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Change detection under autocorrelation
Maarten Speekenbrink (m.speekenbrink@ucl.ac.uk), Matthew A. Twyman (m.twyman@ucl.ac.uk)

Nigel Harvey (n.harvey@ucl.ac.uk)
Cognitive, Perceptual and Brain Sciences, University College London

Gower Street, London WC1E 6BT, England

Abstract

Judgmental detection of changes in time series is an ubiqui-
tous task. Previous research has shown that human observers
are often relatively poor at detecting change, especially when
the series are serially dependent (autocorrelated). We present
two experiments in which participants were asked to judge the
occurrence of changes in time series with varying levels of au-
tocorrelation. Results show that autocorrelation increases the
difficulty of discriminating change from no change, and that
observers respond to this increased difficulty by biasing their
decisions towards change. This results in increased false alarm
rates, while leaving hit rates relatively intact. We present a ra-
tional (Bayesian) model of change detection and compare it to
two heuristic models that ignore autocorrelation in the series.
Participants appeared to rely on a simple heuristic, where they
first visually match a change function to a series, and then de-
termine whether the putative change exceeds the variability in
the data.

Keywords: change detection; judgment; forecasting

Introduction
Detecting changes in time series is a surprisingly ubiquitous
task. Doctors and therapists monitor diagnostic indicators for
signs of disease onset and for evidence that a prescribed treat-
ment is effective; farmers monitor soil conditions to decide
whether additional irrigation is necessary; local authorities
monitor river levels for increased likelihood of flooding; pro-
bation officers monitor probationers’ behaviour for evidence
of return to crime; financiers monitor data, such as exchange
rates, for signs of trend reversal. Many other examples could
be given. As with forecasting and control tasks, monitoring
tasks may be tackled by formal statistical methods, by using
judgment alone, or by using some combination of these two
approaches. The method most favoured depends to a large ex-
tent on the domain. Typically, implementation of and training
in formal methods consume more resources (time, money, ef-
fort) but the investment may be worthwhile if those methods
have considerable benefits over judgment in terms of accu-
racy. Thus, it would be useful to know just how good human
judgment is relative to formal methods.

There are many formal statistical methods for detecting
change in time series (e.g., Albert & Chib, 1993; Carlin,
Gelfand, & Smith, 1992; Hamilton, 1990). This variety is
partly because some approaches represent the event produc-
ing the regime change as deterministic whereas others repre-
sent it as a random variable and partly because, whichever
of these approaches is adopted, there is still some debate
about how best to estimate the likelihood that a change has
occurred.

In contrast, there has been very little research into judg-
mental assessment of regime change. Originally, behavioural

psychologists working within the Skinnerian tradition used
judgment (visual inference) to assess whether a manipulation
changed some aspect of an animal’s behaviour represented
as a time series. They argued that this is a conservative ap-
proach because only large effects can be detected (e.g., Baer,
1977). Their claims were not directly tested. However, when
behaviour analysts later used the same approach to assess hu-
man patients, there was concern that the shorter pre-treatment
baselines in the series impaired visual inference. As a result,
some experiments were carried out to investigate how accu-
rately people can detect change.

Judgmental change detection and autocorrelation
Jones, Weinrott, and Vaught (1978) found that people were
poor at detecting change in real series: inter-rater reliability
of judgments was low at .39 and average miss and false alarm
rates were 48% and 33%, respectively. Sequential depen-
dence (autocorrelation) in series increased false alarm rates.
This study used interrupted time series analysis as the gold
standard for establishing whether there was a real change in
the series. However, series were so short that this statistical
approach would have lacked power. People may have been
able to detect changes that the statistical analysis could not: if
so, their performance may not have been as bad as it appeared
to be. To circumvent this problem, Matyas and Greenwood
(1990) simulated series with known levels of random noise
and first-order autocorrelation. However, they still found that
false alarm rates (typically over 40%) were much higher than
miss rates (typically about 10%), especially when data were
autocorrelated. They concluded that judgment is not as con-
servative as behaviour analysts assumed.

