) − πip(u, y)].

The summands above for j 
= i vanish by (b), so (2) for this u is equivalent to∑
y∈Ci

[πip(y,u) − πip(u, y)] = 0.

But this is statement (a), so the theorem is proved. �

3. Product stationary measures on S = Zd . In this section we assume that
S = Zd and p(x, y) = p(y − x) for all x, y. We will show later that, under a
minimal assumption, the π corresponding to a stationary product measure must
have an exponential form. [Recall π(x) = α(x)/(1 − α(x)) if the product measure
is να .] In the next result, we obtain an easily checked necessary and sufficient
condition for stationarity in this case.

THEOREM 2. Suppose that π(x) = π(0)e〈x,v〉 for all x and some v ∈ Rd .
Then, να is stationary for ηt if and only if

p(z) = e〈z,v〉p(−z) for all z such that 〈z, v〉 
= 0.(6)

PROOF. Condition (a) of Theorem 1 says in this case that∑
y : 〈y,v〉=〈x,v〉

[p(x, y) − p(y, x)] = 0.

Letting z = y − x and using translation invariance, this becomes∑
z : 〈z,v〉=0

[p(z) − p(−z)] = 0,
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which is automatically true. Condition (b) of Theorem 1 says that

e〈x,v〉p(y − x) = e〈y,v〉p(x − y) whenever e〈x,v〉 
= e〈y,v〉.

Again, letting z = y − x, we see that, in this case, (6) is equivalent to (b) of Theo-
rem 1. �

REMARK. Theorem 2 makes it easy to construct examples of exclusion
processes with a significant number of nontranslation invariant stationary mea-
sures of product form, including many that are not reversible. For example, sup-
pose d = 2,

p(e1) = p1, p(e2) = p2, p(−e1) = q1, p(−e2) = q2

and p(z) = 0 for all other z’s. Here e1, e2 are the standard basis elements in Z2.
Assume that p1 
= q1 and p2 
= q2. Then the stationary product measures with
density 1/2 at the origin are exactly the four corresponding to the following:

π(x) ≡ 1, π(x) = (p1/q1)
x(1)

,

π(x) = (p2/q2)
x(2)

, π(x) = (p1/q1)
x(1)

(p2/q2)
x(2)

,

where we have written x = (x(1), x(2)). Only the last of these is reversible.

Next, we will show that, under a weak assumption (that is trivially necessary),
π must have the exponential form assumed in Theorem 2. Most of the work is
contained in the proof of the following statement.

PROPOSITION 1. Suppose α is such that να is stationary for ηt , and u ∈ Zd

satisfies p(u) > 0.

(a) If p(−u) = 0, then π(x + u) = π(x) for all x ∈ Zd .
(b) If p(−u) > 0, then for each x ∈ Zd , either

π(x + nu) = π(x) for all n ∈ Z,

or

π(x + nu) = π(x)λn for all n ∈ Z,

where

λ = p(u)

p(−u)
.(7)

PROOF. Suppose first that p(−u) = 0, and fix an x. Then the equality in (b)
of Theorem 1 cannot hold with y = x + u since one side is zero and the other is
not. Therefore, π(x) = π(x + u). This proves part (a) of the proposition.
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The proof of part (b) is significantly harder. Suppose p(−u) > 0, and define λ

as in (7). By Theorem 1(b),

for each x ∈ Zd , π(x + u)/π(x) = 1 or λ.(8)

Therefore, for each x and n, π(x + nu)/π(x) is a power of λ, and the sign of the
power is the same as the sign of n. Our problem is to show that, for each x, the
power is identically n or identically 0. To do so, we will need to use part (a) of
Theorem 1 as well. Note that the result is immediate if λ = 1, so we may assume
that λ 
= 1. By interchanging the roles of u and −u if necessary, we may assume
that λ > 1.

As mentioned above, we will need to use the property in Theorem 1(a). This
involves sums in which p(x, y) and p(y, x) both appear for x, y with the same
value of π . It will be important to relate these two transition probabilities so that
one sum can be related to the other. That is the purpose of the next observations.
We will call the two sites of interest z and w instead of x and y to emphasize that,
for the moment, they are fixed, rather than being summed over. In (10) and (11)
below, we note that, depending on how z and w are placed relative to the values
of π at these and “neighboring” points, one of the transition probabilities, p(z,w)

and p(w, z), is λ times the other.
Consider two distinct points z,w ∈ Zd for which π(z) = π(w). If p(z,w) > 0

and p(w, z) = 0 or vice versa, then by part (a) of this proposition,

π(z + nu) = π(w + nu) for all n ∈ Z.(9)

Suppose now that p(z,w) > 0 and p(w, z) > 0. If π(w + u) 
= π(w), then by (8),

π(w + u)/π(w) = λ.

If also π(z + u) = π(z), then π(w + u) 
= π(z + u), so by Theorem 1(b),

p(z,w) = λp(w, z).

Similarly, if π(w − u) 
= π(w) and π(z − u) = π(z), then

p(w, z) = λp(z,w).

Now let c be a value of the function π(·), and write

A = {z :π(z − u) = λ−1c,π(z) = c,π(z + u) = λc},
B = {z :π(z − u) = λ−1c,π(z) = c,π(z + u) = c}

and

C = {z :π(z − u) = c,π(z) = c}.
Note that by (8),

A ∪ B ∪ C = {z :π(z) = c}.
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If w ∈ A ∪ B and z ∈ C, (9) is false (for n = −1), so p(z,w) and p(w, z) are
either both positive or both zero. If they are both positive, then we know from the
previous paragraph that p(w, z) = λp(z,w) and, of course, this is also true if they
are both zero. So, it is always the case that

w ∈ A ∪ B,z ∈ C implies p(w, z) = λp(z,w).(10)

Similarly,

w ∈ B,z ∈ A implies p(w, z) = λp(z,w).(11)

By Theorem 1(a), since {z :π(z) = c} = A ∪ B ∪ C,∑
z∈A∪C

[p(z,w) − p(w, z)] + ∑
z∈B

[p(z,w) − p(w, z)] = 0, w ∈ B.(12)

Combining (10), (11) and (12) gives

(λ − 1)
∑

z∈A∪C

p(w, z) = λ
∑
z∈B

[p(z,w) − p(w, z)], w ∈ B.(13)

Note that w ∈ B implies z = w + u ∈ C, so that (13) implies∑
z∈B

[p(z,w) − p(w, z)] ≥ (1 − λ−1)p(u) > 0, w ∈ B.(14)

If d = 1, we can now complete the proof easily, since in this case, B is finite
by (8). The sum on w ∈ B of the left-hand side of (14) is zero, so the left-hand side
itself is zero as well. It follows that B = ∅. Similarly,

{z :π(z − u) = c,π(z) = c,π(z + u) = λc} = ∅.

Together with (8), this completes the proof of the second part of the proposition in
this case.

An extra argument is needed in higher dimensions. The objective is still to show
that B = ∅ as a consequence of (14). Once this is done, the proof of the proposition
is completed as in the previous paragraph.

To do so, assume B 
= ∅ and let D ⊂ B be finite and nonempty. Sum (14) for
w ∈ D. The part of the resulting sum on the left that corresponds to w,z ∈ D

vanishes. Therefore, making the change of variable z = w + x and dividing by the
cardinality of D, one obtains

(1 − λ−1)p(u) ≤∑
x

[
|p(−x) − p(x)|#{w ∈ D :w + x ∈ B \ D}

|D|
]
.

Now let F ⊂ Zd be finite. It follows from the above inequality that

(1 − λ−1)p(u) ≤ ∑
x /∈F

|p(−x) − p(x)| + #{(x,w) ∈ F × D :w + x ∈ B \ D}
|D| .
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To get a contradiction, it will suffice to find, for any finite F , an increasing se-
quence Dn of finite, nonempty subsets of B so that

lim inf
n

#{(x,w) ∈ F × Dn :w + x ∈ B \ Dn}
|Dn| = 0.(15)

Once this is done, it will follow that the sums on the right-hand sides of the previ-
ous two displays can be made arbitrarily small by choosing F sufficiently large.

Let D0 = ∅, D1 be any finite nonempty subset of B , and define recursively

Dn+1 = {w + x :x ∈ F,w ∈ Dn,w + x ∈ B} ∪ Dn.

If (15) fails for this sequence, then there is an ε > 0 so that

#{(x,w) ∈ F × Dn :w + x ∈ B \ Dn} ≥ ε|Dn|, n ≥ 1.(16)

To show that this is not possible, consider the mapping

(x,w) → x + w.

This maps {(x,w) ∈ F × Dn :w + x ∈ B \ Dn} into Dn+1 \ Dn, and is at most |F |
to 1. Therefore, by (16),

ε|Dn| ≤ |F ||Dn+1 \ Dn|,(17)

so that |Dn| grows exponentially rapidly. On the other hand, Dn is contained in the
union of |D1| balls of radius Kn, where K = max{‖x‖, x ∈ F }, so |Dn| can grow
at most like K ′nd for some constant K ′. This contradicts the exponential growth,
so (15) holds. �

Next we extend the statement of Proposition 1 to several values of u.

PROPOSITION 2. Suppose α is such that να is stationary for ηt , and that
p(ui) > 0 for 1 ≤ i ≤ k. If p(−ui) > 0, set

λi = p(ui)

p(−ui)
,(18)

while if p(−ui) = 0, set λi = 1. Then

π(n1u1 + · · · + nkuk) = π(0)ρ
n1
1 · · ·ρnk

k ,(19)

where for each i, ρi = λi or 1.

PROOF. We prove this for k = 2, since the proof for general k follows by
iterating the argument. So, suppose p(u1) > 0 and p(u2) > 0. By Proposition 1,
for each x,

π(x + mu1 + nu2) =
{

π(x + mu1)(ρm)n,

π(x + nu2)(σn)
m,
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where ρm = λ2 or 1 for each m, and σn = λ1 or 1 for each n. Putting n = 0 and
then m = 0 in the above expression, and using the resulting expressions, we see
that

π(x + mu1 + nu2) = π(x)(σ0)
m(ρm)n = π(x)(ρ0)

n(σn)
m

for all m,n. It follows that

(ρm/ρ0)
1/m = (σn/σ0)

1/n.

Since the left-hand side does not depend on n and the right-hand side does not
depend on m, this expression is a constant c independent of m and n:

ρm = ρ0c
m and σn = σ0c

n.

Since ρm and σn only have two possible values, we conclude that c = 1, and there-
fore that ρm is independent of m and σn is independent of n. Therefore, for each x,

π(x + mu1 + nu2) = π(x)σmρn,

where ρ = λ2 or 1, and σ = λ1 or 1. (The choice of ρ and σ can depend on x, but
not on m or n.) �

We now use Proposition 2 to prove the main result of this section.

THEOREM 3. Assume that the translation invariant exclusion process with
transition probabilities p(x, y) = p(y −x) has the property that there is no proper
subgroup of Zd that contains P = {u ∈ Zd :p(u) > 0}. If α is such that να is
stationary, then there is a v ∈ Rd so that π(x) = π(0)e〈x,v〉 for all x.

PROOF. Let u1, . . . , uk be elements of P that span Zd . To prove the theorem,
it suffices to show that there is a v ∈ Rd so that

〈ui, v〉 = logρi, 1 ≤ i ≤ k,(20)

where the quantities ρi are the ones that appear in the statement of Proposi-
tion 2. By relabelling, we may assume that u1, . . . , ud is a basis for the vector
space Qd . Let v ∈ Rd be the unique solution of the equations (20) for 1 ≤ i ≤ d .
For d < i ≤ k, ui can be written as a linear combination of u1, . . . , ud ,

nui =
d∑

j=1

njuj ,

where n and n1, . . . , nd are integers. Applying (19) twice gives

π(nui) = π(0)ρn
i and π(n1u1 + · · · + ndud) = π(0)ρ

n1
1 . . . ρ

nd

d .

Therefore,

ρn
i = ρ

n1
1 · · ·ρnd

d ,
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so that

n logρi =
d∑

j=1

nj logρj =
d∑

j=1

nj 〈uj , v〉 = n〈ui, v〉,

and (20) holds for this i as well. �

4. Product stationary measures on trees. For most of this section, we take S

to be the homogeneous tree T in which every vertex has degree 3. (Similar exam-
ples with a general degree could be analyzed in a similar way, but we consider this
case for concreteness.) Suppose q, r, s are positive, distinct and sum to 1. We will
use Theorem 1 to determine all stationary product measures for various exclusion
processes on T that are homogeneous and nearest neighbor. We will initially con-
sider p(x, y) so that the corresponding Markov chain has the property that, from
each vertex, there are probabilities q, r, s of going out to the three neighbors, and
also probabilities q, r, s coming in from the three neighbors. There are three in-
equivalent homogeneous ways of making these assignments that are given below
as Cases 1, 2 and 3. The existence of nonreversible, inhomogeneous (i.e., with
nonconstant density) stationary product measures for the process depends on the
assignments.

CASE 1. The edge joining x and y is said to be of type

1 if {p(x, y),p(y, x)} = {q, r},
2 if {p(x, y),p(y, x)} = {r, s},
3 if {p(x, y),p(y, x)} = {s, q}.

Assign labels 1,2,3 to the edges of T in such a way that for every vertex x the three
edges incident to x consist of one of each of the three types. Up to isomorphism,
there is only one way to do this. Once the labels are assigned, assign transition
probabilities q, r, s in each direction for each edge in such a way that these assign-
ments are consistent with the labels, and for each vertex, there are probabilities
q, r, s of moving to the three neighbors. Again, up to isomorphism, there is only
one way to do this. (In each case, the meaning of the word isomorphism should be
clear. In the first occurrence, e.g., it means that, for any two assignments of labels
to edges, there is a 1–1 map from T with one assignment onto T with another
assignment that respects the labels.)

For a prescribed value of π(x0) for a given vertex x0, there is only one choice
of π for which να is reversible for the exclusion process with this kernel p(·); it is
determined by

π(x)p(x, y) = π(y)p(y, x)

for all neighbors x, y. We will show that the only stationary product measures for
this process are the homogeneous measures and the reversible measures.
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Take any vertex x, and let x1, x2, x3 be the three neighbors of x, with the indexes
chosen so that the edge joining x and xi is of type i. If να is stationary, then by
Theorem 1(a),

(q − r)1{π(x1)=π(x)} + (r − s)1{π(x2)=π(x)} + (s − q)1{π(x3)=π(x)} = 0.

It follows that, for each x, either all or none of the neighbors xi of x have the
property that π(xi) = π(x). However, it is clear that which of these situations oc-
curs is independent of x, since any two neighbors must be in the same situation.
Therefore, either π is constant on T , or π(x) 
= π(y) for all neighbors x, y. In
either case, π is determined by its value at one site [by Theorem 1(b) in the latter
case]. So, up to scaling, there are two stationary product measures, the first homo-
geneous and the second reversible. Note that these correspond to the two cases in
Theorem 2.1 on page 380 in [13].

CASE 2. The edge joining x and y is said to be of type

1 if {p(x, y),p(y, x)} = {q, r},
2 if {p(x, y),p(y, x)} = {s, s}.

Assign labels 1,2 to the edges of T in such a way that, for every vertex x, two
of the three edges incident to x are of type 1 and the other is of type 2. Again, up
to isomorphism, there is only one way to make the assignment. Assign transition
probabilities to the edges in a manner consistent with the assignment of edge types.
Each site x has exactly one neighbor y with p(x, y) = q , and one neighbor y with
p(x, y) = r .

