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Figure 0.1. Airsim UAV Model with Unreal Engine.

Abstract

From driverless vehicles to mars rovers, autonomous navigation and task-taking are undoubtedly

the future of robotics. Over the recent years, research in Deep Reinforcement Learning (DRL) has

grown in many areas of navigation including unmanned aerial vehicles (UAVs). Most of them are

far from realistic and assume perfect state observations. In many real-life scenarios like search and

rescue in a complex and cluttered environment, GPS-denial tends to become a problem. Therefore,

this research is interested in vision-based navigation and obstacle avoidance in realistic environ-

ments.

More specifically, this thesis aims to address the following research tasks: 1) To investigate

the vision-based navigation of UAV in GPS-denied synthetic environments. This work will utilize

a Variational Autoencoder (VAE) to improve sample efficiency, and develop a Proximal Policy

Optimization (PPO) agent that can trace rivers in photo-realistic simulations. 2) To conduct

reward shaping to deal with vision-based problems. Developing the correct reward function leads

to the desired agent behavior, but it is a challenging task in vision-based learning. 3) To validate

the PPO agent performance and compare it with another agent trained with imitation learning

(IL). The evaluation metrics include the average distance traveled per episode, distance away from

center of river, and standard deviation of actions taken.
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CHAPTER 1

Introduction

1.1. Motivation

The recent advancements in the field of machine learning has opened the door to countless

capabilities and applications. Specifically in deep reinforcement learning (DRL), many researchers

and companies have found success in developing prototypes for autonomous vehicles, which are

revolutionizing the world of transportation for the twenty-first century. However, despite the over-

whelming enthusiasm and achievements in DRL, there are still many unexplored opportunities that

require initiative. For instance, autonomous unmanned aerial vehicles (UAV) applications in open

and complex environments is an under-researched area with lots of potential [44]. Moreover, even

less prior research focuses solely on vision-based navigation, which is a very complex problem on

its own. On the other hand, applications such as search and rescue, reconnaissance, and network

broadcast are all hindered by environmental factors such as GPS-denial and complicated visu-

als [14]. Therefore, the goal of this research is to develop an AI agent that can perform obstacle

avoidance in such a complex open environment via DRL using only visual observations. The sce-

nario chosen for this research will be to produce a policy that can trail along in simulated riverine

environments using proximal policy optimization (PPO).

1.2. Literature Review

The twenty-first century has brought plenty of well-known machine learning (ML) achievements

worldwide [34]. Many of these advancements had been made in the navigation industry, because

that is one of the largest applications of autonomous robotics [31]. Some recent challenges of AI

navigation are related to lane keeping, tracking, and cruise control [32]. One of the biggest things

to prove was whether an algorithm can outperform conventional control theories in trajectory

tracking. Indeed by 2019, a Deep Q-Learning algorithm was able to outperform Proportional-

Integral Derivative controller in unmanned aerial vehicle (UAV) trajectory tracking convergence
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efficiency and robustness; thus, validating the viability of ML in UAV controls [26]. Then, as

of recent, there were numerous ML research using DQN to control UAV agents to cover network

distributions and simulate disaster relief efforts [24] [43]. However, these simulations were all very

simplistic, mostly operated in 1-D without UAV dynamics, and required perfect knowledge of all

states. Nevertheless, these researches paved the way for ML-UAV research.

