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by 
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Doctor of Philosophy in Physics 

University of California, Los Angeles, 2016 

Professor Walter N. Gekelman, Chair 

 

Magnetized plasma expansions from explosive phenomena often have characteristically 

large ratios of kinetic ram pressure to the ambient magnetic field pressure, 𝛽 ≫ 1. In the presence 

of a tenuous, ambient plasma, collisions are incapable of transferring much energy due to the high 

relative velocities. These expansions, however, generate large magnetic field variations, Δ𝐵/𝐵 ∼

1, in the form of a diamagnetic cavity as well as potentially large electric fields.  

A high-𝛽 expansion was created using a laser-produced plasma that expanded, 𝑣𝑒𝑥𝑝 =

1.28 × 107 cm/s, 𝛽 ∼ 106, into a uniform, magnetized background plasma. The processes that are 

capable of transferring energy and momentum from the high-𝛽 expansion to the ambient plasma 

without collisions were explored. The combination of a magnetic probe and a novel emissive probe 

yielded measurements of the total electromagnetic field in three-dimensions. These constituted the 

first measurements of the total electric field in such an environment. The electrostatic field 

structure comprised the predicted inward field of a diamagnetic cavity as well as previously 

unobserved features including an outward field associated with a magnetic field compression and 
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an intense electrostatic pulse preceding the LPP. All these components were stronger than the 

largest observed induced electric field from Faraday’s law. Direct measurements of argon ion 

velocities moving through these fields were made with a planar, laser-induced fluorescence 

diagnostic which showed ions being pulled inward against the expansion direction. Orbit solvers 

show that the characteristic velocity observed, 𝑣𝑟 = −3 × 105 cm/s, is consistent with the 

measured fields. The inward electrostatic field exhibited a linear variation with the magnetic field 

while the outward field and pulse exhibited at most a weak dependence. No significant differences 

in the fields were observed between helium and argon background plasmas. A qualitative model 

to describe the evolution of the high-𝛽 expansion in the context of weak coupling was developed. 

The model and the experimental field structure yielded important scaling relations for similar 

expansions and a qualitative extrapolation to the strong-coupling case. 
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 𝛼 in the above definitions denotes a particle species.  

∗ A subscript ‘0’ attached to this quantity indicates it is taken as the initial 

value as opposed to being time-dependent. 
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ambient particles, superscripts or subscripts ‘d’ for debris and ‘a’ for 
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Chapter 1 – Introduction 

1.1—Introductory Remarks 

 Laser-produced plasma experiments have been conducted as long as there have been lasers 

powerful enough to ablate materials [1]. After the basic properties of these laser-produced plasmas 

(LPP) were characterized, focus shifted to their ability to generate energetic particle beams [2,3], 

fusion schemes revolving around inertial confinement [4], and pulsed laser evaporation techniques 

[5]. Basic plasma physics experiments have continued on at various, smaller scale facilities. On 

the Large Plasma Device (LaPD) at UCLA, experiments have been conducted over two decades 

to study the various features of magnetized LPP expansions. Some of the latest results of 

experiments at the LAPD show that collisionless shock conditions can be reached when the LPP 

is embedded in an ambient plasma [6]. 

 A laser-induced fluorescence (LIF) diagnostic already available for use in the LaPD allows 

one to experimentally characterize the coupling between such a magnetized LPP expansion and an 

ambient argon plasma. Preliminary investigations with the LIF as well as spontaneous emission 

diagnostics suggested that indeed the LPP had a detectable effect on background argon ions for 

which the collision mean-free path was too large to explain. This prompted a series of experiments 

trying to explain these observations and whether they have a broader context.  

This experimental dissertation is focused on the mechanisms of collisionless coupling. The 

parameters are such that they directly relate to a weak-coupling limit but provide a clue as to how 

the shock structures observed in [6] form in the strong-coupling limit. In this context, strong-

coupling versus weak-coupling distinguishes whether the mechanism for energy and momentum 
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transfer depends on conditions of the ambient plasma or not. Thus, strong-coupling occurs when 

the amount of energy and momentum transferred from the high-𝛽 expansion affects how it is 

transferred, that is to say feedback plays a dominant role. Weak coupling on the other hand is 

largely independent of the characteristics of the ambient plasma. The results in the present, weak-

coupling case show that the laminar electromagnetic fields of a high 𝛽  expansion are strong 

enough to inject energy and drive flows in the ambient plasma. The fields responsible for the 

collisionless coupling are due to the global structure of the diamagnetic cavity that forms. 

There are a number of different contexts in which diamagnetic cavities may form since 

plasmas are inherently diamagnetic and so not all necessarily share the same underlying physical 

processes. Within the context of the LPP experiments, the cavities form because of the very high 

𝛽 characteristics of the expanding plasma. Historically, 𝛽 has been reserved by plasma physicists 

studying equilibrium conditions as the ratio of the thermal energy density to the magnetic field 

energy density. In models of magnetized LPP expansions, 𝛽 is a dynamic parameter that can be 

defined as the ratio of (a) the initial electron thermal energy density to the magnetic energy density 

or (b) the ion kinetic energy density to the magnetic energy density. In the context of high-𝛽 

expansions, there is very little difference between these two quantities as thermal energy is 

converted to kinetic energy on a time scale (hydrodynamic time) much shorter than the magnetic 

interaction time scale (cavity formation time). Confusing overlap of the two concepts of 

equilibrium versus dynamic parameter appear throughout the literature of magnetized LPP 

experiments as investigators try to explain features of a dynamic high-𝛽 expansion with low-𝛽 

equilibrium models. Dense expansions of matter into a more tenuous environment are never truly 

in an equilibrium state. In this dissertation, the 𝛽 characterizing the diamagnetic cavity and by 

extension the collisionless coupling will only ever mean the dynamic parameter associated with 
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the kinetic energy of the expansion (definition (b) above). When it is necessary to distinguish the 

two, the ratio of the thermal pressure and the magnetic pressure, which is a time-dependent 

quantity and not a characteristic parameter of an LPP, will be denoted by 𝛽𝑡ℎ. 

For LPPs, 𝛽 is easily in the range 103 − 108. The relatively low magnetic fields in space 

mean that many explosive phenomena may easily fall into this similar range of 𝛽 or, more likely, 

far above it. The basic model presented in Chapter 2 for the magnetized LPP, however, suggests 

only a lower bound on 𝛽 for its applicability. This provides a broad physical context in which 

magnetized LPPs lie that make them extremely useful for simulating processes of astrophysical 

relevance such as collisionless coupling in a controlled laboratory environment. 

1.2—Motivations  

Strong outflows of plasmas are ubiquitous in the universe; appearing on a large range of 

spatial and temporal scales. An astrophysical example is an eruption from young stellar objects 

(YSO) [7]. The last few decades of observations of synchrotron radiation have shown that 

relatively strong magnetic fields (𝐵0 ∼ 1 mG) exist in the immediate vicinity of and far extended 

from these sources [8]. These fields are relatively strong in that they are orders of magnitude larger 

than expected from considering simple dipole fields in vacuum and imply the presence of a 

magnetic interaction. Further, since typical outflow speeds are 100 − 1000 km/s, the mean-free-

paths of momentum loss to electrons of 𝜆𝑚𝑓𝑝 = 108 − 1012 km or about 1 A.U. to 1/10th of a 

light-year with momentum loss to ions being even less. An explosive origin for these strong 

outflows would certainly qualify as a relevant, high-𝛽 expansion. Experiments on magnetized 

LPPs could therefore provide some insight as to how these astrophysical expansions form their 

jets and interact with their environment especially without significant collisional effects.  
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Plasma explosions are far from limited to astrophysical phenomena. In the 1960s, 

thermonuclear devices were detonated [9] high in the atmosphere with far reaching repercussions 

to communication equipment (satellites, radio towers, etc.) and even generated artificial radiation 

belts [10] in the magnetosphere. From data available for these experiments, the values of 𝛽 were 

around 𝛽 ∼ 1015 . In the 1980s, chemical releases from the AMPTE [11] and CRRES [12] 

missions looked at dense particle transport at the magnetopause and in the magnetotail. The 

AMPTE release that occurred on March 21, 1985 had 𝛽 ∼ 107, or near that of a typical magnetized 

LPP experiment. 

1.3—Brief Outline of Dissertation 

The content of this thesis will proceed as follows. A simple and convenient model of such 

a very high 𝛽  expansion will be presented from which properties of the diamagnetic cavity 

formation may be deduced as well as how collisionless momentum and energy between the 

expansion and an ambient plasma will occur. The experimental setup will be described which 

includes a somewhat standard setup for a magnetized LPP. Focus will be placed on the diagnostics 

which were necessary to characterize the coupling mechanism: the LIF diagnostic and a novel 

emissive probe for high density electric field measurements. The electromagnetic field structures 

and their evolution will be presented and discussed with the magnetic field, induced electric field, 

and electrostatic field appearing separately and in sequence. This is to allow a coherent picture of 

each to develop within the context of the general LPP expansion while limiting unnecessary and 

confusing cross-references between dynamics of the different fields. The LIF data will be 

presented after the fields followed by a simple particle tracer that shows the clear connection 

between all the experimental data. Discussion and extensions of the results to more varied 

conditions precede concluding remarks.  
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Chapter 2—The High-𝜷 Expansion Model 

2.1—Introduction 

 There are many stages to the life of an LPP from the first particle being ionized to it 

becoming so diffuse as to be indistinguishable from its initially more tenuous environment. During 

each stage, certain physical processes will have a dominant effect on the evolution and eventual 

form of the LPP. Fortunately, many of them relax on time scales much faster than those of interest 

to this experiment. The primary assumption employed is that after many of these processes have 

relaxed, the bulk of the energy content is in the ion kinetic energy. The dominant processes that 

determine this ion energy content are connected to thermalization, isotropization, and expansive 

cooling of the plasma. These have characteristic relaxation time scales on the order of a generalized 

hydrodynamic time, 𝑡ℎ. If the electromagnetic fields evolve on some characteristic time scale, 𝑡𝑚, 

of the magnetic structure during which the collisionless coupling occurs, the high-𝛽 assumption is 

essentially that 𝑡𝑚 ≫ 𝑡ℎ. In this limit, the minutiae of the early stages of the LPP may be described 

by simple, bulk characteristics. As we will see, 𝛽 ∼ (𝑡𝑚/𝑡ℎ)3. Thus the high-𝛽 model is most 

applicable for those expansions for which 𝛽 > 103.  

2.2—Laser-Produced Plasma Formation and Geometry 

When sufficiently intense light is incident on a neutral atom, the electric field can rip off 

valence electrons which are then free to move in the light field. The field then energizes the 

electron in a process called inverse bremsstrahlung. This energy, on a relatively slower time scale, 

diffuses to the other particles in the system as the electrons start colliding with neutrals, ions, and 

other electrons. With sufficient particle density, a plasma forms in the region where the light first 
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started ionizing neutrals. For ns-long pulses incident on solid targets, the collisions will tend to 

thermalize and isotropize the plasma. The bulk parameters of this “seed” plasma can be described 

by semi-empirical formulae where a scaling relation is derived from theoretical arguments. The 

constants involved in the formulae are determined experimentally and vary significantly among 

target material conditions and class of light pulse. Those relevant to this experiment will be given 

in the Experimental Setup chapter. When the light source is removed, the roughly uniform, 

Maxwellian plasma is expands into its more tenuous environment. 

 

 

 The initial shape of this plasma is determined by the physical size of the light pulse and 

how the plasma constituents reach equilibrium with the incident light pulse; the latter being 

affected by how far the laser can penetrate the solid and how dense the plasma becomes. Ignoring 

most of the fine structure, the simplest shape it can take is that of an oblate spheroid embedded on 

Figure 2.1: (a) The simplified geometry of the “seed’ LPP on the surface of a thick, planar target. (b) Expansion 

geometry emphasizing the 3 essential velocities resulting from a laser-solid interaction. 𝑉𝑛 and 𝑉𝑟  are the peak 

velocities in the target-normal coordinate system and 𝑉𝑚 is the center of mass velocity. 
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the surface of the target. The asymmetry of the initial plasma and its subsequent evolution lead to 

the adoption of a cylindrical geometry (𝑟, 𝜙, 𝑧) with the 𝑧 −direction being the target-normal. A 

cartoon of the initial plasma is shown in Fig. 2.1a. The minor radius of the spheroid is 𝑍0 aligned 

with the normal of the solid target surface and the major radius 𝑅0 is the characteristic size along 

the tangent of the target surface. 

After the light pulse shuts off, the pressure gradient of the much faster electrons trying to 

escape the ions forms an electric field. This electric field mediates the exchange of energy between 

the electrons and the ions until the ions can keep up with the electron fluid motion. The ions are 

left with velocities on the order of the initial sound speed while the electron energy is mostly 

depleted, having been transferred to the ions. This is the model put forth by Puell [13] for the LPP 

expansion properties and largely consistent with that groups’ early experiments.  

As Puell [13] notes, the model is essentially equivalent to the fluid expansion model of 

Nemchinov [14] for which an initial geometry such as that of Fig. 2.1a leads to an expansion 

geometry like that of Fig. 2.1b. The example calculations of this model are given in Appendix A, 

but the general description is as above with the following qualitative and quantitative aspects. The 

smallest dimension in the initial shape becomes the largest dimension in the final expansion 

geometry. The time scale over which this inversion occurs is the particular hydrodynamic time 

scale 𝑡0 = 𝑅0/𝐶𝑠(= 𝑡ℎ). For an initially oblate spheroid this results in a prolate spheroid expansion 

where the slow velocity is very close to the speed of sound, i.e. 𝑡0 ≈ 𝑅0/𝑉𝑟0. The ratio of 𝑉𝑧0/𝑉𝑟0 

is highly dependent on the ratio 𝑅0/𝑍0 and the former increases rapidly with the latter. Inclusion 

of a solid surface in such a model is a non-trivial task but it is clear that any expansion off of the 

target will have a shifting center of mass. The Nemchinov model is with respect to the center of 

mass of the gas so that 𝑉𝑛 ≈ 𝑉𝑧0 + 𝑉𝑚. These are the basic assumptions of the state of the LPP 
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which will be used as a reference point and to analyze the interaction between its constituents, the 

magnetic field, and an ambient plasma. 

2.3—Diamagnetic Cavity 

The interaction of the high-𝛽 expansion with the ambient magnetic field, hereafter denoted 

𝑩0, for 𝑡 ∼ 𝑡0 can largely be ignored as the thermal and kinetic pressures are generally far higher 

than that of the magnetic pressure. As the LPP expands, its thermal and kinetic energy densities 

drop rapidly so that eventually, the presence of 𝑩0 dominates the dynamics of the expansion. This 

occurs through the formation of a diamagnetic cavity.  

The highly conductive, expanding plasma expels 𝑩0 from its interior and in doing so 

generates its own electromagnetic fields to maintain consistency with Maxwell’s equations. These 

are the fields that are to be considered in the context of collisionless coupling between the LPP 

and the ions in the ambient plasma. Generation of these fields comes at the expense of the stored 

energy in the LPP, which for 𝑡 ≫ 𝑡0 is in the kinetic energy of the ions. The fraction of the initial 

LPP energy taken up by magnetic flux removal increases with the volume of the LPP until the ion 

kinetic energy is expended by this process. Thus, in addition to the characteristic scale quantities 

of the unmagnetized expansion model, there is the time to peak diamagnetism, 𝜏𝐷. The 

electromagnetic fields generated by the interaction of the LPP with 𝑩0 exist on this characteristic 

time scale which will also characteristize the collisionless coupling. Since the magnetic fields do 

no work on either the LPP or ambient material and the fields form coincidentally with the 

deceleration, understanding the mechanism of LPP-ambient interaction requires a full knowledge 

of the total electric field and how it forms. 
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The mechanism for the formation of these diamagnetic cavities from ion kinetic pressures 

has been encountered and elucidated numerous times through the history of plasma physics. From 

a particle point of view, the mechanism is quite simple and it is shown diagrammatically in Fig. 

2.2. Cold ions and electrons start out moving into the sheath region, across the magnetic field with 

a velocity 𝑽0 = 𝑽 − 𝑩0(𝑽 ⋅ 𝑩0)/𝐵0
2. Since the electrons are far lighter, their trajectories are more 

perturbed by the magnetic field than those of the ions. This causes a space-charge field to form 

(opposite to the one that accelerated the ions to begin with) between the electrons and less-

Figure 2.2: Diagram of the particle motion within a magnetic sheath separating a plasma expanding into a 

magnetic field. Profiles of the magnetic field, electrostatic field, density, and Hall field are as calculated by 

Rosenbluth [15]. The Hall field and electrostatic field are essentially identical. 
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magnetized ions. The orientation of this electrostatic field is such that the ions are slowed and the 

electrons are sped up. The electrons being more affected by the magnetic field, end up with a large 

portion of this energy moving in the direction perpendicular to both 𝑩0 and 𝑽0. This difference in 

the electron and ion motion in the direction of 𝑽0 × 𝑩0 constitutes the “diamagnetic current” that 

expels 𝑩0. Concurrently, the expulsion produces an induced electric field from Faraday’s Law 

which is also in the direction of 𝑽0 × 𝑩0 and antiparallel to the diamagnetic current consistent 

with energy moving from the particles to the fields. The relative bending of the electron and ion 

trajectories within the combined electrostatic and magnetic field is well-approximated by 𝑬 × 𝑩 

motion of the electrons alone so that the diamagnetic current is effectively equivalent to a Hall 

current. Finite electron temperature leads additional diamagnetism from ∇𝑝𝑒 drifts. Cooling of the 

expansion, however, means this mechanism quickly diminishes in strength relative to 𝑬 × 𝑩. The 

induced electric field then allows electrons to drift across the magnetic field with the ions. This 

model, in the collisionless limit, results in electron skin-depth scale sheaths between a vacuum 

magnetic field and an essentially unmagnetized plasma expanding against it.  

The original derivation was partially heuristic in nature and applied to magnetic storms in 

Earth’s magnetosphere in 1940 [16] with an improved explanation developed in 1952 [17]. The 

first analytic and self-consistent solution was derived by Rosenbluth in 1954 [15] within the 

context of pinch machines for fusion. His analytic solution was used to generate the field profiles 

in Fig. 2.2. An independent derivation (Rosenbluth’s work was classified under Project 

Matterhorn) was arrived at by Dungey [18] as a model for the Earth’s magnetopause. The 

differences between the applications of this sheath, even though all of the aforementioned 

descriptions are identical, has led to it being called in the stereotypically prosaic fashion of 

physicists as various combinations of the four names: Chapman-,Ferraro-,Rosenbluth-, Dungey-
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sheath. When referring specifically to the particle picture and fields of Fig. 2.2, it will hereafter be 

referred to as the cold, magnetosonic (CM) sheath owing to its close relationship to the derivation 

of cold, magnetosonic solitons and shocks. Note that it is also identical to the more popular Harris 

model of magnetic sheaths [19] if one accounts for reflected particles and takes the limit of zero 

temperature.  

The earliest applications of this sheath to high-𝛽 expansions with which this study is 

concerned was by Raizer [20] on the Russian side of plasma physics and Colgate [21] on the 

American side. Both were clearly aiming specifically at high altitude nuclear explosions although 

it is clear that the latter either misunderstood the mechanics of the sheath or did not consider that 

the sheath exists in a frame with an expanding plasma. Unfortunately, the analytic model only 

works for cold, collisionless plasmas in one spatial dimension. Nevertheless, it serves as a guide 

for the heuristics of the more tenable fluid approach. 

 In a single fluid picture, the electric fields are described by Ohm’s law. Neglecting the 

electron inertial terms and ion thermal terms, Ohm’s law is 

 
𝑬 = 𝜂𝑱 − 𝑽 × 𝑩 +

𝑱

𝑒𝑛𝑒
× 𝑩 −

∇𝑝𝑒

𝑒𝑛𝑒
, (2.1) 

where 𝜂 is the classical Spitzer resistivity, 𝑱 is the total current, 𝑝𝑒 the electron pressure, 𝑛𝑒 the 

electron density, 𝑩 the total magnetic field, and 𝑽 represents the mass-weighted velocity which 

will be taken as essentially that of the ions. For an initially hot plasma, the first term of the RHS 

is quite small. It will become important later, especially for 𝑡 > 𝜏𝐷, but it is not necessary for a 

general description of the electric field and its contribution must be treated more cautiously than 

it is worth owing to its strong time dependence and sensitivity on 𝑇𝑒. For very similar reasons, the 

pressure term is also large initially but its magnitude falls with time as 𝑡−𝑝, 𝑝 ∈ [2,3] as most of 
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the electron thermal energy is transferred to the ions as kinetic energy [1]. The diamagnetic cavity 

results in a “re-thermalization” of the electrons [22] late in time and the resistive term plays an 

intimate role, but as will be shown by the data, the pressure term plays even less of a role than the 

resistive term. Thus the Lorentz and Hall fields represent the primary terms constituting the electric 

field.  

Using the geometry of Fig. 2.1 and the CM sheath of Fig. 2.2, the magnitude of these terms 

can be directly related to the bulk characteristics of the expanding LPP. The CM sheath shows that 

as the ions move through the electromagnetic field, the motion is essentially ballistic along their 

initial trajectories. In the cylindrical geometry of Fig. 2.1 with the magnetic field, 𝑩0 = 𝐵0𝒆𝑧, 

along the surface normal, 𝑽(𝑡) ≈ 𝑉𝑟𝒆𝑟 + 𝑉𝑛𝒆𝑧. Similarly with the current generated by the 

difference between electron and ion motion, 𝑱 ≈ 𝐽𝜙𝒆𝜙. This means that the Lorentz term is 

primarily in the azimuthal direction and the Hall term is likewise mostly in the radial direction. 

This geometry means that respectively, the Lorentz term and the Hall term are the induced electric 

field and the electrostatic field. That is, if one writes 

𝑬 = −∇𝜙 − 𝜕𝑡𝑨, 

then in the Coulomb gauge, one has 

𝑬st = −∇𝜙 =
𝑱

𝑒𝑛𝑒
× 𝑩 and  𝑬𝑖𝑛𝑑 = −𝜕𝑡𝑨 = −𝑽 × 𝑩 

just as in the CM sheath. There is also the correspondence to the CM sheath that the electrostatic 

field is responsible for slowing down the LPP by removing energy from the ions. The induced 

electric field stretches the electron orbit and their drift motion so that they move across the 
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magnetic field at the same speed as the ions. To relate the electric fields to the plasma motion, take 

the plasma momentum equation, assuming a cold plasma, 

𝜌𝑚𝑑𝑡𝑽 = 𝜌𝑐𝑬 + 𝑱 × 𝑩, 

where 𝜌𝑚 is the mass density 𝜌𝑐 is the charge density. Using the above expressions for the total 

electric field to eliminate 𝑱 × 𝑩, 

𝜌𝑚𝑑𝑡𝑽 = 𝑍𝑑𝑒𝑛𝑖𝑬 + 𝑒𝑛𝑒𝑽 × 𝑩 ≈ 𝑍𝑑𝑒𝑛𝑖𝑬𝑠𝑡 , 

where 𝑛𝑖 is the ion density and the approximation is due to quasi-neutrality, 𝑍𝑑𝑛𝑖 ≈ 𝑛𝑒 . If we take 

𝑅(𝑡) as a dynamic, characteristic radius of the LPP across the magnetic field, the velocity can be 

replaced by 𝑉𝑟 = 𝜕𝑡𝑅 and likewise the acceleration is 𝜕𝑡
2𝑅(𝑡). The corresponding characteristic 

magnitudes of the induced electric fields and electrostatic fields can then be written as 

𝑬𝑠𝑡 =
𝑚𝑑𝑖

𝑍𝑑𝑒
𝜕𝑡

2𝑅 and 𝑬𝑖𝑛𝑑 = −𝜕𝑡𝑅𝐵𝑧 . 

where 𝑚𝑑𝑖 is the mass of an ion in the LPP, 𝑍𝑑 its charge, and 𝜌𝑚 ≈ 𝑚𝑑𝑖𝑛𝑖 . These forms represent 

the dominant components of the electric field and reflect the fields necessary to extract the energy 

from the ions (𝑬𝑠𝑡) and to keep the diamagnetic cavity and LPP expanding across 𝑩0 (𝑬𝑖𝑛𝑑) and 

which are both characterized in terms of one dynamic parameter, 𝑅(𝑡). This a very common 

method of analysis in fluid expansions and a convenient model for 𝑅(𝑡) comes from the fluid 

model of gaseous bubble dynamics. 

Analysis of gaseous bubbles goes back to the mid-19th century but was given its standard 

form by Rayleigh in 1917 [23] and eventually leading to what is now known as the Rayleigh-

Plesset equation. It finds use every day in the analysis of steam bubbles, cavitation in aquatic 

propulsion, and contained explosions. The main assumption of the model, which will hereafter be 
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referred to as the Rayleigh model, is that the velocity field can be written in a self-similar manner 

normalized to the characteristic dimension 𝑅(𝑡), specifically, 

𝑉𝑟(𝑟, 𝑡) = 𝑉𝑟(𝑡)𝑓 (
𝑟

𝑅(𝑡)
)   and  𝑉𝑟(𝑡) = 𝜕𝑡𝑅 

as was used above for the electric fields. This is the relationship that is used in Nemchinov 14] and 

in the Appendices with 𝑓(𝑥) = 𝑥. Note that this is simply the free expansion limit found in LPP 

simulations [24] and, from the continuity equation, is necessary to get the relationship 𝑛𝑒 ∼

𝑡−3 which is well-established by unmagnetized LPP expansion experiments. Rayleigh’s next step 

is to simply consider the dynamic energy balance.  

To simplify the matter, the initial condition at 𝑡 = 𝑡0 will be that the thermal energy of the 

electrons has already been expended to accelerate the ions. This is a good approximation since 𝑡 ≈

𝑡0 is of little consequence to the diamagnetic cavity for high-𝛽 expansions. Energy balance for a 

spherical expulsion of the magnetic field gives 

𝐸𝑡𝑜𝑡 =
𝐶

2
𝑁𝑑𝑖𝑚𝑑𝑖(𝜕𝑡𝑅)2 + 𝐷

4𝜋(𝑅3 − 𝑅0
3)

3

𝐵𝑧
2

2𝜇0
, 

where 𝑁𝑑𝑖 is the total number of ions in the expansion, 𝐵𝑧 is the magnitude of the magnetic field 

at 𝑟 = 𝑅(𝑡), and 𝐶 and 𝐷 are constant coefficients characterizing the energy profile in the LPP. 