To describe all functions π corresponding to stationary product measures, call
a subset L of vertices of T a line if it is isomorphic to Z, and all edges joining
vertices in L are of type 1. Then T can be partitioned into lines in a natural manner.
Each edge of type 2 joins two lines. Since the transition probabilities are symmetric
across edges of type 2, π must take the same value at two vertices that are joined
by an edge of type 2 [by Theorem 1(b)]. On each line, π is either constant or of
the form

π(xn) = π(x0)(q/r)n;(21)

one sees this by applying Theorem 1(a), together with the isomorphism in the form
L = {. . . , x−1, x0, x1, . . .} with the appropriate orientation. So, the most general
choice of π so that να is stationary is obtained by (a) fixing the value of π(x) at
one vertex x, and (b) deciding for each line L whether π is to be constant on L, or
of the form (21). The stationary product measure is homogeneous if π is constant
on all lines, and is reversible if π is of the form (21) on all lines. In all other cases,
να is neither homogeneous nor reversible.
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CASE 3. The edge joining x and y is said to be of type

1 if {p(x, y),p(y, x)} = {q, q},
2 if {p(x, y),p(y, x)} = {r, r},
3 if {p(x, y),p(y, x)} = {s, s}.

Make consistent assignments of edge types and transition probabilities as before.
In this case, the process is symmetric, so by Theorem 1(b), the only stationary
product measures are the homogeneous ones, and they are, of course, reversible.

In all three of the above cases, the homogeneous product measures are station-
ary, but this is not necessarily the case for other homogeneous transition proba-
bilities on the above tree T . For instance, one can choose the probabilities from a
vertex to its three neighbors to be q, r, s as before, but with q = r 
= s (and, hence,
s = 1 − 2q). Think of the tree as branching up, so that each vertex has two edges
that go up and one that goes down. The probability q is assigned to each of the
two upward edges and the probability s to the downward edge from each vertex.
The corresponding Markov chain is not doubly stochastic. So by Theorem 1(a),
there are no (nontrivial) homogeneous stationary product measures, although the
transition probabilities are themselves homogeneous. This, of course, does not oc-
cur for S = Zd , where the Markov chain is doubly stochastic for such transition
probabilities.

The exponential growth of the number of neighbors within distance D of a given
site in a tree can give rise to a phase transition for the corresponding stationary
product measures. Consider, for example, the exclusion process in the preceding
paragraph, but restricted to the (inhomogeneous) tree consisting of all vertices of T

that are equal to or above a fixed vertex x0 (with particles prevented from leaving
this subtree). By Theorem 1, the stationary product measures for the process are
reversible and satisfy

π(x) = (
q/(1 − 2q)

)n
π(x0) for D(x0, x) = n.

When are such stationary product measures extremal stationary measures? The-
orem 2.1 in [7] gives, as a necessary and sufficient criterion [in the more general
setting of countable S with irreducible p(·)], that

∑
x∈S

π(x)/
(
1 + π(x)

)2 = ∞.

Here, this occurs for q/(1 − 2q) ∈ [1/2,2], that is, when q ∈ [1/4,2/5]. This con-
trasts with S = Z, where none of the inhomogeneous stationary product measures
is extremal, and with S = Zd , d ≥ 2, where all stationary product measures are
extremal.
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5. Stationary profile measures—necessary conditions for existence. In the
next two sections we consider the exclusion process ηt on Zd with transition prob-
abilities p(x, y) = p(y − x) that satisfy∑

x

|x|p(x) < ∞.

The analogues of blocking or profile measures in higher dimensions for such p(·)
should be measures that are invariant under translations in certain directions, and
have some specified limiting behavior in directions orthogonal to those directions.
In this section we rule out the existence of stationary measures with these prop-
erties in certain directions. These results are analogues of the statement in one
dimension that, if the particle drift is positive, and a stationary measure has den-
sity tending to zero in one direction and to one in the opposite direction, then it
must be that the limit is one in the +∞ direction and zero in the −∞ direction.

We begin with some definitions. Fix a nonzero vector v ∈ Rd . If v ∈ Zd , we
want to say that a measure µ is v-homogeneous if it is invariant under translations
in all directions orthogonal to v. Unfortunately, this statement makes no sense for
general v ∈ Rd , since translations in directions orthogonal to v will, in general,
lead outside of Zd . In most cases, we will consider v ∈ Zd , but to prepare for
situations where v is more general (e.g., Theorem 5 below), we make a definition
that is meaningful for all v ∈ Rd , and agrees with the previous statement if v ∈ Zd .
In general, a measure µ on {0,1}Zd

will be called v-homogeneous if it has the
following property: For each finite A ⊂ Zd , there is a continuous function fA on R

so that

µ{η :η ≡ 1 on x + A} = fA(〈x, v〉), x ∈ Zd.(22)

It is easy to check that if v ∈ Zd , this is equivalent to µ being invariant under shifts
in all directions orthogonal to v, as we wanted. Note that the product measures να

considered in Theorem 2 are v-homogeneous for general v ∈ Rd , since in that case,

να{η :η(x) = 1} = π(0)

π(0) + e−〈x,v〉 .

This supports the view that our definition is a good one in this context. Of
course, a measure is v-homogeneous if and only if it is cv-homogeneous for any
c ∈ R \ {0}, so there is no difference in statements of hypotheses between assum-
ing v ∈ Zd and assuming v ∈ Qd .

The continuity assumption on fA in the above definition is not an additional
requirement if v ∈ Zd , since then 〈x, v〉 only takes integer values. On the other
hand, for general v ∈ Rd , if we did not require fA to be continuous, property (22)
would contain little, if any, information about µ. The problem is that the map x →
〈x, v〉 could easily be one-to-one, and in this case, any function of x is a function
of 〈x, v〉. In remarks following the proofs of Theorems 4 and 6, we will indicate
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where the continuity property would arise if we were to take v ∈ Rd instead of
v ∈ Zd .

Note that if v ∈ Zd , for example, (22) does not determine the values of fA(s)

for all s ∈ R. However, by choosing natural versions of fA, we may assume for
general v ∈ Rd that

fx+A(s) = fA(s + 〈x, v〉) for x ∈ Zd and s ∈ R.(23)

An important property of v-homogeneity is that the class of v-homogeneous
measures is preserved by the evolution of the exclusion process. This is clear if
v ∈ Zd . To see it in general, let S(t) be the semigroup for the exclusion process,
and for finite A ⊂ Zd , let χA(η) be the indicator function of {η :η ≡ 1 on A}. Then
S(t)χA(η) is continuous in η, so it can be uniformly approximated by functions
of the form

∑n
i=1 ciχBi

. Furthermore, since the exclusion process is translation in-
variant, S(t)χx+A is then automatically uniformly approximated by

∑n
i=1 ciχx+Bi

,
where the uniformity applies to both η and x. Therefore, if µ is v-homogeneous,

µS(t){η :η ≡ 1 on x + A} =
∫

S(t)χx+A dµ

is uniformly (in x) approximated by
n∑

i=1

ci

∫
χx+Bi

dµ =
n∑

i=1

cifBi
(〈x, v〉).

It follows that µS(t){η :η ≡ 1 on x + A} is a continuous function of 〈x, v〉 as re-
quired.

Unfortunately, the class of v-homogeneous measures is not preserved under
weak convergence for general v because of the continuity assumption on fA. To
see this, note that a product measure να is v-homogeneous if and only if α(x) is
a continuous function of 〈x, v〉. Suppose then that fn is a sequence of continuous
functions on R that converges pointwise to a function f that has a jump discon-
tinuity. Let αn(x) = fn(〈x, v〉) and α(x) = f (〈x, v〉). If the coordinates of v are
linearly independent over the rationals (so that {〈x, v〉 :x ∈ Zd} is dense in R),
then ναn is v-homogeneous, να is not, yet ναn converges weakly to να . As a conse-
quence of this, we take v ∈ Zd in most of our results.

A v-homogeneous measure that is asymptotically equal to δ0 in the −v direction
and asymptotically equal to δ1 in the v direction, in the sense that

lim
s→−∞fA(s) = 0 and lim

s→∞fA(s) = 1, A 
= ∅,(24)

will be called a v-profile measure. Our main objective in this section is to demon-
strate the nonexistence of v-profile stationary measures under suitable assumptions
on p(·) and v. In the next section we will provide some information about the
structure of the set of v-profile stationary measures in case of existence.

The results of Section 3 give some examples of existence of v-profile station-
ary measures. For instance, in the remark following Theorem 2, we considered a
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general nearest neighbor process on Z2. Suppose for concreteness that p1 > q1
and p2 > q2. Then, the four stationary product measures µ described there are,
respectively: (i) homogeneous, (ii) v-profile with v = (1,0), (iii) v-profile with
v = (0,1), and (iv) v-profile with

v =
(

log
p1

q1
, log

p2

q2

)
.

This example illustrates why we do not want to restrict consideration to v ∈ Zd

(or, equivalently, to v ∈ Qd ). Even if the pi and qi are all rational, the above v

need not be a multiple of a vector in Z2.
The proof of Theorem 4 below (and that of later results) uses the coupled

process (ηt , ζt ) which has proved so useful in the study of the exclusion process.
Each of the two coordinates is assumed to be a copy of the exclusion process,
and the coupling is defined by saying that particles in the two processes move
together as much as possible. This coupling has the property that sites at which
ηt (x) 
= ζt (x) can move and disappear, but they cannot be created.

To describe the joint process in more detail, call a site x at which η(x) 
= ζ(x) a
discrepancy. There are two types of discrepancies, according to whether η(x) = 1,
ζ(x) = 0 or η(x) = 0, ζ(x) = 1. Say that a site x with no discrepancy is of type 1
if η(x) = ζ(x) = 1 and of type 0 if η(x) = ζ(x) = 0. Consider now the possible
transitions for the coupled process involving two sites x 
= y. If x and y are both
of type 1 or both of type 0, nothing happens. If x is of type 1 and y is of type 0, the
particles at x in both configurations move together to y at rate p(y −x). If there are
discrepancies at both x and y, nothing happens if they are of the same type. If they
are of opposite type, the particles in the two configurations move independently
to the other site at the appropriate rates [one at rate p(y − x) and the other at rate
p(x−y)]; after the transition, one of the sites x and y is of type 1 and the other is of
type 0, that is, two discrepancies of the process have disappeared. Finally, if there
is a discrepancy at x, and y is of type 0 or 1, then the particle in the configuration
for which the values at x and y differ moves to the other site at the appropriate
rate. For more on this coupling and its application to the exclusion process, see
Section 2 of Chapter VIII in [13].

The concepts v-homogeneous and v-profile have natural analogues for the mea-
sures on {0,1}Zd × {0,1}Zd

that arise as the measure of the coupled process. To
define the first, the left-hand side of (22) is replaced by any cylinder probability,
while for the second, one can simply say that µ on {0,1}Zd × {0,1}Zd

is v-profile
if it is v-homogeneous and each of its two marginals is v-profile.

Our next result, Theorem 4, asserts that existence of v-profile stationary mea-
sures is only possible if v and the mean vector of p(·) have nonnegative inner
product. Unfortunately, the proof requires that v be in Zd . The problem that arises
when v is general is closely connected to the continuity assumption that we made
in the definition of v-homogeneity. (For more on this point, see the remark follow-
ing the proof.)
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The proof of Theorem 4 is based on the idea of the proof of Proposition 3.4
in [1]. It involves a limiting argument that requires some domination. The fol-
lowing two lemmas provide the domination and main limiting statement that are
needed. Neither involves the exclusion process or the kernel p(·). To begin, let
v1, . . . , vd ∈ Zd be an orthogonal basis for Rd , with v1 = v. Such a choice ex-
ists since the Gram–Schmidt orthogonalization procedure produces vectors with
rational coordinates if the original vectors have rational coordinates. For a positive
integer n, let

Bn = {x ∈ Zd : |〈x, vi〉| ≤ n,1 ≤ i ≤ d}.
The statements of the two lemmas should be intuitively clear. (The precise constant
in Lemma 1 is not important.) The reader should simply think of replacing the
sums over points in Zd with integrals over Rd in Lemma 1, for example.

LEMMA 1.

∑
u

∣∣1Bn(u) − 1Bn(u − z)
∣∣≤ 2(2n + 1)d−1

d∑
j=1

|〈z, vj 〉|.

PROOF. Write the left-hand side above as∑
u

∣∣1Bn(u) − 1Bn(u − z)
∣∣

(25) = #(u ∈ Bn :u − z /∈ Bn) + #(u /∈ Bn :u − z ∈ Bn).

The first term on the right-hand side is at most

d∑
j=1

#(u : |〈u, vi〉| ≤ n ∀1 ≤ i ≤ d, |〈u, vj 〉 − 〈z, vj 〉| > n).(26)

The mapping T from Zd to Zd defined by T u = (〈u, v1〉, . . . , 〈u, vd〉) is one-to-
one (though not onto). Write u = (u(1), . . . , u(d)) in Cartesian coordinates, and
define

C = {
u :
∣∣u(i)

∣∣≤ n ∀1 ≤ i ≤ d,
∣∣u(j) − 〈z, vj 〉

∣∣> n
}

for fixed j and n. Then the j th summand in (26) is the number of elements
in T −1C. This is at most the number of elements in C, which is, in turn, at most
(2n + 1)d−1|〈z, vj 〉|. Summing on j and applying the same estimate to the second
term on the right-hand side of (25), we see that (25) is bounded above by

2(2n + 1)d−1
d∑

j=1

|〈z, vj 〉|,(27)

which completes the proof of the lemma. �
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LEMMA 2. There is a subsequence nk and a positive constant K so that

lim
k→∞n1−d

k #
(
u ∈ Bnk

: 〈u, v〉 = r
)= K(28)

for every r ∈ � = {〈u, v〉 :u ∈ Zd} = aZ for some a > 0.

PROOF. We first show that n1−d#(u ∈ Bn : 〈u, v〉 = 0) is bounded away from
0 and ∞. As already observed, the mapping T defined in the proof of Lemma 1 is
one-to-one, so

#(u ∈ Bn : 〈u, v〉 = 0) = #
(
u ∈ Zd : (T u)(1) = 0,

∣∣(T u)(j)
∣∣≤ n ∀2 ≤ j ≤ d

)
≤ #

(
u ∈ Zd :u(1) = 0,

∣∣u(j)
∣∣≤ n ∀2 ≤ j ≤ d

)
= (2n + 1)d−1.

This gives the upper bound. For the lower bound, note that u = k2v2 + · · ·
+ kdvd ∈ Bn if ki ∈ Z and |ki | ≤ n|vi |−2 for 2 ≤ i ≤ d , so

#(u ∈ Bn : 〈u, v〉 = 0) ≥
d∏

i=2

(2n|vi |−2 − 1).

We may now choose the subsequence nk so that the limit in (28) exists and is
positive when r = 0.

To complete the proof of (28), it now suffices to prove that, for r ∈ �,

lim
n→∞n1−d [#(u ∈ Bn : 〈u, v〉 = r) − #(u ∈ Bn : 〈u, v〉 = 0)] = 0

(which is true along the full sequence). Since r ∈ �, there is a w ∈ Zd so that
〈w,v〉 = r . Therefore,

#(u ∈ Bn : 〈u, v〉 = r) = #(u ∈ Bn : 〈u − w,v〉 = 0)

= #(u ∈ Bn − w : 〈u, v〉 = 0),

from which it follows that

#(u ∈ Bn : 〈u, v〉 = r) − #(u ∈ Bn : 〈u, v〉 = 0) = O(nd−2),

as required, by the argument that led to (27). The only significant difference is that
there is an additional constraint in the definition of the analogous C—the constraint
that u(1) = 0. This accounts for the reduction in the power of n from d −1 to d −2.

�

THEOREM 4. Take v ∈ Zd \ {0} and suppose that µ is a v-profile measure
that is stationary for the exclusion process. Then, 〈∑x xp(x), v〉 ≥ 0. If p(·) is
irreducible, the inequality is strict.



