Large magnetic field effect on the heavy fermion superconductor U1− x Th x Be13 just above Tc
Large magnetic field effect on the heavy fermion superconductor $U_{1-x}Th_xBe_{13}$ just above $T_c$

J. O. Willis, J. L. Smith, and Z. Fisk

Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

H. R. Ott
Laboratorium für Festkörperphysik, ETH-Hönggerberg, 8093 Zürich, Switzerland

Magnetic fields as small as 4 kOe substantially increase the resistivity of $U_{1-x}Th_xBe_{13}$ for $x = 0.0175$ and 0.0378 between 1.4 K and $T_c$, the superconducting transition temperature of this heavy fermion material. At the intermediate value of $x = 0.026$, $T_c$ reaches a local maximum, and no normal-state field dependence is observed up to 4 kOe. At $x = 0.0603$, away from the region of nonmonotonic dependence of $T_c$ on $x$, again no field dependence is seen. The observations are discussed with regard to specific-heat measurements and in terms of the interaction of superconductivity with narrowband features.

I. INTRODUCTION

The intermetallic compound UBe$_{13}$ is a member of the small but growing class of so-called heavy fermion materials. Such systems at low temperatures are characterized by large, temperature-independent susceptibilities and large linear electronic specific-heat coefficients $\gamma$. These enhanced $\gamma$ values correspond to an effective electronic mass of the order of 100 electron masses. Such enhanced properties suggest a description of the low-temperature state of these systems as an electronic Landau–Fermi liquid, the classic example of which is normal 3He.

There have been suggestions that the nature of the Cooper pairs in these heavy fermion superconductors is not of the conventional, singlet BCS type. There have been proposals that UBe$_{13}$ and UPt$_3$ are anisotropic ($L \neq 0$) superconductors by analogy with the $L = 1$ triplet polar state of superfluid $^3$He at very low temperature. In contrast, CeCu$_2$Si$_2$ has been modeled as a Kondo lattice system with a conventional BCS ground state.

Nonmagnetic impurities have been shown to substantially modify both the normal and superconducting properties of UBe$_{13}$. Substitution of thoria, which has no 5f electrons, for uranium in compounds of the form $U_{1-x}Th_xBe_{13}$ has been the most heavily studied case. The $T_c$ is strongly depressed by Th in the $x = 0$–0.06 concentration limit, and between about $x = 0.017$ and 0.026 shows an extremely unusual increase of $T_c$, as determined by resistivity or (less dramatically) by ac susceptibility. In addition, as $x$ is increased, the shoulder in the resistivity at about 25 K becomes a broad peak and moves to higher temperature. This feature looks as if it is caused by crystal field scattering, but no crystal field levels have been observed to date. The narrow low-temperature peak, at 2.5 K for pure UBe$_{13}$, is similar to a feature in the resistivity of CeCu$_2$Si$_2$, which has been ascribed to the development of the highly correlated Fermi liquid state. This peak moves to lower temperatures rapidly on Th addition, disappearing below $T_c$ for $x > 0.026$. The net effect of the motion of these two features is that at a particular low temperature, the resistivity over a range of $x$ values decreases with increasing $x$.

II. EXPERIMENTAL PROCEDURE

High-purity U, Th, and Be were melted together in a conventional argon atmosphere arc furnace. The buttons were turned and remelted at least seven times. Compositions were corrected for weight loss using the measured ratio of constituents in the arc furnace residue. Samples were subjected to x-ray diffraction and metallographic analysis. All specimens were measured in the as-cast condition. Semicircular slices were spark cut from the buttons. A standard four-probe ac resistivity technique in a dilution refrigerator and superconducting magnet were employed in the measurements.
FIG. 1. Resistivity of U_{1-x}Th_xBe_{13} vs temperature with magnetic field as a parameter. Magnetic fields are, from right to left: 0, 0.026, 0.0378, 0.0603, and 4.0 kOe. Thorium compositions shown are x = 0.0175, x = 0.026, and x = 0.0378.

III. RESULTS

The main results are summarized in Fig. 1, which shows the resistivities of U_{1-x}Th_xBe_{13} as a function of T for several values of applied magnetic field H. For x = 0.0175, the low-temperature peak in the resistivity moves to lower temperatures in an applied field until it appears to move below T_c for H ~ 4 kOe. Putting it another way, the low-temperature decrease in the resistivity is inhibited by a magnetic field. For x = 0.026, the sample with x nearest to the relative maximum in T_c, the magnetic field has essentially no effect on the resistivity. Near the end of the anomalous region in x at x = 0.0378, the H = 0 resistivity shows no low-temperature peak; the slowly falling resistivity as T decreases is the low-temperature side of the broad, high-temperature (~ 30 K) feature. There does, however, appear to be a rather more rapid decrease in the resistivity below 1 K than for x = 0.0175. The application of a field inhibits this decrease, as it does in the x = 0.0175 case. Finally, for x = 0.0603 (not shown) there is a decrease in the resistivity below the 30 K peak all the way to T_c. This is in a region where only one transition is observed in Ce, and here only a very slight increase (~ 1%) of the normal-state resistance is observed in a 4 kOe field just above T_c.