For the classical superconductor, 𝐵𝑧 = 3𝐵0/2, and for a cylindrically symmetric expansion with 

𝑓(𝑥) = 𝑥, 𝐶 = 2/5. The exact value of 𝐷 is difficult to pin down for a realistic sheath—the planar 

CM sheath with full expulsion, 𝐷 ≈ 1, is the largest possible value. The simple substitution of 

magnetic pressure for fluid pressure in Rayleigh’s fluid model, which results in a parabolic 

pressure profile, leads to 𝐷 = 1/2. With the further assumptions that 𝐸𝑡𝑜𝑡, 𝐵𝑧 =const, the problem 

leads to a differential equation in 𝑅(𝑡). The problem of energy balance is often approached without 
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including 𝑅0, for example in [25], but singularities abound when treating 𝑅 dynamically that are 

very unrealistic and lose a lot of their physical significance. Furthermore, similarity theory [26] 

suggests that taking such an inherent, dimensional parameter to 0 when what is meant is 𝑅/𝑅0 ≫

1 often leads to erroneous results.  

 

 

The problem is non-dimensionalized using the variables 𝜏 ≡ 𝑡/𝑡0 and 𝑅̃ ≡ 𝑟/𝑅0 and 

kinetic beta 

Figure 2.3: Variation of 𝜏𝐷 with magnetic field from [27], [28], and [29]. All experiments used 

carbon targets and the curve 𝜏𝐷𝜔𝑐𝑖 = 1 is overlayed using 𝑍 = 1. 
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𝛽 ≡

3𝐶
2

𝑁𝑑𝑖𝑚𝑑𝑖𝑉𝑟0
2

4𝜋𝑅0
3

𝐷
𝐵𝑧

2

2𝜇0

=
 initial directed radial energy density

magnetic field energy density
. 

The resulting differential equation in Rayleigh’s model is, 

 

𝑑𝜏𝑅̃ = √1 −
1

𝛽
(𝑅̃3 − 1). (2.2) 

Note that for 𝛽 ≫ 1, the further transformations 𝜏 → 𝛽1/3𝜏 and 𝑅̃ → 𝛽1/3𝑅̃ remove the 

dependence on the parameter so that the solution in such normalized variables is independent of 

all physical parameters.  

 

Figure 2.4: Solution to the differential equation for 𝑅(𝑡) in normalized, dimensionless variables (Rayleigh). 

Also shown is the free expansion line and trajectories across the magnetic field from 3 experiments. References 

in the text. 
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In the limit that 𝛽 ≫ 1, 𝛽 has a simple meaning: if 𝑅̃3 = 𝛽 then 𝑡 = 𝜏𝐷, peak diamagnetism 

has been reached, and the LPP stops expanding across the magnetic field. The characteristic 

dimension associated with the characteristic time 𝜏𝐷 is 𝑅𝐵 ≡ 𝛽1/3𝑅0. Most relevant experiments 

have 𝛽 > 103. If one takes 1/(1 + 𝛽) → 0, the differential equation can be integrated exactly up 

to time 𝑡 = 𝜏𝐷 for which 

𝜏𝐷 = 𝑡0 +
𝑡0

3
𝛽1/3

Γ (
1
3) Γ (

1
2)

Γ (
5
6)

≈ 1.402
𝑅𝐵

𝑉𝑟0
∼

1

𝑉𝑟0
1/3

𝐵0
2/3

. 

The variation with magnetic field represented by this equation has been widely confirmed with the 

broadest variations in 𝐵 given by Fabre [27], Haught [28], and Van Zeeland [29] shown in Fig. 

2.3. Fabre did both cross-field and parallel expansion but noted coupling of the laser in the parallel 

expansion was noticeably reduced. This is the cause of the offset between their two curves for 𝜏𝐷. 

The discrepancy Fabre noted where 𝜏𝐷 ∼ 𝐵0
−2 occurred for 𝜏𝐷 → 𝑡0 and was attributed to the 

extreme losses along the rather intense magnetic fields. In their unusual scaling case, for which 

best guesses have 𝛽 < 104, the high 𝛽 expansion assumption is probably not valid. 

 The solution to the equation for 𝑅(𝑡) and 𝛽 ≫ 1 is shown in solid red Fig. 2.4. The axis 

have been normalized such that the solution curve is independent of 𝛽. Also shown is the free 

expansion model in solid black and 3 sets of experimental data. Of the 5 interdependent quantities, 

𝑡0, 𝑉𝑟0, 𝑅0, 𝜏𝐷 , and 𝑅𝐵, two of the first three must be known and one of the last two in order to 

properly normalize the variables and the curve. Since very few magnetized LPP experiments have 

framed their data in terms of these variables, very few data sets are complete and reliable enough 

to extract the curve. The data of Dimonte [30] (Fig. 3a therein), Collette [31] (Fig. 3.13a therein), 

and Bonde (this dissertation’s magnetic field data) are all complete enough to get the curve. They 
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show that despite the low level of detail of this model, the curve 𝑅(𝑡) is quite representative of a 

variety of plasma experiments which used different target materials (C, CH2, Al), different laser 

energies (1 J, 100 − 200 J) and magnetic fields (several hundred Gauss, several Tesla). 

 

 

With the differential equation for 𝑅̃, the characteristic magnitudes of the components of 

the electric fields become 

 
|𝑬𝑖𝑛𝑑| = 𝜕𝑡𝑅 𝐵 ≈

𝑚𝑑𝑖𝑉𝑟0
2

𝑍𝑑𝑒𝑅𝐵
(

𝜔𝑐𝑖
𝑑 𝜏𝐷

1.402
) 𝑑𝑡̃𝑅̃, 

 

(2.3) 

and 

 
|𝑬𝑠𝑡| =

𝑚𝑑𝑖

𝑍𝑑𝑒
|𝜕𝑡

2𝑅| =
3

2

𝑚𝑑𝑖𝑉𝑟0
2

𝑍𝑑𝑒𝑅𝐵

𝑅̃2

𝛽2/3
, 

(2.4) 

Figure 2.5: Characteristic electric field strengths over time for 𝜔𝑐𝑖
𝑑 𝜏𝐷 = 0.3. 
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where 𝜔𝑐𝑖
𝑑  is the cyclotron frequency for an ion in the LPP in a magnetic field 𝐵 at 𝑟 = 𝑅(𝑡). It 

should be remembered that within the context of particles moving through the CM sheath, the ions 

do not actually move in close orbits in the lab frame and their energy changes significantly on the 

passage through the sheath. The requirement for such orbit motion would be 𝜔𝑐𝑖
𝑑 𝜏𝐷 ≫ 1. As seen 

in Fig. 2.3, that has rarely been the case. From these relations, it is clear that the induced field 

monotonically decreases in strength up to 𝑡 = 𝜏𝐷 when the diamagnetic cavity stagnates and 𝑬𝑖𝑛𝑑 

goes to 0. The electrostatic field on the other hand is initially zero and grows as the surface area 

of the LPP. The relative size of their peak values is determined entirely by the parameter 𝜔𝑐𝑖
𝑑 𝜏𝐷 ∼

𝐵0
1/3

𝑉𝑟0
2/3

 while their variation over time, determined by 𝛽 ∼ 𝑉𝑟0
2/3

𝐵0
−2/3

, is shown in Fig. 2.5 for 

a parameter of 𝜔𝑐𝑖
𝑑 𝜏𝐷 = 0.3. 

 Characterizing the coupling between the diamagnetic cavity and an ambient plasma is just 

a matter of observing that the ambient ions will also see the fields of the diamagnetic cavity. In the 

weak coupling limit, the ambient ion response will be exactly the same as the LPP ions but as if 

they are entering the sheath region with 0 velocity. This would be like injecting particles at 𝑥 = 0 

in the CM model of Fig. 2.2. The ambient ions will be accelerated in the direction opposite that of 

the diamagnetic current by 𝑬𝑖𝑛𝑑 and toward the center of the LPP via 𝑬𝑠𝑡; the ratio of these 

accelerations being set largely by 𝜔𝑐𝑖
𝑑 𝜏𝐷. The time dependence of 𝑬𝑠𝑡 and 𝑬𝑖𝑛𝑑 as well as the fact 

that the number of ions affected goes as 𝑡3 ensures that the electrostatic field is never negligible 

and, for typical magnetized LPP parameters, it will have the greater effect on the ambient ions. 

 When the presence of the ambient plasma cannot be neglected in the strong-coupling limit, 

more parameters appear. In the case of a cold, stationary background plasma of density, 𝑛𝑎, charge, 



 
 

20 
 

𝑍𝑎, and ion mass, 𝑚𝑎𝑖, the two that appear most frequently are the equal mass radius, 𝑅𝑚, defined 

as 

𝑅𝑚
3 ≡

3

4𝜋

𝑚𝑑𝑖𝑁𝑑𝑖

𝑚𝑎𝑖𝑛𝑎𝑖
 

and the equal charge radius, 𝑅𝑞, defined similarly as 

𝑅𝑞
3 ≡

3

4𝜋

𝑍𝑑𝑁𝑑𝑖

𝑍𝑎𝑛𝑎𝑖
. 

They will appear later in the non-dimensionalized forms: (𝑅𝑚/𝑅0)3 and (𝑅𝑞/𝑅0)
3
 or 

(𝑅𝑚/𝑅𝐵)3 = 𝑀𝐴
−2 and (𝑅𝑞/𝑅𝐵)

3
. In the latter forms, they take the simple interpretations of the 

mass density ratio and charge density ratio between the LPP and ambient plasma at peak 

diamagnetism. As far as the analysis of their affect on the LPP and coupling, their relationship to 

the electromagnetic fields has not been clearly set by experiments but their appearance is almost 

assured. The simplest way to see how they might influence the LPP-ambient coupling is to note 

that any term that is affected by mass density will have the ratio 𝑅/𝑅𝑚 and similarly for the charge 

density, 𝑅/𝑅𝑞. Such is the case for the Lorentz term and the Hall term, respectively, in Ohm’s law. 
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Chapter 3-Experiment and Diagnostics 

 

 

 
Quantity BaO LaB6 ݊௘  (10ଵଶ cm-3) 1-2 4-8 

௘ܶ (eV) 5-10 10-15 
 +଴ (G) 200-1000+ 200-1000ܤ

Plasma radius (cm) 30 5 
௧௛ߚ ≡ ଴݊௘ߤ2 ௘ܶ/ܤ଴ଶ 0.0002-0.004 0.004-0.05 

߱௣௘/߱௖௘ 4-16 10-40 
௧௛,௜ݒ = ඥ ௜ܶ/݉௜ (10ହ cm/s) 1 ∼ 2 
ܿ௦ = ඥ ௘ܶ/݉௜ (10ହ cm/s) 3.5-5 5-6 

߱௖௜ =  ଴/݉௜ (10ସ rad/s) 5-24 5-24ܤܼ݁
 

3.1 – Large Plasma Device 

The experiments are conducted in the Large Plasma Device (LAPD) at UCLA [32]. The 
LAPD is a 24.4-m long cylindrical vacuum vessel of 1-m diameter. The vessel is fitted with a 
magnet system that provides a very uniform background magnetic field aligned with the cylinder’s 

Figure 3.1: Cartoon of LAPD's vacuum chamber with primary and secondary cathode plasma sources. 
Table 3.1: Standard Discharge and basic plasma parameters. Ion terms 
are for a singly-ionized argon plasma. 
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axis. At one end of the device is an electrically isolated cathode-anode pair. The cathode is nickel-
based with a diameter of about 60 cm and coated with a layer of barium oxide [33] which when 
heated to ∼ 900∘ C is a strong thermionic emitter. At a repetition rate of 1 Hz, the cathode is biased 
relative to a semi-transparent mesh anode to form a high-current discharge in which energetic 
electrons, or primaries, travel down the magnetic field lines and ionize the neutral gas. This creates 
a quiescent (݊ߜ/݊ ∼ 5%) plasma with net-zero current that typically lasts a few milliseconds and 
is used as the ambient plasma in this experiment. The relative geometry of the machine is shown 
in Fig. 3.1. Typical parameters of this discharge are shown in Table 3.1. 

Recently, newer thermionic cathode designs made of sintered lanthanum hexaboride (LaB6) 
have been developed to produce higher density and higher temperature plasmas, since LaB6 is a 
better emitter of primary electrons than BaO. In this experiment, a carbon target is placed within 
the ambient plasma which blocks field-aligned primaries. This results in an unwanted depression 
in density downstream of the BaO cathode. For the parallel expansion case, a 10-cm radius LaB6 
cathode was inserted to inject primaries from the other direction (see Figure 3.1). This reduced the 
density gradient in the immediate vicinity of the carbon target. Additionally, the primaries from 
the LaB6 provided an increased population of metastable argon ions for use with the laser-induced 
fluorescence (LIF) diagnostic which will be described later in this chapter. For the cross-field 
expansion case, the depression does not interfere with the expansion. 
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Figure 3.2: Cartoon cross-sections of the LaPD for the parallel expansion geometry (left) and the cross-field 
expansion geometry (right) of the LPP experiments. 

Figure 3.3: Target region geometry in relation to magnetic field and typical probe data planes. 
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3.2 – Laser-Produced Plasma 

The LPP in this experiment is generated with a Nd:YAG, flashlamp-pumped laser with 
pulse characteristics given in Table 3.2. The beam is focused onto the surface of a cylindrical 
carbon target (⌀1.96 cm) with a typical spot size ܴ଴ = >) m. The small spot sizeߤ 250 1/2°) 
means that the curved nature of the surface will not play a significant role and each shot can be 
treated as if it is emerging from a planar target. Two beam-target geometries are used: one for the 
parallel LPP and one the cross-field LPP expansions. Both geometries are shown in Fig. 3.2. Not 
shown in this figure is that the carbon target is slightly offset from the ݔ −  plane of the probe ݕ
and machine cross-section by about 3 centimeters as shown in Fig. 3.3. The LPP is produced at 
the same 1 Hz cadence of the LAPD discharges. The repeated striking of the laser upon the target 
surface leaves a pit in the surface. Frequent movement of the target is required to present a fresh 
surface for the laser and prevent the pit geometry from affecting the LPP dynamics. 

 

Laser Parameter Value (unit) ܧ௅ 1 ݐߜ ܬ (pulse length) 8 ns ܴ଴ (focal radius) 250 ߤm ܫ௅ 6.37 × 10ଵ଴ W/cm2 1064 ߣ nm ߥ = THz ݊௖௥ (critical density) 9.84  281.8 ߣ/ܿ × 10ଶ଴ cm-3 
 

The cylindrical geometry of the target allows for simple rotation of the target every few 
laser pulses and translation in the ݕො-direction after a 360° rotation. This gives a finite lifetime for 
a target which necessitates frequent changing of spent targets. For optimization of reproducibility 
in LPP experiments, this frequency must be minimized. Previous experiments with this LPP setup 

Table 3.2: Basic laser parameters. 
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have determined that bulk characteristics are not significantly modified if a few pulses land on the 
same point on the surface of the target. To extend the period between target exchanges, 5 shots 
with the laser are fired at the same position before the target is rotated to present a fresh surface.   

 Some of the basic properties of the LPP plasma generated by the laser pulses in the manner 
described above were determined in earlier experiments with a similar setup [34]. The quantities 
that are important to the characterization of the expansion and dynamics are the ablation velocities 
(normal and tangential to the target surface), the total number of particles ablated, the initial 
temperature of the plasma, and the average charge state of the ablated ions. These values often 
have large error bars (as high as 50%) due the difficulty of probing such a small geometry where 
ܴ଴ is far smaller than most physical probes. The accepted scaling relations for the normal ablation 
velocity, ௡ܸ, and the total number of ions ablated, ௜ܰ, are [35,36,37] 

௡ܸ ∼ ௅଴.ଶ,      ௜ܰܫ ∼  ௅଴.଺ܫ

for lasers where inverse bremsstrahlung is the dominant mechanism of energy deposition. This is 
generally true for laser intensities below 10ଵସ W/cm2 [38]. In the case of a graphite target, these 
relations become [35,36] 

௡ܸ = 2.25 × 10଻ ൬ ௅ܫ
10ଵଶ൰

଴.ଶ
(cm/s) 

and 

௜ܰ = 1.34 × 10ଵ଺ ൬ ௅ܫ
10ଵଶ൰

଴.଺
. 

For the laser intensity in Table 3.2, the resulting value of ௡ܸ is 1.3 × 10଻ cm/s which also gives a 
hydrodynamic time of ݐ଴ = 1.93 ns. Puell [13], presents a theoretical argument for the relationship 
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between the expansion velocity and the temperature arguing essentially that the local speed of 
expansion is equal to the sound speed, ܿ௦ = ඥߙ〈ܼ〉 ௘ܶ/݉௜, where 〈ܼ〉 is the average ionization state 
and ߙ is a parameter that characterizes the equilibration of ion and electron temperatures. This is 
also consistent with the Nemchinov model. For a polytropic plasma with ߛ = 5/3 for the electrons, 
the above equation for ௡ܸ would give for carbon at ݐ =  ଴ݐ

௘ܶ = 541
ܼ̅ߙ ൬ ௅ܫ

10ଵଶ൰
଴.ସ

eV 

and 

ߙ = ቐ
〈ܼ〉 + 1

〈ܼ〉 , ௜ܶ = ௘ܶ
1, ௜ܶ = 0

. 

The exponents in the literature are slightly different for different theoretical models and often carry 
with them errors on the order of a few to 10 percent. This combined with the temperature 
dependence in the quantity ߙ〈ܼ〉 led Puell [39] to an experimental temperature scaling of 

௘ܶ = 162 ൬ ௅ܫ
10ଵଶ൰

଴.ସସ
 eV 

where better agreement between their experiment and theory was given for ௘ܶ = ௜ܶ and thus ߙ =
(〈ܼ〉 + 1)/〈ܼ〉. This is partially justified by looking at the expected ion-electron collision time and 
comparing it to other characteristic times of the initial LPP. 

 The estimated parameters based on the experimental scaling relations above are given in 
Table 3.3. For the densities and derived quantities, a spherical model is assumed based on 
arguments of [13] and references therein. They also conveniently lend themselves nicely to the 
Nemchinov model of fluid expansion discussed in Appendix A. In the initial state of the LPP, the 
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characteristic time for the equilibration of the electron and carbon ion temperatures through 
Coulomb collisions can be expressed as 

்ݐ ≡ 1
்ߥ

= 10
〈ܼ〉ܼଶ  ns 

The initial expansion will proceed on the hydrodynamic time scale. Thus if 〈ܼ〉 > 1, all the charge 
states with ܼ ≥ 2 will essentially equilibrate by the time the laser has shut off and the expansion 
phase begins. The estimate of ௘ܶ suggests that the LPP will not have a very large population of 
ܼ = 1  ions—even with potentially large uncertainties in ௘ܶ —due to carbon ܼ = 1  ionization 
energy being only 11.26 eV. To get the average charge state in the plasma, which is needed for 
the electron density and various other plasma parameters that will arise, a model for the ionization 
states is required. For this, a simple Saha equilibrium is applied to the seed plasma. Corona models 
have been applied [13] which are considerably more complicated and dependent on more 
parameters than a Saha equilibrium. The high densities on the other hand ensure a crude estimation 
by a Saha equilibrium is adequate [40]. 

 The Saha equation gives us a way to relate ሼ݊௭ሽ, ݊௘ , ௘ܶ , ݊௧, where ݊௧ is the density of all 
carbon atoms and ions and ሼ݊௭ሽ are the concentrations of ions of charge ܼ. Specifically, after ௘ܶ 
and any other one quantity are specified, the remainder can be calculated. In its simple form, it is 

݊௭ାଵ = ݊௭
݊௘

௭ାଵܩ
௭ܩ ቆඥ2݉ߨ௘ ௘ܶ

ℎ ቇ
ଷ

݁ିா೥శభିா೥
೐்  

where ܧ௭ାଵ − ݖ to ݖ ௭ is the energy to ionization from charge stateܧ + 1 and ܩ௭ is the partition 
function of charge state ܼ. The calculation is made simpler if the further assumption that  
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LPP Parameter Value (࢚ = ࢚૙) Value (࢚ = ૛૝૙ ࢙࢔) AMPTE 

(03.21.1985)# 
௘ܶ 48 eV ∼ 0.5 eV * 0.7 eV 
௜ܰ 2 × 10ଵହ 1 − 2 × 10ଵହ 7.4 × 10ଶସ 〈ܼ〉 4.6 ∼ 2 1 ݊௜ 3.1 × 10ଵଽ cm-3 3.8 × 10ଵଷ cm-3# 1.0 × 10଼ cm-3 

݊௘ 1.4 × 10ଶ଴ cm-3 7.7 × 10ଵଷ cm-3# 1.0 × 10଼ cm-3  ln Λ௘௜ 4.1 6.3 13.3 ߥ௣௘ݐ଴ 1.3 × 10ସ 150 9.0 × 10଻ 
଴ 9.5ݐ௘௜ߥ × 10ଷ 2.7 6.6 × 10ଷ ߥ௣௜ݐ଴ 3.0 × 10ଷ 0.42 1.8 × 10ହ 
଴ 19  9.9ݐ்ߥ × 10ିସ 5.3 × 10ିଶ ߥ௖௘ݐ଴ 4.0 --- 220 ߥ௖௜ݐ଴ 8.3 × 10ିସ --- 8.9 × 10ିଵଷ ்ݒ௘/ ௥ܸ଴ 22 3.2 269 ܿ௦/ ௥ܸ଴ 0.46 5.5 × 10ିଶ 0.69 ்ݒ௜/ ௥ܸ଴ 0.15   0.54 ݒ஺/ ௥ܸ଴ 6.5 × 10ିହ 5.9 × 10ିଶ 1.2 × 10ିଷ ܿ/߱௣௘ܴ଴ 1.8 × 10ିହ 2.4 4.1 × 10ିସ 

ܿ/߱௣௜ܴ଴ 0.12 880 0.21 
ݒ ೐்/ܴ଴߱௖௘ 0.88 0.12 0.28 

ܴ஻/ܴ଴ 85  170 ܼߩௗ = ܼ)௡/߱௖௜ݒ = 1) 870  160 
ߚ = ൬ܴ஻

ܴ଴
൰

ଷ
 6 × 10ହ  ∼ 10଻ 

߱௖௜߬஽ 0.3  ∼ 1 
൬ܴ௤

ܴ଴
൰

ଷ
  ∼ 2 × 10଻  ∼ 10ଵଵ 

൬ܴ௠
ܴ଴

൰
ଷ

= 1
஺ଶܯ

൬ܴ஻
ܴ଴

൰
ଷ
 6 × 10ହ  ∼ 10ଵଵ 

*  = approximate volume average for ்ݒ௘ ∼ ௥ܸ଴ 
# = estimated from available data applying a spherical expansion model 

Table 3.3: Estimated parameters of the LPP parameters initially at ݐ =  ଴ and near peak diamagnetismݐ
ݐ = 240 ns for ܤ଴ = 750 G. AMPTE parameters estimated from Bernhardt 1987 [11] for the March 21, 
1985 barium release. Normalization parameters are initial hydrodynamic parameters, ݐ଴, ܴ଴, and ௡ܸ. 
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௭ܩ  ≈  ௭ାଵ. This is a good approximation provided the temperature is high enough relative to theܩ
energy of excited states or if the populations of excited states are ignored altogether, which is 
commonly done for ionization to ܼ = 5,6 where the ionization energy jumps owing to the strong 
binding of the ݊ = 1 electrons. For the present parameters, this only leads to a minor overestimate 
the energy coupled to the LPP. As shown in Appendix A, the most highly ionized particles 
recombine early in the expansion phase so their exact populations should not make much of a 
difference to the diamagnetic cavity. A calculation of the resulting average charge state as a 
function of the total number of electrons and the electron temperature is shown in Fig. 3.4b.  

The range of parameters in Fig. 3.4b were chosen to show the effect of large uncertainties 
near the estimated experimental parameters. The average charge state quickly approaches 〈ܼ〉 = 4 

Figure 3.4: Saha equilibrium as a function of LPP characteristics. (a) Charge state as a 
function of ௘ܶ for ௘ܰ଴ = 8 × 10ଵହ electrons. (b) Charge state for variable ௘ܶ and ௘ܰ଴. 
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as the temperature increases and reaches a plateau for a wide range in ௘ܶ. It is also apparent that 
the total number of particles ablated plays little role in the average charge state over 2 orders of 
magnitude. The curve for the estimated number of electrons is in Fig. 3.4a to show more clearly 
the variation with temperature. Using the parameters from empirical scaling relations, one gets 
that the average charge state of the LPP should be 〈ܼ〉 ∼ 4.5 with the charge state distribution of 
Table 3.4. Similar calculations by [13,41] show 〈ܼ〉 ≥ 4. A further validation of these estimates 
can be seen from the energy balance between the laser pulse and the LPP. 

 

Charge State, 6 5 4 3 2 1 ࢆ  
௭ܰ
௧ܰ
 10ିଵ଴ 10ି଻ 10ିସ 0.43 0.49 0.073  

 

The energy absorbed by the solid is primarily stored in the ionization potentials of the 
charges and the thermal distribution of particles. The energy content using the distribution of Table 
3.4 is 

௧௢௧ܧ = 3
2 ௜ܰ(〈ܼ〉 + 1) ௘ܶ + ෍ ௭ܰܧ௭

଺

௭ୀଵ
= 130 mJ + 134 mJ = 0.264 J 

where the second last expression shows the separate contributions from the thermal energy and the 
ionization potential. The main loss mechanism accounting for the difference between ܧ௧௢௧  and 
 ௟௔௦௘௥ is the amount of energy lost from reflection of the laser light and radiation escaping theܧ
surface of the incipient plasma during the heating phase. If the assumption is made that all 2 ×
10ଵହ ions expand with the speed ௥ܸ଴ = 1.3 × 10଻ cm/s, the energy in the expansion would be 334 

Table 3.4: Estimated distribution of charge states from a Saha Equilibrium with ௘ܶ = 48 
eV with a total number of 2 × 10ଵହ ions in a spherical volume of radius ܴ଴ = 0.025 cm. 
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mJ. This is comparable to the total energy of ionization if all the ions had ܼ = 6 . The 
corresponding temperature for a fully ionized carbon plasma is in excess of 100 eV by Saha 
equilibrium and even higher if a more detailed model were applied. If we account for the geometric 
effect wherein the ion velocities scale spatially with the more realistic velocity profile ௜ܸ(ݎ) ∼  ,ݎ
the energy in the expansion is 40% lower (200 mJ) or well within the range consistent with initial 

௘ܶ > 40 eV. 

 The model for the expansion with recombination in Appendix A uses the above parameters 
to show that the variation of temperature changes from ௘ܶ ∼ ଶ to ௘ܶିݐ ∼  ଵ. The ionization in theିݐ
later stage is “frozen-in” at 〈ܼ〉 ≈ 2 with a temperature on the order of ௘ܶ ∼ 1 eV during the times 
relevant to the LPP expansion in the magnetic field. These are the values that were used to compile 
the parameters in Table 3.3 for ݐ = ߬஽. 