2274 M. BRAMSON AND T. M. LIGGETT

PROOF. Let ν be a coupling measure that is v-homogeneous, is stationary
for the coupled process introduced above, and has first and second coordinates
with measures µ and ν1/2, respectively. Such a measure exists. (See page 383
in [13], where this statement is proved without the part about v-homogeneity;
the same proof applies to the v-homogeneous context because the property of v-
homogeneity is preserved by the evolution of the exclusion process and by its
coupled version.) The net rate at which the total number of discrepancies in Bn

changes is zero, since the process is in equilibrium. On the other hand, transitions
involving discrepancies of opposite type can only lower the number of discrepan-
cies in Bn. Since µ is v-profile, there must be discrepancies of opposite type in Bn

if n is sufficiently large. In the irreducible case, they will cancel each other out at
a rate that is at least of order nd−1. Therefore, the net rate at which discrepancies
enter Bn is nonnegative in general, and is at least εnd−1 in the irreducible case.
Explicitly, ∑

x∈Bn,y /∈Bn

p(x − y)ν{(η, ζ ) :η(y) 
= ζ(y), η(x) = ζ(x) = 0}

+ ∑
x∈Bn,y /∈Bn

p(y − x)ν{(η, ζ ) :η(y) 
= ζ(y), η(x) = ζ(x) = 1}

≥ ∑
x∈Bn,y /∈Bn

p(x − y)ν{(η, ζ ) :η(x) 
= ζ(x), η(y) = ζ(y) = 1}(29)

+ ∑
x∈Bn,y /∈Bn

p(y − x)ν{(η, ζ ) :η(x) 
= ζ(x),

η(y) = ζ(y) = 0} + εnd−1,

where ε ≥ 0 in general, and ε > 0 in the irreducible case.
To take advantage of the v-homogeneity assumption, define functions gz and hz

by

gz(〈x, v〉) = ν{(η, ζ ) :η(x + z) 
= ζ(x + z), η(x) = ζ(x) = 0},
hz(〈x, v〉) = ν{(η, ζ ) :η(x + z) 
= ζ(x + z), η(x) = ζ(x) = 1}.

Then, (29) becomes∑
x∈Bn,y /∈Bn

p(x − y)gy−x(〈x, v〉) + ∑
x∈Bn,y /∈Bn

p(y − x)hy−x(〈x, v〉)

≥ ∑
x∈Bn,y /∈Bn

p(x − y)hx−y(〈y, v〉)

+ ∑
x∈Bn,y /∈Bn

p(y − x)gx−y(〈y, v〉) + εnd−1.

Making the changes of variables z = x − y or z = y − x and u = x or u = y in the
four sums, and noting that, for any sets B and C,

1{u∈B,u/∈C} − 1{u∈C,u/∈B} = 1B(u) − 1C(u),
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this leads to∑
z

p(z)
∑
u

g−z(〈u, v〉)[1Bn(u) − 1Bn(u − z)
]

(30) ≥∑
z

p(z)
∑
u

hz(〈u, v〉)[1Bn(u + z) − 1Bn(u)
]+ εnd−1.

Next, we will divide (30) by nd−1 and pass to the limit (along a subsequence) us-
ing the dominated convergence theorem. The domination is provided by Lemma 1.
Using this and Lemma 2, we will prove that, for any function g on � that satisfies

lim
l→−∞g(l) = 1 and lim

l→∞g(l) = 0,

lim
k→∞n1−d

k

∑
u

g(〈u, v〉)[1Bnk
(u) − 1Bnk

(u − z)
]= K〈z, v〉/a.(31)

Any such function g can be uniformly approximated by functions of the form

g(l) =
m∑

j=1

cj1{l≤lj },

where each lj ∈ � and
∑m

j=1 cj = 1. By Lemma 1, it suffices to prove (31) for a
function g of the form g(l) = 1{l≤r}, where r ∈ �. In this case, if 〈z, v〉 > 0, the
left-hand side of (31) becomes

lim
k→∞n1−d

k #
(
u ∈ Bnk

: r − 〈z, v〉 < 〈u, v〉 ≤ r
)
,(32)

so that (31) follows from (28), since there are 〈z, v〉/a elements of � in the interval
(r − 〈z, v〉, r]. A similar argument gives (31) when 〈z, v〉 < 0.

Note that by (24),

lim
l→−∞gz(l) = 1

4 , lim
l→∞gz(l) = 0,

lim
l→−∞hz(l) = 0, lim

l→∞hz(l) = 1
4

for every z. Therefore, we may apply (31) to g(l) = 4gz(l) for any z. The con-
clusion is that the limit of the left-hand side of (30) divided by nd−1, along the
sequence nk , is K

4a

∑
z p(z)〈z, v〉. Similarly, applying (31) to g(l) = 1 − 4hz(l),

it follows that the limit of the right-hand side of (30) divided by nd−1, along the
sequence nk , is ε − K

4a

∑
z p(z)〈z, v〉. Therefore, (30) implies that

∑
z p(z)〈z, v〉 ≥

2aε/K , as required. �

REMARK. As mentioned earlier, the main difficulty in extending Theorem 4
to general v is related to the continuity assumption on fA in the definition of v-
homogeneity. In the proof, we used a v-homogeneous coupling measure with pre-
scribed v-homogeneous marginals. If v were general, the continuity assumption
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would be needed in the treatment of (31) where we approximated g by step func-
tions. The issue is the existence of a coupling measure that satisfies the continuity
property. In the proofs of analogous results in [13] (see pages 143 and 383), one
starts the coupled process with the measure that is the product of the two given
marginals, and passes to a Cesaro limit of the measure as t → ∞. What is to guar-
antee that this limiting measure satisfies the needed continuity property? Perhaps
a stationary measure for the marginal or coupled process automatically satisfies
v-homogeneity with the continuity property. We do not know whether this is al-
ways the case.

Under a partial symmetry assumption, it is not difficult to prove a similar result
that allows v ∈ Rd :

THEOREM 5. Take v ∈ Rd and suppose p(z) = p(−z) for all z for which
〈z, v〉 
= 0. If µ is v-homogeneous and stationary for the exclusion process, then
µ{η :η(x) = 1} is constant on the smallest subgroup of Zd containing P = {x ∈
Zd :p(x) > 0}. Therefore, there are no v-profile stationary measures for the
process in the irreducible case.

Examples to which this result can be applied are the nearest neighbor exclusion
processes in which the transition probabilities are symmetric in all directions but
one, say e1, and with a drift in the direction of e1. The conclusion in these examples
is that there cannot be any ek-homogeneous stationary measure µ with nonconstant
density if k > 1.

PROOF OF THEOREM 5. Applying the generator of the exclusion process to
the function η → η(x), integrating with respect to µ, and using stationarity, gives,
for each x ∈ Zd , ∑

y

p(y − x)µ{η :η(x) = 1, η(y) = 0}
(33) =∑

y

p(x − y)µ{η :η(x) = 0, η(y) = 1}.

Making the change of variables z = y − x in the sums and using (22) yields∑
z

p(z)[f (〈x, v〉) − fz(〈x, v〉)]
(34) =∑

z

p(−z)[f (〈x + z, v〉) − fz(〈x, v〉)],

where we have used the shorthand

f (s) = f{0}(s) and fz(s) = f{0,z}(s).



EXCLUSION PROCESSES FOR d > 1 2277

Rewriting (34) gives∑
z

p(z)[f (s) − fz(s)] =∑
z

p(z)[f (s − 〈z, v〉) − fz(s − 〈z, v〉)](35)

for all s ∈ � = {〈x, v〉, x ∈ Zd}. In obtaining (35), we have used the relation

f−z(s) = f{0,−z}(s) = f−z+{0,z}(s) = f{0,z}(s − 〈z, v〉) = fz(s − 〈z, v〉),(36)

where we have used (23) in the third equality. So far, we have used practically
none of the assumptions of the theorem. We point this out because (35) and (36)
will be used later in the proof of Theorem 7.

Now, by the symmetry assumption on p(·), the terms in (35) involving fz cancel
out, since∑

z

p(z)[fz(s − 〈z, v〉) − fz(s)] = ∑
z : 〈z,v〉
=0

p(z)[f−z(s) − fz(s)]

= ∑
z : 〈z,v〉
=0

p(−z)[f−z(s) − fz(s)](37)

= ∑
z : 〈z,v〉
=0

p(z)[fz(s) − f−z(s)].

We have used (36) in the first step, the symmetry assumption in the second and
replacement of z by −z in the third. But the second and fourth expressions in (37)
are negatives of one another, so they must be zero.

Using the fact that the sums in (37) vanish, (35) leads to

f (s) =∑
z

p(z)f (s − 〈z, v〉), s ∈ �.

This says that g(x) = f (〈x, v〉) is a bounded harmonic function for the random
walk on Zd with probabilities p(−z) of moving from x to x + z. It follows that f

is a constant on the irreducible classes for this random walk by the Choquet–Deny
theorem—see [3], for example. �

6. Properties of stationary profile measures. In this section we study exclu-
sion processes on Zd , d ≥ 2, whose transition probabilities are translation invari-
ant and have a finite mean. Assume, in addition, that the process is irreducible.
We begin by using techniques similar to those in Sections 2 and 3 of Chapter VIII
in [13] to determine the structure of v-profile stationary measures when they exist.
Throughout this section, v will be a fixed nonzero element of Zd .

Theorem 6 below has two statements. We will prove the first in detail, but will
only sketch the proof of the second part. Three applications of Theorem 6 fol-
low its proof. In the statement below, the inequality µ1 ≤ µ2 refers to stochastic
monotonicity. See page 71 in [13] for the definition. Recall that an equivalent state-
ment is that µ1 and µ2 can be coupled so that any site at which the µ1 configuration
has a 1 must also have a 1 in the µ2 configuration.
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THEOREM 6. Suppose that µ1 and µ2 are extremal stationary measures for
the exclusion process.

(a) If µ1 and µ2 are v-profile, then either µ1 ≤ µ2 or µ2 ≤ µ1.
(b) If µ1 and µ2 are v-homogeneous and 〈∑z zp(z), v〉 = 0, then either µ1 ≤

µ2 or µ2 ≤ µ1.

PROOF. (a) It is enough to prove that every extremal stationary v-profile mea-
sure ν for the coupled process concentrates on configurations (η, ζ ) that have no
discrepancies of opposite type, that is, that each such ν satisfies

ν{(η, ζ ) :η(x) = ζ(y) 
= η(y) = ζ(x)} = 0

for all x, y ∈ Zd . To do so, define Bm,n for 1 ≤ m ≤ n slightly more generally than
the corresponding sets Bn used in the proof of Theorem 4:

Bm,n = {x ∈ Zd : |〈x, v1〉| ≤ m, |〈x, vi〉| ≤ n for 2 ≤ i ≤ d},
where v1, . . . , vd ∈ Zd are orthogonal and v1 = v. [Later in the proof, we will take
m,n → ∞ with m = o(n).] We will consider the contributions to the expected
(with respect to ν) net rate at which discrepancies in Bm,n disappear. The expected
total net rate is zero because the coupled process is in equilibrium.

If discrepancies of opposite types appear with positive ν probability, then
they will disappear in Bm,n at a rate that is at least of order nd−1, since (by
v-homogeneity) there will be at least this many pairs of sites x, y in Bm,n with
the same difference x − y and the same (by irreducibility) nonzero probability of
having a discrepancy of one type at x and of the other type at y. Therefore, it
suffices to show that the net rate at which discrepancies enter Bm,n is o(nd−1).

The idea is that discrepancies can enter Bm,n across two boundary faces on
which the density of particles is close to 0 in one case and close to 1 in the other
(by the v-profile assumption), or across the other boundary faces. In the first case,
there are roughly nd−1 locations to consider, and each makes a contribution to the
rate of entry of discrepancies that is o(1), so the total contribution is o(nd−1). In
the second case, the number of locations is of order mnd−2, which is o(nd−1) if
we choose m = o(n). These correspond to cases (B) and (A) below, respectively.

To carry out the details, consider sites x ∈ Bm,n, y /∈ Bm,n, and the expected
rate at which a discrepancy moves from x to y or from y to x. For example, the
expected rate at which a discrepancy moves from x to y is

p(y − x)ν{(η, ζ ) :η(x) 
= ζ(x), η(y) = ζ(y) = 0}
+ p(x − y)ν{(η, ζ ) :η(x) 
= ζ(x), η(y) = ζ(y) = 1},

with a similar expression for the expected rate at which a discrepancy moves
from y to x. Sums of these expected rates over appropriate choices of x and y

will be bounded in the various cases.
Since y /∈ Bm,n, either |〈y, v1〉| > m or |〈y, vi〉| > n for some 2 ≤ i ≤ d . There

are two cases to consider:
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(A) |〈y, vi〉| > n for some i > 1.
(B) |〈y, v1〉| > m and |〈y, vi〉| ≤ n for all i 
= 1.

The contributions to the expected rate of motion of discrepancies involving all
x, y in case (A) (corresponding to motion from points x inside the box to y outside
the box or vice versa) for a given i are bounded above by (letting z = y − x)∑

z

[p(z) + p(−z)]#(x : |〈x, v1〉| ≤ m, |〈x, vj 〉| ≤ n ∀ j > 1, |〈x + z, vi〉| > n).

This sum is at most

Cmnd−2
∑
z

|z|p(z)

for some constant C. This is o(nd−1), provided we let m,n → ∞ with m = o(n).
Next, we consider the total contribution to the expected rate at which discrep-

ancies enter Bm,n for x and y in case (B). Letting z = y − x, we see that this total
expected rate is bounded above by∑

z

[p(z) + p(−z)] ∑
x∈Bm,n

|〈x,v1〉+〈z,v1〉|>m

ν{(η, ζ ) :η(x + z) 
= ζ(x + z)}.

The number of terms in the inner sum is bounded by a constant multiple of |z|nd−1,
uniformly in n,m and z. Therefore, by the dominated convergence theorem and the
first moment assumption on p(·), the above expression will be o(nd−1), provided
that, for each z, the ratio of the inner sum to the number of summands in the inner
sum tends to zero as m,n → ∞. Consider the summands for which 〈x, v1〉 +
〈z, v1〉 > m, for example—those for which 〈x, v1〉 + 〈z, v1〉 < −m are handled in
a similar manner. For these summands, we have m − 〈z, v1〉 < 〈x, v1〉 ≤ m, and

ν{(η, ζ ) :η(x + z) 
= ζ(x + z)} ≤ µ1{η :η(x + z) = 0} + µ2{η :η(x + z) = 0}
= 2 − f{z},1(〈x, v〉) − f{z},2(〈x, v〉),

where we have used fA,i for i = 1 and 2 to denote the function defined in (22)
corresponding to the measure µi . Since µ1 and µ2 are v-profile measures, the
right-hand side above tends to zero as m → ∞. (Recall that v = v1.) This com-
pletes the consideration of case (B).

Sketch of proof of (b). The only part of the above argument that uses the as-
sumption that the measures µi are v-profile, as opposed to v-homogeneous, is the
treatment of case (B). In that context, we used the fact that the density of discrepan-
cies near the faces of Bm,n that are orthogonal to v is small when m is large because
the density of 0’s (for the face in the +v direction) or 1’s (for the face in the −v

direction) is small. The point is that, at a discrepancy, one coordinate must be 0 and
the other must be 1. If we only assume that the measures are v-homogeneous, the
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net expected rate at which discrepancies cross the faces of Bm,n orthogonal to v

has to be shown to be small for a different reason. This reason is, of course, related
to the assumption that the mean vector for p(·) is orthogonal to v. The argument
parallels the proof of Theorem 3.14 on page 391 in [13].