In recent years, many UAV autonomy research uses policy gradient algorithms to train their

agents. Most of these UAV projects are interested in Deep Deterministic Policy Gradient (DDPG),

because DDPG is able to function in continuous action space, capable of learning from other policies,

and able to learn from a replay buffer [18] [45]. For example, by warm-starting a DDPG agent

with imitation learning (IL), a UAV agent provides aerial surveillance by tracking ground targets

while performing complicated maneuvers [33]. Similarly, IADRL uses IL to warm-start another

DDPG agent to drive a ground vehicle carrying a UAV, then launch the UAV to reach some vertical

target [47]. Fast-RDPG, a DDPG variant that breaks up correlation in the observation sequence,

has been shown to be effective in navigating complex spaces [42]. All of these DDPG agents

performed well for their tasks, but they required lots of local and global observations, plus perfect

knowledge of states to properly function. Though DDPG is likely to still function under some

uncertainty with state observations due to its use of the replay buffer, it is highly likely that DDPG

will either converge sub-optimally or diverge completely due to its sample bias [29]. Nevertheless,

this replay buffer is a huge draw factor to using off-policy algorithms, because one can manipulate

the data in the buffer prior to the policy update to further encourage desirable actions. The real

drawbacks are that DDPG is not easy to tune and may often experience instability or divergence

due to the innate bias from its target network [18]; therefore, it is important to continue exploring

other prior works.

On the note of ease of implementation, there are simpler methods to train navigating agents

demonstrated by the numerous End-to-End (E2E) driving agents that were developed in recent

years. In 2016, an E2E agent was trained on limited amounts of expert demonstrations to lane

keep [8]. The model takes RGB images and expert commands to train a NN that takes the visual

input and generates a command output. The only novelty was that they feed augmented data that

shows the car in drift to encourage the agent to correct for drifting. Otherwise, the implementation
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is as simple as image-in, command-out, hence the “end-to-end” pipeline process. Although the

agent fails when the background becomes too complicated, it is no doubt inspiring to be able to

simplify the training and operating requirements for such research.

Speaking on E2E, another research that was really interesting is the comparison between discrete

versus continuous action space networks [37]. Under the same scenario of lane keeping, this time the

agents have way more knowledge in observation than just visuals. The discrete DQN network was

compared to a continuous DDPG algorithm, and both were successful in driving around a simulated

track using correctly formulated termination functions. The key finding was that the discrete agent

had rougher performance, whereas the continuous agent was moving smoother and steadier around

the track. This is possibly due to the discrete agent not able to converge optimally versus the

continuous agent. For this reason, it is recommended that this project also use a continuous action

space model.

Besides considering the action space for the model, there was also another research that looked

at whether online or offline learning had the advantage for lane keeping in 2020 [17]. It compared

2 DRL algorithms both paired with a VAE, one being DDPG, and the other being soft-actor-critic

(SAC). Interestingly, the research found that the online algorithm, SAC, was able to outperform

the offline method, DDPG, in episode length, cumulative rewards earned, and final convergence.

The conclusion was that the VAE+DDPG was less effective in generalization due to overload

in information, including cumulative rewards and sample noise, that degraded the quality of the

representation. This could be the result of DDPG being less stable in a noisy environment [29], but

it could also be a problem with the experience trajectories being too large to effectively communicate

complex information. Thus, for the sake of maintaining good representations, it is recommended

to tune the size of training data to the scenario.

On the other hand, VAE is really popular for sample efficiency and generalization, which is

why it is a popular choice even for UAV research. In 2019, a research found that a Cross-Modal

VAE (CMVAE) model, which compresses visual data and state knowledge to form a smaller rep-

resentation, was easier for an IL agent to learn from and outperform a contemporary that did not

employ any state reduction models [9]. The same team later took the simulation-trained agent

to compare its performance in real-life and found relative success [10]. This research most closely
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resembles the desired outcome of this current project, in which one can take a simplistic approach

to train a robust UAV that can operate in open environments. The big difference is that the task

in this work is easier to define compared to tracing a river; the reason for this is that in both

simulation and real-life test, the CMVAE only needs to identify a clearly differentiable red target

from a different colored background. In true natural open environments, there are no consistent

distinguishing features that will always help identify the river. Nevertheless, it is still necessary to

use a VAE for its benefits, but its downsides must be kept in mind.