3.3 – Imaging Diagnostic 

 The first diagnostic for a qualitative description of the expansion is visible light imaging. 
This is accomplished with a fast exposure (Δݐ௘௫௣ ≥ 3 ns), CCD camera imaging through one of 
the optical access ports shown in Fig. 3.2. The phosphor screen has a roughly uniform transmission 
with quantum efficiencies on the order of 30% through the range 280-1000 nm. All wavelengths 
are in standard air wavelengths. Three filter settings are used: 

1) Unfiltered – (in the CCD range) 

2) wideband filtered – A 10-nm HWHM filter is used centered at 460 nm. 

3) narrowband filtered – An interference filter of HWHM 1-nm center about 461 nm. 
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The unfiltered imaging tracks the “total” emission of the plasma which is dominated by the LPP 
electrons and ions through free-free electrons transitions and radiative recombination and line 
emission cascade. Radiances of visible emission from a dense plasma with ௘ܶ ∼ ℎߥ௩௜௦  depend on 
the mechanism and the largest contributors are: bremsstrahlung, ௕ܲ ∼ ݊௘ଶඥ ௘ܶ; recombination,  

 

 

௥ܲ௘௖௢௠ ∼ ݊௘ଶ/ඥ ௘ܶ  ; and free-bound transitions, ௙ܲ௕ ∼ ݊௘ଶ/ඥ ௘ܶ  [13,42]. Thus, gradients in the 
unfiltered image are 4 times more sensitive to density gradients than temperature gradients in the 

Figure 3.5: Filter transfer functions against NIST’s accepted line transitions. Dashed lines are predicted, 
mostly highly excited state transitions, while solid lines indicate readily observable in gas discharge lamps. 
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plasma. This allows an estimation of the parameter ∇ ln ݊௘ from imaging. The 10-nm filter and 1-
nm filter have optical transfer functions shown at the top of Fig. 3.5. Also shown are the NIST [43] 
emission lines that fall within the optical collection of these filters for the various possible charges 
in the LPP and in different LaPD gases. Solid lines correspond to lines well-characterized and 
observed in experiments and dashed correspond to those predicted to exist according to NIST’s 
resources. From this graphic, it is clear the 10-nm filter may capture some line emission from the 
LPP and collects varying amounts of line emission from the different gases used to make plasma. 
The 10-nm filter is more sensitive to temperature variations of free-free within the LPP owing to 
the narrower range in which ௘ܶ ∼ ℎߥ௙௜௟௧௘௥௘ௗ and blocking much of the continuous emission. The 
1-nm filter excludes most of the possible lines and is used to remove background signal and capture 
light from the ݎܣା 460.957 nm line used in the LIF diagnostic. 

3.4—Field Diagnostics 

3.4.1—Magnetic Flux Probe 

The magnetic field data is collected with one of LAPD’s standard magnetic flux probes. 
On approximately a 3 mm cube, two 5-turn coils are differentially wound for each of the three 
axes. The signals are then differentially amplified to reduce electrostatic pickup and yield a direct 
measure of ߲௧࡮. Time integration of the signal, which is digitized at either 100 MHz or 1.25 GHz, 
gives ࡮. Although practical considerations of the frequency response cannot take full advantage 
of the 1.25 GHz digitization, the high digitization rate reduces aliasing errors with large ߲௧ܤ 
signals of the diamagnetic cavity. 

In additional to the magnetic fields, the magnetic flux probe, with sufficient spatial 
resolution, can produce estimates of the induced electric field. For this, Faraday’s law is used, 
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∇ × ࡱ + ߲௧࡮ = 0 

from which one gets, in the Coulomb gauge, 

௜௡ௗࡱ = −߲௧࡭. 
If no symmetry exists, this equation can only be solved for the induced electric field ࡱ௜௡ௗ by first 
solving for the vector potential,  

−∇ଶ࡭ = ∇ ×  ,࡮
Which requires a Laplace solver or a Fourier inversion method. If cylindrical symmetry is present, 
the ݖ component of the equation can be integrated from  

1
ݎ ߲௥(ܧݎఏ) = −߲௧ܤ௭ 

To get 

(ଵݎ)ఏܧ − ଴ݎ
ଵݎ

(଴ݎ)ఏܧ = − 1
ଵݎ

න ௭ܤ௧߲ݎ ݎ݀
௥భ

௥బ
. 

Without a definite boundary condition, this problem would have to be solved for ݎଵ → ∞ to capture 
not only local generation of ܧ௜௡ௗ but also signals radiating away the LPP source region. Across 
the ambient magnetic field, the primary modes that can travel across the field are Alfvén modes 
and magnetosonic modes, which are tied to perturbations in plasma density. By limiting the 
analysis to times smaller than the Alfvénic transit time to a distance ݎଵ from the LPP, the error in 
taking ܧఏ(ݎଵ) ≈ 0 can be assumed small.  
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3.4.2—Emissive Probe 

 To measure the electrostatic field, a floating emissive probe is used. The basic idea of a 
floating probe, which has an infinite impedance to ground, is that a conductor placed in the plasma 
collects charge until the electric field at the surface is such that net current is zero, 

߲௧ߩ௖ = −∇ ⋅ ࡶ ≈ 0. 
In the Coulomb gauge, this means the potential of the conductor reaches a constant value locally 
in time. For a simple conductor in a given plasma, this will occur in a time ݐߜ ≫ 1/߱௣௜ (ion-sheath 
transit time). This is due to the response of the sheath that forms at the surface of the conductor. If 
the local plasma potential changes, the electrons quickly respond to the new field but net current 
is collected by the probe. The heavier ions must be given time to cancel the current. A very 
simplified analysis when the conductor can emit electrons leads to the following relationship 
between the plasma and the conductor potentials, 

߶௣௥௢௕௘ = ߶௣௟௔௦௠௔ − ௘ܶ ln ௘݆
݆௜ + ݆௘௠௜௧

, 

where ௘݆ and ݆௜ are the plasma electron and ion saturation fluxes to the conducting surface and 
݆௘௠௜௧ is the emission flux. It is derived by assuming floating conditions for Boltzmann distributed 
electrons from the plasma and the presence of a Bohm pre-sheath. The slow response of the 
massive ions gives this sheath a capacitive response when operating at high frequencies and in 
high densities, the conductor surface can become coated with dielectric impurities and ruin the 
measurement. 

 For a thermionic emitter, the conductor is made hot enough to emit electrons. The higher 
the temperature, the less the equilibrium potential profile depends on the ion flux. Additionally, 
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the hot surface helps keep the probe clean and free of contaminants. If the probe is sufficiently 
emissive, the probe potential equilibrates on a time scale ݐߜ < 1/߱௣௜ to  

߶௣௥௢௕௘ = ߶௣௟௔௦௠௔ − ߙ ௘ܶ , 

where ߙ is a constant approximately equal to 1 [44,45]. The temperature dependence can never 
truly be removed but ߙ changes only with highly exotic, low-density electron conditions [46]. If 
the plasma temperature is sufficiently uniform or low, this effect is not reflected in the electric 
field calculated from the measurement. In the laser-produced plasma, the error amounts to about 
1 V and the sign of ߙ means that the electric field will tend to be underestimated. 

 

Figure 3.6: Design of emissive probe. 

Figure 3.7: Picture of emissive probe and the relative size of the measuring probe tip and the support structure. 
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The emissive probe used in this experiment is a resistively heated emissive probe utilizing 
CeB6 as the thermionic emitter—electrochemically similar to the LaB6 plasma source in LAPD. A 
cross section of the emissive probe is shown in Fig. 3.6 and a picture showing the size of the probe 
relative to a dime is shown in Fig. 3.7. The operating densities of emissive probes are determined 
by their ability to survive the temperatures needed to emit electron fluxes much higher than the 
ion collection flux from the plasma. For typical tungsten wire probes (the standard emissive probe 
design), this is absolutely limited by the melting of the tungsten which would occur around ݊௘ ∼
10ଵଷ cm-3 [47]. In practice, however, the probe support structures fail much sooner at densities on 
the order of ∼ 10ଵଶ cm-3. The probe used in this experiment has be used and shown to work in 
plasmas as dense and hot as ∼ 10ଵଷ cm-3 and 10 eV [48]. 

 

 
Figure 3.8: Partial Grotian diagram showing relation of relevant states to the fluorescing state. 
The LIF scheme used in the experiments consists of the 3 levels connected by solid lines. 
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3.5—Laser-Induced Fluorescence 

To directly probe the response of the ambient plasma to the electric fields, an LIF 
diagnostic in an argon plasma is used. The technique is a standard 3-level scheme, depicted with 

Figure 3.9: Shaping of the planar LIF diagnostic. Fiber brings in output from 
dye laser. Target region typically located 1 m from final lens. 

Figure 3.10: Geometry of LIF sheet as it enters the target region. 
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solid lines in Fig. 3.8, that excites a high-lying metastable of the argon ion, ݎܣା௠ to an upper level, 
ߣߜ ା∗ with a narrowݎܣ ≤ 0.5 pm (400 MHz bandwidth) dye laser near the transition of 611.4922 
nm. The dye laser’s light is fed into the LAPD through a fiber and a series of shaping lenses to the 
target region. The ݎܣା∗ state has a lifetime of 10 ns and it decays with a branching ratio of 66.5% 
through emission of a 460.957 nm photon to the final state. A partial Grotian diagram showing 
the LIF scheme among the other possible decays from the ݎܣା∗ state are shown in Fig. 3.9. Also 
shown are a few of the other high-lying metastables that also exist in argon. With a tunable input 
laser, the scheme can be used to probe the distribution of ions in velocity space. 

A particle in motion relative to the laser wave vector, ࢑, does not see the frequency and 
wavelength of the laser itself, rather they are Doppler shifted. In the non-relativistic limit, the 
condition for excitation is 

߱ − ࢜ ⋅ ࢑ = ߱଴ 

or 

ݒ
ܿ = ߣ − ଴ߣ

଴ߣ
 

where ߱଴ =  ଴ refers to the transition in the ion’s rest frame and the sign convention isߣ/ߨ2ܿ
chosen such that positive velocity is moving into the laser beam: ݒ = ௫ݒ > 0 means ࢜ ⋅ ࢑ < 0. 
With the dye laser’s maximum resolution, the smallest measurable velocity is 2.5 × 10ସ cm/s, 
which is smaller than the ion thermal velocity and a small fraction of the sound speed. This is also 
the typical scale at which the diagnostic is able to detect net drifts in the ion population. Time 
resolution is provided by the fast camera previously mentioned. The lifetime of the transition (߬ ∼
10 ns) and pulse length of the dye laser (Δݐௗ௬௘ ∼ 10 ns) means that optimal light gathering is in 
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the range 20 − 40 ns. Spatial resolution of the LIF signal is provided by the shaping lenses (setup 
shown in Fig. 3.9) which produce a planar beam of light aimed near the carbon target as in Fig. 
3.10 with height and width ݕߜ ∼ 10 cm and ݖߜ ∼ 0.5 cm, respectively. A mirror placed 2.1 m 
away in the ݖ-direction reflects the signal through a window leading out of the machine. The CCD 
camera is used with the 460 nm filter and 2.5x magnifying lens to capture the signal with resolution 
Δݔ = Δݕ =  .mߤ 480

 The argon metastables are long-lived due to there being no allowed dipole transitions 
between them and any lower-lying levels in the ݎܣା electronic structure. They are populated by 2 
primary reactions 

݁ + ݎܣ → ା௠ݎܣ + 2݁ 

݁ + ାݎܣ → ݁ + ∗ାݎܣ → ݁ +  ା௠ݎܣ

where the excited state in the second reaction could even by multiple ionization. It was determined 
by Goeckner [49] that the first reaction is the dominant one in tenuous, discharge-produced 
plasmas and further that the metastables are lost by collisions with the neutrals. In the LaPD, the 
neutral collision time is on the order of 200 ߤs for a neutral argon density of 6 × 10ଵଶ cm-3 and 
ion speed of 2 × 10ହ cm/s.  

Since the metastable lies far above the neutral ground state (Δܧ > 32 eV), there are strict 
conditions for the plasma in order to ensure enough metastables are created in the first place. Using 
a secondary emission diagnostic, Hagstrum [50] determined the total population of metastables 
created by electron beams with given energies while Varga [51], using an improved technique, 
was able to extract a detailed cross section for metastable creation. These are shown in Fig. 3.11. 
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Note that the technique used to obtain these data does not distinguish between the metastable states 
of ݎܣା  so that the total 1%  metastable population is in fact split among the 7 high-lying 
metastables; 4 of which are connected to the excited state in the LIF scheme (see Fig. 3.8). Also, 
the data becomes conflated with the process of doubly ionizing in a single step (ܧ > 65 − 75 eV). 

Figure 3.11: (a) measured [51] cross-section for creation of Arା୫  (dashed) relative to ionization 
cross-section (solid) and (b) the resulting population from of metastables according to [50]. 
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That is, electrons above this energy will start creating ݎܣାା in competition with creating ݎܣା௠. 
Since the primary electrons are not a pure beam and do not keep their full discharge energy as they 
propagate down the magnetic field, the discharge must be tailored to achieve the maximum 
metastable population at a given point in the plasma which should correspond to the highest 
population of ܧ ∼ 50 eV electrons. This is another reason why the LaB6 cathode was needed in 
the parallel expansion case as the target blocks these crucial primaries. In addition discharge 
voltages are more limited with the BaO source due to sputtering. With the 10-cm LaB6 cathode 
and its anode located 3.9 m and 2.1 m, respectively, from the target region, discharges on the order 
of 150 V optimized the LIF signal in the target region. 

Timing control of the lasers and CCD imaging was provided by a new cRIO-based FPGA 
in communication with Stanford delay generators. The system, as an update to the stepping motor 
drivers from previous experiments, coordinated the triggering of the LPP and LIF laser pulses, the 
camera imaging, and target motion. Shot to shot timing jitter was ≤1 ns. 
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Chapter 4-Main Results 

4.1—Laminar Fields 

 The model of a high-𝛽 expansion as presented in §2.3 yields convenient expressions for 

the electric fields in an LPP. This gives the rather counterintuitive expectation that whereas a 

collisional interaction would couple energy and momentum in the flow direction, the collisionless 

interaction, at least in a weak coupling regime, pulls in ions against the direction of the flow across 

the magnetic field. The data presented in this chapter are first used to justify the main assumptions 

made in the model of §2.3, namely that the electron pressure and resistivity are small contributors 

to the electric fields in the expansion phase. This provides a basis upon which the magnetic field 

data can be interpreted and connected to the structures observed in the measured electric fields.  

 The data are framed in the context of the contributions to and evolution of the total laminar 

𝑬. In terms of fluid variables, 𝑬 is calculated from the generalized Ohm’s law [52, pg. 91] 

 𝑬 =
𝜕𝑡𝑱

𝜔𝑝𝑒
2 𝜖0

+
∇ ⋅ (𝑽𝑱 + 𝑱𝑽)

𝜔𝑝𝑒
2 𝜖0

− 𝑽 × 𝑩 +
𝑱 × 𝑩

𝑒𝑛𝑒
−

∇𝑝𝑒

𝑒𝑛𝑒
+ 𝜂𝑱 (4.1) 

where terms of order 𝑚𝑒/𝑚𝑖 have been ignored. The first two terms are generally ignored if spatial 

and temporal scales are large compared to the electron motion and will be neglected here. Treating 

the terms as different electric field contributions, the inductive components of the electric field are 

connected to the magnetic field evolution through Faraday’s law 

 𝜕𝑡𝑩 = −∇ × 𝑬 =
𝜂

𝜇0
∇2𝑩 + ∇ × (𝑽 × 𝑩) 

(4.2) 

where temperature gradients are neglected and electrostatic terms do not contribute. 
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(a)  

(b)  

 

 

Figure 4.1: (a) False color image LPP at t=300 ns with position of carbon target 

outlined in white. (b) Abel-inverted electron density which has been normalized 

to a total number of 8 × 1015 electrons. The dashed line corresponds to Fig. 4.2. 
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4.2 - Imaging Data 

4.2.1—Estimating 𝒏𝒆 and 𝛁 𝐥𝐧 𝒏𝒆 

Direct measures of the electron density and temperature over the long time scales of high-

𝛽 expansions are not trivial and have met with some limited success in experiments designed 

specifically to measure these quantities [22, 53]. The description here will rely mostly on the well-

established models of hot, dense expansions (Appendix A). The imaging diagnostic allows a good 

qualitative description and a rough estimate of terms that require knowing 𝑛𝑒. 

Images of the visible emission were taken with the CCD camera set at variable integration 

times. The variable integration was due the large difference in total emission power over time as 

the LPP cooled and its constituents recombined. An unfiltered, false color image of the LPP is 

shown in Fig. 4.1a with an integration time of 10 ns ending at 𝑡 = 300 ns. Marked in white border 

is the target position within the image. The known size of the target gives the pixel resolution 𝛿𝑦 =

𝛿𝑧 = 190 𝜇m. This time was chosen as the LPP appeared to have stagnated across the magnetic 

field. As it turned out, this time corresponds to shortly after peak diamagnetism, 𝜏𝐷 = 240 ns, and 

the onset of collapse of the electromagnetic fields. In previous experiments on the diamagnetic 

cavity formation in a cross-field expansion, typical values of 𝜏𝐷 were about twice as long [54, 55]. 

Such a change in 𝜏𝐷 with change in angle between the target normal and the magnetic field has 

been observed previously [27]. There, it was explained as a change in the laser-solid interaction 

due to the incident angle of the laser beam and thus the initial conditions of the LPP. The important 

point of Fig. 4.1a is that the LPP emission exhibits very sharp gradients in emission intensity across 

𝑩. As explained in §3.3, the much stronger dependence of the visible emission on the local value 
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of 𝑛𝑒 allows for a calculation of the density length scale and an estimate of the absolute electron 

density.  

 

If the ∇ ln 𝑇𝑒 is assumed to be smaller than ∇ ln 𝑛𝑒, then image is proportional to the line 

integration of 𝑛𝑒
2. Since the image in Fig. 4.1a is approximately cylindrically symmetric, the source 

function can be recovered by Abel inversion. Abel inversion is the formal process of mapping an 

image integrated over a Cartesian coordinate into its cylindrical coordinates. That is, for a source 

image of cylindrical symmetry, 𝐼(𝑦, 𝑧) = ∫ 𝑑𝑥𝑓(𝑥, 𝑦, 𝑧) = ∫ 𝑑𝑥𝑓(𝑟, 𝑧), 0 ≤ 𝑟 ≤ ∞ , Abel 

inversion extracts 𝑓(𝑟, 𝑧). By normalizing the volume-integrated signal to 8 × 1015 electrons and 

accounting for the 𝑛𝑒
2 dependence of the visible emission (see §3.3), the contour plot of 𝑛𝑒(𝑟, 𝑧) 

in Fig. 4.1b is generated. This shows that near the edge of the LPP, 𝑟 = 2 cm, the density is on the 

order of 4 × 1013 cm-3 and just inside, there is a density pile-up where the density may reach a 

value twice as high. These numbers are not to be taken as a highly accurate indicator of the electron 

Figure 4.2: radial cross-section of the Abel-inverted visible emission at 𝑧 = 1.5 cm. 
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density but merely to show the order of magnitude absent an accurate absolute density calibration. 

A profile of Fig. 4.1b is shown in Fig. 4.2 near 𝑧 = 1.5 cm to more clearly show the density 

variation. The density gradient, which is important for the contribution of the pressure term in Eq. 

4.1, is independent of the absolute density. 

As shown in Fig. 4.2, the length scale of the density variation, (∇ ln 𝑛𝑒)−1, on the outer 

gradient is 0.5 cm. Following the contours in Fig. 4.1b, it exhibits a very slow variation in 𝑧 as 

shown by the contours in Fig. 4.1b. The significant drop in density along 𝑦 = 0 is due to a known 

issue in Abel inversion where the central axis is very sensitive to the initial value of the integration 

at the radial boundary. Though it is certainly possible that there is an interior gradient in density 

within the LPP, it is unclear if such a gradient is as strong as indicated in Fig. 4.2 without knowing 

the temperature and accounting for optical depth over the continuous visible emission. Since the 

volume of electrons near the axis is small, the sensitivity of the value from Abel inversion does 

not significantly affect the magnitude of 𝑛𝑒  nor its gradient along the outer edge. The outer 

gradient is also unaffected by absorption since the tenuous ambient argon plasma is optically thin. 

The qualitative features of the evolution of the expansion are easier to see and better to compare 

in time through the 460 nm filter for which the integration time can be kept constant. 

4.2.2—Time of Flight and Plasma Behavior 

 The 460 nm filter is centered near the same emission line as the 1 nm filter used for LIF 

but Fig. 3.5 indicates the possibility of seeing variation in structures corresponding to the response 

of ambient ions with different masses. The LPP was first imaged through the 460 nm filter in 

helium, neon, and argon background plasma and the images were compared. There was no 

significant variation in the structures or their emission intensities with the different ambient ions. 

The substantial differences in mass and number of lines within the filter’s bandwidth lead  
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immediately to the conclusion that the emission signal through the 10-nm HWHM filter is due 

primarily to carbon ions or continuous band emission. The likely sources of the emission are the 

C-III lines, continuum emission from recombination, or low-energy bremsstrahlung which are 

Figure 4.3: (a) False color imaging of the LPP through the 460±10 nm filter for various stages of the 

LPP evolution. White near (𝑦, 𝑧) = (0,0) and in the center of the LPP indicates saturated light intensity. 

Profiles of 𝑡 = 60 ns emission for time of flight calibration of (b) 𝑉𝑛0 and (c) 𝑉𝑟0. 
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more indicative of the LPP density and temperature such as in Fig. 4.1a but with more manageable 

signal intensities. With the integration time set at 30 ns, the evolution of the LPP emission through 

the 460 nm filter is shown in Fig. 4.3. The images are taken every 60 ns during the initial expansion 

and the indicated time set to the closing of the shutter and 𝑡 = 0 ns is the end of the laser pulse. At 

𝑡 = 60 ns, the plasma has expanded enough to do time of flight measurements.  

The saturated emission at 𝑡 = 60 ns is due to the LPP while the bright halo around it is due 

to photo-ionized plasma and scattering of the intense light. There is an abrupt increase in the scale 

length variation of the emission between the saturated light of the LPP and the halo. This is shown 

more clearly in Fig. 4.3b&c. This change is taken as the LPP edge which yields velocities of 𝑉𝑟 =

1.28 × 107  cm/s across 𝑩  and 𝑉𝑛 = 2.1 × 107  cm/s along 𝑩 . Since, 60 ns = 0.25𝜏𝐷 , the 

magnetic field has not removed significant momentum and energy from the LPP so that these time 

of flight measurements should be very close to the free expansion velocities or initial velocities, 

𝑉𝑟0 and 𝑉𝑛0. The value for 𝑉𝑟0 is almost exactly that predicted in §3.2. For the ambient plasma 

density, 𝑉𝑟0 is nominally Alfvénic, 𝑀𝐴 ∼ 1 while 𝑉𝑛0 is initially super-Alfvénic. 

At 0.5𝜏𝐷 ≈ 120 ns, the magnetic forces start to constrict the expansion as energy is lost to 

the electromagnetic fields. By 𝑡 = 240 ns, the diamagnetic cavity is its largest cross-field extent 

and the half max of the emission stagnates as well. Compression effects start to appear at the LPP’s 

cross-field boundary for 𝑡 > 300 ns and the expansion becomes more like a jet expanding down 

the magnetic field.  

The image for 𝑡 = 300 ns shows diminished emission from the on-axis portion of the LPP 

and increased emission near the boundaries. This is what Fabre [27] described as the 

recompression stage of the evolution where the physical extent of the LPP across the field did not 
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significantly diminish but the LPP density appeared to collapse back on to the axis. For 𝑡 =

360, 480, and 600  ns, this process becomes even more pronounced within the LPP as the 

recompression region reaches the axis. This appears to occur the much slower rate of 5 × 106 cm/s. 

The recompression process itself may be a combination of a convective process and diffusive 

process so this recompression rate is not necessarily related to a flow speed of carbon ions within 

the LPP. In addition, Sudo [22] showed that the temperature distribution undergoes a similar 

reorganization where the internal thermal gradient begins to change direction for 𝑡 > 𝜏𝐷. This “re-

thermalization” that Sudo described is conflated with the particle convection described by Fabre 

as well as diffusive processes from finite electron resistivity to give the apparent inward motion of 

the plasma. The argument used to estimate the density gradient for 𝑡 < 𝜏𝐷 does not apply late in 

time as it was predicated on a co-moving gradient in 𝑛𝑒 and 𝑇𝑒, and for 𝑡 > 300 ns, this is not 

guaranteed. Thus it is unclear how much of the movement of the light towards the interior in Fig. 

4.3 for 𝑡 ≥ 300 ns is indeed particle motion or “re-thermalization” of the electrons.  

During the recompression stage, a cloud appears about the laser focal point that expands at 

the even slower rate of ∼ 106  cm/s but is not observed to get further than 𝑧 = 2 cm which it 

reaches after 2 𝜇s. By 1 𝜇s, however, the LPP has recompressed across the field and diffused so 

much along the background magnetic field that much of the carbon may have already left the 

imaging region. This cloud that remains near the target is believed to be molecular components or 

carbon particulates in the debris which may just have a slow sound speed and were never 

significantly accelerated. Alternatively, they may be the part of the distribution of ions that were 

too slow and recombined within the high density region near the target. In any case, they seem to 

not have been a part of the main LPP-field interaction and are moving too slow to be of significant 

consequence to the evolution of the system. 
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Figure 4.4: Magnetic field perturbation data relative to the ambient field strength taken in 𝑥 − 𝑦 planes across 

the background magnetic field at 𝑧 = 2 cm. Times distributed to capture characteristic features in the evolution 

of the expansion phases of the LPP including just prior to bulk LPP ions reaching the probe (𝑡 = 80 ns), peak 

diamagnetism (𝑡 = 𝜏𝐷 = 240 ns), and just after onset of cavity collapse (𝑡 = 320 ns). 
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4.3—Magnetic Field Data 

4.3.1—XY Data 

 Measurements at multiple positions were uncommon or of poor resolution in the earliest 

magnetic LPP experiments, but Collette [56] in a previous experiment in the LAPD presented 

volumetric data in three parallel 𝑥 − 𝑦 planes for the case where 𝑽𝑛 ⋅ 𝑩 ≈ 0 as opposed to the 

present case of 𝑽𝑛 × 𝑩 ≈ 0. The addition of a linear motion of plasma across a uniform magnetic 

field results in an electrostatic field conflated with the induced electric field due to the motion of 

the diamagnetic cavity. This will be shown explicitly in §5.3. The advantages of re-examining this 

data for the present case include: (1) the global field evolution including the parallel boundary of 

the cavity through 𝑡 = 𝜏𝐷  with the addition of a new probe drive that can extend further in 𝑧 than 

that of [56], (2) measurement of the magnetic field at the locations at which the electrostatic field 

will be measured, (3) the benefit of the inherent cylindrical symmetry which also leads to a more 

accurate calculation of the induced electric field. 