Here is the main idea. In a Cesaro sense (with respect to shifts in the ±v direc-
tions), the coupling measure ν, near the faces of Bm,n that are orthogonal to v, is
nearly translation invariant. It is translation invariant in the directions orthogonal
to v by the assumption of v-homogeneity, and in the v direction as a result of the
Cesaro averaging. So, in the limit as m → ∞, the measure ν is both stationary
for the coupled process and translation invariant. This implies that in this limit,
the marginals µ1 and µ2 are stationary for the exclusion process and translation
invariant. But this implies that they are exchangeable by Theorem 3.9 on page 388
in [13]. Furthermore, they are coupled together so that there are no discrepancies
of opposite type.

By decomposing the limiting coupling measure according to the type of discrep-
ancy that occurs, we find that we are essentially in the following situation. We can
assume that only one type of discrepancy occurs, so that the measures µ1 and µ2
are exchangeable, and are coupled by a measure ν that satisfies

ν{(η, ζ ) :η(x) = 1, ζ(x) = 0} = 0

for all x. We will use a suggestive notation for probabilities related to ν. For ex-
ample, we will write ν{(η, ζ ) :η(x) = 0, η(y) = ζ(x) = ζ(y) = 1} as

ν

(
1 1
0 1

)
.

Entries on the left correspond to site x, while entries on the bottom correspond
to configuration η. The total expected net rate at which discrepancies of this type
enter Bm,n across the face orthogonal to v in the +v direction in case (B) is then

∑
x∈Bm,n,〈y,v1〉>m,

|〈y,vj 〉|≤n ∀ j 
=1

{
p(x − y)

[
ν

(
0 1
0 0

)
− ν

(
1 1
0 1

)]

+ p(y − x)

[
ν

(
1 1
1 0

)
− ν

(
1 0
0 0

)]}
.

Using the fact that η ≤ ζ a.s. with respect to ν, the differences that appear above
can be written as

ν

(
0 1
0 0

)
− ν

(
1 1
0 1

)
= µ2{ζ : ζ(x) = 0, ζ(y) = 1}−µ1{η :η(x) = 0, η(y) = 1}

and

ν

(
1 1
1 0

)
−ν

(
1 0
0 0

)
= µ1{η :η(x) = 1, η(y) = 0}−µ2{ζ : ζ(x) = 1, ζ(y) = 0}.
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By exchangeability of the marginals, the right-hand sides above are independent of
x and y and are negatives of one another, so we will call them A and −A, respec-
tively. It follows that the total expected net rate at which discrepancies enter Bm,n,
across the face orthogonal to v in the +v direction is, in case (B),

A
∑

x∈Bm,n,〈y,v1〉>m,

|〈y,vj 〉|≤n ∀ j 
=1

[p(x − y) − p(y − x)].

Except for the factor of A, this can be written as∑
z

p(z)[#(x ∈ Bm,n : 〈x, v1〉 > m + 〈z, v1〉, |〈x, vj 〉 − 〈z, vj 〉| ≤ n ∀ j 
= 1)

− #(x ∈ Bm,n : 〈x, v1〉 > m − 〈z, v1〉, |〈x, vj 〉 + 〈z, vj 〉| ≤ n ∀ j 
= 1)].
It is not hard to check that this expression is asymptotic to a negative multiple of

nd−1
∑
z

p(z)〈z, v1〉.

Since the mean vector of p(·) is orthogonal to v1, this is o(nd−1), as required. �

REMARK. If one tried to prove Theorem 6 for general v ∈ Rd , one would need
the continuity assumption in the definition of v-homogeneity for the coupling mea-
sure ν, in order to know that, if ν concentrates on configurations with discrepancies
of both types, then the rate of loss of discrepancies inside Bm,n is of order nd−1.
As explained earlier, we do not know whether the continuity assumption on the
marginals µi is inherited by the coupling measure ν.

As a consequence of Theorem 6, we can explicitly identify all stationary
v-profile measures when (6) is satisfied.

COROLLARY 1. Suppose that (6) holds, and let

αc(x) = ce〈z,v〉

1 + ce〈z,v〉 , c > 0.

Then, the set of all extremal stationary v-profile measures is exactly {ναc, c > 0}.

PROOF. Let µ be any extremal stationary v-profile measure. The measure ναc

has the same properties: it is stationary by Theorem 2 and it is extremal by Theo-
rem 2.1 of Jung [7], since ∑

x

αc(x)[1 − αc(x)] = ∞.

(Jung’s context assumes reversibility, but this property is not needed in his proof.)
Therefore, by Theorem 6, for each c > 0, either µ ≤ ναc or ναc ≤ µ. Since the
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measures ναc are stochastically monotone in c, there is some 0 ≤ c∗ ≤ ∞ so that
µ ≤ ναc for c > c∗ and µ ≥ ναc for c < c∗. Since the family ναc is weakly contin-
uous in c, it follows that µ = ναc∗ . �

COROLLARY 2. Suppose that〈∑
x

xp(x), v

〉
= 0.

Then, the extremal stationary v-homogeneous measures are exactly the homoge-
neous product measures.

PROOF. The proof is the same as that of Corollary 1. The role that ναc played
in the proof of Corollary 1 is now played by the homogeneous product measures.
In this case, Theorem 1.17 on page 216 in [14] can be used as an alternative to
Jung’s theorem. �

Finally, we will combine Theorem 6 with part of the proof of Theorem 5 to show
that, under an additional assumption on p(·), all v-profile stationary measures have
a property analogous to that of a blocking measure in the sense of Bramson, Liggett
and Mountford [1]. The proof is based on the proof of Lemma 6.4 of that paper.
The simplest way to explain the idea of the proof of Theorem 7 is to refer to
identity (6.12) in the statement of that lemma. It states that if d = 1 and ν is a
stationary measure for the exclusion process with transition probabilities p(·) that
has a finite expected number of ones to the left of the origin and a finite expected
number of zeros to the right of the origin, then

∞∑
n=1

n2p(−n) =
∞∑

n=1

nM(n)[p(n) − p(−n)],

where M(n) is the ν-expected number of sites x at which there is a one at x and a
zero at x + n. This provides an a priori bound for the quantitites M(n) in terms of
the second moments of the negative jump probabilities for the particles. The proof
below develops this idea for systems in higher dimensions. Most of the work is
aimed at proving the convergence in (39).

THEOREM 7. Suppose that

(a) p(z) ≥ p(−z) whenever 〈z, v〉 > 0,
(b) p(z) > p(−z) for some z such that 〈z, v〉 > 0,

and
(c)

∑
z : 〈z,v〉>0 p(−z)〈z, v〉2 < ∞.

If µ is a v-profile extremal stationary measure for the corresponding exclusion
process, then µ is concentrated on configurations η that satisfy η(kv) = 0 for all
sufficiently large negative k and η(kv) = 1 for all sufficiently large positive k.
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PROOF. We begin by restating (35), which only requires the assumption of
stationarity. In the present case, � = NZ for some integer N ≥ 1, since v ∈ Zd .
We therefore have∑

z

p(z)[f (kN) − fz(kN)] =∑
z

p(z)[f (kN − 〈z, v〉) − fz(kN − 〈z, v〉)].

Sum this identity over m < k ≤ n. For fixed z, make the change of variables

k → k + 〈z, v〉
N

in the sum over k of the terms on the right-hand above. A significant amount of
cancellation occurs with terms on the left-hand side, whose precise nature depends
on the sign of 〈z, v〉. The result is

∑
z : 〈z,v〉>0

p(z)

n∑
k=n+1−(〈z,v〉/N)

[f (kN) − fz(kN)]

− ∑
z : 〈z,v〉<0

p(z)

n−(〈z,v〉/N)∑
k=n+1

[f (kN) − fz(kN)]

= ∑
z : 〈z,v〉>0

p(z)

m∑
k=m+1−(〈z,v〉/N)

[f (kN) − fz(kN)]

− ∑
z : 〈z,v〉<0

p(z)

m−(〈z,v〉/N)∑
k=m+1

[f (kN) − fz(kN)].

Since the left-hand side above becomes the right-hand side if n is replaced by m,
it follows that the left-hand side is independent of n. Since µ is v-profile, this
expression tends to zero as n → ±∞. Therefore, it is zero for all n. In other words,

∑
z : 〈z,v〉>0

p(z)

n∑
k=n+1−(〈z,v〉/N)

[f (kN) − fz(kN)]

= ∑
z : 〈z,v〉<0

p(z)

n−(〈z,v〉/N)∑
k=n+1

[f (kN) − fz(kN)]

over all n. Next, sum this identity for −M ≤ n < M . The result is

∑
z : 〈z,v〉>0

p(z)
∑
k

[f (kN) − fz(kN)]
[(

k + 〈z, v〉
N

)
∧ M − (−M) ∨ k

]+

= ∑
z : 〈z,v〉<0

p(z)
∑
k

[f (kN) − fz(kN)]
[
k ∧ M −

(
k + 〈z, v〉

N

)
∨ (−M)

]+
.
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Replace z by −z on the right-hand above, then make a change of variables k →
k + (〈z, v〉/N), and finally use (36). The right-hand side above then becomes

∑
z : 〈z,v〉>0

p(−z)
∑
k

[f (kN +〈z, v〉)− fz(kN)]
[(

k + 〈z, v〉
N

)
∧M − (−M)∨ k

]+
.

Therefore, moving some terms from the resulting right-hand side to the left-hand
side, we obtain∑

z : 〈z,v〉>0

[p(z) − p(−z)]∑
k

[f (kN) − fz(kN)]cM(k, z)

(38) = ∑
z : 〈z,v〉>0

p(−z)
∑
k

[f (kN + 〈z, v〉) − f (kN)]cM(k, z),

where

cM(k, z) =
[(

k + 〈z, v〉
N

)
∧ M − (−M) ∨ k

]+
.

By comparing µ with a translate of µ in the v direction, we see from Theorem 6
that f (kN) is a monotone function of k. Since µ is a v-profile measure, it must
be an increasing function of k. Therefore, all the summands on the right-hand side
of (38) are nonnegative. Since

cM(k, z) ≤ 〈z, v〉
N

for all choices of the arguments, the right-hand side of (38) is at most

N−1
∑

z : 〈z,v〉>0

p(−z)〈z, v〉∑
k

[f (kN + 〈z, v〉) − f (kN)]

= N−2
∑

z : 〈z,v〉>0

p(−z)〈z, v〉2,

which is finite by assumption. In the identity above, we have used the fact that
〈z, v〉 is a multiple of N .

The summands on the left-hand side of (38) are also nonnegative by assumption.
Since

lim
M→∞ cM(k, z) = 〈z, v〉

N
,

we may apply Fatou’s lemma to the left-hand side of (38) to conclude that∑
z : 〈z,v〉>0

[p(z) − p(−z)]〈z, v〉∑
k

[f (kN) − fz(kN)] < ∞.

By assumption, there exists a z with 〈z, v〉 > 0 so that p(z) > p(−z). For this z, it
follows from this display that∑

k

[f (kN) − fz(kN)] < ∞.(39)
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We claim that the convergence of the series in (39) does not depend on z, and
hence it will converge for all z. Note first that by the definitions of f and fz,

µ{η :η(x) = 1, η(x + z) = 0} = f (〈x, v〉) − fz(〈x, v〉).(40)

To see that the convergence of (39) holds for all z, it suffices by (40) to check that,
for any z and w, there exists an ε > 0 so that, for all x,

µ{η :η(x) = 1, η(x + z) = 0} ≥ εµ{η :η(x) = 1, η(x + w) = 0}.
For this, it is enough to show that such an ε exists so that

µ{η :η(x) = 1, η(x + z) = 0, η(x + w) = 1}
≥ εµ{η :η(x) = 1, η(x + w) = 0, η(x + z) = 1}

for all x. To check this, since µ is stationary, it is enough to use irreducibility to
find a path z0, z1, . . . , zn with z0 = z, zn = w, and p(zi+1 − zi) > 0 for each i,
and then observe that there is a way to go from any configuration η such that
η(x + z) = 1, η(x + w) = 0 to ηx+z,x+w (the configuration obtained from η by
interchanging the states at x + z and x + w) by successively moving particles
along the path without interference from sites not on the path (shifted by x), so
that the probability is positive that these transitions occur in the given order by
time one, and that by time one, no other transitions involving sites on this path are
attempted. Schematically, suppose η has the following form along the shifted path:

1 1 0 1 1 0 0

and we need to move to

0 1 0 1 1 0 1.

The way to do this is to move the rightmost 1 two steps to the right, the next 1 one
step to the right, the next 1 two steps to the right, and finally the leftmost 1 one
step to the right.

We have shown that the series in (39) converges for all z and, in particular, for
z = v. Recalling that |v|2 is a multiple of N , say, |v|2 = lN , we conclude that∑

k

µ
{
η :η(kv) = 1, η

(
(k + 1)v

)= 0
}=∑

k

[f (klN) − fv(klN)] < ∞.

Therefore,

lim
k→−∞η(kv) and lim

k→+∞η(kv)

exist a.s. Since µ is a v-profile measure, these limits must be 0 and 1, respectively,
as claimed. �
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7. Convergence to stationary profile measures. In previous sections we
studied the stationary measures of exclusion processes. Here and in the next two
sections, we give convergence results for exclusion processes with nonstationary
initial measures. The exclusion processes are assumed to be on Zd , d ≥ 2, with
transition probabilities that are translation invariant, have finite mean and are irre-
ducible. The main result in this section is Theorem 8, where we show that, given
a one-parameter family of extremal stationary v-profile measures, an exclusion
process with a v-profile initial measure converges weakly to an average of these
stationary measures, provided one is given certain bounds on the tails of the mea-
sures. As in Section 6, we assume v is a nonzero element of Zd .

In order to show Theorem 8, we will employ four lemmas. For the first of these,
we introduce the following notation. Let v1, . . . , vd be an orthogonal basis for Rd

with vi ∈ Zd and v1 = v; as mentioned before Lemma 1, such a basis can be
constructed using the Gram–Schmidt procedure. We set

L(z) = {x ∈ Zd : 0 ≤ 〈x − z, vi〉 < 〈vi, vi〉, 2 ≤ i ≤ d}
and

L−(z) = L(z) ∩ {x ∈ Zd : 〈x − z, v1〉 ≤ 0},
L+(z) = L(z) ∩ {x ∈ Zd : 〈x − z, v1〉 ≥ 0}.

That is, L(z) is an infinite strip in the v1 direction which has width |vi | in the
perpendicular directions, and L−(z) and L+(z) are the corresponding semi-infinite
strips. For k = (k(2), . . . , k(d)) ∈ Zd−1, set

Lk(z) = L

(
z +

d∑
i=2

k(i)vi

)
.

It is easy to see for given z that Lk(z), k ∈ Zd−1, partitions Zd and

x ∈ L(z), y ∈ Lk(z) �⇒




x −
d∑

i=2

k(i)vi ∈ L−k(z),

y −
d∑

i=2

k(i)vi ∈ L(z).

(41)

For a v-homogeneous measure λ, we also set

−
λ (z) = Eλ[#x ∈ L−(z) :η(x) = 1],

+
λ (z) = Eλ[#x ∈ L+(z) :η(x) = 0].

In the following lemmas and in Theorem 8, we will employ v-homogeneous mea-
sures λ satisfying

−
λ (0) < ∞(42a)



EXCLUSION PROCESSES FOR d > 1 2287

and

+
λ (0) < ∞.(42b)

Note that such v-homogeneous measures are v-profile.
We will repeatedly use the coupling ξt = (ηt , ζt ) introduced in Section 5 for the

exclusion process. Unless stated otherwise, we will assume that the initial mea-
sures of the two coordinates are independent. Let µ and λ denote the initial mea-
sures of the coordinates, respectively, and γ the corresponding product measure.