The increase in false alarm rates under positive autocorre-
lation is problematic. In single-subject research, where visual
assessment of change is still the dominant method (Brossart,
Parker, Olson, & Mahadevan, 2006), there is positive autocor-
relation in the large majority of series (Busk & Marascuilo,
1988). Why does autocorrelation impair change detection?
Consider a time series y1:T = (y1, . . . ,yT ) which follows an
r-th order autoregressive process

yt = µt +
r

∑
k=1

αk(Yt−k−µt−k)+ εt εt ∼ N(0,σ2
ε) (1)

This process implies a serial dependence between successive
time points such that when a previous value yt−k is above the
mean µt−k, a later value yt is more likely to also be above the
mean (for αk > 0, positive autocorrelation), or more likely
to be below the mean (αk < 0, i.e., negative autocorrelation).
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Figure 1: Examples of time series with a change and no change, under different levels of autocorrelation.

We allow for the possibility of an abrupt change in baseline
value

µt = µ0 +δIt≥t∗ δ∼ N(µδ,σ
2
δ
) (2)

where t∗ is the change point and It≥t∗ is an indicator func-
tion with value 1 when t ≥ t∗ and value 0 otherwise. This
is the process used in the experiments reported below. Fig-
ure 1 shows examples of time series produced by a first-order
(r = 1) autoregressive process. Note that each series is cre-
ated from identical noise values εt ; the only difference is in
the value of the autocorrelation, and whether there is a change
in the baseline (after time point 25 in the series on the left)
or not. As can be seen in these examples, positive autocor-
relation (α1 = 0.8) tends to make series “smoother”, which
can make abrupt changes less apparent. Also, when there is
no change, positive autocorrelation can increase false alarms,
because a sudden large noise perturbation will tend to persist,
giving the appearance of a change in mean. In contrast, neg-
ative autocorrelation (α1 = −.5) tends to make series more
“jagged”, which can impair change detection by increasing
the apparent noisiness of the series, even though the actual
error variance is unaffected.

Cognitive processes underlying change detection
Research on judgmental change detection has been mainly
empirical. Little attention has been given to the cognitive
processes underlying performance in the task. An exception
is the work of Wampold and Furlong (1981), who argued that
people may use one of two types of heuristic.

First, people may assess a putative change in the data rela-
tive to the overall variability that is present. A putative change
is judged to be real if its magnitude exceeds the natural vari-
ability in the data by some criterial amount. This is a global
assessment: all the presented data are taken into account. Ac-
cording to this model, positive autocorrelation increases false
alarms because it is ignored when the natural variability in the
data is estimated. This results in an underestimation of the

variability and, hence, over-estimation of the likelihood of a
change. In contrast, negative autocorrelation would result in
an over-estimation of the variability, and hence an underesti-
mation of the likelihood of a change.

Alternatively, people may monitor the data for large abso-
lute changes and ignore the natural point-to-point variability.
This approach assumes that they access internal prototypes of
possible changes and classify series into those with and with-
out a change by matching them against these prototypes. In
other words, they make local assessments: candidate changes
are judged in isolation from the rest of the series.

Steyvers and Brown (2005) proposed that people may rely
on a heuristic similar to the latter1 when detecting changes in
times series while making sequential predictions about the
next datum in the series. They showed that this heuristic
closely followed an optimal Bayesian model, which also fit-
ted participants responses well. In later work, Brown and
Steyvers (2009) proposed that people generally use Bayesian
inference in these problems, although they may work from in-
correct assumptions and use limited samples to approximate
the full Bayesian analysis.

Present study
Previous research suggests that human detection of change
in time series is impaired by the presence of autocorrelation.
In the two experiments presented here, we sought to replicate
this finding with a range of (positive) autocorrelations (Exper-
iment 1) and a second-order autoregressive process (Experi-
ment 2). By formulating different models and fitting these
to participants’ judgments, we sought to uncover the cog-
nitive processes underlying change detection in graphically

1But not exactly the same. According to Steyvers and Brown
(2005), a change will be detected whenever the distance between a
prediction and the actual value exceeds a criterial amount. How-
ever, the distance was not measured on the scale of the outcome, but
rather as the log likelihood ratio of the outcome given a change vs
no change.
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presented time series. Uncovering the strategies people use
when monitoring series for regime change is a first step in
determining how to improve judgmental change detection.

Experiment 1
The objective of Experiment 1 was to assess the accuracy
of judgmental change detection under levels of no (α1 = 0),
medium (α1 = .4), and high (α1 = .8) autocorrelation.