Shown in Fig. 4.4 are the data taken in the 𝑥 − 𝑦 plane and offset 2 cm in 𝑧 from the target. 

The magnetic field perturbations are normalized to the background magnetic field strength and the 

times shown are primarily to emphasize the main features of the expansion phase of the 

diamagnetic cavity. The first frame at 𝑡 = 80 ns shows mostly an unperturbed magnetic field as 

only the fastest of the LPP ions, as measured by the time of flight velocity in §4.2.2, could have 

made it to the probe by this time. These ions have velocity vectors almost perfected aligned with 

the ambient magnetic field while the mechanism of §2.3 requires a mass flow across the magnetic 

field to produce the field expulsion. Nevertheless, there is a small magnetic field depression on 

axis of about 50 G (𝛿𝐵/𝐵0 ∼ 7%) with no accompanying compression of the field.  
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By 𝑡 = 160 ns, the traditional picture of a diamagnetic cavity is appears. The field during 

all times does not reach full expulsion (max | Δ𝐵 /𝐵0| ≈ 80%) due to either the LPP not producing 

a strong enough current or the points of full expulsion occupy such a small volume near the center 

of the cavity that the speed of the expansion and size of the probe prevent its resolution. The cavity 

and compression expand together and each in a manner such that good cylindrical symmetry is 

maintained. The depth and height of the cavity and compression, once in view, do not exhibit a 

strong time dependence. Between 160 and 200 ns, for example, the peak in the magnetic field 

compression changes by less than 3% as a fraction of 𝐵0 with a peak compression of 17%. The 

difference between 200 and 240 ns is even smaller indicating that the compression moves as a 

relatively stationary structure in time. 

As peak diamagnetism is reached at 240 ns, it is clear the cavity has stopped expanding 

and it begins to develop a slight up-down asymmetry. This asymmetry persists as the cavity 

collapses for the late time evolution 𝑡 ≥ 280 ns but does not become worse with time. Instead, the 

compression begins to decrease in amplitude and the boundary of the cavity retreats to lower radii 

at a rate much slower than the expansion rate. Between 240 and 320 ns, the compression moves 

not more than 2 mm indicating a speed of collapse, 𝑣𝑐𝑜𝑙 < 5 × 106 cm/s = 0.4𝑣𝑒𝑥𝑝. This suggests 

a temporal asymmetry between cavity formation and collapse that is consistent with the observed 

recompression in the filtered visible emission of Fig. 4.3. As argued in §2.2, the cavity itself may 

be propagating down the magnetic field. Data along the background magnetic field is necessary to 

see whether the cavity behavior just described is merely an effect of the cavity passing through the 

diagnostic plane or actual facets of the evolution. 
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Figure 4.5:  

𝛥𝐵𝑧/𝐵0  in 𝑥 − 𝑧 

planes at 𝑦 = 0  cm. 

Conditions otherwise 

identical to Fig. 4.4.  
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4.3.2—XZ Data 

Figure 4.5 shows the 𝑥 − 𝑧 plane measurements of the diamagnetic cavity. An obvious 

feature is the elongation of the cavity over time as it becomes more like a prolate spheroid as in 

Fig. 4.3. All the features described in Fig. 4.4 appear along with their clear variations along 𝑩0. 

The cavity follows the slight field expulsion that was noted at 𝑡 = 80  ns in Fig. 4.4. The 

compression appears further behind in 𝑧 from the front of the diamagnetic cavity and exhibits a 

“back end” where it decreases in amplitude as one moves closer to the target. This is most clear 

for 𝑡 ≥ 200 ns and suggests a symmetry axis along 𝑧. If the cavity were a spherical object being 

carried along with the mass flow of the expanding LPP, then the peak compression would indicate 

a magnetic equator or the symmetry plane of a dipole-like field. The equator here is the plane 

across the ambient magnetic field that contains the peak compression and also the center of the 

Figure 4.6: Azimuthal current 𝜇0𝐽𝜙 = −𝜕𝑟𝐵𝑧 of the diamagnetic cavity (𝐽𝜙 > 0) and 

compression (𝐽𝜙 < 0) as calculated by the x-z plane magnetic field data. 
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diamagnetic cavity which co-moves with the LPP. The variation in 𝑧 of the compression could 

simply be a sin𝑛 𝜃 variation of the magnetic field in the frame of the diamagnetic cavity where 𝑛 

is some power to capture the sharpness of the variation. The example frequently applied to 

magnetized plasma explosions is that of a spherical, superconducting dipole which has 𝑛 = 1 [21]. 

The increasing eccentricity of the cavity in time prevents any meaningful calculation or 

interpretation of such an index especially without an accurate positioning of the magnetic equator 

in time. 

Figure 4.6 shows the color contours of the azimuthal current, 𝐽𝜙 calculated from 𝜇0𝐽𝜙 =

𝜕𝑧𝐵𝑟 − 𝜕𝑟𝐵𝑧 . At 𝑡 = 𝜏𝐷 , the radial boundary, 𝐽𝜙 = 0 contour corresponding to peak magnetic 

compression, makes an almost straight line along 𝑥 = −2 cm. Taking the 𝑧 position of the peak 

compression as the location of the equatorial plane of the diamagnetic cavity during expansion, 

one can calculate the motion of the diamagnetic cavity in the direction of the background magnetic 

field. That is the velocity of the frame in which the diamagnetic cavity is approximately constant. 

This gives 𝑣𝑑𝑖𝑎 ∼ 9.0 ± 1.0 × 106 cm/s. Note from the time of flight measurements that 𝑣𝑑𝑖𝑎 is 

within error equal to the initial difference between the normal and lateral velocities of the LPP 

coming off the target, 𝑉𝑛0 − 𝑉𝑟0 = 8.2 × 106  cm/s. Additionally, 𝑉𝑛0𝜏𝐷 = 5 cm, which is the 

apparent extent of the diamagnetic cavity along the background magnetic field at 𝑡 = 𝜏𝐷 in Fig. 

4.5. This supports the model that the diamagnetic cavity can be treated as a structure that is tied to 

the center of mass of the LPP as it expands. Further, the geometry of an LPP expanding off a target 

means there is always a non-zero center of mass flow, 𝑽𝑚 ≠ 0, so that the diamagnetic cavity 

should never be presumed to be stationary.  

By tracking the diamagnetic equator in time, one can also calculate the function 𝑅(𝑡) 

which was important for the model in §2.3. The curve that is labelled ‘Bonde’ in Fig. 2.4 was 
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calculated by this method using the data from Fig. 4.5. The variables chosen to normalize the curve 

were 𝑅0, 𝑉𝑟0, and 𝑅𝐵, the latter of which is shown in all 𝑥 − 𝑧 data planes at 𝑡 = 𝜏𝐷. The curve 

𝑅(𝑡) in Fig. 2.4 seems almost to follow a curve uniformly offset from the ideal 𝑅(𝑡) determined 

by the Rayleigh model until the very end of the expansion. Note, however, that the expansion is 

very slow as it approaches peak diamagnetism and the 2 mm resolution of the probe gives a biased 

determination of the location of 𝑅(𝑡) toward the grid point with the smaller radius. Accounting for 

the 5% error from the 2 mm resolution in determining 𝑅(𝑡) and the normalization of 𝑅𝐵, the curves 

are essentially indistinguishable. The value quoted for 𝛽 as 6 × 105 in §3.2 was determined from 

this curve. 

4.3.3—Convective Collapse and Resistance 

For 𝑡 > 𝜏𝐷 there is a decoupling between the equator of the diamagnetic cavity and the 

compressed field. Specifically, two features appear: (1) the radial variation of the compression 

obtains a strong, asymmetric 𝑧 dependence and (2) the compression ceases to propagate along 𝑧 

with the diamagnetic cavity. These indicate not only diamagnetic cavity collapse but also that the 

ambient magnetic field is diffusing back into the diamagnetic cavity. When the resistive term in 

Eq. 4.2 becomes significant, the motion of the plasma and that of the diamagnetic cavity need not 

coincide—they decouple. This does not mean the cavity ceases to convect along with the plasma 

but merely that the plasma motion and field motion are different. Without a direct measure of the 

motion of the ions and electrons within the LPP, there is no way to determine with certainty how 

much of the observed collapse is driven by convective collapse, or recompression of the plasma in 

the language of Fabre [27] or by diffusion. Equation 4.2 gives a method of qualitatively 

determining the importance of convection versus diffusion and even an estimation of 𝑇𝑒.  
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Radial profiles of the magnetic field versus time at 𝑧 = 2 cm are shown in Fig. 4.7. From 

Eq. 4.2, the primary difference between diffusion and convection in laminar fields is that field 

diffusion rates are proportional to profile curvature while field convection rates are proportional 

to ∇𝑩 and 𝑩. The profiles exhibit their largest curvatures on the axis of the expansion and at peak 

compression. The profile in between the two for 0.5 < 𝑟 < 1.5 is comparatively linear; diffusion 

only slowly affects these fields. That is, diffusion-dominated cavity collapse would tend to fill in 

the field from the bottom up on axis and leave the linear parts of the profile relatively unchanged. 

Convection-dominated collapse would cause a strong radially inward collapse of the profile. It is 

clear from a qualitative perspective that the cavity collapse is affected by both convection and 

diffusion. Without a measure of the LPP ions’ velocities, the term 𝑽 × 𝑩  cannot be easily 

estimated in general. However, near peak diamagnetism, the LPP should be relatively stationary 

Figure 4.7: Magnetic field profiles versus time (a) during expansion 

and (b) during collapse. 
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across the magnetic field, 𝑽 × 𝑩 ≈ 0 so that an instantaneous estimate of the contribution from 

diffusion can be made and also the value of 𝑇𝑒 corresponding to that diffusion.  

 

 Figure 4.8 shows the estimated electron temperature assuming the magnetic field evolves 

entirely due to classical resistivity in the corresponding term of Eq. 4.2. If the rate of change of 𝐵𝑧 

was less than 3% of the cavity formation, no 𝑇𝑒 was calculated as this represents an insignificant 

change in the magnetic field. Also points where 𝜕𝑡𝐵𝑧  and ∇2𝐵𝑧  were of opposite signs were 

ignored. The time 𝑡 = 280 ns corresponds close enough to peak diamagnetism to assume the 

Figure 4.8: Estimated electron temperature variations in space and time using the magnetic field profiles of 

Fig. 4.5. White space indicates an insignificant 𝜕𝑡𝐵𝑧 or clearly non-diffusive behavior; no 𝑇𝑒 was calculated. 
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convection is not significant but far enough from peak diamagnetism to exhibit a change in the 

magnetic profile. Alongside the 2D image of the calculated temperature is a radial profile of the 

temperature at 𝑧 = 2 cm and the corresponding magnetic field profile for reference. The points 

where the resistive contributions are expected to be largest—on axis and at peak compression—

yield the largest estimated electron temperatures for the cavity and compression. Nevertheless, 5 

eV is a fair upper bound on the instantaneous temperature of the LPP electrons in the cavity. Most 

of the diamagnetic cavity and compression regions indicate electrons of slightly lower temperature, 

𝑇𝑒 ∼ 1 − 3  eV. This is still high compared to the model in Appendix A though far from 

unreasonable considering heating mechanisms outside of three-body recombination have been 

neglected. Sudo [22] found that several heating mechanisms, including compressional heating of 

electrons and resistive heating are likely important.  

The same analysis is provided at a later time of 𝑡 = 400 ns also in Fig. 8 to show any 

possible temporal evolution of 𝑇𝑒. The resulting 𝑇𝑒 are lower, lying mostly in the range 0.2 − 2. 

This would be too fast of a drop in temperature from 280 ns even if only three-body recombination 

heating is accounted for though the range is more consistent with the calculations of Appendix A. 

Collapse of the cavity by convection would artificially deflate this calculation of 𝑇𝑒. This implies 

that the values of 𝑇𝑒 calculated at 𝑡 = 400 ns are below the actual values. Conversely, these values 

of 𝑇𝑒  are calculated from an equation that inflates the result and is very sensitive to errors in 𝜕𝑡𝐵𝑧 

when it is small. With this in mind, points in the magnetic field where it is approximately stationary 

in time—due to either stagnation at the radial boundary or balance between convection and 

diffusion at the parallel boundary—have an artificially high value of 𝑇𝑒 . This behavior is more 

prevalent at 𝑡 = 280 ns than at 𝑡 = 400 ns since there are spatial regions in the former where field 

is still being expelled by convection of the LPP along the magnetic field. The values for 𝑇𝑒 in these 
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regions should only stand as a rough approximation. Under the circumstances and barring a more 

accurate method of determining 𝑇𝑒, the electron temperature can reasonably be taken as 3 ± 2 eV 

near and after 𝑡 = 𝜏𝐷. 

4.3.4—Connection to Collisionless Coupling 

The values do provide two valuable insights. First, the collapse of the diamagnetic cavity 

can be explained with a more classical picture of diffusion than has been reported in the past as 

anomalous resistivity [57, 58]. The results of anomalous diffusion of the cavity have all been 

claimed under the neglect of convective collapse and improper accounting of the temporal 

evolution of 𝑇𝑒 and sensitivity to its magnitude. Specifically, the 3/2 power dependence in the 

resistivity of a quantity that varies as 𝑡−𝛼, 𝛼 > 1 is a surprisingly strong dependence. All of these 

play some role in the evolution of the magnetic field and should never have been ruled out or 

neglected. 

A second insight is that the combined data of §4.2.1, 4.3.2, and 𝑇𝑒 gives an estimation of 

the contributions from the terms 𝜂𝑱 and ∇𝑝𝑒/𝑒𝑛𝑒 to 𝑬 in Eq. 4.1. A characteristic current in the 

sheath region of the diamagnetic cavity is 𝐽𝜙 ∼ 350 A/cm2 which appears when the magnetic field 

is at a strength of 550 G. The contribution of 𝜂𝑱 is primarily in the azimuthal direction, that is it 

takes away from the induced electric field, and for 𝑇𝑒 = 1 and 5 eV, it is 43 V/cm and 3.8 V/cm, 

respectively. The latter value is effectively negligible compared to the 𝑽 × 𝑩 contribution which 

peaks at 110 V/cm for 𝑡 ≪ 𝜏𝐷. This would corroborate the neglect of a direct effect of resistivity 

in the Rayleigh model of the diamagnetic cavity. The value corresponding to 1 eV would amount 

to a significant change in the dynamics and is more consistent with the observed asymmetric decay 

of the diamagnetic cavity in time and space as it relaxes the magnetic field gradient as it competes 
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with convection. The true value of the contribution of 𝜂𝑱  to 𝑬  would be placed at some 

intermediate value. Unfortunately, 𝜂 is very sensitive to 𝑇𝑒, and no better determination of its value 

is presently available.  

The pressure contribution, on the other hand, is less dependent on the value of 𝑇𝑒  and 

amounts to only 2 − 10 V/cm for 𝑇𝑒 = 1 and 5 eV. The Hall term is approximately 240 V/cm 

assuming 𝑛𝑒 = 5 × 1013 cm-3. The value of 𝑛𝑒 was taken from Fig. 4.1b but is also consistent with 

the LPP scaling laws and expansion model of Appendix A. The value for the Hall term is consistent 

with the Rayleigh model for the present parameters which gives 150 − 300 V/cm depending on 

the electron density. Accounting for a 50% error bar in 𝑛𝑒 still brings ∇𝑝𝑒/𝑒𝑛𝑒 nowhere near the 

value of the Hall term. This justifies the neglect of the pressure gradient in the Rayleigh model. It 

also corroborates the basic mechanism of diamagnetic cavity formation which is inherently 

different from that of an equilibrium plasma.  

The traditional mechanism of diamagnetism in an equilibrium plasma for which the ∇𝑝 

drift plays the dominant role and has thus been named the diamagnetic drift. In high-𝛽 expansions, 

this drift plays a vanishingly small role and 𝑬 × 𝑩 drives the current in the diamagnetic cavity. 

This is why it was important to point out the error that appears frequently in the literature that an 

equilibrium with 𝛽𝑡ℎ = 1 exists at the edge of the LPP. Such an equilibrium does not exist here. 

Using the magnetic field and imaging data, it has been shown that the Ohm’s law 

description of the magnetized LPP expansion is essentially  

𝑬ind + 𝑬𝑠𝑡 = −𝑽 × 𝑩 +
𝑱 × 𝑩

𝑒𝑛𝑒
. 

What remains then is the confirmation of this relationship by looking directly at the electric fields. 
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Figure 4.9:  

Induced electric field 

in the azimuthal 

direction for the 

times and magnetic 

fields corresponding 

to Fig. 4.5. 
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4.4—Electric Fields 

4.4.1—Induced Electric Field 

With the approximations outlined in the experimental setup section, the induced electric 

field in the azimuthal direction was calculated using the radial profiles from the 𝑥 − 𝑧 plane data 

of the magnetic field in Fig. 4.5. The induced electric field is shown in Fig. 4.9 in a manner 

identical to Fig. 4.5. Though the curl operator in cylindrical coordinates places a small shift in the 

location of the edge of the cavity, the orange coloring corresponds to field removal while purple 

is associated with the magnetic field compression. Since both the diamagnetic cavity formation 

and compression formation are the transfer of energy from particles to the field, 𝑱 ⋅ 𝑬 must be less 

than zero where magnetic field is being expelled or compress. The structure of the induced field 

in Fig. 4.9 and the azimuthal current in Fig. 4.6 both switch sign with the compression and 

expulsion of Fig. 4.5. This shows their calculation is consistent with the energy transfer process. 

 As the cavity expands and moves the field, the induced field strength diminishes from −30 

V/cm at 𝑡 = 160 ns to −15 V/cm and −10 V/cm at 𝑡 = 200 ns and 𝑡 = 240 ns, respectively. The 

shape of the electric field is maintained as it flows along with the LPP mass. The magnetic equator 

of the diamagnetic cavity comes into view after 𝑡 = 120 ns but is not visible in Fig. 4.9 due to the 

radius of the cavity still expanding and expelling magnetic field. By 𝑡 = 240 ns, the radius of the 

equator has stagnated and can be seen very clearly by the boundary between orange and purple in 

that frame. If the cavity were simply moving with the LPP mass, the field profile would fill in 

behind the cavity causing the appearance of the reverse induced electric field. The field strength is 

slightly smaller behind the equator (≈ +5 V/cm) due to the cumulative diffusion of the field from 

𝜂𝑱. This term acts against the convective expansion and complements the convective collapse. The 
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magnetic probe places this distinct reversal region at 𝑧 = 2.2 cm. This is extremely close to the 

motion of the peak compression along 𝑧 and that of the LPP, (𝑉𝑛0 − 𝑉𝑟0)𝜏𝐷 ≈ 𝑣𝑑𝑖𝑎𝜏𝐷 = 2.16 cm. 

By 𝑡 = 280 ns, the collapse phase is setting in but part of the diamagnetic cavity is still flowing 

along with the LPP maintaining a negative induced electric field at the front of the cavity. This is 

also the region at the front of the cavity that gave a suspiciously large value of 𝑇𝑒 ∼ 10 eV in Fig. 

4.8. It is especially clear now that those large values of 𝑇𝑒 are erroneous because the magnetic field 

is not even collapsing! Full-collapse of the cavity is evident by 𝑡 = 320 ns with characteristic 

induced electric field magnitudes of about 10 − 12 V/cm. 

From 𝑽 × 𝑩  estimates and using the initial radial velocity of the LPP, the maximum 

induced electric field in the diamagnetic cavity should be on the order of 110 V/cm. There are 

three reasons why this maximal field strength is not be observed in the present case.  

First, the maximum field is located at the outer radius of the equator of the diamagnetic 

cavity where the mass velocity has its largest value across the ambient magnetic field. From 

estimates of the speed with which the equator reaches the diagnostic plane, the equator is visible 

for times 𝑡 > 120 ns = 𝜏𝐷/2. This is precisely the period of time in which the magnitude of the 

induced electric field from the Rayleigh model begins to drop dramatically (see Fig. 2.5) due to 

the deceleration of the cavity edge, that is 𝜕𝑡𝑅 < 𝑉𝑟0. 

Second lies in the field profiles. Both 𝑽 and 𝑩 must necessarily have variations in 𝑟 and 𝑧 

where there is a fall-off in the magnitudes of both as one moves away from the equator and closer 

to the axis. In fact, only ideal models suggest that 𝑽 acquires its maximum value at 𝑟 = 𝑅(𝑡) 

which requires that the ions stop in an infinitesimally small space since the force slowing it down 

is 0 at 𝑟 = 𝑅(𝑡). Thus, the maximum value of 𝑽 in a realistic profile occur for 𝑟 < 𝑅(𝑡) where the 
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magnetic field is reduced. Therefore, most of the volume of the diamagnetic cavity has 𝑽 × 𝑩 <

𝑉𝑟0𝐵0 and likely substantially less. Combined with the inability to measure closer to the target than 

𝑧 = 1 cm where 𝜕𝑡𝑅 = 𝑉𝑟0, these reasons ensure that the peak value of 110 V/cm is never actually 

measured. 

4.4.2—Coupling from 𝑬𝑖𝑛𝑑 

The observed behavior of the induced electric field within a diamagnetic cavity suggests a 

rather different model of coupling of these fields to ambient plasma. Attempts to analyze the 

coupling of a rapidly expanding plasma into a magnetized environment have been done by making 

quite a few approximations; understandably so. The most common approximation has been to 

assert that the coupling is mostly due to the induced electric field [59, 60, 61], observe from 

simulations that such is the case [62,63], or apply a model such as MHD that limits the electrostatic 

field to those with translational mass flows through 𝑬 = 𝑽𝑚 × 𝑩 [64]. In such models, the ambient 

ions are swept up by performing 𝑬 × 𝑩 drift in the induced electric field which eventually causes 

an ion outflow. Three problems exist with this model.  

First, with large gradients in the magnetic field, the ions do not necessarily perform any 

standard drift motion. Those drifts require the field to be sufficiently uniform and steady. For the 

uniformity requirement, note that the parameter 𝑅𝐵
3/𝑅𝑚

3  (see end of §2.3) can be rewritten as 

𝑅𝐵
3

𝑅𝑚
3 = 𝑀𝐴

2 =
𝑍𝑎

2𝑒2𝑛𝑎𝑖

𝜖0𝑚𝑎𝑖𝑐2

𝑚𝑎𝑖
2 𝑉𝑟0

2

𝑍𝑎
2𝑒2𝐵2

≈
𝜌𝑎𝑖

2

𝑅𝐵
2

𝑅𝐵
2(𝜔𝑝𝑖

𝑎 )
2

𝑐2
 

where 𝜌𝑎𝑖 = 𝑉𝑟0/𝜔𝑐𝑖
𝑎  is the directed Larmor radius of an ambient ion if it were swept up by the 

expansion and 𝑐/𝜔𝑝𝑖
𝑎  is the ambient ion skin depth. The magnetic field scale length is much smaller 

than 𝑅𝐵, but 𝑅𝐵 is used as a proxy for its order of magnitude. This suggests that in the spatially 
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non-uniform fields, 𝑅𝐵 ≫ 𝑐/𝜔𝑝𝑖
𝑎 𝑀𝐴 is necessary to apply drift motion since then 𝜌𝑎𝑖 ≪ 𝑅𝐵. This 

condition implies highly magnetized, dense, and slowly expanding cavities have more drift-like 

response of the ambient ions. Two of these three conditions are characteristics of a low-𝛽 

expansion. The steady field requirement simply leads to 𝜏𝐷𝜔𝑐𝑖
𝑎 ≫ 1. This, too, implies that slow, 

highly magnetized expansions, or low-𝛽, have more drift-like response of the ambient ions.  

The calculations made by [59, 60, 61] and those that cite them and their “Larmor coupling” 

model, as the drift models have been named in the literature, take some form of the limits 1 ≪

𝜌𝑎𝑖/𝑅𝐵 , 𝜏𝐷𝜔𝑐𝑖
𝑑 , 𝜏𝐷𝜔𝑐𝑖

𝑎 → ∞. For most magnetized LPP expansions and diamagnetic cavities in 

space (AMPTE had 𝜔𝑐𝑖
𝑑 𝜏𝐷 ≈ 1) , 𝜏𝐷𝜔𝑐𝑖

𝑑  was less than or on the order of 1. This implies the ambient 

ions would have to be orders of magnitude larger in charge to mass ratio than the debris to approach 

a drift-like response. Essentially, the Larmor and induced electric field coupling models apply to 

a very limited class of expansions that have not been produced experimentally. 

 Second, the diamagnetic cavity necessarily collapses for 𝑡 > 𝜏𝐷 and a large portion of the 

electromagnetic energy never escapes farther than 𝑅𝐵 across the magnetic field from the source. 

This limits the amount of time the fields can accelerate ions and even more severely limits the 

number of ions it can accelerate since this number is proportional to the volume covered during 

the expansion of the cavity. The collapse also implies that the induced electric field reverses sign 

as is quite evident in Fig. 4.9. Ions that are accelerated by 𝑬𝑖𝑛𝑑 also get partially decelerated by it 

if they do not also escape the diamagnetic cavity prior to collapse.  

This also leads to the third problem with coupling from the induced electric field, namely 

the fact that the compression itself is observed in Fig. 4.9 to correspond to a reversal in the sign of 

the induced electric field. Thus, ions that are accelerated outward by the induced electric field of  
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Figure 4.10: Electrostatic potential measurements in 𝑥 − 𝑦 plane at 𝑧 = 2 cm for times corresponding to Fig. 4.4 
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Figure 4.11: Electrostatic field data in an 𝑥 − 𝑦 plane located at 𝑧 = 2 cm for the times corresponding 

to that of Fig. 4.4. 
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the cavity are decelerated by the compression’s induced electric field. For shocks this effect is 

actually desirable as it transports the energy to the front of a shock and keeps it moving outward. 

The problem lies more in the small spatial scales over which this change occurs. This limits the 

ability to generate an outward mass flow since orbital motion does not have time to build up during 

the passage of the narrow compression and sheath layers. Models that assume a drift motion 

overestimate the efficiency of the coupling. That being said, the reversals in the induced electric 

field may in some limit become of negligible concern and the most obvious limit available and 

implied by Larmor coupling models is 𝜏𝐷𝜔𝑐𝑖 → ∞. This is also the limit where the electrostatic 

field may be neglected in the Rayleigh model. As will now be shown, this is far from the present 

case. 

 

 

 
Figure 4.12: Radial variation of the electrostatic field as taken from Fig. 4.11 along 𝑦 = 0 cm. 
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4.4.3—Electrostatic Field 

 Based on the model described in §2.3, the expected maximum magnitude of the 

electrostatic field in the diamagnetic cavity is 390  V/cm for 𝑍𝑑 = 2  and 240  V/cm from an 

estimation of the Hall term using magnetic field measurements and electron density estimates. This 

would be a substantially larger electric field in 𝑬𝑠𝑡 than 𝑬𝑖𝑛𝑑. The emissive probe provides us with 

a direct measure of the electrostatic potential, 𝜙𝑚𝑒𝑎𝑠, from which 𝑬𝑠𝑡 = −∇𝜙𝑚𝑒𝑎𝑠. Figures 4.10 

and 4.11 show the electrostatic potential and field in an 𝑥 − 𝑦 plane in positions identical to the 

magnetic field measurements of Fig. 4.4 and the induced electric field in Fig. 4.9. 