Let ξt be such a coupling, where µ and λ are v-homogeneous measures satisfy-
ing (42b) for µ and (42a) for λ. The first part of Lemma 3 states that the expected
number of discrepancies of type (0,1), along a strip L(0), is nonincreasing in
time. The second part of the lemma uses this to obtain uniform upper bounds in
time on the tail of −

λt
(z) for a measure λ satisfying (42a), when a v-homogeneous

stationary measure satisfying both parts of (42) exists.

LEMMA 3. Assume that µ and λ are v-homogeneous measures satisfying
(42b) and (42a), respectively. Then,

Eγ [#x ∈ L(0) :ηt (x) = 0, ζt (x) = 1] is nonincreasing in t.(43)

Assume, moreover, that µ is stationary and satisfies (42a). Then,

−
λt

(z) → 0 as 〈z, v〉 → −∞(44)

uniformly in t .

PROOF. Discrepancies of type (0,1) can disappear, but cannot be created. So,
in order to show (43), it suffices to show that the expected rate at which discrep-
ancies leave L(0) equals the expected rate at which they enter at a given time, if
one ignores terms corresponding to their disappearance. Let r(x, y; ξ) denote the
rate at which a discrepancy of type (0,1) moves from x to y; this depends on just
p(y − x) and the present state ξ . The expected rate at which such discrepancies
leave L(0) at time t is

Eγ

[ ∑
x∈L(0)

∑
y /∈L(0)

r(x, y; ξt )

]
= ∑

k 
=0

Eγ

[ ∑
x∈L(0)

∑
y∈Lk(0)

r(x, y; ξt )

]
,

which is finite because of assumptions (42b) and (42a) on µ and λ. Since µ and
λ are v-homogeneous, so is γ , and hence so is the distribution of ξt . It therefore
follows from (41) that the above sum equals

∑
k 
=0

Eγ

[ ∑
x∈L−k(0)

∑
y∈L(0)

r(x, y; ξt )

]
= Eγ

[ ∑
x /∈L(0)

∑
y∈L(0)

r(x, y; ξt )

]
,

which is the expected rate at which these discrepancies enter L(0).
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We now demonstrate (44). Let nµ denote the shift of µ by −nv and nγ the
product of nµ and λ; since µ is v-homogeneous and satisfies (42b), the same is
true for nµ. It follows from this and (43) applied to nµ that, for given ε > 0 and
sufficiently large n,

Enγ [#x ∈ L(0) :ηt (x) = 0, ζt (x) = 1] < ε

uniformly in t .
On the other hand, since µ is stationary and is assumed to satisfy (42a),

Enµ[#x ∈ L−(−2nv) :ηt (x) = 1] = Eµ[#x ∈ L−(−nv) :ηt (x) = 1] < ε

for sufficiently large n and all t . Together with the previous inequality, this implies

−
λt

(−2nv) = Eλ[#x ∈ L−(−2nv) : ζt (x) = 1] < 2ε

for all t , since L−(−2nv) ⊂ L(0). This implies (44) for z = −2nv. The limit
also holds for general z since L−(z) is contained in a finite union of appropri-
ate L−

kj
(−2nv), j = 1, . . . ,2d−1, where the individual coordinates of kj differ by

at most 1 and n is chosen so that

−2(n + 1)〈v, v〉 ≤ 〈z, v〉 ≤ −2n〈v, v〉,
and since for any choice of k,

−
λt

(
−2nv +

d∑
i=2

k(i)vi

)
= −

λt
(−2nv).

�

Let

LN(0) = L(0) ∩ {x ∈ Zd :−N〈v, v〉 ≤ 〈x, v〉 < N〈v, v〉},
where N ∈ Z+, and let L̂N(0) = L(0) \ LN(0). Also, let

BN = {x ∈ Zd :−N〈vi, vi〉 ≤ 〈x, vi〉 < N〈vi, vi〉 for i = 1, . . . , d},
N ∈ Z+, where {v1, . . . , vd} is the orthogonal basis for Rd defined earlier, with
v1 = v. Lemma 4 provides upper bounds on the number of discrepancies for the
coupled process ξt = (ηt , ζt ), starting from v-profile measures µ and λ satisfying
(42), where µ is stationary. The first part gives bounds on discrepancies of types
(0,1) and (1,0) existing simultaneously in BN , and the second part gives bounds
on the total number of discrepancies in L̂N(0).

LEMMA 4. Assume that µ and λ are v-profile measures satisfying (42), and
that µ is stationary. Then,

P γ {discrepancies of opposite types exist for (ηt , ζt ) in BN } → 0(45)

as t → ∞ for each N . Also,

Eγ [#discrepancies of (ηt , ζt ) in L̂N(0)] → 0 as N → ∞(46)

uniformly in t .



EXCLUSION PROCESSES FOR d > 1 2289

PROOF. In (45), we may assume that N is large. Let LN,B denote the union
of the (4N)d−1 translations of L(0) containing points in B2N . It suffices to show
for each t at which the probability in (45) is at least ε > 0,

Eγ [#discrepancies of ξt in LN,B] − Eγ [#discrepancies of ξt+1 in LN,B] < −ε′,

where ε′ > 0 depends on ε and N , since this implies there are only a finite number
of such t at least distance 1 apart.

As in the demonstration of (43), one can show that the expected number of dis-
crepancies in LN,B is nonincreasing at each t by calculating the terms correspond-
ing to their movement, but ignoring those corresponding to their disappearance. It
therefore suffices to show that, for any configuration with a pair of discrepancies
of opposite types at sites z,w ∈ BN , there is a uniform positive lower bound on the
probability of these discrepancies meeting each other or other discrepancies of op-
posite type after an additional unit of time, while remaining in B2N ⊂ LN,B . This
is shown in Lemma 3.1 in [1]. The argument uses the irreducibility of p(·), and is
similar to that near the end of the proof of Theorem 7, where one constructs a path
z0, z1, . . . , zn, with z0 = z, zn = w, and p(zi+1 − zi) > 0 for each i, along which
the discrepancies may move while remaining in B2N , until meeting one another or
some other discrepancy of opposite type.

To show (46), we apply (44) both to λ and to the corresponding measure with
the roles of 0 and 1 reversed, to get

−
λt

(−z) → 0 and +
λt

(z) → 0 as 〈z, v〉 → ∞
uniformly in t . Since µ is stationary and is assumed to satisfy (42), µt satisfies the
analogous limits. Together, these four limits imply (46). �

The following elementary lemma compares extremal stationary measures for
the exclusion process on the sets

DM = {(η, ζ ) :η(z) ≥ ζ(z) for z ∈ BM},
where M ∈ Z+.

LEMMA 5. Let γ be any measure with marginals µα1 and µα2 , where µα1 and
µα2 are extremal stationary measures with µα1{η :η(0) = 1} < µα2{η :η(0) = 1}.
Then, for any ε > 0,

γ (DM) < ε(47)

for large enough M not depending on the choice of γ .

PROOF. Assume, on the contrary, that there exist such measures γ k and sets
DMk

with γ k(DMk
) ≥ ε and Mk → ∞, as k → ∞. Choose a subsequence kn along
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which γ kn
w→ γ ∞ as n → ∞ for some measure γ ∞; then γ ∞ has the same mar-

ginals µαi . Let

D = {(η, ζ ) :η(z) ≥ ζ(z) for all z};
we claim that γ ∞(D) = 0. It will follow that γ kn(DM) < ε for large enough
n and M , which will contradict our assumption on γ k .

To see that γ ∞(D) = 0, consider the coupled processes ηt and ζt with initial
joint measure γ ∞. Let γ̄t denote the average of γ ∞

s over s ∈ [0, t], and γ̄ the weak
limit of γ̄tn along some subsequence tn. Then, γ̄ is stationary with marginals µαi ,
and D is invariant in time under γ̄ . Since µαi are assumed to be extremal with
densities α1 < α2 at 0, one has γ̄ (D) = 0. Because γ ∞(D) ≤ γ̄ (D), one has
γ ∞(D) = 0, as desired. �

In the following lemma and Theorem 8, we will assume that

there exists a one-parameter family µα , α ∈ (0,1), of extremal
(48) stationary v-profile measures with µα{η :η(0) = 1} = α.

It follows immediately from part (a) of Theorem 6 that

µα,α ∈ (0,1), are stochastically ordered, with µα1 ≤ µα2 for α1 ≤ α2.

For α0 ∈ (0,1) and z ∈ Zd , one also has

µα{η :η(z) = 1} → µα0{η :η(z) = 1} as α → α0.(49)

This follows by noting that, as either α ↗ α0 or α ↘ α0, µα w→ µ′, where µ′ is
stationary with µ′{η :η(0) = 1} = α0. When α ↗ α0 (α ↘ α0), one has µ′ ≤ µα0

(µ′ ≥ µα0); elementary reasoning similar to the path argument near the end of
the proof of Theorem 7 will then imply µ′ = µα0 , and hence (49). (Otherwise,
the coupling measure for µ′ and µα0 would have discrepancies at some sites, but
not at 0.) From Theorem 6 and (49), it follows that µα , α ∈ (0,1), are the unique
extremal stationary v-profile measures. One can also check that, for each z ∈ Zd ,

µα{η :η(z) = 1} → 0 as α → 0,

(50) → 1 as α → 1,

since this holds at z = 0.
Like Lemma 5, the following lemma compares stationary measures. We con-

sider here a stationary coupling of µα0 with
∫
(0,1) µ

ασ(dα), where µα0 and µα

satisfy (48), and the configurations almost everywhere have discrepancies of at
most one type. Then, µα0 will “dominate” and “be dominated by”

∫
(0,1) µ

ασ(dα)

on invariant subsets corresponding to α ∈ (0, α0] and α ∈ (α0,1), respectively. We
employ the notation

D− = {(η, ζ ) :η(z) < ζ(z) for some z ∈ Zd},
D+ = {(η, ζ ) :η(z) > ζ(z) for some z ∈ Zd}.
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LEMMA 6. Let the coupling ξt = (ηt , ζt ) be stationary, with measure γ hav-
ing marginals µα0 , α0 ∈ (0,1), and

∫
(0,1) µ

ασ(dα), where µα0 and µα are v-profile
measures satisfying (48), and σ is a probability measure. Also, let γ be concen-
trated on configurations with discrepancies of at most one type. Then, there exist
invariant subsets G− = {0,1}Zd ×H− and G+ = {0,1}Zd ×H+ that partition the
space, with

∫
(0,α0] µ

ασ(dα) and
∫
(α0,1) µ

ασ(dα) concentrated on H− and H+, re-
spectively. Moreover,

γ (D− ∩ G−) = γ (D+ ∩ G+) = 0.

PROOF. The existence of invariant sets H− and H+ that partition {0,1}Zd

and are concentrated on
∫
(0,α0] µ

ασ(dα) and
∫
(α0,1) µ

ασ(dα) follows, with a little
work, from the unique representation of the stationary measures in terms of their
extremal elements. It is easy to see that G± = {0,1}Zd × H± partition {0,1}Zd ×
{0,1}Zd

and are invariant on γ .
We will show that γ (D− ∩ G−) = 0; the argument for γ (D+ ∩ G+) is anal-

ogous. Assume, on the contrary, that γ (D− ∩ G−) > 0, and denote by γ −, the
stationary measure obtained by conditioning on D− ∩ G−. By the extremality of
µα0 , the first marginal measure of γ − is µ− = µα0 . Also, by the extremality of µα ,
α ∈ (0, α0], the second marginal measure λ− can be written as

λ− =
∫
(0,α0]

µασ−(dα)

for some probability measure σ−. This implies

µ−{η :η(z) = 1} ≥ λ−{ζ : ζ(z) = 1}
for all z. However, since γ − is supported on D−, this inequality cannot hold for
all z, which produces a contradiction. Hence, γ (D− ∩ G−) = 0, as desired. �

In the proof of Theorem 8, we will employ an extension �ξt = (�ηt , ζt ) of the cou-
pling ξt = (ηt , ζt ) introduced already, where the coordinates of �ηt = (ηα

t )α∈(0,1)

have initial measures µα which satisfy (48), with η
α1
0 (z) ≤ η

α2
0 (z) for α1 ≤ α2 and

all z. It then follows that η
α1
t (z) ≤ η

α2
t (z) for all t . We denote by λ the measure of

ζ0, by �µ the measure of �η0 and by �γ the measure of �ξ0 = (�η0, ζ0). As before, we
assume �η0 and ζ0 are independent.

Theorem 8 is the main result of the section. It states that when there exist
v-profile stationary measures µα satisfying (42) and (48), and a v-profile mea-
sure λ satisfying (42), then the measure of the process starting at λ will converge
to an average of the former as t goes to infinity. In one dimension, this statement
is an immediate consequence of the convergence theorem for positive recurrent
Markov chains. In higher dimensions, quite a bit more work is required to prove it.
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THEOREM 8. Assume that there exist v-profile measures µα , α ∈ (0,1), that
are stationary for the exclusion process and satisfy (42) and (48). Also, assume
that (42) is satisfied by a v-profile measure λ. Then,

λt
w→ λ∞ as t → ∞(51)

for some stationary v-profile measure λ∞, where

λ∞ =
∫
(0,1)

µασ(dα)(52)

and σ is a probability measure.

PROOF. The argument consists of two main parts. We will first show that any
limit of λtk , along a subsequence tk , must be of the form (52). We will then show
that σ in (52) does not depend on the subsequence, and so this limit must in
fact hold along the entire sequence. The first part of the argument uses (44) of
Lemma 3, (45) of Lemma 4 and Lemma 5; the second part uses (43) of Lemma 3,
both parts of Lemma 4 and Lemma 6.

Characterization of limits. We will first show that any limit can be approxi-
mated locally by a mixture of µα, α = j/n, j = 1, . . . , n − 1, if each µα is re-
stricted to an appropriate subset of configuration space. We will then show that
conditioning on this restriction does not change the distribution of µα much. Such
a limit will therefore be close to an average of the unrestricted µα . Taking limits
as n → ∞ will imply (52).

We apply here the coupling that was introduced between ηα
t , α ∈ (0,1), and ζt ,

with initial measures µα and λ. By (45) of Lemma 4, for each N and choice of
α = j/n, j = 1, . . . , n − 1, (ηα

t , ζt ) typically does not have discrepancies of both
types (0,1) and (1,0) on BN , for large enough t . Also, on account of (44) of
Lemma 3, its analog for +

λt
(z), and (50),

P �γ {�ξ :ηα
t (z) ≥ ζt (z) for all z ∈ LN(0)} → 0 as α → 0,

P �γ {�ξ :ηα
t (z) ≤ ζt (z) for all z ∈ LN(0)} → 0 as α → 1

and N → ∞, uniformly in t ; since LN(0) ⊂ BN , we may replace LN(0) with BN

in the display. It follows that, for given ε > 0, large n,N and small aε > 0,

P �γ
( ⋃

j∈Aε,n

NF
j,n
t

)
≥ 1 − ε(53)

for large enough t , where Aε,n = {j : j ∈ [aεn + 1, (1 − aε)n − 1]} and where

NF
j,n
t = {�ξ :ηj,n

t (z) ≤ ζt (z) ≤ η
j+1,n
t (z) for all z ∈ BN } ∩

( j−1⋃
j ′=1

NF
j ′,n
t

)c

.
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That is, off of a set of probability ε, the space can be partitioned into sets NF
j,n
t ,

j ∈ Aε,n, such that, for each j , the configuration ζt is sandwiched between η
j,n
t

and η
j+1,n
t on BN . (Here and later on, when α = j/n, we often write η

j,n
t for ηα .)