Stepping away from all the inspiring work, let’s revisit the main objective of this research,

which was to produce a robust agent with minimal requirements that can operate in open and

complex environments using only vision. Some conclusions made so far include utilizing a VAE to

improve simplicity, sample efficiency, and generalization; adopting a continuous action space model

produces smoother and more optimal performance; and using an online algorithm that is more

resilient to sample noise. For those reasons, there was an intrigue to investigate PPO, a robust

on-policy algorithm. The main reason why PPO is better than DDPG is that PPO is more robust

to hyperparameters, meaning it usually converges regardless of the hyperparameters used [13].

The reason for this is because the bounded gradient step from PPO guarantees a near monotonic

improvement, thus it is way more robust.

On the other hand, because DDPG has lower variance for having a target network, it tends

to have larger bias, which will often cause divergence and challenge stabilization if not properly

tuned [30]. This fact definitely makes PPO the easier choice to learn from for new users of policy

gradient algorithms. On the other hand, since this project will be fully simulated and optimized,

it will not be expensive to sample from; thus, using a more sample efficient algorithm like DDPG

is not necessary [11]. In general, the reason why DDPG has more trouble converging is because it

is off-policy, and the target network introduces bias towards a distribution that might reflect sub-

optimal conditions. The fact that PPO only updates using the current policy samples, means that

it will always update towards the most current objective. This makes it so PPO converges faster

than DDPG [41]. For these reasons and more, PPO has been one of the most attractive algorithms

since 2017, and was ultimately chosen to continue from this point of the literature review process.
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Though there are many examples of PPO achievements over the years, there are not many

published works on UAV applications using PPO. Similar to the research on CMVAE agent flying

through targets, there are two projects that implemented PPO, instead of IL, to maneuver a UAV

through hoops in simulation. The first research, published in 2021, aims to generate minimum

time-of-flight trajectories through randomized targets in a 3D space [40]. The project found that

sparse reward was bad for convergence of PPO long-term due to the difficulty in understanding

whether individual actions taken were good within the trajectory; thus, they used straight line

approximation as a reward function. Their agent was able to reach 5.2% of theoretical limit, but

their algorithm only works with fully accurate GPS values. Even though they randomize their gates

in certain locations, the relative distance and GPS locations are still given to the agent. Thus, it is

possible to expand their work by incorporate vision into their agent and removing the reliance on

GPS data. The second research, published 2020, simulates a racing drone flying through hoops in

Airsim, maximizing reward based on proximity to the center of targets [4]. Though the agent was

successful in demonstration, it also required full state knowledge and only operated in low flight-

speed conditions. Plus, this agent was only able to perform in the training course, they also only

trained the agent to fly in a circle. And even though this work incorporates visual observations,

their agent still heavily relied on the GPS to function.

On the other hand, another PPO-UAV application would be tracking a moving target. A 2020

study trained a PPO agent that can track its target based on a known travel path, and then

transferred its learning to a different scenario to track a randomly moving target [25]. The first

part of training showed that PPO was able to perform its tracking task given full knowledge of

the states and trajectory of the target. However, the second agent they trained had slightly worse

performance in tracking a randomly moving target. This project shows the potential limitations of

PPO in dealing with distribution shift and generalization, but these are problems that all algorithms

have to struggle with. Also in 2020, there was an example of PPO-UAV navigating in a static

obstacle course to reach different targets [22]. The agent was able to avoid static obstructions, and

reach preset target locations with 81% success rate. The rest of the 19% failure is simply because

the agent uses 2D depth perception, which is robust enough to maneuver around corners.
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In retrospect, many prior works in PPO have very simple environments. Most of them mainly

focuses on path planning. Whereas, simply conducting obstacle avoidance using vision based algo-

rithms is a clear under-researched topic. Therefore, this project is inspired to pursue vision-based

DRL in high-fidelity simulations as one of its novelties.