 The salient features of Fig. 4.11 are that structures similar to those observed in the magnetic 

field of Fig. 4.4 exist in the electrostatic field. The diamagnetic cavity indeed has a strong, inwardly 

directed electrostatic field but there is also a field reversal during the expansion phase (𝑡 ≤ 240 

ns) that corresponds to the region of magnetic field compression. Both of these fields decay along 

with the diamagnetic cavity and the field compression for 𝑡 > 𝜏𝐷 . To clearly show the radial 

variation of the electrostatic field, a sample of radial profiles at different times for 𝑧 = 2 cm are 

shown in Fig. 4.12. The inward field peaks in strength at 𝑡 = 𝜏𝐷 = 240 ns with 180 V/cm at about 

𝑟 = 1.3 cm. This strength is slightly smaller than the estimated Hall term and much smaller than 

the scale value of the electrostatic field in the Rayleigh model (Appendix §B.2). Accounting for 

the experimental profile, the Rayleigh model predicts 270  V/cm at 𝑟/𝑅𝐵 = 0.6  where the 

measured field peaks. This measured field is stronger than the maximum possible induced electric 

field and 6-20 times larger than those measured in Fig. 4.9. The outward component of the 

electrostatic field is significantly weaker but still strong in comparison to the corresponding 

induced electric field located at the magnetic compression. Its peak value is almost 60 V/cm 

around 𝑡 = 200 ns but begins to fall as the cavity rapidly decelerates. As the cavity begins to 
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collapse, the outward field becomes smaller and is all but gone at 𝑡 = 280 ns. The region where 

the electric field switches sign along the magnetic equator corresponds well to the point of peak 

magnetic compression to within error of the measurement grid.  

 In addition to the estimates of electron density from unmagnetized LPP expansion models 

in Appendix A and the rough estimate of Abel-inverted imaging in §4.2.1, the proportionality 

constant between the 𝑱 × 𝑩 force and the electrostatic field should predict the electron density 

which makes them fully consistent. Their ratio yields an electron density of 7 × 1013 cm-3. This is 

just within the 50% error margin assumed in the LPP expansion model and used to get 5 × 1013 

cm-3 in §4.2.1. The estimates from the unmagnetized expansion model yield values closer to 3 −

4 × 1013 cm-3 with the initial assumption of 8 × 1015 electrons. It is clear from Fig. 4.1b that there 

is a density peak behind the cavity edge that is about a factor 2 higher than at the cavity edge. This 

pile-up is a reasonable explanation for small difference between the calculation of the Hall term 

and 𝑬𝑠𝑡. This is what was described by Fabre [27] as the recompression of plasma. Furthermore, 

it is frequently noted in experiments that have density measurements, which has thus far only been 

possible in highly magnetized, 𝛽 < 103, expansions, a region of compressed density forms behind 

the outer edge of the expansion [22, 65, 66].  

For the outward electrostatic field, the ratio of 𝑱 × 𝑩 to 𝑬 yields a density of about 4 ×

1013 cm-3. No model exists for how the outward electrostatic field is related to the 𝑱 × 𝑩 force in 

the compression, especially since it is often attributed to finite electron pressure effects [67]. This 

result suggests that the electrons in the LPP itself are responsible for the formation of the 

compression since the ambient plasma density is almost 10 times smaller. If the finite electron 

pressure contribution to ∇𝜙 is accounted for, its contribution is also outward. This means an even 

higher electron density is needed to account for the magnitude of the outward electrostatic field. 
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 An important connection to the discussion of the magnetic field structure is the electrostatic 

field for the collapse phase of the cavity, that is 𝑡 ≥ 𝜏𝐷 . For these times, the magnetic field 

structure is diminishing in strength through some combination of convection and diffusion of the 

magnetic field. The diffusion properties were discussed and shown to be consistent with an 

electron temperature on the order of 1 eV while the convection component of the collapse could 

not be ruled out. The electrostatic field remains on the order of 100 V/cm and continues to expand 

outward after peak diamagnetism, and eventually reaching 150% the largest size of the cavity. 

Since the electrostatic field acts against the outward momentum of the carbon ions, it stands to 

reason that if it is still present after peak diamagnetism when 𝜕𝑡𝑅 = 0 , the carbon ions are 

accelerated inward. If the collapse of the diamagnetic cavity is influenced by material convection, 

then the electrostatic field is the clear source. Further, since the field maintains its strength, the 

carbon could regain a large portion of its initial energy. That is, the energy that went from the 

carbon to the field goes largely back to the carbon. The asymmetric decay of the cavity in time 

ensures that this processes is far from fully reversible and energy will be converted so some form 

other than kinetic energy of the ions. Assuming a simple linear decay of the electrostatic field from 

peak diamagnetism and noting the strength drops below 25 V/cm at 𝑡 = 600 ns, a carbon ion 

could collapse onto the axis with a speed of 𝑉𝑟 = −5.7 × 106 cm/s. That is, it can recoup about 

1/4 of its energy in directed motion. Note that this speed is also consistent with the observed 

recompression of the plasma in Fig. 4.3. 

4.4.4—The Electrostatic Pulse, Parallel Boundary, and Charge neutrality 

 The field structure indicated at the times 𝑡 = 80,160 ns of Fig. 4.11, do not conform to a 

simple Hall field, i.e. 𝑬𝑠𝑡 = 𝑱 × 𝑩/𝑒𝑛𝑒, of the diamagnetic cavity. About 50-60 ns after the laser 

generating the LPP fires, a sharp drop in potential is observed. This potential well is highly 
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localized in space with a full-width half-max of only about 0.8 cm centered on the axis of the 

expansion. The potential drops on a time scale of about 5 ns and remains until the front of the LPP 

reaches the probe tip. At this point, there is a large swing in the electrostatic potential which goes 

back to zero, overshoots and eventually gives way to the diamagnetic cavity. 

This potential structure which gives rise to the electrostatic field seen at 𝑡 = 80 ns in Fig. 

4.11 is coincident with the appearance of the small, on-axis diamagnetism of about 50 G that 

seemed to precede the LPP in Fig. 4.4. Not very many ions are expected to be at this position and 

if they are, their pitch angle would be so small that their perpendicular velocity could not account 

for a diamagnetic effect in the same way that the primary diamagnetic cavity forms in the bulk 

LPP. In the bulk LPP, the cavity formation process can be succinctly described as the series of 

steps: (1) ion outflow leads to charge separation, (2) with net charge, an electrostatic field appears, 

and (3) electron current within the electric field expels magnetic field. The presumed state of the 

ions at the furthest reaches of the LPP is such that (1) does not occur, but if an electrostatic field 

already exists, the ions need not have an outflow to generate a significant drop in magnetic field. 

The electrostatic field shown in the 𝑡 = 80 ns frame becomes as large as 100 V/cm. This is on the 

same order of magnitude as the electrostatic field of the diamagnetic cavity. Within the 

diamagnetic cavity, the electric field sets the drift velocity of the electrons and therefore the current 

is simply this drift times the density. The small perturbation in the magnetic field associated with 

this electrostatic structure could simply be a result of the reduced electron population in front of 

the LPP. A field of 180 V/cm is enough to remove 80% of the background field but in front of the 

LPP, the density is just that of the ambient plasma, which is about 5 times less dense at 𝑡 = 𝜏𝐷. A 

field half as strong as that inside the LPP would cause about 1/10th of the diamagnetic effect in the 

background plasma which would be approximately 60 G. It therefore seems that the diamagnetism  
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Figure 4.13:  

Electrostatic potential 

measurements in the 

𝑥 − 𝑧 plane. 
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Figure 4.14:  

Electrostatic field 

measurements in the 

𝑥 − 𝑧 plane at times 

corresponding to 

that of Fig. 4.5. 
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that appeared ahead of the LPP can be explained by electron currents similar to those within the 

bulk LPP and diamagnetic cavity but within this new electrostatic structure. What cannot yet be 

explained is the source of the electrostatic field and the boundary between it and the diamagnetic 

cavity in the bulk LPP represented by the structure of 𝑡 = 160  ns in Fig. 4.11. To aid in 

understanding the origin of this electrostatic structure, one must understand the distribution of 

charge within the LPP. This requires knowing how the electrostatic field behaves along the 

background magnetic field. 

The electrostatic potential and field measurements in the 𝑥 − 𝑧 plane are shown in Figs. 

4.13 and 4.14. At 𝑡 = 80 ns, the extent of the initial electrostatic pulse is quite clear. The frame 

also shows how tightly bound the structure of the electrostatic pulse is to the magnetic field line. 

Within the time it crosses the 𝑥 − 𝑧 plane, there is almost no angular spread along the field and no 

observable component of 𝑬 parallel to 𝑩. The frame for 𝑡 = 160 ns shows the boundary between 

the electrostatic pulse and the bulk LPP and diamagnetic cavity. This “parallel boundary” has a far 

more complicated structure in the electric field. This has strong components along and across the 

ambient magnetic field which are highly confined to the axis of the LPP. These fields rapidly 

diminish in strength and become comparable to but still distinguishable from the cavity fields by 

𝑡 = 𝜏𝐷. Complicated fluctuations that do not resemble coherent behavior continue along the axis 

of the LPP but remain highly localized. As the probe moves closer to the axis towards positive 𝑥 

values, the disturbance due to the finite size of the probe cannot be neglected and behavior for 

|𝑥| ≤ 0.5 cm and 𝑧 < 3 cm, essentially those deep within the bulk LPP, should be treated with 

some skepticism.  

The laminar components of the electrostatic fields of the diamagnetic cavity near its edge 

seem relatively unaffected when they come into view for 𝑡 ≥ 200 ns. The boundary defined by 
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the reversal between the radially inward and outward fields is seen to grow in time and encapsulate 

the ovular LPP as would be expected from the discussion around Fig. 4.11. Despite the clear 𝑧 

dependence of the electrostatic structures near the parallel boundary of the LPP, the electric field 

parallel to 𝑩0 is very small. That is, away from the parallel boundary, 𝑬𝑠𝑡 ⋅ 𝑩0 ≈ 0. For 𝑡 > 𝜏𝐷, 

the entirety of the LPP is dominated by the lingering, radially inward electrostatic field of the 

collapsing diamagnetic cavity. 

 

Figure 4.15: Charge distribution within the diamagnetic 

cavity for 𝑡 = 𝜏𝐷  normalized to the ambient plasma 

density.  A contour of 𝐵𝑧 = 𝐵0 within the diamagnetic 

cavity is also shown to emphasize the location of the 

charge layers. 
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With this data and the relatively good assumption of cylindrical symmetry, as evidenced 

by Fig. 4.11 for 𝑡 ≤ 𝜏𝐷, the charge distribution within the diamagnetic cavity can be calculated. 

The distribution is calculated at 𝑡 = 𝜏𝐷 and 𝑧 = 2 cm near the diamagnetic equator and shown in 

Fig. 4.15. The double-layer-like structure corresponding to the dominant inward electrostatic field 

is quite evident in the 𝑥 − 𝑦 plane of Fig. 15a. By superimposing a contour where the magnetic 

field is equal to the ambient field, it is easy to see that the charge layering is such that positive 

charge is built up in the compression while the negative charge layer is well within the diamagnetic 

cavity. The magnitudes of each of the charge layers are comparable to each other and peak at about 

1 part in 10,000 of the ambient plasma density. Such a normalization merely emphasizes that the 

strong electrostatic fields that have been measured are consistent with a quasi-neutral description 

of the fields. The comparable size of the charge layers and their cylindrical geometry actually 

suggests a charge imbalance between the layers since the positive layer is distributed over a larger 

volume than the inner, negative layer. Such an imbalance would explain the radially outward field 

and thus how a magnetized expansion can control its own magnetic field compression. This is in 

contrast to the common superconducting dipole expansion model [20], which requires a 

compression of about 50% in a region free of current. Such a compression is hardly ever observed 

in LPPs. 

By integrating over an element ∫ 𝑑𝑟 𝑟 , the charge density per unit length along 𝑧  is 

obtained and such a calculation is shown in Fig. 4.15b. This shows quite clearly the possibility of 

charge imbalance as the positive charge layer is in fact larger than the negative charge layer. This 

could have been anticipated by considering the radially outward electrostatic field of Fig. 4.11 and 

4.14. If one were to take an envelope encapsulating the bulk LPP electric fields of Fig. 4.11 and 
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4.14, one would see that the radial boundary has a net electric flux. An application of Gauss’s Law 

to this envelope would then suggest the LPP has a net positive charge. Global charge neutrality 

suggests that the balancing negative charge must be either at the parallel boundary of the LPP or 

be carried off with the electrostatic pulse. This provides a reasonable explanation for the observed 

electrostatic pulse and the complicated parallel boundary exhibited by the electrostatic field. 

Fast electrons have been observed previously in LPP experiments on the LAPD which have 

also been associated with whistler wave and Alfvén wave radiation [68, 69]. These electrons 

moved at speeds many times that of the LPP with energies on the order of 100 V, which is 

coincidentally the scale temperature of the initial LPP and the depth of the electrostatic pulse. The 

electrostatic pulse also moves close to these speeds and so it seems reasonable to associate this 

structure with at least some of these fast electrons. These electrons are not neutralized locally by 

the LPP ions and are moving at speeds much faster than the ambient electron thermal speed. They 

could thus constitute the bulk of “lost” negative charge that balances the net positive charge of the 

LPP. More speculatively, the complicated electrostatic field at the parallel boundary of the 

diamagnetic cavity could then be explained as a non-linear electrostatic structure such as a double-

layer, shock, sheath or what the space community has quite prosaically termed a time-domain 

structure [70]. The ability to distinguish between these structures is beyond the ability of the 

current diagnostic arsenal but the purely electrostatic nature is apparent in that no similar structure 

appears at the parallel boundary in the magnetic field data of Fig. 4.5. It is clear that whatever it 

is, it is evanescent and of a very small spatial and temporal scale limiting its ability to play a role 

in coupling energy and momentum between the LPP and the ambient plasma. 
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4.4.5—Electrostatic Field Coupling 

Now that the whole electromagnetic structure and its evolution has been described, one can 

discuss the momentum coupling. From simple comparison of peak magnitudes, the electrostatic 

field will have a stronger effect than the induced electric field on the coupling between the LPP 

and ambient plasma. A fair measure of their ability to couple energy and momentum 

volumetrically and independent of their profiles or a model is to consider their average energy 

density. Applying cylindrical symmetry to the measured induced and electrostatic fields, the 

average energy density of the 𝒆𝜙 ⋅ 𝑬𝑖𝑛𝑑 and 𝒆𝑟 ⋅ 𝑬𝑠𝑡 = ∇𝑥𝑦𝜙 fields are shown in Fig. 4.16. Figure 

4.16 shows quite clearly that the strength of the electrostatic interaction is dominated in space and 

time by the electrostatic field and not the induced electric field. It is necessary to emphasize that 

these data do not include the fields for 𝑧 < 1 cm. The probes could not safely be positioned so 

Figure 4.16: Energy density of the measured radial electrostatic 

field and azimuthal, induced electric fields over time. 
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close without risking serious damage to the probe and interference with the measurements. This is 

precisely where the induced field should be its strongest and the electrostatic field negligible for 

𝑡 < 𝜏𝐷/2. This missing volume accounts for less than 10% of the interaction volume is likely of 

little consequence to the overall interaction.  

The prevalence of the inward electrostatic field throughout Figs. 4.11 and 4.14 indicate that 

the effect of a collisionless interaction between the LPP and an ambient argon plasma is to pull the 

argon ions inward, against the flow of the expanding LPP. As is shown in Appendix §B.4, the 

idealized Rayleigh model limits the maximum obtainable velocity from these fields to a fraction 

of the initial expansion velocity. For a 𝐶2+, 𝛽 ∼ 106 expansion moving at 𝑉𝑟0 = 1.28 × 107 cm/s 

through argon, an ion can only attain a radial speed of Δ𝑉𝑟 ≈ 8 × 105 cm/s at most (Δ𝑉𝑟/𝑉𝑟0 =

0.06). The expansion profile used in the Rayleigh model for the field also shows that a large 

portion of the argon ions will be moving slower than this speed. The corresponding energy 

transferred to the argon ions is about 𝐸𝑐 ≈ 0.5 mJ (𝐸𝑐/𝐸𝑡𝑜𝑡 ∼ 0.002). 

The idealized model, however, does not take into account 3 facets of the measured 

electrostatic fields: 

(1) The electrostatic pulse that appears before the diamagnetic cavity. This field will tend 

to accelerate more of the ions near 𝑟 ∼ 0 where the other fields would not. The strength 

of this field is comparable in strength to the inward electrostatic field of the diamagnetic 

cavity. Ions within it would reach comparable speeds and thus smooth out the ion 

velocity profile. 
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(2) The measured profile for 𝐸𝑠𝑡 , which has the field peaking at around 𝑟/𝑅(𝑡) ∼ 0.6 

within the sheath structure and behind the cavity edge. This will decrease the maximum 

velocity and shift it further from 𝑟 = 𝑅(𝑡) than that calculated in Appendix §B.4. 

(3) The radially outward electrostatic field associated with the field compression. Argon 

ions that enter the LPP at 𝑟 = 𝑅(𝑡) receive the kick Δ𝑉𝑟 after a slight outward push. 

This will also tend to decrease the final inward velocity of the argon ions. 

Shot-to-shot variation of the fields will also tend to smooth out the velocity profiles. This along 

with (2) and (3) ensure no argon ions will actually reach 8 × 105 cm/s. 

In the azimuthal direction, the 100 V/cm fields of 𝐸𝑖𝑛𝑑 exist in such a small volume that 

the diagnostics employed could not observe them. For the regions relevant for the LIF diagnostic, 

𝐸𝑖𝑛𝑑 peaked at about 1/6 the strength of 𝐸𝑠𝑡 and reverses sign. The LIF reveals these features and 

shows that 𝐸𝑖𝑛𝑑 couples very little momentum and energy in the argon background. 

4.5—LIF Data 

 The LIF data were taken at various times during the LPP expansion with the same camera 

as used in §4.2. The LIF beam passed through the LPP along the 𝑥-direction, as in Fig. 3.10, at 

𝑧 = 2 cm with a width of 0.5 cm in 𝑧 and 10 cm in 𝑦. The camera was mounted 2.1 m in 𝑧 away 

from the target region. A mirror was positioned within the LAPD vacuum vessel offset in 𝑥 by 20 

cm and angled so as to project the light from the target region into the camera. At that distance, 

the angle between the projected image and the magnetic field was about 5∘ and a maximum spatial 

resolution of 𝛿𝑥𝑚𝑎𝑥 = 𝛿𝑦𝑚𝑎𝑥 = 0.048 cm. 
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Figure 4.18: (a) LIF signal at 𝑡 = 300 ns, soon after the onset of cavity decay. (b) Corresponding background 

emission through the 1-nm filter. 

 

Figure 4.17: (a) LIF signal at 𝑡 = 200 ns just before peak diamagnetism. (b) Corresponding background 

emission through the 1-nm filter. 
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 At each time, LIF scans comprised a set of images at each of a series of wavelengths about 

the central wavelength 𝜆0 = 611.4922 nm. Typical wavelength ranges were set such that they 

Figure 4.19: (a) LIF signal at 𝑡 = 800 ns after both the magnetic field and electrostatic field structure have 

essentially disappeared. (b) Corresponding background emission through the 1-nm filter. 

 

Figure 4.20: (a) LIF sample distributions taken from 𝑡 = 200 ns, 𝑦 = 0 cm in the background (𝑥 = −5 

cm) and within the cavity (𝑥 = −1 cm). (b) Average 𝑣𝑥 profiles at 𝑦 = 0 cm from Figs. 4.17-4.19. 
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would span the velocities 𝑣 ∈ [−2,2] × 106  cm/s in order to ensure the full distribution was 

covered. From each set of images, each pixel was analyzed and “cosmic” outliers with signals 5𝜎 

above the mean signal removed. Additionally, spurious images from camera or laser misfires were 

removed entirely. Three scans at 𝑡 = 200, 300, and 800 ns were complete and reliable enough to 

have Maxwellian distributions fit to the signals versus Doppler broadened velocity. The shift of 

the argon velocity distribution within LPP compared to one at 𝑥 = −5 cm, far from LPP influence, 

gives an accurate measure of the average argon ion velocity in the 𝑥-direction, 𝑣𝑥. The resulting 

flow field of argon ions from this measure at the times mentioned are shown in parts (a) of Figs. 

4.17-4.19. Sample velocity distributions showing a background ion distribution and an ion 

distribution within the diamagnetic cavity are shown in Fig. 4.20a while profiles of the flow field 

at 𝑦 = 0 cm over time are shown in Fig. 4.20b. 

Signal to noise ratios of spectroscopic techniques in systems that emit light as copiously as 

dense LPPs are generally poor. Additionally, changing surface conditions of the target shifts the 

motion of the LPP subtly from shot to shot which exacerbates the problem by introducing an 

element of non-reproducibility. For argon LIF in the LPP system, the raw signal to noise ratio 

through the 1-nm filter of Fig. 3.5 was 𝑆𝑁𝑅𝑟𝑎𝑤 ∼ 1.07 for a single shot. This was improved by 

background subtraction and averaging over a multitude of images at each wavelength. Background 

subtraction was accomplished by staggering shots with and without an LIF laser pulse—about 250 

of each. The set of signal and background images were averaged and subtracted. Finally, pixels 

were binned in 4x4 groups and their signals averaged. This gives a signal to noise ratio of about 5 

for 𝑡 = 200, 300  ns and ~10  for 𝑡 = 800  ns. It is higher at 800 ns owing to the decreased 

background level seen in Fig. 4.19b. The final spatial resolution for the images in Figs. 4.17-4.20 

is 𝛿𝑥 = 𝛿𝑦 = 0.19 cm or almost exactly that of electromagnetic field diagnostics. 
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At 𝑡 = 200 ns, the electric fields in the probing volume of the LIF are near their strongest 

and their effect on the argon ions is nearing their peak. The maximum velocities in Figs. 4.17a and 

4.20b at this time are near 3 × 105 cm/s with a clear asymmetry across the line 𝑥 = 0 cutting 

through the LPP. This gives a clear indication of a radial symmetry in the causative force. A force 

in the azimuthal direction would have produced a symmetry across the axis 𝑦 = 0 in the 𝑣𝑥. The 

velocities near 𝑥 = 0 are oriented such that argon is being transported back to the axis of the LPP 

which is also in accord with the electrostatic field that was measured earlier. Also visible is the 

effect of the radially outward electrostatic field.  

At the outer edge of the LPP expansion, indicated by the bright ring in Fig. 4.17b, there is 

a clear reversal in the sign of 𝑣𝑥 which peaks at the smaller value of about 1 × 105 cm/s or about 

1/3 of the inward velocity. This ratio is also approximately the ratio of the outward to inward 

electrostatic fields. The difference between the velocities, rather the net effect of the inward 

electrostatic field is the difference between the two or about Δ𝑣𝑥 = 4 × 105 cm/s or about 1/2 of 

the maximum value predicted from the ideal Rayleigh model. 

At 𝑡 = 300 ns in Fig. 4.18a, corresponding to the onset of cavity collapse, the effect of the 

electric fields has the same general shape as that of Fig. 4.17a. The weaker electrostatic fields that 

exist outside of the LPP and associated with the compression have had time to push the argon at 

the far reaches of the LPP. In comparing Fig. 4.18a to Fig. 4.17a it may be noted that it seems as 

if the LPP has shrunk in size over time and one would rather expect the effect of the inward 

electrostatic field would move further outward rather than collapse. To explain this behavior, note 

that it is clear in Fig. 4.18b that the LPP itself appears smaller than that of Fig. 4.17b. Time 

variation of the LPP as shown in Fig. 4.3 has no evidence of LPP collapse in this time range. The 

major difference between these three data sets is the target. This is because the LIF scans require 
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so much time that a scan at one particular time is all that can be done on a single carbon target. A 

simple explanation then is that between the LIF scans of Fig. 4.17 and Fig. 4.18, the target change 

altered the initial conditions, likely the laser energy coupling, and indeed the LPP for 𝑡 = 300 ns 

was smaller than that of 𝑡 = 200 ns. The 𝑡 = 200 ns and 𝑡 = 300 ns datasets are consistent with 

each other and qualitatively with the electric fields if the size of the LPPs are accounted for by 

referring to parts (b) in Figs. 4.17 and 4.18. 

The LIF data for 𝑡 = 800 ns in Figs. 4.19a and 4.20b shows the net effect of the LPP on 

the argon ions after the diamagnetic cavity has fully decayed. Slow expansion of the inward 

electrostatic field across the magnetic field (Fig. 4.11, 𝑡 ≥ 280 ns) is shown clearly here as the 

majority of the argon ions in view are drifting back toward the LPP axis with approximately 𝑣𝑟 =

−6 × 105 cm/s, or twice the inward velocity that was observed earlier at 𝑡 = 200, 300 ns, near 

peak diamagnetism. In this time, the induced electric field switches sign to correspond to the filling 

in of the cavity while the electrostatic field remains strong throughout the collapse. This shows 

quite clearly that the sum effect of the total electric field over the passage of the LPP and the 

expansion and collapse of the diamagnetic cavity is that the electrostatic field pulls the argon ions 

inward and the effect of the induced field is entirely negligible. 

It was mentioned in the discussion of the Rayleigh model in §2.3 and Appendix §B.4 that 

the predicted velocity of 8 × 105 cm/s was more of an upper on the velocity and most argon ion 

velocities would be smaller. To check if the measured velocities from LIF are indeed consistent 

with the measured electric fields, a particle orbit solver was implemented to trace the motion of 

ions through the total electromagnetic fields. 
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4.6—Orbit Solvers 

 Though fully volumetric measurements of the electromagnetic fields were not made, the 

LPP exhibited, on the average, good cylindrical symmetry. The fields as measured in the 𝑥 − 𝑧 

planes, corresponding to Figs. 4.5,4.9, and 4.14, were used by filling a 3D volume with their values 

rotated about the azimuthal direction. Ten million particle trajectories were evolved with random 

initial position and velocities (1 eV initial temperature) within these fields. At the three points in 

time for which LIF data was collected, the distribution functions were mapped onto spatial grids 

with the same 2 mm resolution of the field data. The average velocity in the 𝑥-direction was 

Figure 4.21: Simulated 𝑣𝑥  measurements using 

particle orbits solvers and the electromagnetic 

fields cylindrically extrapolated from the 𝑥 − 𝑧 

plane data. The times, spatial resolution, and 

locations in 𝑧  are the same as those of Figs. 