We do not know much about the behavior of η
j,n
t on NF

j,n
t . We will show,

however, that η
j,n

t ′ is almost independent of NF
j,n
t for t ′ = t + s, where s is large

but small relative to N , if we consider only z ∈ BM , for fixed M . First note that,
when s ∈ [0, s0] for given s0, if N is chosen large enough, it follows from (53) and
the shift invariance of the transition probabilities that

P �γ
( ⋃

j∈Aε,n

{�ξ ∈ NF
j,n
t :ηj,n

t ′ (z) ≤ ζt ′(z) ≤ η
j+1,n

t ′ (z) for all z ∈ BM}
)

(54) ≥ 1 − 2ε,

for given M . That is, on NF
j,n
t , the configuration ζt ′ typically remains sandwiched

between η
j,n

t ′ and η
j+1,n

t ′ on BM . Let Mλt ′ denote the measure obtained from ζt ′ by

restricting configurations from Zd to BM , let M,Nµ
j,n

t ′,t denote the measure obtained

from η
j,n

t ′ by also conditioning on NF
j,n
t , and set Nc

j,n
t = P �γ (NF

j,n
t ). Also, let

dM(·, ·) denote the total variational distance between measures of configurations
on BM . (Since the space is finite, this is just the sum of the absolute value of the
differences of the probabilities over all configurations.) Employing this notation,
we can restate (54) as∑

j∈Aε,n

Nc
j,n
t

M,Nµ
j,n

t ′,t ≤ M,Nλ̃t ′ ≤
∑

j∈Aε,n

Nc
j,n
t

M,Nµ
j+1,n

t ′,t ,(55a)

for some M,N λ̃t ′ with

dM(Mλt ′,
M,N λ̃t ′) ≤ 2ε.(55b)

On the other hand, for each j , one can consider the coupled process (η′
s, ζ

′
s),

where the initial measures are given by µj−1,n and µj,n and the coordinates are
initially independent with joint measure γ ′. As before, it follows from (45) of
Lemma 4 that, for given M , (ηs, ζs) typically does not have discrepancies of both
types on BM for large s. Moreover, since both measures are extremal stationary
and the density of µj,n at 0 is greater than that of µj−1,n, it follows from this and
Lemma 5 that, for large s,

P γ ′ {(η′, ζ ′) :η′
s(z) ≤ ζ ′

s(z) for all z ∈ BM} ≥ 1 − ε′

for given ε′ > 0. Set ζ ′
0 = η

j,n
t and condition on the set NF

j,n
t . For such s, it fol-

lows that, for ε′ small relative to Nc
j,n
t , η

j,n

t ′ typically dominates, at sites in BM ,

a process with measure µj−1,n (since conditioning on NF
j,n
t does not change the
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measure of the process starting at η′
0). The same reasoning also shows that, after

conditioning on NF
j,n
t , η

j+1,n

t ′ is, for large s, typically dominated, on BM , by a

process with measure µj+2,n, when ε′ is small relative to Nc
j,n
t . This domination

translates into the inequalities

Mµj−1,n ≤ M,Nµ̃
j,n

t ′,t and M,Nµ̃
j+1,n

t ′,t ≤ Mµj+2,n(56a)

for some M,Nµ̃
j,n

t ′,t and M,Nµ̃
j+1,n

t ′,t with

Nc
j,n
t dM(M,Nµ

j,n

t ′,t ,
M,Nµ̃

j,n

t ′,t ) ≤ ε′, Nc
j,n
t dM(M,Nµ

j+1,n

t ′,t ,M,Nµ̃
j+1,n

t ′,t ) ≤ ε′.(56b)

Setting ε′ = ε/n, (55) and (56) together imply that, for given ε > 0 and large n,
N , ∑

j∈Aε,n

Nc
j,n
t

Mµj−1,n ≤ M,Nλ̃t ′ ≤
∑

j∈Aε,n

Nc
j,n
t

Mµj+2,n(57a)

for some M,Nλ̃t ′ with

dM(Mλt ′,
M,Nλ̃t ′) ≤ 4ε,(57b)

if s = t ′ − t is large relative to M , but small relative to t ′. Suppose now that λt ′k
w→

λ∞ as t ′k → ∞, for some measure λ∞. Then, the analogue of (57a) holds with

n = nk → ∞ and N = Nk → ∞, but with (57b) replaced by

dM

(Mλt ′k ,
M,Nλ̃t ′k

)→ 0 as k → ∞.

Since dM(Mµj−1,n,Mµj+2,n) → 0 uniformly in j as n → ∞, it follows, with a
little work, that

Mλ∞ =
∫
(0,1)

Mµασ(dα),

where σ is the weak limit of
∑

j∈Aε,n

Nc
j,n
t δj/n along some subsequence t ′ki

; be-

cause the measures
∑

j∈Aε,n

Nc
j,n
t δ(j−1)/n and

∑
j∈Aε,n

Nc
j,n
t δ(j+2)/n are concen-

trated on [aε,1 − aε], the sequence is tight on (0,1). (δα denotes the point mass
at α.) Letting M → ∞, one obtains

λ∞ =
∫
(0,1)

µασ(dα),

which is (52). It follows from this representation for λ∞ [or, alternatively,
from (44)] that λ∞ is a v-profile measure.
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Uniqueness of σ . We now show that weak limits λ∞ and λ′∞ of λt along dif-
ferent subsequences must, in fact, have the same measures σ and σ ′ in (52). Let
g(α0, α), with α0, α ∈ (0,1), denote the expected number of discrepancies of type
(0,1) on L(0) for the pair (η, ζ ) with marginal measures µα0 and µα , where the
joint measure is concentrated on configurations satisfying

η(z) ≥ ζ(z) for all z, if α0 ≥ α,

(58) ≤ ζ(z) for all z, if α0 ≤ α.

The first part of the argument will be to show that∫
(0,1)

g(α0, α)σ (dα) =
∫
(0,1)

g(α0, α)σ ′(dα)(59)

for each α0.
We consider the coupled process (η., ζ.) with marginal initial measures µα0 ,

α0 ∈ (0,1), and λ. In addition to assuming λtk

w→ λ∞ as k → ∞, with λ∞ satis-

fying (52), we may also assume that the joint measures γtk

w→ γ∞, for some γ∞.
Let γ ∞

t denote the process restarted from γ ∞
0 = γ∞, and let γ̄t be the Cesaro av-

erage of γ ∞
s over s ∈ [0, t]. Any weak limit γ̄ of γ̄t , as t → ∞, is stationary, with

the same marginals µα0 and
∫
(0,1) µ

ασ(dα). Also, by (46) of Lemma 4, γ∞ and,
hence, γ̄ , is concentrated on configurations with discrepancies of at most one type.

Let gt (α0) denote the expected number of discrepancies of type (0,1) on L(0)

at time t , gN
t (α0) the corresponding expected number on L̂N(0), and ḡ(α0) the

expected number on L(0) for the measure γ̄ . By (43) of Lemma 3, gt (α0) is non-

increasing in t , so g∞(α0)
def= limt→∞ gt (α0) exists. Also, by (46) of Lemma 4,

gN
t (α0) → 0 as N → ∞

uniformly in t . Therefore, since γtk

w→ γ∞, it follows that

ḡ(α0) = g∞(α0).

We claim that ∫
(0,1)

g(α0, α)σ (dα) = ḡ(α0).(60)

Since g∞(α0) does not depend on the choice of tk , it will follow from the previous
two equations that∫

(0,1)
g(α0, α)σ (dα) =

∫
(0,1)

g(α0, α)σ ′(dα) = g∞(α0),

and so (59) in fact holds.
To show (60), note that

ḡ(α0) = Eγ̄ [#z ∈ L(0) :η(z) < ζ(z);G−] + Eγ̄ [#z ∈ L(0) :η(z) < ζ(z);G+],
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where we choose G− and G+ as in Lemma 6. By Lemma 6, the first term on the
right-hand side is 0. The second term on the right-hand side equals

∑
z∈L(0)

[∫
(α0,1)

µα{η :η(z) = 1}σ(dα) − µα0{η :η(z) = 1}σ {α :α > α0}
]

+ Eγ̄ [#z ∈ L(0) :η(z) > ζ(z);G+].
By Lemma 6, the above expectation is 0. It follows that

ḡ(α0) = ∑
z∈L(0)

[∫
(α0,1)

µα{η :η(z) = 1}σ(dα) − µα0{η :η(z) = 1}σ {α :α > α0}
]
.

On the other hand, it is easy to see that, because of the coupling in (58),∫
(α0,1) g(α0, α)σ (dα) is equal to the right-hand side of the last equation and∫

(0,α0]
g(α0, α)σ (dα) = 0.

Putting these terms together, we see that (60) holds, which implies (59).
We will show that (59) is not possible unless σ = σ ′. We first note that, for

h ∈ (0, α0),

g(α0 − h,α) − g(α0, α) = g(α0 − h,α0) for α ≥ α0,

(61) = 0 for α < α0 − h.

The first equality holds since uncoupled particles from the first term on the left-
hand side arise from either uncoupled particles from the second term on the left-
hand side or from the term on the right-hand side; the second inequality holds
trivially since both terms on the left-hand side are 0. Consequently, for each α0 ∈
(0,1) and h ∈ (0, α0),∫

[α0,1)

(
g(α0 − h,α) − g(α0, α)

)
σ(dα) = g(α0 − h,α0)σ

([α0,1)
)
,

with the analogous equality also holding for σ ′. Also, note that for α ∈ [α0 −h,α0),

0 ≤ g(α0 − h,α) − g(α0, α) ≤ g(α0 − h,α) ≤ g(α0 − h,α0).

The last two displays, together with the second part of (61), imply that∫
(0,1)

(
g(α0 − h,α) − g(α0, α)

)
σ(dα) −

∫
(0,1)

(
g(α0 − h,α) − g(α0, α)

)
σ ′(dα)

≤ g(α0 − h,α0)
(
σ
([α0 − h,1)

)− σ ′([α0,1)
))

.

By (59), the left-hand side of this inequality is 0, and so the right-hand side is
nonnegative. Note that g(α0 − h,α0) is at least the difference of the probabilities
of there being a particle at 0 for µα0 and for µα0−h, which by assumption is h. So,

σ
([α0 − h,1)

)≥ σ ′([α0,1)
)
.
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Letting h ↘ 0 implies

σ
([α0,1)

)≥ σ ′([α0,1)
)

for each α0 ∈ (0,1).

Since the reverse inequality also holds, one has σ = σ ′, as desired. �

When (6) holds, the product measures ναc , c > 0, in Corollary 1 of Theorem 6,
satisfy the conditions in (48); it is easy to see that they also satisfy (42). One thus
has the following immediate consequence of Theorem 8.

COROLLARY 3. Assume that the kernel p(·) satisfies (6), and that a given
v-profile measure λ satisfies (42). Then,

λt
w→ λ∞ as t → ∞

for some stationary v-profile measure λ∞ satisfying (52).

8. Hydrodynamics and local limits. Hydrodynamic scaling has been applied
to a wide variety of stochastic processes, including the exclusion processes on Zd ,
to obtain detailed information about their asymptotic behavior. In the setting of the
exclusion processes, one obtains deterministic limits that satisfy the well-known
Burgers’ equation. These results extend to local limits for the unscaled exclusion
processes, that are product measures with densities given by the solution of Burg-
ers’ equation there. After stating these results, we provide several concrete exam-
ples of such limits for exclusion processes in d = 2. We then apply hydrodynamic
scaling to obtain a quick (though based on some nontrivial results) alternative proof
of Theorem 4 (with the weak inequality). As in previous sections, the exclusion
processes are assumed to be on Zd , with transition probabilities that are transla-
tion invariant and irreducible; here, they are also assumed to have finite range. For
the reader’s convenience, certain basic results pertaining to entropy solutions of
Burgers’ equation are given in the Appendix.

The time evolution of the asymmetric exclusion processes on Z with nearest
transition probabilities p(·) has been extensively studied for product initial mea-
sures with constant densities r and  over the positive and negative half-lines.
(See [14] for references.) Setting p(1) = 1 − p(−1) = p and letting λt denote the
corresponding measure at time t , one has, for p > 1/2,

lim
t→∞λt =




ν1/2, for r ≤ 1
2 and  ≥ 1

2 ,

νr , for r ≥ 1
2 and  + r > 1,

ν, for  ≤ 1
2 and  + r < 1,

1
2ν + 1

2νr, for 0 <  < r and  + r = 1.

(62)

On the level of heuristics, the first three lines of (62) can be motivated by using
approximations leading to the one-dimensional Burgers’ equation

∂u

∂t
+ m

∂

∂y
[u(1 − u)] = 0,(63a)
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with

u(0, y) = r for y ≥ 0,

(63b) =  for y < 0,

where m is the mean of p(·). Under this initial data, the entropy solution of (63)
evolves in two different ways depending on whether or not  < r . If  < r , then
u(t, ·) is given by the shock wave that is a translate of u(0, ·) in (63b), with

u(t, y) = r for y ≥ m(1 − r − )t,

(64) =  for y < m(1 − r − )t.

If  > r , then u(t, y) is a rarefaction wave that is continuous for t > 0, with

u(t, y) = r for y ≥ m(1 − 2r)t,

(65) =  for y ≤ m(1 − 2)t,

and is linear over [m(1 − 2),m(1 − 2r)]. Where u(t, ·) is locally nearly constant,
it is reasonable to expect λt to be close to a product measure. Substitution of y = 0
into (64) and (65) then gives the densities in (62).

Hydrodynamic scaling provides a rigorous connection between entropy solu-
tions of Burgers’ equation and the asymptotic behavior of the exclusion processes
in d dimensions. For exclusion processes, the relevant formulation of Burgers’
equation in d dimensions is

∂u

∂t
+

d∑
i=1

mi

∂

∂xi

[u(1 − u)] = 0,(66a)

with

u(0, x) = u0(x),(66b)

with measurable u0(x) ∈ [0,1], x ∈ Rd , and �m = (m1, . . . ,md) = ∑
z zp(z). Its

connection with the exclusion processes is given by Theorem 9, which is a para-
phrase of Theorems 1.3 and 7.1 in [16]. The first result (70) is the fundamental
hydrodynamic limit; the second result (71) is a modified local limit. The original
theorems apply to zero range processes as well.

Theorem 9 employs the following notation. We let λn, n = 1,2, . . . , denote
product measures on Zd , with

λn{η :η(z) = 1} = uz,n for z ∈ Zd,(67)

where, for all r > 0,∫
|x|<r

∣∣u[nx],n − u0(x)
∣∣dx → 0 as n → ∞,(68)
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and u0(x) ∈ [0,1] is measurable. For a cylinder function f on {0,1}Zd
[i.e., de-

pending only on η(z) with |z| ≤ r , for some r], set

f̂ (α) = Eνα [f (η)], α ∈ [0,1].(69)

Also, set τzf (η) = f (τzη), where τzη(z′) = η(z + z′).

THEOREM 9. Suppose that the product measures λn, n = 1,2, . . . , satisfy
(67) and (68) for some u0(x). Then, for any finite open ball B ⊂ Rd , t ≥ 0 and
ε > 0,

P λn

{∣∣∣∣∣n−d
∑

z∈nB

ηnt (z) −
∫
B

u(t, x) dx

∣∣∣∣∣> ε

}
→ 0(70)

as n → ∞, where u(t, x) is the entropy solution of (66). Moreover, for any cylinder
function f ,

Eλn

[
n−d

∑
z∈nB

τzf (ηnt )

]
→

∫
B

f̂
(
u(t, x)

)
dx(71)

as n → ∞.