Method
Participants Fifty participants (23 male) were recruited
from the UCL subject pool and paid £5 for their time. The
mean age was 26.06.

Task The change detection task consisted of 60 trials. On
each trial, participants were presented a graph depicting a
time series and asked to indicate whether the series contained
a change or not. After this, they indicated their confidence in
their response.

In Experiment 1, the time series were created by a first-
order autoregressive process (i.e., setting r = 1 in Equation 1).
The autocorrelation was varied within participants. For each
level of autocorrelation, α1 = {0, .4, .8}, there were 10 series
with, and 10 series without a change. Each change δ was
randomly drawn from a Gaussian distribution with mean µδ =
8 and variance σ2

δ
= 9. The initial baseline value was set at

µ0 = 50 and the variance of the noise was set at σ2
ε = 5.

Procedure Participants took the role of a trainee flood en-
gineer with the task of monitoring water levels for risk of
flooding. Participants were told a risk of flooding consisted
of a persistent increase in water level, but that the level would
fluctuate regardless of whether there was a risk of flooding or
not. For 60 different locations, they would monitor the water
level over a 50 hour period, and participants were informed
that a flood risk could occur anywhere between hour 11 and
hour 40 (i.e., t∗ ∈ {11, . . . ,40}). Finally, participants were
instructed that there was a flood risk for half of the locations.

Results
The main detection results are given in Table 1. Autocorrela-
tion did not affect hit rates, F(2,98)= 1.278, p= .283, but in-
creased false alarms, F(2,98) = 27.913, p < .001. This indi-
cates that, as autocorrelation increased, participants adjusted
their criterion to detect changes. This was confirmed in a
signal detection analysis. Increased levels of autocorrelation
reduced the discrimination (d′), F(2,98) = 11.915, p < .001.
Contrast analysis showed that this effect was mainly due to
a linear trend, F(1,49) = 22.79, p < .001; the quadratic
trend was not significant, F(1,49) = 1.37, p = .25. In ad-
dition, increased autocorrelation reduced the centered deci-
sion criteria (C), F(2,98) = 20.56, p < .001. Contrast anal-
ysis showed that this effect was mainly due to a linear trend,
F(1,49) = 32.58, p < .001; the quadratic trend was not sig-
nificant, F(1,49) = 0.79, p = .38. This indicates that auto-
correlation increased the difficulty of the task and participants

Table 1: Mean hit (H) and false alarm (FA) rates, discrimi-
nation (d′) and (centered) criterion (C) parameters. Values in
parentheses are standard deviations.

α1 α2 H FA d′ C
Experiment 1

0 .72 (.18) .06 (.15) 2.06 (.69) -0.40 (.12)
0.4 .76 (.14) .11 (.19) 1.90 (.65) -0.44 (.12)
0.8 .77 (.15) .24 (.20) 1.48 (.77) -0.50 (.11)

Experiment 2
0.5 0.3 .68 (.24) .14 (.15) 1.65 (.86) -0.42 (.14)
0.5 0.0 .74 (.22) .10 (.15) 2.01 (.85) -0.43 (.12)
0.5 -0.3 .70 (.23) .07 (.16) 2.00 (.81) -0.40 (.14)
-0.5 0.3 .72 (.22) .07 (.14) 2.07 (.89) -0.41 (.12)
-0.5 0.0 .72 (.23) .03 (.07) 2.18 (.67) -0.39 (.12)
-0.5 -0.3 .68 (.24) .03 (.09) 2.09 (.80) -0.37 (.12)

responded by lowering the criterion to detect a change (bias-
ing decisions towards changes), resulting in increased false
alarms.

Average confidence levels for the different trial types and
autocorrelation levels are depicted in Figure 2. We analysed
the confidence ratings with a linear mixed effects model, in-
cluding random intercepts for each participant, as well as
random slopes for the autocorrelation and contrast codes for
whether a decision was correct and whether it was a “change”
(vs a “no change”) decision. This showed that confidence was
higher for correct (hits and correct rejections) than incorrect
decisions (misses and false alarms), F(1,2946) = 216.4, p <
.001. In addition, confidence was generally lower when par-
ticipants responded change (hits and false alarms) compared
to no change (correct rejections and misses), F(1,2946) =
11.19, p < .001. A significant interaction between these
two factors shows that confidence was more strongly related
to correctness when people judged there was a change than
when people judged there was no change, F(1,2946) = 4.68,
p = .031. Finally, confidence decreased as the level of auto-
correlation increased, F(1,2946) = 16.83, p < .001.