4.17a, 4.18a, and 4.19a. 
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calculated thus simulating the effect of an LIF scan. The results are shown for the three times in 

Fig. 4.21. 

 The orbit solvers show quite clearly through the symmetry across 𝑥 = 0  that the 

electrostatic field dominates the coupling of momentum to the ambient argon. Also visible in the 

orbit solvers is that the effect of the electrostatic pulse is visible as the increased velocity near the 

axis of the LPP. The Rayleigh model as well as the measured fields within the cavity suggested 

that a gradient should exist in 𝑣𝑥 such that particles closest to 𝑥 = 0 should not be moving. The 

presence of the field from the electrostatic pulse accelerates those ions to a comparable velocity 

and effectively smooths out the velocity gradient. The scale size of the velocity, |𝑣𝑥| = 3 × 105 

cm/s, is identical to that of the LIF. The ability to reproduce the magnitude of the momentum 

coupled with an orbit solver in the measured electromagnetic fields brings together two important 

facts which I intended to show: 

(1) The orbit solver did not include collisions so that the signal measured by the LIF is indeed 

indicative of an interaction dominated by a collisionless mechanism. 

(2) The measured electric fields, which are well-predicted by a laminar model of the LPP 

evolution, are sufficient to explain the measured momentum coupling. All other sources of 

coupling via turbulent wave-particle interaction or high-frequency waves or oscillations 

beyond the resolution of the diagnostics are at most perturbations that on average do not 

produce a coherent flow in the ions of the ambient plasma. 
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Chapter 5 – Parameter Variation 

5.1—Variable parameters 

In the previous chapter, it was shown that the total electric field in a high 𝛽 expansion 

includes a substantial electrostatic component. The features of this electrostatic field dominate the 

collisionless coupling of momentum and energy from the expanding plasma to the ambient plasma 

for the present case of weak coupling. The goal of this chapter is to examine how those results 

vary under parameter changes. Based on the Rayleigh model and general plasma expansion 

characteristics, there are 5 crucial, independent parameters:  

(1) 𝛽 = (𝑅𝐵/𝑅0)3 

(2) 𝜔𝑐𝑖
𝑑 𝜏𝐷 

(3) (𝑅𝑚/𝑅0)3 

(4) (𝑅𝑞/𝑅0)
3
 

(5) 𝑽𝑛 × 𝑩0/|𝑽𝑛 × 𝑩0|: angle between the target normal and the ambient magnetic field. 

There are of course many other parameters that can be varied such as target geometries and ambient 

plasma equilibria, but these would be features of optimization experiments rather than general to 

a magnetized expansion. 

 Practical considerations of the LAPD device and LPP generation limit the ways in which 

the parameters above can be changed. For instance, the very weak scaling of parameters of the 

LPP with laser energy and power mean the LPP characteristics can only really be changed by 

changing the target composition. Materials other than carbon are either difficult to apply to the 

target geometry used here or has the potential to react chemically with the BaO source within the 
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LAPD. This means that parameters (1) and (2) can only be changed through the magnetic field and 

not independently of each other. Similarly, (3) and (4) cannot generally change independent of 

each other but rather both must change by changing the ambient plasma. Ideally, changes in each 

of these parameters would be accompanied by full electromagnetic field measurements to show 

how they change the structures in the induced and electrostatic fields. This is especially true of 

parameter (5) for which 𝑽𝑛 × 𝑩0 ≠ 0 destroys the cylindrical symmetry and limits the calculation 

of 𝑬𝑖𝑛𝑑  to the axis of the flow, i.e. along 𝑽𝑛 , unless global measurements of the current are 

obtained. Measurements presented herein are for the parameters that could be changed and 

attempts are made, speculative as they may be, to put them into the context of the model of §2.3 

and the extension towards the strong coupling limit. 

 

 

5.2—Variation of 𝑩 

 The induced electric field, being predominantly in the azimuthal direction is affected by 

two terms in Ohm’s law: 𝑽 × 𝑩 and 𝜂𝑱. The latter is weak during the expansion phase and the 

Figure 5.1: Variation of the inward (black) and outward (red) electrostatic field strength with ambient magnetic 

field for (a) 𝑡 = 240 ns and (b) their respective peak diamagnetism times, 𝑡 = 𝜏𝐷 ∼ 𝐵−2/3. Solid line shows 

𝐵2/3 scaling of the fields normalized to the case of 750 G. 
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former can only be linear in the magnetic field. The more interesting variation with 𝑩0 is in the 

electrostatic field. Plasma potential measurements were made along the line 𝑦 = 0 in the same 

geometry and ambient plasma as Fig. 4.11 for magnetic field strengths from 200 G to 1000 G. The 

electrostatic fields in the radial direction were calculated from these data and characteristics of the 

inward field of the diamagnetic cavity, the outward field from charge imbalance, and the 

electrostatic pulse were taken for each of the magnetic fields. 

 Figure 5.1 shows the variation of the outward and inward electrostatic fields for different 

magnetic fields. The connection between the electrostatic field and the Hall effect means that this 

field is affected by the magnitude of the magnetic field, its gradient, and the local electron density. 

The latter two depend on time for the same LPP conditions. Viewing the variation of these field 

strengths at the same time, as in Fig. 5.1a, shows the magnetic rather than the density variation. 

The particular time 𝑡 = 240 ns is chosen as 𝜏𝐷 for the 750 G case and is such that the equator of 

the diamagnetic cavity is near the diagnostic for all the magnetic field cases. Figure 5.1b shows 

the field strengths at the scaled peak diamagnetism time, 𝜏𝐷 ∼ 𝐵0
−2/3

. Looking at such a scaled 

laboratory time is like looking at the LPP in the same stage of its evolution. For 𝐵0 < 750, this 

accounts for the depletion of electrons due to further expansion that affects the Hall term. 

Conversely for high magnetic fields, it accounts for more compressed electron densities.  

 For the inward electrostatic field, both times exhibit a strong dependence on the 

background magnetic field. The scaling for the maximum field in the Rayleigh model is given by 

𝑅 = 𝑅𝐵  in Eq. 2.4 so that 𝐸𝑠𝑡 ∼ 𝐵2/3 and this line is shown in Fig. 5.1a&b to show that this 

estimate is quite close. However, if the error estimates are accounted for and a power law scaling 

is applied, 𝐸𝑠𝑡 ∼ 𝐵𝑛, one finds that 𝑛 = 1.05 ± 0.1. As for the time dependence, note that the 

difference between 𝜏𝐷 and 240 ns for 600 < 𝐵 < 1000 G is less than 40 ns so that the times 𝑡 =
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240 ns and 𝑡 = 𝜏𝐷 are separated by less than 𝜏𝐷/5. The Rayleigh model, specifically Figs. 2.4 & 

2.5, suggest the electrostatic field does not change significantly during this period of time. The 

cases of 200, 375, and 500 G all increase slightly but no more than 10% from 𝑡 = 240 ns to 𝑡 =

𝜏𝐷. This means that the electrostatic field almost reaches its peak strength for times 𝑡 > 𝜏𝐷/2 and 

does not seem to be strongly affected by the further depletion of plasma density.  

 The outward electrostatic field exhibits a weaker dependence on the magnetic field than 

does the inward electrostatic field. At 𝑡 = 240 ns, the outward electrostatic field is about 50 V/cm 

and does not seem to exhibit any dependence on magnetic field at all. and at 𝐵 = 200 G, it is in 

the same strength as the inward electrostatic field. This means that for the low magnetic field cases, 

it is no longer necessarily true that the LPP couples energy into the ambient plasma by pulling in 

the ambient ions. For the cases where the inward and the outward fields are approximately the 

same, the field structure can leave the ambient ions relatively unaffected. The interesting point 

here being that for 𝐵 < 200 G, the outward coupling may become the strongest since 𝑽 × 𝑩 < 25 

V/cm. Further, this coupling might be independent of 𝐵. Looking at 𝑡 = 𝜏𝐷  the outward field in 

the 𝐵 = 200, 350 G cases drops in strength. The lack of change for the other measurements 

suggests that the observed drop for the low field cases is more a reflection of the fact that the 

diamagnetic equator has moved farther from the probe at the later times. Far from the equator in 

Fig. 4.14, the radial field drops off as well as the compression it is associated with in Fig. 4.5. The 

interpretation that the outward electrostatic field is caused by a global charge imbalance within the 

LPP is consistent with a weak dependence on the magnetic field. It also suggests that the outward 

field strength has more to do with the dynamics of the parallel boundary and how electrons escape 

along the magnetic field. 
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 Not many features of the electrostatic pulse change with the magnetic field. For all 

magnetic field cases, the pulse is observed to arrive at 𝑧 = 2 cm between 𝑡 = 50 and 60 ns as a 

potential well. It appeared to traverse the plane in the dataset of Fig. 4.14 in this time corresponding 

to a speed of about 4 × 108 cm/s or about 100 eV for an electron. After it appears, the well slowly 

deepens until the bulk ions of the LPP make it to the probe which happens around 𝑡 = 160 ns. The 

peak electrostatic field from this potential well occurs between 130 and 140 ns after the laser 

pulse. The peak electrostatic field and the depth of the potential well at these times are shown in 

Fig. 5.2. Note the maximum potential drop is on the same order as the energy corresponding to an 

electron moving at the speed of the pulse. All the fields for 𝐵 > 200 G are within error bars of 

each other and are essentially independent of 𝐵. The 200 G case has a lower peak field strength 

but not a significantly different voltage. This corresponds to a stronger widening of this well with 

time compared to the other cases though it is unclear why this occurred. The measured electric 

field strength is comparatively large for these low-field cases that its effect cannot be ignored. The 

Figure 5.2: Electrostatic pulse strength versus magnetic 

field. Red triangles are potential well depths and black 

squares are peak electrostatic field strengths in the well. 
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effect of this field is essentially to prime the ambient ions by delivering an inward impulse before 

the diamagnetic cavity reaches them. This effect will be spatially limited, though, as the full-width 

half-max of the pulses, Δ𝑥𝐹𝑊𝐻𝑀 ∼ 1 cm, are generally much smaller than the diamagnetic cavity. 

5.3—Perpendicular Expansion 

 When the preferred expansion direction, represented by 𝑽𝑛 or the direction of the surface 

normal, is turned across the magnetic field, the mechanisms at play forming the diamagnetic cavity 

do not necessarily change. The similarity of the processes between the parallel and perpendicular 

allows the identification of similar structures but it should not be mistaken that they are the same. 

Rules of physical similarity are strict about changes in geometry being essentially different [26] 

and can lead to qualitatively different behavior. The angle between 𝑽𝑛  and 𝑩0  introduces 

asymmetries into the induced and electrostatic fields. In the electrostatic field, this amounts to an 

additional polarization of the cavity and LPP in the direction perpendicular to both 𝑽𝑛 and 𝑩0. 

This will be identified as the translational polarization, or 𝑬𝑝𝑜𝑙, to contrast it with the parallel 

polarization that results in the outward electrostatic field and parallel boundary structure and that 

of the radial polarization that forms the diamagnetic cavity. The three dimensional and transient 

nature of the diamagnetic cavity prevents this additional polarization and its electric field structure 

from being a simple matter of superposition of a uniform field.  The translational polarization itself 

depends on the spatial profile of the magnetic field and flow field. With the diamagnetic cavity 

present, this gives 𝑬𝑠𝑡 a far more complicated and harder to interpret appearance were it not for 

the consideration of the case 𝑽𝑛 × 𝑩0 = 0 in Chapter 4.  
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Figure 5.3: Electrostatic potential of the LPP and diamagnetic cavity for the case of an expansion 

directed across the magnetic field, 𝑽𝑛 ⋅ 𝑩 = 0. See Fig. 3.3b for location of diagnostic plane. 
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Figure 5.4: Electrostatic field evolution for perpendicular expansion of an LPP across a uniform magnetic 

field, 𝑩 = −750 𝑧̂. The 𝑥 − 𝑦 plane is offset in 𝑧 by 3 cm from the plane containing the focal point and 

magnetic equator. Times chosen to clearly exhibit the structures and their contrast to the parallel case in Fig. 

4.11. To emphasize the structures, fields of magnitude less than 15 V/cm have been suppressed. 
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The evolution of the electrostatic potential and field for the case 𝑽𝑛 ⋅ 𝑩0 = 0 are shown in 

Figs. 5.3 and 5.4 for 𝐵0 = 750 G. The 𝑥 − 𝑦 plane shown is taken in a manner identical to that of 

Fig.  4.11 but with the laser-target geometry of Fig. 3.3b. The plane is therefore offset in 𝑧 by 3 

cm from one that contains the magnetic equator of the diamagnetic cavity and focal point of the 

laser on the target. This does mean that the cavity takes longer to reach the diagnostic plane and 

that the radially inward electrostatic field never reaches the full strength as seen in Fig. 4.11 but 

the present laser beam geometry prevents the probe from fully accessing this region. Consistent 

with the work of Van Zeeland [29] in a very similar setup, the laser-solid coupling in the 

perpendicular blow-off geometry yields a cavity that reaches peak diamagnetism later in time and 

with a larger size, 𝜏𝐷 > 400 ns and  𝑅𝐵 ∼ 3 cm, allowing the cavity structure to reach 𝑧 > 3 cm 

before the cavity begins to collapse. 

The times chosen for display in Fig. 5.4 are to show the differences in the structures that 

were noted in Fig. 4.11. At 𝑡 = 100 ns, the electrostatic pulse, which still shows up as early as 

𝑡 = 50 ns, is still centered near the focal point, but the strength of the field from the pulse (∼ 60 

V/cm) does not get nearly as strong as it did in the 𝑽𝑛 × 𝑩0 = 0  case. It exhibits a small 

polarization of 20 V/cm (𝑣𝑥 ∼ 2.4 × 106 cm/s) suggesting that it is at least partially influenced by 

the cross field motion of the LPP. It does not move more than 0.5 cm away from the target before 

the parallel boundary of the cavity disrupts it. Thus it appears as though the source of this pulse is 

not attached to the LPP or diamagnetic cavity and is launched exclusively in the early stages of 

the expansion. The speed with which it appears to travel along the field in the parallel case, 

𝑣𝑝𝑢𝑙𝑠𝑒 ∼ 4 × 108 cm/s, suggests that whatever generates it occurs within 0.5 cm of the target or 

before 𝑡 = 40 ns. This would explain its characteristic size from the focal point for both the 𝑽𝑛 ⋅

𝑩0 = 0 and 𝑽𝑛 ⋅ 𝑩0 = 0 case. At 𝑡 = 200 ns, the diamagnetic cavity comes into view. Again, the 
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fields of the cavity are weaker and no outward fields are present because the diagnostic plane did 

not pass through the magnetic equator of the cavity. It is clear that the cavity electrostatic field has 

obtained a strong up-down asymmetry. This asymmetry worsens as the cavity begins to collapse 

at 𝑡 = 500 ns. Note that here, the apparent whole in the field at (𝑥, 𝑦) = (−6 cm, 3 cm) is actually 

the top of the LPP and diamagnetic cavity. The center of the expansion lies near 𝑦 = 0, but it does 

drift very slowly in the +𝑦̂  direction at a rate slower than 106  cm/s. The patch of strong 

electrostatic field near 𝑦 = 0  is actually the translational polarization field becoming more 

uniform as the magnetic field fills in. At 𝑡 = 800 ns, the magnetic cavity structure is mostly gone 

and the polarization takes on the simpler form corresponding to a uniform magnetic field. 

 

 

Figure 5.5: Trace (solid black) of the electrostatic field through (𝑦, 𝑧) = (0.3, 3) 

cm at 𝑡 = 800 ns. A ballistic trajectory from a point source at 𝑥 = 0 cm with peak 

speed 𝑣𝑥 = 6 × 106 cm/s across 𝐵0 = 750 G produces the dashed, red line. 
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 A profile of the polarization field, 𝐸𝑦, at 𝑡 = 800 ns is shown in Fig. 5.5. The center of the 

expansion drifts upward slightly over time so that 𝑦 = 0.3 cm is approximately the axis of the flow 

at the leading edge. If the whole mass of the LPP were moving uniformly across a uniform 

magnetic field, 𝐸𝑦 would be independent of 𝑥 in Fig. 5.5. If, however, the mass flow follow a 

ballistic trajectory from a point source, i.e. 𝑉𝑛 = 𝑉𝑛0𝑥/𝑋(𝑡) in a similar manner to the Rayleigh 

model where 𝑉𝑟 = 𝑉𝑟0𝑟/𝑅(𝑡) , the profile of 𝐸𝑦  would be linear. This behavior is captured 

extremely well in the region 𝑥 ∈ [−3.5, −9] cm and fits with a peak speed of 6 × 106 cm/s.  

The speed calculated from the profile should not be interpreted as the speed of any particles 

within the LPP. From an Ohm’s law perspective, the term responsible for the polarization was 

already included in Eq. 4.1. Ohm’s law for the LPP as it was found in Chapter 4 is 

𝑬 =
𝑱 × 𝑩

𝑒𝑛𝑒
− 𝑽 × 𝑩. 

For 𝑽𝑛 × 𝑩0 = 0, the Lorentz term, 𝑽 × 𝑩, was mostly in the azimuthal direction and hence 

contributed mostly to the induced electric field. For 𝑽𝑛 ⋅ 𝑩0 = 0 , the Lorentz term has an 

asymmetry in the 𝑥 and 𝑦 directions. Noting that LPPs generally have 𝑉𝑛0 > 𝑉𝑟0, the contributions 

to the induced field and electrostatic field at the front of the expansion can be approximated by 

𝑽 × 𝑩 ≈ 𝑽𝑒𝑥𝑝 × 𝑩0 + 𝑽𝑚 × 𝑩0 

where 𝑽𝑒𝑥𝑝 = 𝑉𝑟𝑟̂ is the expansion velocity vector in the center of mass frame (see Fig. 2.1b) and 

𝑽𝑚 is the center of mass velocity.  Since the cross-product of two irrotational vectors is solenoidal,  

∇ ⋅ (𝑽𝑒𝑥𝑝 × 𝑩0) = 0, it represents an induced electric field. Since 𝑽 in Ohm’s law is the mass-

weighted velocity, so long as ions are moving in a direction perpendicular to both the target normal 

and the ambient magnetic field, the polarization field is weaker than simply the ion motion in the 
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normal direction. When the diamagnetic cavity has dissipated, only the electrostatic term remains. 

By the time this happens, though, one must now account for deceleration of particles from the 

forces in the diamagnetic cavity and the mass loading of ambient ions. If LPP particles of mass 

density, 𝜌𝑚
𝑑  are moving at 𝑽𝑑 through a stationary plasma of mass density, 𝜌𝑚

𝑎 , the polarization 

field is 𝑬𝑝𝑜𝑙 = 𝜌𝑚
𝑑 𝑽𝑑 × 𝑩/(𝜌𝑚

𝑑 + 𝜌𝑚
𝑎 ).This means that the only time the polarization field after 

the diamagnetic cavity has collapsed is indicative of the local velocity of the particles is if ambient 

ions and the LPP are moving at the same speed. Otherwise, slower ambient plasma or even the 

overlapping presence of decelerated and ballistic LPP ions will reduce the polarization field. As 

long as the polarization field is present, some amount of the flow can almost freely move across 

the field or accelerate ambient ions. The dynamics of the perpendicular case after the cavity is rich 

but reduced to the problem of plasmoid propagation across the field. Some of the earliest work 

was done by Bostick [71], a good review of relevant physics of how these plasmoids decay is given 

by Borovsky [72], and the process by which polarized plasma flows sweep up ambient ions is 

known as “mass loading” in the space physics community.  

 As a final note, the nature of the translational polarization field should not be mistaken. It 

is an electrostatic field. Specifically, it has no directly associated 𝜕𝑡𝑩. It will exist for the case of 

a plasma moving across a magnetic field whether there is a diamagnetic cavity or compressional 

field or not as is clear from Fig. 5.4. It is also the measured in experiments such as Brenning [74] 

for the case of plasmas penetrating a magnetic barrier. It has been misinterpreted in studies such 

as Shaikhislamov [74] where they claimed to observe Larmor coupling and mass motion of the 

ambient plasma for a super-Alfvénic LPP expansion. The Larmor coupling mechanism is that 

described by [59] which is due to the induced electric field, 𝑬𝑖𝑛𝑑 , of the cavity and magnetic 

compression. In [74], they observed an increased mass flow, which they interpreted as ambient  
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Figure 5.6: Electrostatic field data in an 𝑥−𝑦 plane located at 𝑧 = 2 cm. The background gas is helium but 

otherwise conditions are identical to Fig. 4.11. 
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ions being swept up and an electric field consistent with the estimated 𝑽 × 𝑩. The field they 

measured, however, was with an electrostatic probe across the direction normal to the LPP source 

target. That is, they measured 𝑬𝑝𝑜𝑙, not 𝑬𝑖𝑛𝑑! Their coupling may not have had much to do with 

Larmor coupling or the magnetic field at all. 

 

 

5.4—Different gases 

 The final change in parameters available is the change in the ambient gas composition. 

This changes the parameters (𝑅𝑚/𝑅0)3 and, much more weakly due to ionization differences, 

(𝑅𝑞/𝑅0)
3
, which, as briefly explained in §2.3, are related to how the ambient plasma affects the 

field structure and thus is relevant to the case of strong coupling. It can certainly be said, at least 

Figure 5.7: Radial variation of the electrostatic field as taken 

from Fig. 10 along 𝑦=0 cm. Compare to Fig. 4.12 for Argon 

under otherwise identical conditions. 
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from the point of view of MHD, that the case studied in chapter 4 where 𝑀𝐴 ≈ 1 , which 

corresponds to 𝑅𝑚 ≈ 𝑅𝐵, should be a case where the ambient plasma affects the electromagnetic 

fields. A change from argon to helium under otherwise identical conditions drops the 𝑀𝐴 by a 

factor 3.2 and the parameter (𝑅𝑚/𝑅0)3 by a factor 10. This would certainly take it more toward 

the regime of weakly coupling or at least assume the ambient ions have not significantly affected 

the fields.  

The exchange of argon for helium was made and a data plane identical to that of Fig. 4.11 

was taken and is shown in Fig. 5.6. Radial cuts extracted along the line 𝑦 = 0 cm are shown in 

Fig. 5.7. Comparing these two figures to Fig. 4.10 and Fig. 4.11 show that the electrostatic fields 

are qualitatively identical and quantitatively in good agreement. This shows that the electrostatic 

fields are not sensitive to 𝑀𝐴 as it approaches 1 and that the nature of the momentum and energy 

coupling are not qualitatively changed by this fact. Since the electric fields did not significantly 

change, the amount of coupling does change. If the helium is stationary during the acceleration 

process just as the argon essentially is, the helium ions can gain up to 10 times the velocity of the 

argon ions or 10 times the energy based on their mass ratio. So a decrease in 𝑀𝐴 leads to a larger 

exchange of energy. Two explanations exist for this but they are not mutually exclusive. First, the 

condition 𝑀𝐴 = 1 is not a critical parameter for the case of a high-𝛽 expansion and the appropriate 

critical value of 𝑀𝐴 depends on some other parameter. The second is that the electrostatic field and 

coupling depend more on (𝑅𝑞/𝑅0)
3
 than on (𝑅𝑚/𝑅0)3. In the case of chapter 4 and the helium 

case, (𝑅𝑞/𝑅𝐵)
3

≫ 1 so that the presence of the background plasma is a small perturbation in the 

distribution of charge. Reaching the condition (𝑅𝑞/𝑅𝐵)
3

∼ 1 to see if this is the case is not 

realistic for the laser in this experiment and LAPD’s discharge parameters.   
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Chapter 6 – Discussion and Conclusion  

6.1—The Weak Coupling Case 

The Rayleigh model as presented in §2.3 is a very simplistic view of a high-𝛽 expansion. 

It nevertheless yields the characteristics that have been repeatedly observed in similar experimental 

setups such as those in Figs. 2.3 & and 2.4. It also yields the correct scale for the electrostatic field 

which was crucial in this experiment and in understanding the transfer of energy between the LPP 

and an ambient plasma. This should not be so surprising as it is effectively a statement of energy 

conservation. Its success is dependent on its most basic assumption that the primary mode of 

energy exchange is between the kinetic motion of the ion across the magnetic field and the 

magnetic field itself. Thus, it only works well in the weak-coupling case because we have assumed 

from the outset that the energy transferred to the ambient plasma is small compared to both the 

LPP ions kinetic energy and the magnetic field.  

Its major fault lies in its inability to fully characterize the spatial distribution of the fields. 

As explained in Appendix B, this is due to the combined assumption of 0 ion pressure and a 

velocity field that varies linearly with the radius. This results in an unrealistically linear magnetic 

field profile in order to satisfy momentum conservation. From Chapter 4, the profiles are 

monotonic with radius out to 𝑟 = 𝑅(𝑡), but its derivative is clearly not. To get the correct profile 

for the magnetic, velocity, and electric fields would require a model or measurement of the ion 

pressure including all the ion species. Since the ions are not in thermal or mechanical equilibrium 

and in fields with large gradients, a model for this likely anisotropic term must come from a kinetic 

analysis that does not assume gyromotion. This incompleteness is still better than alternative 

models such as the superconducting expanding sphere [20], which is not energy conserving and 
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therefore cannot replicate the interrelationships between 𝜏𝐷, 𝛽, and 𝑅𝐵, or MHD models which 

utilize 𝑬 = −𝑽 × 𝑩 and thermalized ions; effectively ignore the electrostatic field and its role in 

energy transfer. A better model than even the Rayleigh model must account for those relationships 

the Rayleigh model succeeds in characterizing—in particular the Hall term in Ohm’s law—as well 

as the clear gap in momentum conservation via the ion pressure term if the general interaction 

between a magnetized expansion and an ambient plasma is to be understood outside of a weak-

coupling limit. 

The weak-coupling assumption will break down as soon as any other energy loss or storage 

mechanism becomes comparable to the ion kinetic energy or magnetic field energy. This is at the 

heart of the high-𝛽 assumption since 𝛽 < 103 must account for the thermal energy in the ions and 

electrons. Similarly, when the coupling to the ambient plasma becomes large enough, it must also 

be accounted for. Appendix B shows, however, that an observable change in 𝑅(𝑡) due to the 

coupling would imply an energy sink comparable to the expulsions of the magnetic field itself. 

Since the collisionless coupling between the high-𝛽 expansion and the ambient plasma is a 

secondary effect mediated by the fields generated during the magnetic field expulsion, this would 

have to be an impressively efficient process and was not observed here. The relationship between 

the parameters 𝑅𝑞/𝑅0 and 𝑅𝑚/𝑅0 and the sources of the electric fields at the end of §2.3 suggests 

the way in which the field is modified in the strong-coupling limit. 

6.2—From Weak to Strong Coupling 

The mechanism for the formation of the diamagnetic cavity and the inter-relationships for 

the electromagnetic fields is well-established by the CM model of Fig. 2.2. Measured field profiles 

reflect that the LPP is 3D with at best azimuthal symmetry rather than planar symmetry, the flow 
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is from a point explosion rather than a continuous flow, and finite electron resistivity is present. 