The limit (71) states that, as n → ∞, λn
nt converges locally to a product measure

when viewed on the hydrodynamic scale. With certain monotonicity restrictions on
u0(x), it follows from (71) that, away from discontinuities of u(t, x), λn

nt in fact
converges locally to a product measure without any averaging. This is the content
of Proposition 3.

Let Cv,θ be the cone with vertex at the origin, pointing in the direction v 
= 0,
and including all points in Zd within angle θ > 0 of v. We will require that the
product measures λn satisfy

λn{η :η(z) = 1} ≤ λn{η :η(z + z′) = 1}(72)

for all z ∈ Zd and z′ ∈ Cv,θ , for a given choice of v and θ . That is, translation
by Cv,θ increases λn stochastically. After coupling the corresponding processes,
application of Theorem 9 implies the following result with a little work.

PROPOSITION 3. Suppose that the product measures λn, n = 1,2, . . . , satisfy
(67), (68) and (72). Then,

τ[nx]λn
nt

w→ νu(t,x) as n → ∞(73)

for any t > 0 and continuity point x of u(t, ·), where u(t, x) is the entropy solution
of (66).
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We omit a proof of Proposition 3 since it is close to results contained in [10].
Theorem 3 there assumes u0(x) is continuous rather than requiring (72); a corol-
lary assumes that λn = λ is fixed, with density α1 in one octant in Rd and another
density α2 elsewhere. Both results hold for a more general class of particle systems
that include the zero range processes as well.

In order to obtain explicit limits in (73), one needs to be able to solve Burgers’
equation (66) with its assigned initial data. Fortunately, the equation is degener-
ate in the sense that its solutions are given by a (d − 1)-dimensional family of
solutions of the one-dimensional Burgers’ equation, along lines pointed in the di-
rection �m = (m1, . . . ,md); this simplifies the computations. To state the result,
Proposition 4, we choose an orthonormal basis v1, . . . , vd with v1 = �m/| �m|, let
(y,w2, . . . ,wd) denote the coordinates of x with respect to v1, . . . , vd , and set
w = (w2, . . . ,wd). (If �m = 0, any orthonormal basis can be chosen.) We defer its
proof to the Appendix.

PROPOSITION 4. Suppose u0(x), x ∈ Rd , is measurable with u0(x) ∈ [0,1].
Let u(t, y;w) denote the family of entropy solutions of (63a), with m = | �m| and
u0(y;w) = u0(x), and assume that

u(t, x)
def= u(t, y;w)(74)

is jointly measurable in t and x. Then, u(t, x) is the entropy solution of (66a) with
initial data u0(x).

We provide here several applications of Propositions 3 and 4, where we explic-
itly solve for the solutions u(t, x) of (66). In each case, we examine λt as t → ∞,
for initial product measures να with densities α(z) satisfying

α(z) = r on A,

(75) =  on Ac,

for given , r ∈ [0,1] and A ⊂ Z2. Analogous examples hold in Zd , d > 2. The
following examples include two-dimensional analogues of the limits in (62), when
viewed away from discontinuities of u(t, ·).

EXAMPLE 1. Let A denote the half-space z(1) ≥ cz(2) for some c ≥ 0, where
z = (z(1), z(2)), and assume �m = (1,0). In (67), we can set uz,n = r on A and
uz,n =  on Ac, so that λn = λ = να , for all n, where α is given in (75). Since
nA = A, we choose

u0(x) = r on A,

(76) =  on Ac,
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in (68). The cone condition (72) is clearly satisfied. Consequently, by Proposi-
tion 3,

τ[nx]λnt
w→ νu(t,x) as n → ∞,(77)

with u(t, x) satisfying (66). Application of Proposition 4 reduces the computation
of u(t, x) to solving (63), with y = x(1) − cx(2) and m = 1. The one-dimensional
problem breaks into two cases, depending on whether or not  < r . If  < r , then
u(t, y) is given by (64); otherwise, it is given by (65). Note that the resulting solu-
tion u(t, x) is measurable, as required for Proposition 4.

EXAMPLE 2. Let A denote the wedge A = A1 ∩ A2, where A1 and A2 are,
respectively, the half-spaces where z(1) ≥ cz(2) and z(1) ≥ −cz(2) for some c > 0.
As before, we assume that �m = (1,0). It again follows from Proposition 3 that (77)
holds for initial data given by (76). Application of Proposition 4 reduces the prob-
lem to solving (63), with y = x(1) − c|x(2)| and m = 1. As in Example 1, the
problem breaks into two cases depending on whether or not  < r . Again, u(t, y)

is given by either (64) or (65).

EXAMPLE 3. Let A denote the wedge in Example 2, but assume that �m =
(0,1) here. The limit (77) again holds for the initial data in (76). Application of
Proposition 4 reduces the problem to solving (63a) for m = 1 and

u0(y) = r on A
(
x(1)),

=  on A
(
x(1))c,

where

A
(
x(1))= {

y :y ∈ [−x(1)/c, x(1)/c
]}

,

with y = x(2).
For x(1) ≤ 0, one trivially obtains u(t, y) ≡ . For x(1) > 0, we first consider

 > r , with the case  < r being analogous. We use standard arguments similar
to those on pages 291–303 in [17]. One can check that the behavior of u(t, y)

depends on whether (a) t ≤ 2x(1)/c( − r) or (b) t > 2x(1)/c( − r). Under (a),
u(t, y) is continuous and piecewise linear except at y = (1− − r)t +x(1)/c, with

u(t, y) = r for y ∈ [(1 − 2r)t − x(1)/c, (1 −  − r)t + x(1)/c
]
,

=  for y ∈ (−∞, (1 − 2)t − x(1)/c
)

(78)

∪ (
(1 −  − r)t + x(1)/c,∞)

.

That is, there is a shock wave emanating from x(1)/c and a rarefaction wave ema-
nating from −x(1)/c at t = 0, that first meet at t0 = 2x(1)/c( − r).

Under (b), u(t, y) is continuous and piecewise linear except at

b(t) = (1 − 2)t + 2
√

2( − r)x(1)t/c − x(1)/c,(79)
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with

u(t, y) =  −
√

2( − r)x(1)/ct for y = b(t),

=  for y ∈ (−∞, (1 − 2)t − x(1)/c
)

(80)

∪ (
b(t),∞)

.

[We are assuming here that u(t, ·) is left continuous at b(t), i.e., b(t) lies on the
rarefaction wave.] The derivation of (79) and (80) requires some computation. If
b(t), t ≥ t0, is the position of the discontinuity at which the shock and rarefaction
waves meet, then

b′(t) = 1 −  − u
(
t, b(t)

)
.(81)

This motion is analogous to that of the shock in (64). Moreover, because (t, b(t))

lies on the rarefaction wave,

u
(
t, b(t)

)= 1

2t

(
t − b(t) − x(1)/c

)
,(82)

which is analogous to the stretching of the wave in (65). Substitution of
(82) into (81) gives a first-order linear equation having the solution (79); together
with (82), this also yields (80). The analogous formulas hold for the case  < r ,
with −y being substituted for y in (78) and (80).

In Theorem 4, we showed that if v ∈ Zd \ {0} and p(·) has a finite mean �m, then
any v-profile measure will satisfy 〈 �m,v〉 ≥ 0. Using (70) of Theorem 9, we give a
short alternative proof here. As elsewhere in this section, we assume that p(·) has
finite range. (The condition v ∈ Zd from Section 5 is not needed here, however.)

In order to employ (70), it is useful to be able to omit the assumption that the
measures λn in (67) are product measures. Let the measurable map U :R+ ×Rd →
P([0,1]) (the probability measures on [0,1] equipped with the weak topology) be
a (measure-valued) weak limit, under hydrodynamic scaling, of a sequence of ex-
clusion processes with initial measures λn. We will assume any such limit satisfies
the regularity condition∫

|x|<r
dx

∫
[0,1]

|y − u0(x)|(U(t, x)
)
(dy) → 0 as t ↘ 0(83)

(a.e. in t), for all r > 0 and a given measurable u0(x) ∈ [0,1]. Kipnis and
Landim [8] comment, on page 199, that one can substitute (83) in Theorem 9 for
the assumption that λn are product measures. (This is only stated for zero range
processes restricted to the scaled unit torus, but it is also true in the present set-
ting [11].) We will use this variant of Theorem 9 in the proof of Theorem 10.

THEOREM 10. Suppose that µ is a v-profile measure that is stationary for the
exclusion process. Then, 〈 �m,v〉 ≥ 0.
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PROOF. Set uz,n = µ{η :η(z) = 1} for all z ∈ Zd and n ∈ Z+. Because µ is a
v-profile measure, uz,n satisfies (68) with

u0(x) = 1 for 〈x, v〉 ≥ 0,

(84) = 0 for 〈x, v〉 < 0.

Likewise, since µt = µ, for all t , (83) trivially holds for limits U(t, x) of the ex-
clusion process under hydrodynamic scaling. So, (70) is satisfied for the entropy
solution u(t, x) of (66). Again, since µt = µ, one must have, for all t ,

u(t, x) = 1 for 〈x, v〉 ≥ 0,

(85) = 0 for 〈x, v〉 < 0.

This implies 〈 �m,v〉 ≥ 0. Otherwise, as in Proposition 4, let u(t, y;w), w ∈
Rd−1, denote the entropy solutions of (63a), with m = | �m|. If 〈 �m,v〉 < 0, then
(63b) is satisfied with  = 1 and r = 0, for each w. One obtains the solution (65),
which contradicts (85). �

We note that one can also demonstrate Theorem 10 by using the constant se-
quence of product initial measures with uz,n = 1〈z,v〉≥0, rather than appealing
to (83). The argument involves truncations, and so is not as quick as before.

9. An example with local behavior depending on p(·). Results such as The-
orem 9 and Proposition 3, that use hydrodynamic limits, provide substantial insight
into the asymptotic behavior of exclusion processes on Zd . A more refined analysis
is needed on the original scale, however, to obtain information about the exclusion
process at the shocks of solutions of the corresponding Burgers’ equation. For in-
stance, the limit of λt in (62), for the case where 0 <  < r and  + r = 1, is given
by a mixture of the product measures ν and νr , since the shock can randomly be
on either side of 0.

We give here another type of example, that illustrates how the asymptotic be-
havior can depend on p(·) itself, and not just on its mean �m, if d ≥ 2. For this, we
examine exclusion processes on Z2 with initial measure

λ{η :η(z) = 1} = 1 for z ∈ A,

(86) = 0 for z ∈ Ac,

where A = {z = (z(1), z(2)) : z(1) ≥ 0 and z(2) ≥ 0}, and with random walk kernels

p(z) = p1 for z = e1, e2,

(87) = q1 = 1
2 − p1 for z = −e1,−e2,
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for p1 > 1/4, and

p(z) = p2 for z = e1, e2,

(88) = q2 = 1 − 2p2 for z = 0.

Under (87), �m = (2p1 − 1
2 ,2p1 − 1

2), and under (88), �m = (p2,p2), which
are, of course, equal for p2 = 2p1 − 1

2 . Since particles can never move under
(86) and (88), λt = λ for all t , in this case. As Theorem 11 shows, the behavior
under (86) and (87) is quite different.

THEOREM 11. Assume that an exclusion process has transition probabilities
p(·) satisfying (87) and initial measure satisfying (86). Then, for each j ,

P λ{η :ηt(z) = 1 for some z(1) + z(2) ≤ j
}→ 0 as t → ∞.(89)

A little thought shows what, in principle, must be occurring for the process in
Theorem 11. Particles randomly move into vertical and horizontal strips just to the
left and below the z(2) and z(1) axes, along which they can drift up and to the right.
The local departure of particles continues over time, emptying the plane locally
and producing (89).

The demonstration of Theorem 11 takes up the remainder of the section. Much
of the work is contained in Lemma 7, which employs the following notation. We
define λj as in (86), but where A is replaced by Dj = {z : z(1) + z(2) > j}, and set

�j = {
z : z(1) ≥ −j, z(2) ≥ −j, z(1) + z(2) ≤ j

}
and

Vj = Dc
j ∩ {

z : z(1) < −j or z(2) < −j
}
.

In words, �j is the triangle with vertices at (−j,−j), (−j,2j) and (2j,−j), and
Vj is the half-plane below z(1) + z(2) = j , excluding �j . Inequalities (90) and (91)
in Lemma 7 give upper bounds on the probabilities of there being particles in
Vj and �j for the exclusion process starting at λ and λ2j . From now on, we con-
sider p1 > 1/4 in (87) to be fixed.

LEMMA 7. For appropriate c > 0,

P λ{η :ηt (z) = 1 for some z ∈ Vj } ≤ c(q1/p1)
j/3(90)

and

P λ2j {η :ηt (z) = 1 for some z ∈ �j } ≤ c(q1/p1)
j/3(91)

for all t .
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PROOF. In order to demonstrate (90), it suffices to show the inequality with
Vj replaced by Vj,1 and by Vj,2, where

Vj,1 = Vj ∩ {
z : z(1) ≤ z(2)}, Vj,2 = Vj ∩ {

z : z(1) ≥ z(2)}.
By symmetry, it suffices to do this for just Vj,1.

Our main estimate will be a strengthened version of (44) of Lemma 3, with an
explicit rate of decay. For this, we employ the notation

L(z) = {
z′ ∈ Z2 : (z′)(2) = z(2)},

−
λ′(z) = Eλ′[

#z′ : (z′)(1) ≤ z(1), (z′)(2) = z(2) and η(z′) = 1
]

and

+
λ′(z) = Eλ′[

#z′ : (z′)(1) ≥ z(1), (z′)(2) = z(2) and η(z′) = 0
]
,

where λ′ is defined as in (86), but with A replaced by A′ = {z : z(1) ≥ 0}. The terms
L, −

λ′ and +
λ′ are special cases of those in Section 7, with d = 2 and v = (1,0)

here. We let ν = να denote the product measure with

π(z) = (p1/q1)
z(1)

(92)

[where π(z) = α(z)/(1 − α(z))].
Using Theorem 2, it is easy to check that ν is stationary. Clearly, ν and λ′

are v-homogeneous measures for v = (1,0). They also satisfy both parts of (42).
Setting µ = ν and λ = λ′, the assumptions of Lemma 3 are therefore satisfied.
Consequently, by (44),

−
λ′

t
(z) → 0 as z(1) → −∞

uniformly in t . Using the explicit form of π(·) in (92), this can be strengthened
by setting ε = c1(q1/p1)

n, with appropriate c1 > 0, in the first two displays of the
demonstration of (44). Combining these two inequalities, as before, implies that

−
λ′

t
(z) < 2c1(q1/p1)

n(93)

for z(1) = −2n and all t . Since A ⊂ A′, it follows that

−
λt

(z) < 2c1(q1/p1)
n(94)

for z(1) = −2n and all t .
The region Vj,1 is the union of the horizontal line segments (−∞, r(z(2))],

z(2) ∈ Z, with

r
(
z(2))= −j − 1 for z(2) ∈ [−j, j ],

= −∣∣z(2)
∣∣ for z(2) /∈ [−j, j ].
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Together with (94), this implies

Eλ[#z ∈ Vj,1 :η(z) = 1] ≤ (2j + 1)2c1(q1/p1)
[j/2] + 2

∞∑
n=j+1

2c1(q1/p1)
[n/2]

≤ c(q1/p1)
j/3

for large enough c. This demonstrates (90).
The reasoning for (91) is similar. Here, we set

L(z) = {
z′ ∈ Z2 : (z′)(1) − (z′)(2) = z(1) − z(2)}.(95)

The expectations −
λj (z) and +

λj (z) are defined as before, but with the inner equal-

ity in (95) replacing (z′)(2) = z(2). The vector v = (1,1) replaces (1,0), and we let
νj = να denote the product measure with

π(z) = (p1/q1)
z(1)+z(2)−j .(96)

The measures νj are stationary; νj and λj are v-homogeneous and satisfy both
parts of (42). Setting µ = ν2j and λ = λ2j , it follows as before that, for appropriate
c1 > 0,

−
λ

2j
t

(z) < 2c1(q1/p1)
n

for z(1) + z(2) = 2j − 2n and all t . The region �j is the union of 2j + 1 line
segments pointing in the direction v with right endpoint z(1) + z(2) = j in each
case. Setting n = [j/2] in each case implies that

Eλ2j [#z ∈ �j :η(z) = 1] ≤ (2j + 1)2c1(q1/p1)
[j/2] ≤ c(q1/p1)

j/3

for large enough c. This demonstrates (91). �

The proof of Theorem 11 applies Lemma 7, together with a coupling argument
that employs the translation invariance of D2j under (−1,1). The basic idea is that
since {

z : z(1) + z(2) ≤ j
}= Vj ∪ �j,

(89) will follow from (90) and (91), if the initial measure λ2j in (91) can be re-
placed by λ for large t . The difference A−D2j of the sets of sites initially occupied
by the corresponding processes is finite. So, it is reasonable to expect that the par-
ticles originally there will eventually dissipate away from the finite region �j as
t → ∞, perhaps by moving more or less in the direction (−1,1).