1.3. Goals and Contributions

As discussed, there is plenty of enthusiasm for PPO research, but there is a lack of high-fidelity

UAV studies done. And from the discussion above, it is clear that simple scenarios can have

questionable performance in real-life applications; and most prior works require loads of sensory

data to achieve meaningful results, which is not always easy to obtain in the real-world. There is

also little research done to validate PPO’s performance navigating open environments with limited

vision-based observations. Therefore, it is of interest to investigate this novel application and the

issues of approaching realism.

Since there are no work like this project, there are no high-fidelity simulations that is directly

available usage. Therefore, a significant portion of the project was dedicated to creating these

highly photo-realistic riverine maps. These maps will not only be used for this project, but is also

available for other students in the lab to use for their own projects.

On the other hand, the project will also dedicate time to reward shaping. Most past research

simply used very complicated reward signals consisting of many components based on different

states and interactions. However, under the scenario of vision-based DRL, it may not be possible

to utilize a complex reward signal. Therefore, this project will also investigate how to properly

define a reward function that can encourage desired behaviors.

Finally, the last contribution from this project will be to compare the performance of PPO to

another competent algorithm. The competitor was based on the Neptune project agent, trained

using HG-DAgger imitation learning. Comparing the two algorithms that will be using the same

VAE and same training course should provide some good insight on benefits of DRL.

In summary, not only will this project provide a clear outline to how to perform vision-based

UAV DRL, but it will also discuss the many hardware and software compatibility issues that are

rarely discussed in other works. The list of actual contributions are:
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• Applying DRL on a novel application

• Creating a large quantity of high-fidelity simulation environments

• Examining reward shaping in dealing with vision-based observations

• Outperforming an imitation learning trained algorithm in performance test
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CHAPTER 2

Vision-Based Reinforcement Learning

2.1. Variational Autoencoder (VAE)

There are a few key algorithms that were used in this report, the VAE, HG-DAgger, and PPO.

First algorithm to discuss is the VAE; how VAE works is by solving the loss function,

(2.1) li(θ, φ) = −Ez∼qθ(z|xi)[log pφ(xi|z)] +KL(qθ(z|xi)||p(z)),

where pφ is the decoder, qθ is the encoder, and p is the normal distribution with mean zero and

variance one [2]. The first term is the reconstruction loss that basically measures the difference

between the reconstruction to the input. The second term is a KL-divergence term that pushes the

input towards the a Gaussian distribution; this is because the assumption of the VAE is that the

latent space is Gaussian. Solving this objective allows us to obtain a network that can take data x

and output latent z, as well as taking z and reconstructing x̃, as seen in figure 2.1.

Figure 2.1. VAE Encoder and Decoder [2]. The encoder takes an input and
produces a latent output. The decoder takes the latent representation and tries to
reconstruct the input.
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The current architecture transforms a re-scaled, miniaturized view of what the onboard monoc-

ular camera will see, into an array of latent variables size 64. This latent array is the input to the

PPO agent. Not only does it need a large amount of data, this project used over 600 GB of data

to train the first VAE, but it is had a couple shortcomings. So a retraining was performed using

an additional 100 GB worth of data. A more in-depth analysis will take place in the results section

to discuss the insights to using a VAE system.

2.2. Human-Gated DAgger (HG-DAgger)

The second key algorithm for this project is a baseline for comparison of performance; and

much like the VAE that was developed as part of the larger Neptune project, an imitation learning

agent was also developed to travel in these riverine environments. For this project, the agent was

trained using 3 iteration HG-DAgger in the same training maps to serve as a fair comparison to

DRL agent.

HG-DAgger solves 1 of the biggest issues of DAgger imitation learning, which is that it requires

a large amount of expert data [1]. Basically, HG-DAgger is a confidence-based, human-in-loop

variant of DAgger that allows the expert to intervene at any time and demonstrate how to guide

the agent back to safe states [21]. The key is that each iteration, new expert data is aggregated to

the existing data pool,

(2.2) Di = {(O(xt), πH(xt))|g(xt) = 1, xtεξi},

where O(xt) is the observation associated with the πH(xt) human expert input at state xt. When

the expert intervenes, an intervention doubt Ii is also recorded into a doubt intervention logfile I.