To summarize the results, increasing autocorrelation re-
sulted in poorer discrimination between series with and those
without a change. This increased difficulty was also reflected
in participants’ confidence in their judgments. Participants
appeared to respond to the increased difficulty by relaxing
their decision criteria in favour of detecting change, resulting
in increased false alarm rates.

Experiment 2
The objective of Experiment 2 was to investigate change de-
tection in a second-order autoregressive process. Depending
on the autocorrelation values, second-order autoregressive
processes can show complex periodic patterns (e.g., Gottman,
1981). In particular, when α2

1 + 4α2 < 0, the spectral den-
sity functions show broad peaks across a band of mid-range
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Figure 2: Mean confidence levels by autoregression level and
trial type (H = hit, FA = false alarm, M = miss, CR = correct
rejection). Error bars represent 95% confidence intervals.

frequencies, and the time series is nondeterministically pe-
riodic. Such periodic behaviour may appear as a change in
mean, increasing false alarms. To investigate this possibility,
Experiment 2 included series with and without such periodic
behaviour.

Method
Participants 70 students (18 male) participated in the ex-
periment for course credit. The mean age was 18.97 (SD =
1.12).

Task The task was identical to that in Experiment 1.
However, the time-series were now produced by a second-
order autoregressive process (setting r = 2 in Equation 1),
with autocorrelation parameters α1 = {−0.5,0.5} and α2 =
{−0.3,0,0.3}. There were 10 series for each combination of
the autocorrelation parameters, of which five did and five did
not contain a change. Series were presented in random order.
Series with α1 = .5 and α2 =−.3, or α1 =−.5 and α2 =−.3,
were likely to show periodic trends. If this impairs detection
ability, we would expect to find a difference between these
series and those generated with other combinations of auto-
correlation parameters.

Results
The main detection results can be found in Table 1. As
in Experiment 1, autocorrelation affected false alarm rates,
F(1,68) = 56.67, p < .001 and F(2,136) = 24.99, p < .001,
for α1 and α2 respectively, but not hit rates, F(1,68) = 0.03,
p = .87 and F(2,136) = 1.42, p = .25. Signal detection
analysis showed that both autocorrelation parameters affected

discrimination ability (d′), F(1,69) = 9.81, p = .003, and
F(2,138)= 3.50, p= .033, for α1 and α2 respectively; the in-
teraction was not significant, F(2,138) = 1.79, p = .17. Dis-
crimination was generally better for α1 =−.5 than α1 = 0.5.
Discrimination was worse for α2 = 0.3 compared to the other
two values, F(1,69) = 5.77, p = .019, while there was no
difference between α2 = 0 and α2 = −0.3, F(1,69) = 0.52,
p = .47. Both autocorrelation parameters also affected the
centered decision criteria (C), F(1,69) = 7.52, p = .008, and
F(2,138) = 3.17, p = .045. Decision criteria were more bi-
ased towards change for positive compared to negative auto-
correlations (for α2, there was a linear trend, F(1,69) = 5.78,
p = .019, but no quadratic trend, F(1,69) = 0.81, p = .37).

Average confidence levels for the different trial types and
autocorrelation levels are depicted in Figure 2. Analysis with
a linear mixed effects model replicated the results of Exper-
iment 1. Confidence was higher for correct (hits and correct
rejections) than incorrect decisions (misses and false alarms),
F(1,4124) = 226.14, p < .001, and lower when participants
responded change (hits and false alarms) compared to no
change (correct rejections and misses), F(1,4124) = 44.80,
p < .001. Confidence was more strongly related to correct-
ness when people judged there was a change than when peo-
ple judged there was no change, F(1,4124) = 8.1, p = .005.
Confidence was higher for negative than positive first-order
autocorrelation (α1), F(1,4124) = 5.69, p = .017, and this
difference was larger when the second-order autocorrelation
was negative rather than positive, F(1,4124) = 5.62, p =
.018.