The coupling we will use, like that after (50), is an extension of the cou-
pling ξt = (ηt , ζt ) to a coupling �ξt = (�ηt , ζt ) with multiple coordinates. Here, �η =
(η0, . . . , ηN−1), with N = [19j4/ε], for a given ε > 0. The coordinate processes
are assumed to have deterministic initial measures µ2j,n, n = 0,1, . . . ,N − 1,
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and λ2j . The measures λ2j are defined as before; µ2j,n are defined as in (86),
but with A replaced by D2j,n = D2j ∪ �′

2j,n, where

�′
j,n = {

z : z(1) ≥ 0, z(2) ≥ 0, z(1) + z(2) ≤ j
}+ (−2jn,2jn)

is the translation, by (−2jn,2jn), of the triangle with vertices at (0,0), (0, j) and
(j,0). Let �γ denote the joint initial measure of the coupling.

We note that µ2j,n is the translate of µ2j,0 by z = (−4jn,4jn), and so µ
2j,n
t is

also the translate of µ
2j,0
t by z; since A ⊂ D2j,0, µ

2j,0
t stochastically dominates λ.

Also, since D2j ⊂ D2j,n, for all j and n, the discrepancies for a pair (ηn
t , ζt ) are

always of type (1,0). Their number remains constant over time, which is 2j2 + j ,
the number of sites in �′

j,n. The distribution of such discrepancies, at a time t , is
the same as for n = 0, up to a translation by z. We also set

�j,n = �j + (−4jn,4jn),

and note that �
n1
j ∩ �

n2
j = ∅ for n1 
= n2.

PROOF OF THEOREM 11. Set

Fn
t = {�ξ :ηn

t (z) = 1, ζt (z) = 0 for some z ∈ �j,n},
for n = 0,1, . . . ,N − 1. We will show that, for fixed ε > 0,

N−1∑
n=0

P �γ (F n
t ) ≤ εN(97)

for large enough t . It follows from the above comments on discrepancies that the
probabilities of the sets in (97) are all the same, and so P �γ (F 0

t ) ≤ ε. Consequently,

P µ2j,0{η :ηt (z) = 1 for some z ∈ �j } − P λ2j {η :ηt (z) = 1 for some z ∈ �j } ≤ ε,

for such t . Choosing ε ≤ c(q1/p1)
j/3, it follows from this, (91) and A ⊂ D2j,0,

that, for given j and large enough t ,

P λ{η :ηt (z) = 1 for some z ∈ �j } ≤ 2c(q1/p1)
j/3.

Along with (90), this implies that

P λ{η :ηt (z) = 1 for some z(1) + z(2) ≤ j
}≤ 3c(q1/p1)

j/3,

which implies (89) and, hence, Theorem 11.
In order to demonstrate (97), we set

Xt(�ξ) = #{n : �ξ ∈ Fn
t }.

We claim that, on Xt > 9j4, there must exist n1, n2 and z1, z2, with zi ∈ �j,ni
, so

that

η
n1
t (z1) = η

n2
t (z2) = 1 and η

n1
t (z2) = η

n2
t (z1) = 0.(98)
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To show this, let n′
1, . . . , n

′
3j2 denote the first 3j2 indices for which �ξ ∈ F

n′
i

t . Then,

∣∣∣∣∣
3j2⋃
i=1

{
z :η

n′
i

t (z) = 1, ζt (z) = 0
}∣∣∣∣∣≤ 3j2|�j | ≤ 9j4.

So, there is an index n1, with

η
n1
t (z1) = 1 and η

n′
i

t (z1) = ζt (z1) = 0(99)

for some z1 ∈ �j,n1 and all i. For some n2 ∈ {n′
1, . . . , n

′
3j2},{

z ∈ �j,n2 :ηn1
t (z) = 1 and ζt (z) = 0

}= ∅,

again since |�j | ≤ 3j2. One can therefore choose z2 ∈ �j,n2 so that

η
n2
t (z2) = 1 and η

n1
t (z2) = ζt (z2) = 0.

Together with (99), this implies (98).
When the event in (98) occurs, the pair (η

n1
t , η

n2
t ) has discrepancies of opposite

types at z1 and z2. Since zi ∈ �j,ni
, one has |z2 − z1| ≤ 4

√
2jN . In the same

manner as in the proof of Lemma 4, one can employ Lemma 3.1 of [1] to obtain
a uniform lower bound δ > 0 on the probability of these or other discrepancies of
opposite type meeting over (t, t + 1]. Also, there are not more than 3j2N sites
at which �ξ0 has discrepancies. Therefore, the event Xt > 9j4 cannot occur with
probability at least ε/2 at more than 6j2N/δε times spaced at least distance 1
apart. It follows that, for given ε > 0 and sufficiently large Tε ,

P �γ {Xt > 9j4} < ε/2(100)

for t ≥ Tε .
One has

N−1∑
n=0

P �γ (F n
t ) = E �γ [Xt ] = E �γ [Xt ;Xt > 9j4] + E �γ [Xt ;Xt ≤ 9j4].

Since Xt ≤ N , this is, by (100) and our choice of N ,

≤ 1
2εN + 9j4 ≤ εN,

for small ε. This implies (97), and completes the proof of Theorem 11. �

10. Open problems. An important open problem in the context of this paper
is to determine completely the set of extremal stationary measures for an irre-
ducible translation invariant exclusion process on Zd , d > 1, with

∑
x |x|p(x) <

∞. A complete characterization is out of reach at the present time. It is therefore
useful to isolate particular parts of this problem that are deserving of attention.
Here are some (related) statements that we think are probably true, but cannot
prove. [Some may require higher moment assumptions on p(·).]
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1. All extremal inhomogeneous stationary measures are v-homogeneous for some
v ∈ Rd satisfying 〈∑x xp(x), v〉 > 0.

2. All extremal inhomogeneous stationary measures are v-profile for some v ∈ Rd

satisfying 〈∑x xp(x), v〉 > 0. (We are less sure about this statement.)
3. For each v ∈ Rd satisfying 〈∑x xp(x), v〉 > 0, there is a continuous one para-

meter family of inhomogeneous extremal stationary v-profile measures.
4. If

∑
x xp(x) = 0, then the extremal stationary measures are exactly {νρ,0 ≤

ρ ≤ 1}. This is an old problem—it appears as open problem #5 on page 416
in [13].

5. For every choice of p(·) with nonzero mean vector, there exists an extremal
stationary measure that is not a product measure. [We do not know that this is
the case for any p(·) if d ≥ 2.]

In one dimension, #1 above is trivial, #2 is true, #3 is true with extra assump-
tions, except that the parameter is discrete rather than continuous, #4 is true, and
#5 is true under extra assumptions. (For the extra assumptions required, see the
discussion of the one-dimensional system in Section 1.)

Problems #1, #2 and #3 are interesting and open if Zd is replaced by a “lad-
der” of the form Z × {1, . . . ,N}. A possible analogue of the v-homogeneous and
v-profile properties in this context is the following: One can view {1, . . . ,N} as a
cycle, and say that a measure is rotationally homogeneous if it is invariant under
“rotations” of Z × {1, . . . ,N}, and is profile if it is rotationally homogeneous and
has density tending to 1 in one direction and to 0 in the other. Problem #4 can
be handled in the case of a ladder by a small modification of the one-dimensional
proof. It is likely that #5 for the ladder can be done using the approach in [2].

It may be useful to recall the known characterization of the class of all extremal
stationary measures for continuous time independent particle systems on Zd with
transition kernel p(·), since this might shed some light on what to expect for the
exclusion process. By Theorem 4.12 in [12], the extremal stationary measures are
exactly the Poisson fields on {0,1,2, . . .}Zd

in which the number of particles at x

has mean m(x), where m(x) ≥ 0 for all x and
∑

x m(x)p(y − x) = m(y) for all y.
By the Choquet–Deny theorem, the extremal functions m satisfying these proper-
ties are the pure exponentials

m(x) = e〈x,v〉,

for v such that
∑

x e−〈x,v〉p(x) = 1. Nonconstant m(·) of this type can only exist
if
∑

x xp(x) 
= 0, and then the corresponding v must satisfy 〈∑x xp(x), v〉 > 0. Of
course, nonextremal m’s can correspond to extremal stationary Poisson fields.

Note that the Poisson fields corresponding to the pure exponentials are
v-homogeneous (and even satisfy a property analogous to being v-profile), while
those corresponding to sums of exponentials are not. In one dimension, there are
no extremal stationary measures for the exclusion process corresponding to sums
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of exponentials—they are all either homogeneous or v-profile. Perhaps this is true
in higher dimensions as well. This has a bearing on problem #1 above.

In the context of the convergence results of Section 7, it is not clear to us what
assumptions on p(·) and v are, in general, necessary in order for the conditions
(42) and (48) of Theorem 8 to hold. It seems reasonable to guess that the existence
of a one-parameter family µα of extremal stationary v-profile measures, as in (48),
is in some sense generic.

The tail condition (42) should presumably hold for the v-profile measures of a
large class of p(·). A related question arose in [1] in d = 1. As pointed out there,
presently there are no known examples of extremal stationary profile measures that
are not blocking measures. Our condition (42) corresponds to (1.3) in that paper,
which immediately implies that a measure is a blocking measure. It is also not
known what conditions on p(·) are necessary for all stationary blocking measures
to satisfy (1.3); it is suggested there that a third moment assumption on p(·) might
be the correct condition.

APPENDIX

In Section 8, we examined the entropy solutions of the d-dimensional Burgers’
equation in (66). The equation is a specific case of the scalar conservation law

∂u

∂t
+

d∑
i=1

mi

∂

∂xi

fi(u) = 0,(A1a)

with fi ∈ C2(R), and having bounded initial data

u(0, x) = u0(x), x ∈ Rd.(A1b)

We briefly review here basic existence, uniqueness and stability results for the
entropy solutions of (A1). We then give the quick proof of Proposition 4. More
detail can be found on conservation laws in one dimension in Chapters 15 and 16
in [17] and Chapter 3 in [4], and on conservation laws in d-dimensions in [9] and
in Appendix 2 in [8].

Classical solutions to (A1) need not exist for all t , even when the initial data
u0(x) is smooth. One therefore typically works with weak solutions of (A1). That
is, for every function g :R+ ×Rd → R of class C

1,1
K (R+ ×Rd), u :R+ ×Rd → R

is required to satisfy

∫ ∞
0

∫
Rd

(
u(t, x)

∂

∂t
g(t, x) +

d∑
i=1

mifi

(
u(t, x)

) ∂

∂xi

g(t, x)

)
dx dt

(A2)
+
∫
Rd

u0(x)g(0, x) dx = 0,



EXCLUSION PROCESSES FOR d > 1 2311

where fi and u0 are as in (A1). (C1,1
K denotes the continuous functions with com-

pact support and one continuous derivative in both time and space.)
Solutions u(t, x) of (A2) can be modified on sets of measure 0 on R+ × Rd

without affecting the left-hand side of (A2), and so are certainly not pointwise
unique. Because of the possibility of shocks, they also need not be a.e. unique.
(See, e.g., Chapter 15 in [17] for examples.) The physically meaningful solution
of (A2) is given by its (a.e.) unique entropy solution. The following entropy con-
dition is due to Kruzkov [9], and states that, for every positive function g of class
C

1,1
K (R+ × Rd) and every a > 0, u(t, x) satisfies

∫ ∞
0

∫
Rd

{
|u(t, x) − a| ∂

∂t
g(t, x)

(A3a)

+
d∑

i=1

mi

∣∣fi

(
u(t, x)

)− fi(a)
∣∣ ∂

∂xi

g(t, x)

}
dx dt ≥ 0,

and for all r > 0, ∫
|x|<r

|u(t, x) − u0(x)|dx → 0 as t ↘ 0(A3b)

(a.e. in t), where fi and u0 are chosen as in (A1). A solution u(t, x) of (A2)
satisfying (A3) is said to be an entropy solution. (Kruzkov [9] includes a more
general family of equations in place of (A2).)

Kruzkov [9] proved the existence and uniqueness of entropy solutions:

THEOREM A1. For every bounded measurable u0(x), there exists a unique
entropy solution of (A2).

The above uniqueness is a consequence of an L1 stability result in [9] that com-
pares entropy solutions with different initial data.

The theory for solutions of (A2) in one dimension preceded that for general d

(see, e.g., [15]). When, in addition, f ′′ < 0, there is a version of the entropy solu-
tion satisfying

u(t, y) − u(t, y + a) ≤ Ca/t,(A4)

for a, t > 0, where C > 0 depends only on f and ‖u0(y)‖∞ (see, e.g., page 266
in [17]). In particular, only increasing jumps can occur as one moves from left to
right, and for a given t , u(t, ·) is locally of bounded variation. In this setting, one
can employ (A4) as the entropy condition in place of (A3).

We conclude with the proof of Proposition 4 of Section 8. The argument is a
straightforward application of Fubini’s theorem.
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PROOF OF PROPOSITION 4. We need to show that (A2) and (A3) hold for
fi(u) = f (u) = u(1 − u) and all g(t, x), if u(t, x) satisfies (74). Using the co-
ordinates of the orthonormal basis introduced before Proposition 4 and Fubini’s
theorem, we can rewrite the left side of (A2) as∫

Rd−1

{∫ ∞
0

∫
R

(
u(t, y;w)

∂

∂t
g(t, y;w)

+ mf
(
u(t, y;w)

) ∂

∂y
g(t, y;w)

)
dy dt(A5)

+
∫
Rd−1

∫
R

u0(y;w)g(0, y;w)dy

}
dw,

where g(t, y;w) = g(t, x). Since u(t, y;w) is an entropy solution of (63a) and
g(·, ·;w) ∈ C

1,1
K (R+ × R) for each w, the quantity inside the braces always

equals 0 and, hence so does the entire integral. So, u(t, x) satisfies (A2). The ar-
gument for (A3) is the same. �

We note that the joint measurability of u(t, x) in t and x was needed in or-
der for (A2) to make sense and to apply Fubini’s theorem. By altering each one-
dimensional solution u(t, y;w) at a single point (tw, yw), one can produce non-
measurable u(t, x). So, one cannot arbitrarily choose the version of u(t, y;w) for
each w. We also point out that the above proof does not hold when fi depends on
i, since one would need to factor the functions outside of the summation in order
to obtain the analogue of (A5).
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