The aggregated data set is used to update to the policy under the following equation,

(2.3) lt ← ‖ ¯anov,t − aexp,t‖2 ,

where ¯anov,t are the novice action predictions, and aexp,t are the expert demonstrations. The

difference between these two largely determines the policy move [1].
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2.3. Proximal Policy Optimization (PPO)

Speaking of PPO, again it was discovered that PPO was one of the simplest policy gradient

methods to implement, and due to its robustness, it was favored as the choice for this project.

Traditionally, policy gradient methods alone have issues with slow convergence and learning a

robust policy [46]. Thus, the actor-critic method was introduced to resolve those problems of a

pure policy gradient actor by using a state estimator to evaluate the actions taken and reduce

variance. However, this does not resolve the sensitivity issue which affects the robustness of the

policy. And thus, methods like PPO impose bounds on the advantage estimation to prevent large

policy moves [19].

PPO works similarly to all actor-critic algorithms, which relies heavily on the advantage calcu-

lation,

(2.4) A(s, a) = Q(s, a)− V (s),

where Q(s, a) is the state-action value estimate, and V (s) is the average value of that state based

on the trajectory’s rewards. Simply, the advantage estimation compares the state estimates from

the value function to the state returns, and guesses how good it was to be in those states. Usually

this advantage is directly used to perform network updates, but for PPO this update is bounded

as seen in the surrogate objective below

(2.5) L(s, a, θk, θ) = min(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip(
πθ(a|s)
πθk(a|s)

, 1− ε, 1 + ε)Aπθk (s, a)),

where the left side is the surrogate advantage, and the right side is the clip function. The surrogate

advantage measures how different the new policy is relative to the old one. The clip function can

be reduced to,

(2.6) g(ε, Aπθk (s, a)) = clip(
πθ(a|s)
πθk(a|s)

, 1− ε, 1 + ε)Aπθk (s, a),

10



Figure 2.2. PPO-Clip Surrogate Function [38]. This objective visualization
shows that the clip function bounds the objective to prevent large policy moves.

which determines how large the boundary is between each iteration. More specifically, PPO-Clip

uses a hyperparameter ε to bound the range of the policy move,

(2.7) g(ε, A) =

(1 + ε)A A ≥ 0

(1− ε)A A ≤ 0
.

The figure 2.2 visualizes what the clip function does, which is to determine the direction of update.

One can observe that if the advantage is positive, the objective will increase and update towards

more likely actions in the future, and vice versa. Besides the direction, the surrogate advantage

term is used to determine how different can the new policy relative to the old. Thus, together this

function determines to direction and size of the policy shift.

In the end, the minimization between the surrogate advantage and the clipped advantage func-

tion allows for the largest and safer policy changes. Usually this bound is set to 0.2 for most cases,

but it is usually within a range between 0.1-0.3 [5].

2.4. Neural Network Design

To maintain consistency amongst the HG-DAgger and PPO agent, it was necessary for their

networks to share all the same shape. Both networks operate in a continuous action space with the

same size and activation functions. Specifically, the policy is a fully connected deep network with

3 hidden layers of 512 nodes, an input layer, and an output layer with Tanh activation function.

Note that an output to the network is the action that the agent will take for a given input.