The results of this experiment replicate those of Experi-
ment 1 with a second-order autoregressive process. Positive
(first- and second-order) autocorrelation resulted in poorer
discrimination between series with and series without a
change and this increased difficulty was reflected in partic-
ipants’ confidence in their judgments. Participants responded
to the increased difficulty by relaxing their decision criteria,
increasing false alarm rates. As the interaction between the
autocorrelations was not significant, we found no evidence
that periodic trends in the time series affected detection abil-
ity.

A Bayesian change detection model
To compare participants’ judgments against a gold standard,
we used a Bayesian model to detect changes in time series
as defined by Equations 1 and 2. By taking the autocorre-
lation into account, this model is expected to perform well,
although the relatively short length of the series may limit its
performance.

In our analysis, change detection is based on the relative
evidence for a model M1, which incorporates the possibil-
ity of a change, over a model M2, which does not allow for
change. The measure of relative evidence is the Bayes Factor

BF =
p(y1:T |M1)

p(y1:T |M2)
(3)
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where p(y1:T |M j) the marginal likelihood

p(y1:T |M j) =
∫

p(y1:T ,θ j|M j)dθ j (4)

integrating over the parameters θ j of model j. For M1, the
parameters are θ1 = {µ0, δ, α1, α2, σε, t∗}. The parameters
of model M2 exclude δ and t∗. Recall that participants were
informed there could be only one change point in each series,
and that possible change points could be anywhere between
time points 11 and 40. In model 1, the posterior distribution
of the change point t∗ ∈ {11, . . . ,40}, conditional on the other
parameters, can then be expressed relatively simply as

p(t∗|y1:T ,θ1,−t∗ ,M1) ∝ p(y1:T |t∗,θ1,−t∗ ,M1)p(t∗|M1) (5)

where θ1,−t∗ denotes the parameter vector excluding t∗, and
p(t∗|M1) the prior distribution over the change points t∗,
which we took to be uniform. For µ0 and δ, we used trun-
cated Normal distributions with means of 50 and 0 respec-
tively, and variance 105. Both distributions were restricted to
the range between 0 and 100. For µ0, this reflects the range of
the time series on the graphs. For δ, this reflects that changes
can only be positive. For σε, an inverse Gamma distribution
was used. For α1 and α2, we used truncated Normal distribu-
tions (centered on 0) restricting the range such that the pro-
cess is stationary2. Posterior distributions for the parameters
can be efficiently estimated by Gibbs sampling (for computa-
tional details, see Albert & Chib, 1993). Bayes Factors were
estimated from the Gibbs sampler using the technique of Chib
(1995).

We computed the Bayes Factor for each of the time series
in the two experiments. Using the simple criterion of BF > 1
to detect a change, the hit rate of the model was 92.3%, but
the false alarm rate was rather high at 15.8%. Inspection of
the parameter estimates showed that false alarms were gen-
erally associated with relatively small changes (50% of the
posterior means of δ were smaller than 2.31) occurring rela-
tively late in the series (50% of the posterior modes of p(t∗)
were larger than t = 33). False alarm rates increased with
positive autocorrelation. This suggests that even while ex-
plicitly accounting for autocorrelation, the Bayesian model is
not immune to illusory changes produced by autocorrelation.

Modelling human change detection
To link the Bayesian and heuristic models to participants’ re-
sponses Rik, we assume that, for a time-series k, each method
of change detection j provides a signal v jk, which is corrupted
by noise ei jk ∼ N(0,σi j), and that participants judge there to
be a change when the noisy signal exceeds a criterion ci j. As
a result, the probability of a change judgment, for participant
i judging series k with model j, can be written as

P(Rik = change| j) = 1−Φ

(
v jk− ci j

σi j

)
(6)

2For a first-order autoregressive process, that means that |α1| <
1. For a second-order autoregressive process, the requirements are
that α1 +α2 < 1, α2−α1 < 1, |α2|< 1.

Table 2: Model fits (AIC) and numbers of participants best
fitted according to the AIC (nbest).

Experiment 1 Experiment 2
AIC nbest AIC nbest

Bayes 2891 3 3728 9
CRV 2280 47 2846 61
LAC 3512 0 5314 0

where Φ denotes the cumulative Normal distribution. For the
Bayesian model, we assume that

vBayes,k = logBF (7)

i.e., that decisions depend on the logarithm of the Bayes Fac-
tor (Equation 3).