All of the compositions studied have a very large (−dH_{c2}/dT)_T. Magnetic field corrections to the thermometry account for more than one half of the measured T_c shift. Thus the determination of the T_c depression is somewhat inaccurate. Furthermore for x = 0.0175, as seen in Fig. 1, it is rather difficult to assign a T_c because the normal-state resistance is dropping so rapidly. Therefore, we can only state that (−dH_{c2}/dT)_T for x = 0.0175 < x < 0.0603 is the same order of magnitude as the value for pure UBe_{13}, which is 420 kOe/K.14

IV. SAMPLE QUALITY CONSIDERATIONS

We have rejected the possibility that the normal-state magnetic field effects observed here may actually be caused by free Th filaments in the sample. Pure thorium has a T_c of 1.374 K and H_{c2}(0) of 162 Oe. This is approximately the same temperature for which field-dependent effects occur for x = 0.0175 and 0.0378. If it is Th superconductivity, then the observed “H_c” is much too large and the transition width is extraordinarily wide, greater than 0.8 K, which would be quite broad for a precipitated element. Furthermore, one would expect the amount of free Th to increase with x, but no excess conductivity is observed for x = 0.0089, 0.026, 0.0603, and 0.0675. In addition, the shape of the resistivity curves for x = 0.0378 and x = 0.034 of Ref. 9 are very similar near T_c, suggesting a systematic trend with x rather than random variations with free Th.

Metallography and x-ray diffraction analysis also reveal these samples to be essentially single phase. Very minor (~ 1%) amounts of UO_2 and Be were observed by x-ray diffraction. The presence of free Be implies that the stoichiometry is on the (U, Th) poor side of the U_{1-x}Th_xBe_{13} compound, and thus free U or Th would be very unlikely. In contrast, flux-grown “single crystals” were of much poorer quality. Fractionation of Th in the melt was clear from lattice parameter determination, and an additional unidentified phase was found. Small amounts of free superconducting AI (the flux) were observed in the resistivity measurements. These transitions were very sharp and were quenched by very small magnetic fields on the order of 100 Oe. Again, all of the measurements reported here are on arc-melted material. The above remarks lead us to believe that the observed resistivity curves are intrinsic to U_{1-x}Th_xBe_{13} and are not caused by second phases, in agreement with the conclusions in Ref. 12.

V. DISCUSSION

The nature of the 2.5-K feature in the resistivity is not known; however, it should be noted that the position of a similar peak in CeCu_2Si_2, which is attributed to Kondo lattice scattering, has a strong influence on superconductivity in that heavy fermion system.11 Superconductivity is de-
destroyed in CeCu$_2$Si$_2$ if this peak moves from near 20 K to below 6.5 K, which occurs for some stoichiometries; in UBe$_{13}$, $T_c$ is also depressed as the 2.5-K feature moves to lower temperature upon Th substitution. Although neither the extreme magnetic field dependence of the low-temperature resistivity nor the two specific heat transitions observed for this small range of $x$ are clearly understood, we suggest that these phenomena may be related. The apparent lack of sensitivity to magnetic field for $x = 0.026$, the midpoint of the anomalous $x$ region with the local $T_c$ maximum by resistivity and with approximately equal entropies in the two specific-heat anomalies observed in zero magnetic field, is also not fully understood. We speculate that these phenomena may be caused by a subtle interplay between superconductivity and the source of the scattering mechanism related to the low-temperature resistivity peak as the relative temperatures or energies of these two interactions change with $x$. Volovik and Khmel'nitskii very recently suggested\textsuperscript{16} that some of these unusual effects may be caused by the formation of a “superconducting glass” state with short range order just below $T_c$, followed by a transition to normal superconductivity with long range order at lower temperatures. A crucial point to bear in mind is that the energy scales and bandwidths relating to these phenomena are extremely small; as a result, modest changes to the system, either by impurity additions or magnetic fields, can cause substantial modification of the physical properties of UBe$_{13}$.

Specific-heat measurements on U$_{1-x}$Th$_x$Be$_{13}$ in an applied magnetic field are currently under way to further elucidate this subtle interplay and to probe the nature of the specific-heat anomalies observed in zero magnetic field.

**ACKNOWLEDGMENTS**

We thank G. R. Stewart and C. M. Varma for helpful discussions, R. Pereyra for metallography, and R. B. Roof and J. A. O’Rourke for x-ray measurements. Work at Los Alamos was performed under the auspices of the U. S. Department of Energy. Work in Zürich was supported by the Schweizerische Nationalfonds zur Förderung der Wissenschaftlichen Forschung.


\textsuperscript{16}E. Volovik and D. E. Khmel'nitskii (to be published).