Despite maintaining the same shape, there is one difference between the HG-DAgger and PPO

agent, and it is that the HG-DAgger is a deterministic network while the PPO is stochastic. The

Gaussian distribution attributed to the PPO network, however, actually made it rather easy to
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equate the two networks. Basically, the network itself will always produce a single output ranging

-1 to 1 due to the Tanh function as the mean of a standard deviation (STD); and a STD value

is manually prescribed, with an appropriate STD decay, to obtain the true output of the PPO

network. Maintaining the stochasticity of the PPO network was important because the surrogate

advantage calculations depend on the probabilities of taking certain actions. It is also beneficial to

utilize the stochastic nature of the algorithm to encourage explorations. Plus, stochastic networks

are generally more robust in foreign environments than deterministic networks [35].
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CHAPTER 3

System Implementation

3.1. Software Specification

As mentioned in the project scope, a proper simulator is a key part of this research. From the

many choices for quadrotor UAV simulators that exist, Gazebo and Airsim were the top two options

for most researchers [7]. Gazebo is popular in robotics because it provides the entire simulation

environment that integrates support for ROS and hardware [36]. This makes it an attractive option

for robotics researchers that would like to take simulation to real world testing. However, the level

of detail for the environment is typically lacking, therefore, it was not the choice for this project.

Luckily, the open source Microsoft AirSim provided exactly what was needed.

As a simulator designed specifically for conducting machine learning research and pairing with

the powerful Unreal Engine, Airsim was the more appropriate choice [28]. Not only does AirSim,

seen in figure 3.1, provide a highly realistic physics engine that can operate at a high frequency,

it is also easy to integrate with its cross-platform support and myriad of user-friendly application

programming interfaces (API).

On the other hand, the Unreal Engine 4 (UE4) is one of the easiest game engines to use that

can create high-complexity environments. The level of beauty and realism that UE4 is able to

achieve made it so that even popular TV shows, like ”The Mandalorian” [15], will integrate its

photo-realistic graphics. The art of map creation is actually very easy to learn, especially when the

editor, as seen in figure 3.2, is extremely user-friendly with many drag-and-drop assets. For these

reasons, plus the fact that Airsim has built-in UE4 support, these two became natural choices for

high-quality simulation research.

Now, not only is UE4 simple to use, it also comes with a lot of free high-quality content. Most

notably, UE4.26 released a water plugin, in figure 3.3, that was built by Epic Games’ developers

specifically for streamlining the world building process. Before UE4.26, water content had to be
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Figure 3.1. Microsoft Airsim in UE4 Environment [23]. The different on-
board sensors such as camera, Lidar, infrared, and etc. make Airsim even more
attractive than other simulators.

Figure 3.2. UE4 Project Editor Screen. This is the typical view of the Editor,
which contains the actor contents (left), tools (top), world outline (right), rendered
view (center), and project contents (bottom). Interacting with assets are as simple
as dragging and dropping them into the rendered environment. Thus, it is extremely
easy to learn!
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Figure 3.3. Water Plugin Beta from UE4.26. This plugin contains all the
water body contents displayed to the left within figure 3.2. They are experimental
content that was developed specifically to streamline the process of adding water-
based actors to the environments. Due to this being a beta package, it contains
many bugs.

Figure 3.4. 1 Meter Wide Racing Drone Model from Airsim. The Airsim
engine includes all the physics component to the racing drone.

added to the content folder independently, and imported into the world as some sort of static

actor; And if someone were interested in physics with the water content, they would need to

program their own material or pay a hefty price online. Thus, it was lucky that this project started

around December 2020 was when the water plugin’s beta was released, which provided utilities to

build hyper-realistic water bodies that automatically deformed the landscape and carried their own

water physics.

Microsoft Airsim 1.3 came with a built-in physics model of a racing UAV, shown in figure 3.4,

which made some parts of the project convenient, but not everything was trouble-free. The fact

that UE4.26 was incompatible with the old Airsim 1.3, actually created a challenge for environment

design; recall the problems of manually creating water bodies discussed above, it would have cost

at least double the time to create each map. Thus, it was not until Airsim 1.4 released in January
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Figure 3.5. Example Glitches with the Water Plugin. The Water Body
River actor will often dislocate from its original location when running in Airsim
mode. On the left, one can observe that there is a limit to how large the landmass
can be before the river breaks down. On the right, one can observe the river is
rendered high up in the sky because the Player actor is not set to (0,0,0). There
are plenty more glitches not shown here, and most of them have to do with Airsim
mode.

that the project could resume in full force. Yet, even with the release of the new Airsim engine,

not all bugs were resolved.