Nevertheless, the electrostatic field within the diamagnetic cavity is connected to the magnetic 

field profiles through the Hall effect, which is dependent on the charge density and thus 𝑅𝑞.  

 

 

The strong inward electrostatic field is the one responsible for removing kinetic energy 

from the ions and transferring it to the magnetic fields. This reflects on the motion of the LPP and 

diamagnetic cavity through a deceleration of the cavity expansion, 𝜕𝑡
2𝑅(𝑡). So if additional energy 

is to be lost from the expanding ions and gained by the ambient plasma, the fields must respond in 

such a way as to increase the strength of the inward electrostatic field. There are two changes in 

the magnetic profile that achieve this and they are shown schematically in Fig. 6.1. The black line 

is the weak coupling or vacuum profile that reflects the features observed in Fig. 4.7. The 

diamagnetism then leads to an inward electrostatic field which pulls ions inwards and the 

Figure 6.1: Schematics of the magnetic field profile changes 

from weak to strong coupling. 𝐵𝑚 is an arbitrary peak 

magnetic field and 𝑉𝑟,𝑎𝑚𝑏𝑖𝑒𝑛𝑡 depends on the electric field 

from the Hall effect and therefore the value of 𝑅𝑞. 



109 
 

compression leads to an outward electrostatic field. In the first case of strong inward coupling, the 

presence of additional charge from the ambient plasma creates a narrower magnetic sheath with 

no increase in magnetic field compression. This would further increase the rate at which ambient 

ions are pulled in against the LPP expansion but produce no additional outflow. The second case 

of strong outward coupling is when the magnetic field becomes further compressed. Here, no 

additional electrons from the ambient plasma make it into the diamagnetic cavity but rather 

ambient ions begin to be pushed outward. The behavior of the electrostatic fields in this outward 

coupling case, specifically the ratio of the outward to inward approaching 1, is essentially what 

was observed in Fig. 5.1 at low 𝐵 since the outward field strength and 𝑅𝑞 are independent of 𝐵. 

Both cases of strong coupling lead to extraction of energy from the LPP ions and transferring it to 

the ambient ions. If sufficiently strong, both would be accompanied by a decrease in the curve 

𝑅(𝑡) below that of the Rayleigh model. The dependence of the Hall effect on electron density 

means the strong coupling scenarios would appear as 𝑅𝑞 approaches 𝑅𝐵. If 𝑅𝑞 ≪ 𝑅𝐵, the strong 

outward coupling case would have the magnetic field and electrostatic field being carried by the 

ambient plasma and escaping the ions that initially made up the bulk LPP. Such a regime allows 

for the possibility of launching a cylindrical magnetosonic shock for which there are decades worth 

of theoretical work in the planar case (see works such as Tidman and Krall 1973 [75]).  

Magnetosonic shocks are mediated by the electrostatic Hall field rather than the induced 

field from the Lorentz term in Ohm’s law. The opposite is true for MHD or Alfvénic shocks where 

the electrostatic field is generally ignored. Both require super-Aflvénic speeds. The condition 

𝑀𝐴 > 1 corresponding to 𝑅𝑚/𝑅𝐵 < 1 is reduced to a necessary but not sufficient condition to 

observe strong collisionless coupling leading to a shock. The limits of the LAPD discharge, 
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however, mean that to access this regime, a higher charge density in the ambient plasma or a far 

larger expansion velocity is needed than the cases presented in Chapters 4 and 5. 

6.3—Summary of Physics 

 Experimental measurements were made of the electromagnetic fields including the first 

measurements of the electrostatic field generated by a high-𝛽 LPP (𝛽 ∼ 106, 𝜔𝑐𝑖
𝑑 𝜏𝐷 ≈ 0.3) 

embedded within a uniform, 750-Gauss magnetic field and ambient argon plasma. They showed 

the detailed structure of the expansion phase of a diamagnetic cavity as well as the qualitative 

effects of the collapse phase. The induced electric field was calculated from the measured magnetic 

field utilizing the azimuthal symmetry of the expansion. The largest component of the induced 

electric field was found to be less than its predicted value, 𝐸𝑖𝑛𝑑(exp) ≤ 30 V/cm < 𝐸𝑖𝑛𝑑(theor) ≤

100 V/cm. This was attributed to the essentially late-time observation of the cavity since the field 

strength decreases monotonically with time and also the neglect of resistive effects which became 

increasingly important with time. The peak, inwardly directed electrostatic field strength, 𝐸𝑠𝑡 ∼

180 V/cm, was found to be consistent with the Hall effect in the diamagnetic cavity for the LPP 

expansion conditions and an average carbon charge state of 〈𝑍〉 = 2.  The large ratio of 𝐸𝑠𝑡/𝐸𝑖𝑛𝑑 

and their directions suggest that collisionless coupling between the LPP and the ambient plasma 

is mediated by the electrostatic field and directed inward against the expansion. 

The electrostatic field measurements also revealed the presence of a radially outward 

directed field exterior to the diamagnetic cavity and a highly collimated electrostatic pulse that 

precedes the LPP and diamagnetic cavity which follows the background magnetic field. The 

outward electrostatic field was about 1/3 of the magnitude of the inward electrostatic field but 

rapidly diminished in strength after peak diamagnetism. The estimated Hall effect from the 
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observed compression and LPP electrons at the furthest radial extent was consistent with the 

strength of this field suggesting the compression was generated by a mechanism internal to the 

LPP. The source of the outward field was deduced to be an imbalance in the ion and electron 

charge layers within the diamagnetic cavity that neutralizes at the boundary along the background 

magnetic field. This implied a close relationship between this cross-field structure and the 

electrostatic pulse, which was also connected to previous observations of field-aligned, fast 

electrons, 𝑣 > 108 cm/s. 

 Using detailed experimental results of high-𝛽 LPP expansions, a Rayleigh model was 

developed based on energy exchange between the ions in the expansion and the magnetic field. 

From it were derived scaling laws for the laminar electrostatic and induced electric fields as well 

as a description of their time evolution. This model only captures the dynamics of the primary 

electric fields, 𝜕𝑟𝜙 and 𝜕𝑡𝐴𝜙, in the diamagnetic cavity but is consistent with those that were 

measured. The salient features of this model showed that two regimes exist that separate the ways 

ambient plasma ions react to a high-𝛽 expansions in the absence of collisions: 

(1) 𝜔𝑐𝑖
𝑑 𝜏𝐷 ≫ 1, the ambient ions spin up in a direction opposite to the diamagnetic current 

under the influence of the sustained induced electric field. This regime may also allow for 

gyromotion if the fields are sufficiently stationary and uniform. 

(2) 𝜔𝑐𝑖
𝑑 𝜏𝐷 ≪ 1, the dominant electric field is electrostatic in nature and acts primarily to pull 

in the ambient ions against the expansion direction. 

Historically, experiments that have examined diamagnetic cavities of LPPs have been closer to the 

second regime. Since 𝜔𝑐𝑖
𝑑 𝜏𝐷 ∼ 𝐵0

1/3
𝑉𝑟0

2/3
, only the fastest, most magnetized, smallest, and therefore 

hardest to diagnose expansions have approached the former condition. Under the assumption of 
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weak-coupling, these electric fields allow the calculation of the amount of energy and momentum 

injected into the ambient plasma. 

The combined effect for the measured fields was estimated from the Rayleigh model to 

produce an inflow of argon ions moving at 𝑣𝑟 ∼ −8 × 105 cm/s with essentially no azimuthal 

flow. Using an LIF diagnostic, which directly probed the argon ion velocities, the observed motion 

of the ambient argon ions was indeed radial during and after the expansion although the drift speeds 

were about 40% of the expected value. Even the effect of the outward electrostatic field was 

detectable by a small outward drift near the radial edge of the LPP and of an appropriate magnitude 

relative to the inward drift, 𝑣𝑜𝑢𝑡 ≈ 𝑣𝑖𝑛/3. This drift was too small to be maintained and eventually 

the inward electrostatic field and its corresponding drift dominated. The total amount of energy 

that this represents as a fraction of the initial expansion energy is about 1/2000. 

Under variation of the ambient magnetic field, the inward electrostatic field appeared to 

drop in magnitude faster than the expected scaling from the Rayleigh model, 𝐸𝑠𝑡 ∼ 𝐵2/3, and was 

almost linear in 𝐵. The outward electrostatic field and the field from the electrostatic pulse 

exhibited very little variation with magnetic field. This suggested that low-field expansions may 

be dominated by an outward flow of argon ions mediated by the outward electric field since both 

the inward field and induced electric field go to zero with 𝐵. Dropping 𝐵 without changing the 

LPP or ambient plasma amounted to reducing the parameters 𝑅𝑞/𝑅𝐵 and 𝑅𝑚/𝑅𝐵 toward the 

strong-coupling limit. 

With a change in ambient plasma to helium, the electrostatic structure and diamagnetic 

cavity did not exhibit significant, observable differences. Under these circumstances, the electric 

field could have produced an inflow of helium ions with up to 10 times the speed of the argon ions 
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or 10 times the energy. This upper bound is under the assumption that helium, like argon, remains 

stationary during the acceleration and receive an instantaneous impulse. This further showed that 

the Alfvén Mach number, 𝑀𝐴 = 1 or equivalently 𝑅𝑚/𝑅𝐵 = 1, which was the case in argon, is not 

indicative of a significant change in qualitative behavior nor does it imply strong-coupling. In 

helium, 𝑀𝐴 < 1/3 but the field structure is such that more energy is transferred from the LPP to 

the helium ions. 

When the expansion was directed across the magnetic field, an additional component to 

the electrostatic field appeared in the form of a translational polarization. This complicates the 

qualitative picture of the diamagnetic cavity and the azimuthal symmetry is destroyed. Further, 

this field survives the collapse of the diamagnetic cavity as the plasma continues to move across 

the magnetic field. In this manner, it is essentially distinct from the other fields associated with the 

expansion. The effect this field has on the ambient ions is not easily distinguished from the induced 

electric field of the diamagnetic cavity since they both have their origin in cross-field motion and 

they work synergistically at the front edge of the expansion. The lack of symmetry means that 

barring 3D current measurements, the two can only be compared along the ray connecting the 

expansion’s origin to the front edge and must otherwise be considered together. 

Finally, the structure of the cavity fields is used to construct a qualitative picture of how 

the strong-coupling limit associated with the parameters regime 𝑅𝑞 ≪ 𝑅𝐵, 𝑅𝑚 ≪ 𝑅𝐵 affects the 

diamagnetic cavity fields and mediates the exchange of energy between the LPP and ambient 

plasma. 
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6.4—Future Work 

 The Rayleigh model provides a good context for which further scaling studies could be 

pursued. In particular, the regime in which 𝑅𝑞/𝑅𝐵 and 𝑅𝑚/𝑅𝐵 both drop well below 1, i.e. the 

strong-coupling regime, has not been systematically studied. In the limits 𝑅𝑞/𝑅𝐵, 𝑅𝑚/𝑅𝐵 → 0 

there is the possibility of observing the electromagnetic analog of a blast wave for which the 

equivalent requirement is that 𝑀𝑠 → ∞ where 𝑀𝑠 is the sonic Mach number. Variation of these 

parameters would require a great deal of control over the ambient plasma and adjustment for any 

changes in magnetic field. The best way to reach this regime is with the use of a massive neutral 

gas. If control of the average ionization is possible or at least accounted for, this would allow 

𝑅𝑞/𝑅𝐵 and 𝑅𝑚/𝑅𝐵 to be separately varied with values below 1 in a lower magnetic field 

environment and lower ambient density than more traditional gases such as hydrogen or helium. 

The increase in 𝑅𝐵 due to the lower 𝐵 would make spatial resolution of the fields easier while the 

reduced density may allow for a smaller, simpler emissive probe design that would be less 

intrusive. The low field would also give further room for varying 𝜔𝑐𝑖
𝑑 𝜏𝐷 and possibly reaching the 

regime where 𝜔𝑐𝑖
𝑑 𝜏𝐷 ≫ 1. It is here that the expansion energy might be more efficiently transferred 

to an azimuthal motion of the ambient plasma. Xenon would work well for making field 

measurements in these regimes. It also has several, well-established LIF schemes though its high 

mass would make detecting the ion motion difficult without also observing a strong, long-lived 

electric field. 

 A further experiment, which is also implied by the Rayleigh model, is to study the motion 

of the cavity after the collapse. In fluid cavities, the boundary, 𝑅(𝑡), exhibits oscillatory motion. 

This is due to the very efficient recapture of energy as the cavity collapses. Specifically, the losses 

from radiation of sound waves or viscous damping are generally small. These losses can, however, 
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affect the amplitude and even the frequency of the oscillations [76]. For plasmas, Bhadra [77] 

predicted that the diamagnetic cavity from an expansion such as an LPP should undergo a similar 

oscillatory motion. His theory was highly dependent on a choice model of the magnetic field 

profile and assumed the diamagnetic cavity arose out of the thermal pressure of the electrons,  𝛽𝑡ℎ. 

Here, the electrostatic field slows down the carbon ions which eventually leads to stagnation of 

the diamagnetic cavity. But the electrostatic fields persist as long as 2𝜏𝐷, during which time, the 

LPP ions as well as entrained ambient ions are accelerated back inward. Thus, the ions recapture 

some energy, collapse back onto the axis, and can potentially start the whole process over again, 

albeit with a reduced 𝛽 due to energy losses. These oscillations were reportedly observed by 

Tuckfield [78] and Fabre [27] through limited visible emission measurements and a measurement 

of the magnetic field at a point. No one, to my knowledge, has observed more than 1 subsequent, 

large oscillation of the cavity, LPP, or the change in their internal structures. Both those 

experiments utilized very strong magnetic fields and had slow center of mass motion such that the 

LPP remained near the target region long enough to observe the formation of a second cavity; the 

time between cavity oscillations being roughly approximated by 2𝜏𝐷. The LAPD has good 

diagnostic access along the axial direction so that this phenomena could be re-examined 

experimentally in the context of the results of this dissertation. Since the fluid cavity is an 

equilibrium gas in an isotropic pressure field while the high-𝛽 plasma expansion is driven by ion 

particle motion in an anisotropic pressure field, there are sure to be interesting differences. 
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Appendix A – Unmagnetized Expansion 

There are a number of physical processes involved in the expansion phase of the LPP. To 

account for them all accurately would require a 3D, multiscale simulation of either an unbounded 

system or a grid that adapts to the growing system. Such a simulation would probably be a thesis 

on its own. Instead, by considering the physics separately, we can qualitatively combine their 

results and reconcile them with the well-tested, experimental scaling laws. This will not give us 

very accurate but rather is meant to give a sense of scale and behavior of the thermodynamic 

quantities. The first process is generating the expanding flow. 

A.1—Initiating the Expansion 

 The seed plasma (see Fig. 2.1a) is a high density plasma wherein collisions prevent the 

electromagnetic fields internal to the plasma from dominating the particle behavior. In this 

description, the plasma is effectively a fluid and the expansion flow proceeds in a manner similar 

to that of a gas expanding into vacuum. There is one significant difference though. The initial 

thermal equilibrium between the ions and electrons means that electrons will make larger 

excursions into the vacuum than the ions. This motion of the electrons sets up an electric field 

which mediates energy transfer to the ions. This exchange of energy from an internal thermal 

source to motion of the plasma is described by 

𝜕𝑡𝐸𝑡𝑜𝑡 = 0 = 𝜕𝑡 (
1

2
𝑚𝑖𝑛𝑖𝑉𝑖

2 +
3

2
𝑛𝑖𝑇𝑖 +

3

2
〈𝑍〉𝑛𝑖𝑇𝑒) ≈ 𝑚𝑖𝑛𝑖𝑉𝑖𝜕𝑡𝑉𝑖 + 𝑛𝑖𝜕𝑡(〈𝑍〉 + 1)𝑇𝑒 , 

where 𝐸𝑡𝑜𝑡 is the total energy in the expansion; 𝑚𝑖 , 𝑛𝑖 , 𝑇𝑖, 𝑉𝑖, 〈𝑍〉 are the ion mass, density, 

temperature, velocity, and average charge; and 𝑇𝑒 is the electron temperature. The right-hand-most 
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form is arrived at by applying quasi-neutrality of the plasma and maintaining thermal equilibrium 

between the ions and electrons. The above equation is also that of an adiabatic gas expansion where 

the effective gas temperature is (〈𝑍〉 + 1)𝑇𝑒 and the gas velocity is that of the ions alone since the 

electrons do not provide inertia. The main feature is that acceleration of the ions comes at the 

expense of electron thermal pressure. 

 

 

 A lot of work was done in analyzing such expansions in the 1950s and 1960s by those 

concerned with extremely high pressure explosions. One technique was to consider different 

regular geometries and simply ignore the fine structural details. Such a model reduces the 

amount of information that needs to be considered and allows for easily calculable solutions. 

Figure A.1: Half-plane visual of oblate spheroid expansion. An extreme 

value of 𝜖 was chosen to more clearly show the asymmetry that develops. 
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Nemchinov [14] used this technique to analyze the expansion of regular ellipsoids of gas into 

vacuum. 

In his 1965 paper, Nemchinov found that the smallest dimension initially becomes the 

largest and fastest expanding dimension as 𝑡 → ∞ as shown in Fig. A.1. The characteristic speed 

of such an expansion is the initial sound speed of the gas, 𝐶𝑠0 and the characteristic time evolution 

of the variables is the hydrodynamic time defined as 

𝑡0 ≡
𝑅0

𝐶𝑠0
. 

The expansions he characterized are inherently self-similar and for times much longer than the 

hydrodynamic time (actually as will be seen 𝑡 ∼ 5𝑡0 is enough), they become essentially free 

expansions. That is no force further drives the ions. 

 

 

Figure A.2: Variation of velocities of ellipsoids, 𝑉𝑧 and 𝑉𝑟 , time. 
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Figure A.3: Time variation of temperature of ellipsoid. 

Asymptote is free expansion limit, 𝑇𝑒 ∼ 𝑡−2. 

Figure A.4: Time variation of average density in ellipsoid. 

Asymptote is free expansion limit, 𝑛 ∼ 𝑡−3. 
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For an eccentricity of the seed plasma, 𝜖 ≡ 𝑍0/𝑅0 < 1, the long-time behavior of the fluid 

variables can be summarized with 

𝑉𝑟 ∼ 𝛼𝐶𝑠0. 

𝑉𝑧 ∼
𝐶𝑠0

𝜁
, 

𝑛𝑖 ∼ 𝑛𝑖0 (
𝑡0

𝑡
)

3

, 

and 

𝑇𝑒 ∼ 𝑇𝑒0 (
𝑡0

𝑡
)

2

, 

Figure A.5: Asymptotic ratio of 𝑉𝑧/𝑉𝑟  versus the eccentricity of the 

seed plasma geometry. 
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where 𝛼 and 𝜁 are constants less than 1. The latter two relations being consistent with a pure 

adiabatic expansion of a gas with 𝛾 = 5/3. Example plots of the approach of these quantities to 

their asymptotic values are shown for a reasonable values of 𝜖 in Figs. A.2-A.4. As can be seen in 

these figures, the asymptotic behavior for the fluid variables are all reached on time scales 𝑡𝑎𝑠𝑦𝑚 <

10𝑡0. This is the primary motivation for restricting the Rayleigh model of §2.2 and this thesis to 

𝛽 = (𝜏𝐷/𝑡01.402)3 > 103. For 𝛽 < 103, ∇𝑝𝑒 can be as large as ∇𝐵2 conflating the electric fields 

of the diamagnetic cavity with those that are accelerating the expansion. Figure A.5 shows the 

variation of the asymptotic values of 𝑉𝑧/𝑉𝑟 as a function of 𝜖.  

The results of Fig. A.5 show that by increasing the radius of the LPP or laser focus, one 

can speed up the expansion normal to the target or slow its lateral expansion. The value 𝑍0 itself 

is not entirely independent of 𝑅0 and is set by the laser-solid interaction—a far harder problem 

that in fact depends on 𝑅0. The variation of the target-normal speed with beam radius was noted 

as early as 1981 [35, Fig. 2] and is qualitatively consistent with the above description. No 

connection was made to this model of high temperature gas expansions despite [14] and other 

results of gas expansions coming at least 2 decades earlier. Unfortunately, due to the parameters 

Grun and colleagues focused on at the time, neither the penetration depth nor the lateral expansion 

were noted and so a direct comparison is not possible. This effect of increasing the normal velocity 

by shrinking the normal scale is essentially what is observed in thin target, high-power, ultra-short 

laser experiments but is amplified due to the presence of non-thermal electrons. In that context it 

is called target-normal sheath acceleration [3]. The resulting asymmetry in the expansion 

and the presence of the solid target leads to the geometry of Fig. 2.1b. There is now a distinct 

difference between the velocities in the target-normal, 𝑉𝑛, and the target-tangential, or radial, 

directions, 𝑉𝑟. From Fig. A.5, this difference is generally of order unity unless 𝜖 is very far from 
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1. The presence of the targets acts as a boundary to half the expansion and so a net mass flow away 

from the target is generated with a characteristic velocity, 𝑉𝑚. This may give the plasma a shape 

that looks like an intermediate case between a hemi-spherical expansion from the surface and a 

pure translation of an elliptical mass. When the magnetic field is considered, it is the presence of 

this third velocity that limits the available symmetries. That is, if 𝑽𝑛 and 𝑽𝑚 are aligned with 𝑩0, 

𝑽𝑛 × 𝑩0 = 𝑽𝑚 × 𝑩0 = 0, there is a cylindrical symmetry, but if 𝑽𝑛 ⋅ 𝑩0 = 0, then so is 𝑽𝑚 ⋅ 𝑩0 

and the only possible symmetry is that along the direction 𝑽𝑚 × 𝑩0 in the frame of the moving 

mass. In studies conducted by Collette [31] where 𝑽𝑚 ⋅ 𝑩0 = 0, the magnetic fields maintained a 

spherical shape and appeared to translate itself across the magnetic field. The rather short lifetime 

of the expansion and apparently small 𝑉𝑚 prevented clear separation from the target. 

The variation in the electron temperature and density very early in time was confirmed in 

experiments by Puell [79] with Thompson scattering and Boland [80] with spectroscopic 

measurements; both concluding that the 𝛾 = 5/3 adiabatic expansion was roughly followed for 

𝑡 < 10𝑡0 and Puell even adopting Nemchinov’s model [13]. However, temperature measurements 

later in time proved more difficult as a volume element of plasma could not easily be followed 

with the diagnostics. Rumsby [53] using a different technique found that later in time, the density 

still followed 𝑛𝑖 ∼ 𝑡−3 but the temperature followed 𝑇𝑒 ∼ 𝑡−1. This suggested an energy input in 

the system to break away from the adiabatic behavior with the most likely candidate being 3-body 

recombination. 

A.2—Three-body Recombination 

At the initial densities and temperatures, the LPP is very highly ionized and the electron-

ion collision time, 𝜏𝑒𝑖, usually satisfies 𝜏𝑒𝑖 ≪ 𝑡0. Furthermore, in an adiabatic expansion with 𝛾 =
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5/3, 𝜏𝑒𝑖 is independent of time. This fantastic amount of collisionality combined with cooling 

implies rapid recombination. Dielectric recombination and radiative recombination results in 

photons which either immediately escape or diffuse to the surface and radiate as blackbody 

emission. These two types of recombination do not significantly affect the plasma temperature, 

but the rapid drop in temperature allows for 3-body recombination to eventually take over. This is 

due to the strong scaling with density and temperature of 3-body, 𝜕𝑡𝑛𝑒,3𝑏𝑜𝑑𝑦 ∼ 𝑛𝑒
3𝑇𝑒

−9/2
, compared 

to the two-body mechanisms, 𝜕𝑡𝑛𝑒,2𝑏𝑜𝑑𝑦 ∼ 𝑛𝑒
2𝑇𝑒

−3/4
 [81]. 

Three body-recombination acts as a heat source because the excess momentum and energy 

that would have been carried off by the photon is instead returned to a free electron. This effect 

keeps the electrons slightly hotter than the purely adiabatic case, reduces 𝜏𝑒𝑖 over time, and allows 

the electrons and ions to thermally decouple. Further, 3-body recombination also leads to the 

phenomenon seen in plasma expansions of “frozen-in” ionization. This is roughly defined as an 

anomalously slow rate of change of average ionization on the time scale of the expansion, 

𝜕ln 𝑡〈𝑍〉 → 0. A good, semi-classical explanation of how this works can be found in a [82] or [83, 

pg. 406]. Experiments by Roudskoy [84] showed, however, that the original semi-classical models 

predicted too high of an ionization stage late in time for an LPP expansion and an improved model 

was derived. Their model included the result that all initial conditions of (〈𝑍〉, 𝑇𝑒) lead 

asymptotically to 𝜕ln 𝑡〈𝑍〉 = 0 and 𝑇𝑒 ∼ 𝑡−1. Figure A.6 shows the flow field of (𝜕ln 𝑡 ln〈𝑍〉 , 2 +

𝜕ln 𝑡 ln 𝑇𝑒) where the derivative of a quantity, 𝑄, that has a power-law variation, 𝜕𝑡𝑄 = 𝑡𝑝−1 where 

𝑝 = 𝑝(𝑡), can be succinctly described by 𝑝 = 𝜕ln 𝑡𝑄. Thus the 𝑥 and 𝑦 axes in Fig. A.6 are, 

respectively, the time-dependent exponents for ln〈𝑍〉 and 𝑇𝑒𝑡2. All solution trajectories in Fig. A.6 

fall towards ln〈𝑍〉 = const and 𝑇𝑒 ∼ 𝑡−1. Figures A.7 and A.8 show the explicit time dependence 

of 𝑇𝑒 and 〈𝑍〉 respectively for realistic LPP parameters. Accounting for 3-body recombination, the 
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scale time for the temperature and charge state is still 𝑡0 but they no longer reach their asymptotic 

behavior in a time comparable to 𝑡0 and a calculation must be performed for each initial condition. 

For the LPP parameters given in §3.1 and the time scales that will be of interest to the diamagnetic 

cavity, 𝑡 > 100 ns, 𝑇𝑒 ∼ 1 eV ∼ 𝑡−1 and 〈𝑍〉 ≃ 2 ≈ const. 

 

 

 

Figure A.6: Flow field of time of electron temperature 

vs. time rate of average ionization. 

Figure A.7: Variation in time of electron 

temperature for hydrodynamic parameters 

(t0, Te0, 〈Z〉0) = (2 ns, 48 eV, 4.6). Also shown, 

curves with 50% error in recombination rate, 

𝑡−1 variation, and 𝑡−2 variation. 
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A.3 –A note on free expansion 

It is often quoted that an ideal gas in free expansion does no work and so remains isothermal 

unless there is a heat loss. Joule’s famous experiment, upon which this statement is based, had a 

number of issues (his thermometer had a much higher thermal capacitance than his working gas!), 

but the big assumption that is made is that the gas remains in thermal equilibrium and is ideal. This 

is a good approximation so long as the expansion remains subsonic, but the LPP attains an 

expansion velocity comparable to the initial sound speed at the expense of its thermal energy. 