In addition to the Bayesian model, we formalised the
heuristics of Wampold and Furlong (1981) described in the
introduction. We’ll refer to these as the Change-Relative-to-
Variability (CRV) and the Largest-Absolute-Change (LAC)
heuristic. The CRV heuristic compares a putative change to
the overall variation in the series. In doing so, we assume
people first visually fit a step function to the series, in such
a way as to minimize the noise. The step function represents
the mean water level before and after the change-point, and
with that the timing and size of the putative change in wa-
ter level. This putative change is compared to the deviations
of the series around the step function. More formally, we
assume the (increasing) step function, defined by the initial
level m0, change point t ′, and the increase d after the change,
is determined by minimizing the sum of squared error (SSE):

t ′,m0,d = arg min
t ′,m0,d

T

∑
t=1

(Yt −m0−dIt≥t ′)
2 (8)

The putative change d is then compared to an estimate s of the
standard deviation (derived from the sum of squared errors).
The value used for decisions, according to this heuristic, is
then simply

vCRV,k = d− s (9)

According to the second heuristic, a change is determined
solely by comparing deviations between time points to a pre-
existing “prototype”. For this heuristic, we therefore assume
the signal consists of the maximum deviation between con-
secutive time points

vLAC,k = max
t
|yt − yt−1| (10)

We fitted the models in two ways. First, we fitted each
model to the whole group of participants using a generalized
linear mixed effects model, including random decision crite-
ria ci j and dispersion parameters σi j. In addition, we fitted
each model to each participant separately. The results of both
analyses (Table 2) were in agreement: the model that best de-
scribed participants’ responses was the Change-Relative-to-
Variability (CRV) heuristic, followed by the Bayesian model.
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The Largest-Absolute-Change (LAC) heuristic fitted none of
the participants best.

Discussion
We presented two experiments on human change detection
in autocorrelated time series. In agreement with Matyas
and Greenwood (1990), we found little evidence of conser-
vatism. As the level of autocorrelation increased, participants
maintained a similar hit rate, but increased their false alarm
rate, indicating a relaxing of decision criteria such that more
changes are (erroneously) detected. For second-order autore-
gressive processes, detection was most impaired when both
autocorrelations were positive. There was no evidence that
periodic trends resulting from particular autocorrelation lev-
els affected detection performance.

Most participants responded in accordance with a simple
change detection heuristic, where an underlying change-in-
mean function is (visually) fitted to a noisy series and it is
determined whether the putative change exceeds the natu-
ral variability in the series.3 For the graphically presented
time series used here, this strategy seems plausible. And as
this strategy closely matches the performance of the Bayesian
analysis which accounts for autocorrelation in the series, it is
not a bad strategy either – at least not for the types of se-
ries studied here. Participants were explicitly told the range
of time points over which a change could occur, as well as
that there could only be one change in each series. For more
complex problems with multiple change points or changes in
other parameters than the baseline, the Bayesian and heuristic
analyses are more likely to diverge.

We found no evidence that people relied on (absolute) dif-
ferences between values on successive time points, a heuristic
suggested by e.g. Steyvers and Brown (2005). An impor-
tant difference between the present study and the latter one
is that our participants were presented with complete time
series, while Steyvers and Brown used an online prediction
task in which participants viewed each datum sequentially
and thus had to rely on memory. It is likely that change detec-
tion strategies will differ between online and offline detection
tasks. In online tasks, the information available for detection
is constrained by (working) memory capacity, as well as by
the fact that only previous data can be used to judge a change
at the current datum. In this case, strategies that rely on small
samples, such as an absolute change heuristic, seem more
plausible than strategies which use all the data, such as the
Bayesian model and Change-Relative-to-Variability heuristic
as implemented here.

Autocorrelation clearly impeded detection performance.
Further research is required to assess the extent to which peo-
ple can learn to “see through” autocorrelation. In the present
experiments, participants did not receive feedback about their
detection performance. It is possible that, after extensive

3In the present experiment, the variability actually seemed to
have little effect on responses and a version without variability fit-
ted just as well. However, as differences in variability between the
series were relatively small, further research is required.

training, people can learn to distinguish between real changes
and those that are merely apparent due to autocorrelation. In
domains such as risk assessment, the finding that autocorre-
lation increases false alarms, but does not decrease hit rates,
may provide some comfort. However, when assessing treat-
ment effectiveness, a more cautious approach may be called
for.
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