Thus, the expansion is always supersonic and thermal equilibrium is not guaranteed. 𝑇𝑒 can still 

be considered as a good thermodynamic quantity because the electron thermal speed is always 

greater than 𝐶𝑠0 and electron collisions remain high. The ions, on the other hand, are always 

superthermal and are only in good thermal contact with the electrons so long as 𝜏𝑒𝑖 ≪ 𝑡0. 

Figure A.8: Variation in time of 〈Z〉 for same 

parameters as Fig. A.7. 
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Accounting for the relativity minor heating from 3-body recombination can easily make 𝜏𝑒𝑖 > 𝑡0. 

The ions are not guaranteed to be in any thermal equilibrium. 

Nemchinov’s results show that the free-expansion is an asymptotic state of the carriers of 

inertia (ions) of the adiabatic expansion of the plasma (ions + electrons). Even at late times, 𝑇𝑒 is 

still changing and the LPP is still accelerating, just at a vanishingly small rate. Compare this to the 

ideal isothermal and free expansion where strictly neither 𝑇𝑒 nor the LPP velocity change at all in 

an ideal gas. The distinction becomes entirely academic. This state of ambiguity between the 

isothermal free expansion and adiabatic expansion is achieved on time scales of 𝑡 ∼ 10 𝑡0 and the 

interactions with which this thesis is concerned occur for 𝑡 > 10 𝑡0 or generally later. This is why 

the expansion during the diamagnetic cavity can be characterized as isothermal, free, and adiabatic 

without making a significant mistake in description of the physics. To be more exact in the 

description, the ions at late times are free, the electrons are approximately isothermal, and the 

whole plasma is approximately adiabatic. 

Taking the extreme interpretation of these different types of expansions can have serious 

consequences—the worst coming from the isothermal characterization. Even though the free 

expansion stage can be effectively modelled as isothermal in certain circumstances, the “correct” 

temperature is dramatically lower than the initial temperature of the LPP. The residual, small time 

variation can lead to qualitatively different results. Koopman 1976 [57] quoted temperatures of 1 

eV (no field) and 40 − 80 eV (700 G field) for an LPP with only slightly more energy than the 

one in this dissertation (∼ 6 𝐽 laser pulse). This amounts to almost 3 orders of magnitude difference 

in electrical resistivity. Using a temperature of 4 eV (still an order of magnitude different resistivity 

from a 1 eV plasma), they calculated that anomalous resistivity was needed to explain the collapse 

of the diamagnetic cavity in an LPP. This was the first paper, as far as I have been able to find, 
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that claimed to have observed the dominance of anomalous resistivity. This concept subsequently 

found its way into many papers on diamagnetic cavities. Koopman’s calculation neglected the 

manner in which the LPP decelerates, neglected the possibility of convective collapse, and missed 

the strong effect the time-dependence of the electron temperature has on resistive effects. All of 

these are shown in Chapter 4 of this dissertation to be important features in the structure and 

behavior of the LPP and diamagnetic cavity. 
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Appendix B— 

Coupling in the Rayleigh Model 

B.1—Additional Losses of Energy 

To account for the addition of an ambient plasma with which the LPP can interact, we can 

add another term that accounts for energy loss to the ambient plasma. Since the energy loss would 

be proportional to the volume of ambient plasma that the LPP has displaced, the effect will be 

similar to an effective pressure on the system. This will in general reduce the value of 𝜏𝐷 and the 

corresponding maximum diamagnetic cavity size from 𝑅𝐵 to some other value 𝑅𝐷. It must be 

reminded that this effective pressure is not a pressure in the sense of a force acting on a volume 

element of a fluid—we are only considering energy loss or storage mechanisms. Rather in the 

collisionless case, the electric field would be altered by the presence of the ambient plasma and 

react to exert the necessary force on both the LPP and ambient plasma simultaneously and not 

necessarily in a linear manner. If we neglect at first the time and spatial dependencies of this 

effective pressure, 𝑝𝑒𝑥𝑡, the same analysis that gave Eq. 2.2 yields, 

 

𝑑𝜏𝑅̃ = √1 −
1 + 𝑝𝑒𝑥𝑡/𝑝𝐵

𝛽
(𝑅̃3 − 1), (B.1) 

and we can define a third characteristic length scale,  

𝑅𝑝 ≡ (
𝑝𝐵

𝑝𝑒𝑥𝑡
)

1
3

 𝑅𝐵 = (

𝐶
2 𝑚𝑖𝑁𝑖𝑉𝑟0

2

𝑝𝑒𝑥𝑡
)

1
3

. 
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The cavity now reaches the radius 

𝑅𝐷 =
𝑅𝐵𝑅𝑝

(𝑅𝐵
3 + 𝑅𝑝

3)
1/3

=
𝑅𝐵

(1 + (
𝑅𝐵

𝑅𝑝
)

3

)

1/3
  

Where 𝑅𝐵 now refers to the radius of the diamagnetic cavity under vacuum or weak coupling 

conditions. The condition for strong coupling, 𝑅𝑝 < 𝑅𝐵, is difficult to reach without collisions 

since it implies the diamagnetic fields transfer energy away more efficiently than they receive it. 

 

 

To see how the cavity grows in time, we numerically solve Eq. (B.1) and allow for various 

external energy loss mechanisms. Figure B.1 shows the solutions for varying external energy sinks 

Figure B.1:LPP/diamagnetic cavity trajectories for various external pressures, 𝛤 ≡

𝑝𝑒𝑥𝑡/𝑝𝐵, according to a Rayleigh gaseous bubble model. Poukey [86] accounted for 

the effect of losses along the field (elliptical expansion rather than spherical) and 

O’Neil [85] calculated the minimum boundary from a Virial Theorem analysis. 
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relative to the magnetic field energy, Γ = 𝑝𝑒𝑥𝑡/𝑝𝐵. Also shown are the free expansion, a Virial 

theorem analysis of this problem [85] in blue, and an asymptotic expansion derived from a 

Lagrangian fluid approach [86] in green. As stated in [cite O’Neil], the curve from the virial 

theorem is an absolute minimum and as such represents an expansion impeded by a strong shock 

or instability. This is also the curve that the Rayleigh model is approaching in the limit that Γ →

∞. Note however, that for a drop of a factor 2 in radius, the additional, external pressure has to be 

5 times stronger than that due to the magnetic field which may suggest that there is already a shock. 

B.2—Scaling for 𝒑𝒆𝒙𝒕 in the Weak Coupling Limit 

 The electric fields from the Rayleigh model were described in §2.3. Using them, the 

effective impulse an ion would receive from them can be calculated and an estimate for the scaling 

of 𝑝𝑒𝑥𝑡 with the expansion parameters can be obtained. Repeating Eqs. 2.3, 2.4,  

|𝑬𝑖𝑛𝑑| = 𝜕𝑡𝑅 𝐵 ≈
𝑚𝑑𝑖𝑉𝑟0

2

𝑍𝑑𝑒𝑅𝐵
(

𝜔𝑐𝑖
𝑑 𝜏𝐷

1.402
) 𝑑𝑡̃𝑅̃ 

 

(2.3) 

and 

|𝑬𝑠𝑡| =
𝑚𝑑𝑖

𝑍𝑑𝑒
|𝜕𝑡

2𝑅| =
3

2

𝑚𝑑𝑖𝑉𝑟0
2

𝑍𝑑𝑒𝑅𝐵

𝑅̃2

𝛽2/3
. 

 

(2.4) 

It will be more convenient to work with these fields in dimensionless quantities and using the peak 

diamagnetism spatial scales. With the transformations 𝑅′ = 𝑅(𝑡)/𝑅𝐵, 𝑟′ = 𝑟/𝑅𝐵, and 𝑡′ = 𝑡/𝜏𝐷 

and normalizing the electric fields to 𝐸0 ≡ 𝑚𝑑𝑖𝑉𝑟0
2 /𝑍𝑑𝑒𝑅𝐵, we have 

𝑬′ =
𝑬

𝐸0
= 𝛼𝜙𝜕𝑡′𝑅′𝑓 (

𝑟′

𝑅′
) 𝜙̂ −

3

2
𝑅′2𝑔 (

𝑟′

𝑅′
) 𝑟̂ 
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where 𝑓 and 𝑔 represent the profiles of the induced and electrostatic fields, respectively—

assuming such self-similar profiles can exist—and 𝛼𝜙 = 𝜔𝑐𝑖
𝑑 𝜏𝐷/(1.402)2. If we assume the ions 

do not move significantly during the acceleration process, we can neglect 𝑽 × 𝑩 in the Lorentz 

force and the ambient ions at position 𝑟, which are initially at rest, end up with the velocity 

Δ𝑽(𝑟, 𝑡) ≈
𝑍𝑎𝑒

𝑚𝑎𝑖
∫ 𝑑𝑡𝑬

𝑡

𝑅(𝑡)=𝑟

= 1.402
𝑍𝑎𝑚𝑑𝑖

𝑍𝑑𝑚𝑎𝑖
𝑉𝑟0 ∫ 𝑑𝑡′𝑬′(𝑟′, 𝑡′)

𝑡′

𝑅′(𝑡′)=𝑟′

. 

 

(B.2) 

Such an approximation is only good if |Δ𝑽| ≪ 𝜕𝑡𝑅 ∼ 𝑉𝑟0. If the peak electric field values are less 

than 𝐸0, this condition is satisfied for ambient plasmas with smaller charge to mass ratios than 

those in the expanding plasma. If the electric field profiles are mostly below 𝐸0 and for most of 

the lifetime of the cavity, the integral itself will be small and the charge to mass ratio requirement 

is relaxed.  

The total energy transferred to a sphere of a uniform, ambient plasma is 

𝐸𝑐(𝑡) = 4𝜋𝑚𝑎𝑖𝑛𝑎𝑖 ∫ 𝑑𝑟𝑟2(Δ𝑽(𝑟, 𝑡))
2

𝑅(𝑡)

0

 

= 4𝜋𝑚𝑎𝑖𝑛𝑎𝑖 (1.402
𝑍𝑎𝑚𝑑𝑖

𝑍𝑑𝑚𝑎𝑖
𝑉𝑟0)

2

𝑅𝐵
3 ∫ 𝑑𝑟′𝑟′2 (∫ 𝑑𝑡′𝑬′(𝑟′, 𝑡′)

𝑡′

𝑅′(𝑡′)=𝑟′

)

2
𝑅′

0

. 

Substituting 𝐼(𝑡′) for the whole integral on the right-hand side, a more convenient form to consider 

will be 

𝐸𝑐(𝑡) =
6(1.402)2

𝐶
(

𝑍𝑎𝑚𝑑𝑖

𝑍𝑑𝑚𝑎𝑖
) (

4𝜋

3

𝑍𝑎𝑛𝑎𝑖

𝑍𝑑𝑁𝑑
) (

3

4𝜋

𝐶𝑚𝑑𝑖𝑁𝑑𝑉𝑟0
2

2
) 

4𝜋𝑅𝐵
3

3
𝐼(𝑡′). 

 

(B.3) 

These are in general very complicated equations assuming even that the profile for the electric 

fields represent realistic profiles and that they satisfy momentum conservation for the system. To 
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get an idea of the scaling of this coupling, we next assume that the coupling is so weak that the 

total energy transferred to the ambient plasma is proportional to the volume. We then have that 

𝑝𝑒𝑥𝑡 =
3𝐸𝑐(𝑡)

4𝜋𝑅3(𝑡)
≈

3𝐸𝑐(𝜏𝐷)

4𝜋𝑅𝐵
3  

or after inserting Eq. B.3 and normalizing to 𝑝𝐵 

𝑝𝑒𝑥𝑡

𝑝𝐵
=

6(1.402)2𝐷

𝐶
(

𝑍𝑎𝑚𝑑𝑖

𝑍𝑑𝑚𝑎𝑖
) (

4𝜋

3

𝑍𝑎𝑛𝑎𝑖

𝑍𝑑𝑁𝑑
) (

3

4𝜋

𝐶𝑚𝑑𝑖𝑁𝑑𝑉𝑟0
2

2𝐷𝑝𝐵
)  𝐼(𝑡′), 

or simply 

𝑝𝑒𝑥𝑡

𝑝𝐵
=

6(1.402)2𝐷

𝐶

𝜔𝑐𝑖
𝑎

𝜔𝑐𝑖
𝑑 (

𝑅𝐵

𝑅𝑞
)

3

 𝐼(𝑡′). (B.4) 

That is, regardless of the profiles or whether one component of the electric field dominates the 

other, the critical parameters determining how much energy is transferred to the ambient plasma 

are the cyclotron frequency ratio and the ratio of the equal charge radius to the diamagnetic cavity 

radius. For 𝑅𝑞 > 𝑅𝐵, weak coupling, i.e. Γ ≪ 1, is guaranteed under the same assumptions as those 

that lead to Eq. B.2. That is, unless the ambient plasma is orders of magnitude lighter than the 

expanding plasma. 

B.3—The Problem with Momentum Coupling 

 No calculation of the expected Δ𝑽 nor 𝐸𝑐 can be made without some model for the electric 

field profiles. This is where the Rayleigh model loses its usefulness. In the traditional Rayleigh 

models for gaseous cavities, one of two profiles is used:  

𝑉𝑟 = 𝜕𝑡𝑅
𝑟

𝑅
, (expansion) 
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𝑉𝑟 = 𝜕𝑡𝑅 (
𝑅(𝑡)

𝑟
)

𝑑−1

, (collapse) 

where 𝑑 is the dimension of the symmetric expansion (𝑑 = 3 for spherical, 2 for cylindrical). They 

are used because of the solutions they represent for the continuity equation. The expansion form 

automatically results in a self-similar density that varies in magnitude as 𝑛(𝑟, 𝑡) = 𝑡−𝑑ℎ(𝑟/𝑅), i.e. 

uniform ballistic expansion, where ℎ is an arbitrary function. The collapse form represents an 

incompressible fluid in d-dimensions, 

𝑑𝑡𝑛 = (𝜕𝑡 + 𝑽 ⋅ ∇)𝑛 = 0. 

Unfortunately, when the expansion form is put into the single-fluid momentum equation,  

𝜌𝑚𝑑𝑡𝑽 = 𝜌𝑚(𝜕𝑡𝑽 + 𝑽 ⋅ ∇𝑽) = 𝜌𝑚

𝑟

𝑅
𝜕𝑡

2𝑅 = 𝜌𝑐𝑬 + 𝑱 × 𝑩 − ∇ ⋅ 𝑃𝑖. 

The acceleration must be non-zero at 𝑟 = 𝑅(𝑡).  Barring the allowance of an infinite shear in 𝑱, 

𝑱 × 𝑩 (as well as 𝑬) must go to zero. Also, if there is a magnetic compression, then 𝑱 × 𝑩 does go 

to zero. This just means that the expansion form is not a realistic solution but any other velocity 

profile does not satisfy the self-similar ballistic expansion that is commonly found or used in LPP 

experiments. The only way this problem may be saved is if an ion pressure term develops a strong 

gradient that smooths the region from where 𝑱 × 𝑩 reaches its peak to 𝑟 = 𝑅(𝑡). The presence of 

the strong 𝑱 × 𝑩 force means that this is likely a kinetic term and probably anisotropic. 

B.4—Estimating the Coupling 

 Using simply as an estimate the expansion form of 𝑉𝑟, the profiles for the induced field and 

electrostatic field are 𝑓(𝑥) = 𝑥2 and 𝑔(𝑥) = 𝑥 if we assume a uniform density. Equation B.2 

becomes 
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Δ𝑽 = 1.402
𝜔𝑐𝑖

𝑎

𝜔𝑐𝑖
𝑑 𝑉𝑟0 ∫ 𝑑𝑡′ (−𝛼𝜙𝜕𝑡′ (

1

𝑅′
) 𝑟′2

𝜙̂ −
3

2
𝑅′𝑟′𝑟̂)

𝑡′

𝑅′(𝑡′)=𝑟′

 

1.402
𝜔𝑐𝑖

𝑎

𝜔𝑐𝑖
𝑑 𝑉𝑟0 (𝛼𝜙(𝑟′ − 𝑟′2)𝜙̂ −

3

2
𝑟′𝑟̂ ∫ 𝑑𝑡′𝑅′

𝑡′

𝑅′(𝑡′)=𝑟′

). 

 

 

 

The function 

𝐹(𝑥) = 1.402
3

2
𝑟′ ∫ 𝑑𝑡′𝑅′

1

𝑅′(𝑡′)=𝑟′

, 

which we’ll call the radial coupling function, is plotted in Fig. B.2. For argon ions and 𝑍𝑑 = 2 

carbon ions, the expected radial velocity is 𝑉𝑟 = −8 × 105 cm/s. But this value depends crucially 

on the linear form of the electrostatic potential profile. The fastest ions are near the front of the 

Figure B.2: Radial coupling function for calculating the impulse in the 

radial direction for a linear electrostatic field profile, 𝐸𝑠𝑡 ∼ 𝑥. 
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expansion right where there is a problem with the expansion profile 𝑉𝑟 ∝ 𝑟. If the 𝑱 × 𝑩 force falls 

of as 𝑟 → 𝑅𝐵, then all of these ions will be moving slower due to a reduced electrostatic field. The 

value quoted above should only be taken as an extreme maximum or the characteristic size of the 

resulting velocity. A factor 2 error would not be unrealistic. The velocity from the azimuthal field 

is easy to calculate and is 𝑉𝜙 = 105 cm/s for an expansion with 𝜔𝑐𝑖
𝑑 𝜏𝐷 = 0.3. This is far smaller 

than the radial velocity under the same approximation and the case of a dominant electrostatic field 

will generally be true if 𝜔𝑐𝑖
𝑑 𝜏𝐷 < 1. 

 For the energy coupled, we look at the integral in Eq. B.3 or B.4, 

𝐼(𝑡′) = ∫ 𝑑𝑟′𝑟′2 (∫ 𝑑𝑡′𝑬′(𝑟′, 𝑡′)
𝑡′

𝑅′(𝑡′)=𝑟′

)

2
𝑅′

0

. 

Since by design all the variables and the electric field are less than 1, 𝐼(𝑡′) < 1∀𝑡′. This expression 

can be simplified by completely inverting the integrals. First, note that 

(∫ 𝑑𝑥 𝑓(𝑥)
𝑏

𝑎

)

2

= 2 ∫ 𝑑𝑥𝑓(𝑥) ∫ 𝑑𝑥′𝑓(𝑥′)
𝑥

𝑎

𝑏

𝑎

. 

Then, note that the area integral 

∫ 𝑑𝑥 ∫ 𝑑𝑦′
𝑏

𝑓(𝑦′)=𝑥

𝑓(𝑦)

0

 

can be reversed to 

∫ 𝑑𝑦′ ∫ 𝑑𝑥
𝑓(𝑦′)

0

𝑏

0

 

if 𝑓(0) = 0. Breaking up the integral into its azimuthal and radial contributions, 𝐼 = 𝐼𝜙 + 𝐼𝑟, 
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𝐼𝜙(𝑡′) = 𝛼𝜙
2 ∫ 𝑑𝑢𝜕𝑢𝑅′(𝑢) ∫ 𝑑𝑣

𝑢

0

𝑡′

0

𝜕𝑣𝑅′(𝑣) ∫ 𝑑𝑟′𝑟′2𝑓 (
𝑟′

𝑅′(𝑣)
) 𝑓 (

𝑟′

𝑅′(𝑢)
)

𝑅′(𝑣)

0

 

and 

𝐼𝑟(𝑡′) =
9

4
∫ 𝑑𝑢𝑅′2(𝑢) ∫ 𝑑𝑣

𝑢

0

𝑡′

0

𝑅′2(𝑣) ∫ 𝑑𝑟′𝑟′2𝑔 (
𝑟′

𝑅′(𝑢)
) 𝑔 (

𝑟′

𝑅′(𝑣)
) .

𝑅′(𝑣)

0

 

Inserting the expansion profiles 

𝐼𝜙(𝑡′) =
𝛼𝜙

2

5 ⋅ 6 ⋅ 7
𝑅′5(𝑡′) ≪ 1 for 𝜔𝑐𝑖

𝑑 𝜏𝐷 < 1 

and 

𝐼𝑟(𝑡′) =
9

4 ⋅ 5
∫ 𝑑𝑢 ∫ 𝑑𝑣𝑅′5(𝑣)

𝑢

0

𝑡′

0

. 

For 𝜔𝑐𝑖
𝑑 𝜏𝐷 = 0.3, we have 

𝐼𝜙 = 0.0001 and 𝐼𝑟 = 0.029. 

For an argon plasma density of 𝑛𝑖 = 4 × 1012, singly ionized in 750 G, and an LPP with 1.5 ×

1015 doubly-ionized carbon ions, 𝑅𝑞 ∼ 5 cm. Using this value, and the above values, 𝐸𝑐(𝜏𝐷) =

0.5 mJ or 𝐸𝑐/𝐸𝑡𝑜𝑡 ∼ 2 × 10−3. 

B.5—LPP Spin-up 

In the foregoing conclusions, the possibility of the rotation of the LPP was excluded. 

Would the LPP begin to rotate as it expands, this would constitute an additional loss of momentum 

from the radial expansion of the diamagnetic cavity. This means our energy analysis would have 

to look like 
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𝐸 =
𝐶

2
𝑚𝑑𝑖𝑁𝑑𝑖 ((𝜕𝑡𝑅)2 + 𝑉𝜙

2(𝑡)) +
4𝜋𝐷

3
(𝑅3 − 𝑅0

3)
𝐵0

2

2𝜇0
. 

The presence of an azimuthal rotation of the LPP would also mean that some of the electrostatic 

field in the radial direction is due to this rotational mass flow since 𝑽 × 𝑩 acquires a radial 

component. A simple argument, however, shows that for the LPPs of interest, this term can be 

ignored and the treatment of the LPP as rotationless is a good approximation. 

 For the assumed form of Ohm’s law and isotropic pressures for the electrons and ions, 𝑝𝑒 

and 𝑝𝑖, momentum conservation is 

𝜌𝑚𝑑𝑡𝑽 = 𝜌𝑐𝑬 + 𝑱 × 𝑩 − ∇(𝑝𝑒 + 𝑝𝑖) 

and 

𝑬 = −𝑽 × 𝑩 +
𝑱 × 𝑩

𝑒𝑛𝑒
, 

where 𝜌𝑚 = ∑𝑚𝛼𝑛𝛼 and 𝜌𝑐 = ∑𝑍𝛼𝑛𝛼 are sums over all species in the system. These equations 

can be combined by eliminating 𝑱 × 𝑩 to get  

𝜌𝑚𝑑𝑡𝑽 = 𝜌𝑐𝑬 + 𝑒𝑛𝑒(𝑬 + 𝑽 × 𝑩) − ∇(𝑝𝑒 + 𝑝𝑖) 

→ 𝑚𝑑𝑖𝑛𝑖𝑑𝑡𝑽 = 〈𝑍〉𝑒𝑛𝑖𝑬 + 〈𝑍〉𝑒𝑛𝑖𝑽 × 𝑩 − ∇(𝑝𝑒 + 𝑝𝑖) 

for 𝜌𝑚 ≈ 𝑚𝑑𝑖𝑛𝑖  and 〈𝑍〉 = 𝑛𝑒/𝑛𝑖 . If the pressure is only dependent on space through the density, 

e.g. in an ideal gas, and the temperature is constant or depends at most on time, then the momentum 

equation is identical to a single particle equation of motion with the associated Lagrangian 

𝐿 =
1

2
𝑚𝑑𝑖𝑽2 + 〈𝑍〉𝑒 (𝜙 + 𝑽 ⋅ 𝑨 +

𝑝𝑒

𝑒𝑛𝑒
+

𝑝𝑖

〈𝑍〉𝑒𝑛𝑖
). 
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In cylindrical symmetry, the azimuthal momentum is conserved 

𝑚𝑖𝑉𝜙 + 〈𝑍〉𝑒𝐴𝜙 = 𝑐𝑜𝑛𝑠𝑡. 

Note that this is directly related to the conservation of circulation or vorticity [87] in Hall MHD 

where the quantity 

Γ ≡ ∮𝑑ℓ ⋅ (𝑚𝑑𝑖𝑽 + 〈𝑍〉𝑒𝑨)
𝐶

 

is independent of time for a contour 𝐶 that follows an element of fluid. Note that that result is far 

more general and applies to plasmas that lack azimuthal symmetry. The induced field in the 

expansion gives us at 𝑟 = 𝑅(𝑡) 

−𝜕𝑡𝐴𝜙(𝑟 = 𝑅(𝑡)) = 𝜕𝑡𝑅(𝑡)𝐵(𝑟 = 𝑅(𝑡)). 

If we take 𝐵(𝑟 = 𝑅(𝑡)) as a constant, then  

𝐴𝜙 = −𝑅(𝑡)𝐵 + 𝐷 

where 𝐷 is an arbitrary integration constant. If we take as an initial condition that the plasma is not 

spinning at 𝑅0, then the azimuthal flow of the LPP is 

𝑉𝜙(𝑡) =
〈𝑍〉𝐵

𝑚𝑑𝑖
𝑅(𝑡), 

or as a fraction of 𝑉𝑟0,  

𝑉𝜙

𝑉𝑟0
=

〈𝑍〉𝐵

𝑚𝑑𝑖

𝑅(𝑡)

𝑉𝑟0
≤

〈𝑍〉𝐵

𝑚𝑑𝑖

𝑅𝐵

𝑉𝑟0
=

𝜔𝑐𝑖
𝑑 𝜏𝐷

1.402
, 

which appeared before in the ratio of the characteristic strength of the induced field to that of the 

electrostatic field. This means that the regime in which the induced field is stronger than the 
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electrostatic field also corresponds to one in which the coupling to the diamagnetic cavity is 

reduced and the LPP ions will lose radial momentum to azimuthal spin-up.  

Various term were neglected to get this result and so like other facets of the Rayleigh 

model, it should be taken only as a guide-line. Specifically, due to the large field gradients in the 

diamagnetic cavity, the ion pressure term is most certainly not isotropic. Furthermore, resistive 

effects are in the azimuthal direction as well as some portion of ion viscosity. These tend to reduce 

the spin-up of the LPP by reducing the induced electric field. The condition 𝜔𝑐𝑖
𝑑 𝜏𝐷 > 1 only means 

that there is not a good reason to neglect the spin of the LPP. For the case presented in Chapter 4 

and this dissertation, most of the lifetime of the cavity has |𝑬𝑖𝑛𝑑|/|𝑬𝑠𝑡| less than the predicted ratio 

𝜔𝑑𝑖
𝑑 𝜏𝐷/1.402 ≈ 0.2. 
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