Specifically, the water plugin tends to break very easily when trying to run during Airsim mode.

Most common example of bugs was glitching the rendering location of the river itself, as one can

observe in figure 3.5. There are many ways to cause this issue, such as not setting the player-actor

at 0,0,0 starting location, creating a super large landscape, or attempting to close and reopen

the project after making duplicates of the same map. After learning to avoid these issues, many

glitch-free environments were created and utilized alongside the Airsim 1.4 simulator.

3.2. Hardware Specification

Since UE4 editor has no Linux support, a Windows machine is required for the creation of the

riverine maps. Besides the operation of UE4, there is no other need for the Windows machine.

On the other hand, a Linux computer was built with RTX2080 GPU to run the simulations and

API’s simultaneously. This setup was the bare minimum to achieve 10 hz loop rate after parallel

processing the simulation environment, UAV controls, and PPO training. Speaking of which,

CUDA acceleration was also used to speed up the training process for the PPO agent.
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CUDA acceleration is a commonly used technique that utilizes the GPU to conduct computa-

tions at a faster rate than the CPU. Usually, there would be multiple GPU’s in a machine learning

setup, where at least 1 GPU will solely function to perform computations alone and nothing else.

The reason for this is that if one were to run a UE4 simulation, as well as some computations on

the same GPU, one will experience a myriad of CUDA errors. In this project, there was a physical

limitation of having only 1 available GPU. Therefore, many of the CUDA errors demanded extra

attention in resolving.

3.3. Simulation Environments

As mentioned before, the project is an extension from the larger Neptune project, which means

some of the work was doubled between the two projects. One large area of overlap is the creation

of the simulated environments. One huge motivating factor in choosing riverine environments is

because the university is located near Putah Creek, see figure 3.6. That location is where some of

the real-life UAV testing took place.

Over the course of the two projects, at least 50+ different hyper-realistic riverine environments

were built, although not all of which were used. The variety of these maps were made up by choices

such as type of trees, shape of river, color of river, angle of lighting, river bed (scarp) details, river

speeds, water formations, and floating objects. However, after much simplification in the original

project, only 10 maps were used for the training of the first VAE, and 3 other maps were used for

VAE evaluations. The criterion of simplification was consistency among the maps chosen; thus,

for these 13 maps, similar models of American Beech trees, light green color river, black cherry

shrubs, short grass, dirt scarps, floating leafs and branches, HDRI skydome, and same multi-texture

landscape material was used. The only differentiating factor among each river was the shape of the

rivers, lighting conditions, and water formations such as water falls or banks. An example of such

environments can be figure 3.7 below. As mentioned in the VAE portion of the report, the original

VAE was insufficient for this project. Thus, 2 more environments with greater detail in the forest

surrounding the river were designed to collect new data of different foliage compositions. Together

a total of 15 maps were designed specifically for training the new VAE.
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Figure 3.6. Aerial View of Putah Creek [12]. This was part of the motivation
for using riverine environments as the scenario for the Neptune project.

For training the PPO agent, 4 different training maps were created following the same criterion

above. Note that these rivers are completely foreign to the VAE. Anyway, 2 of the 4 maps are

shorter and easier because some early testing like the reward functions needed to be conducted,

and it will be more efficient to begin training in easier environments. The other 2 maps are twice

as long and more complicated in shape, composition of foliage, and lighting. An image of one of

the short training maps is shown in figure 3.8; the key features to notice is that there is only 1 left

turn and 1 right turn, the river ends are clearly distinguishable, and each direction of the map is

made of completely different states. For these reasons, each direction of the map is classified as an

independent river, resulting in a total of 8 rivers worth of states that were used to train the PPO.

After creating these training maps, 2 performance evaluation maps were also created from the

same criterion above. These 2 maps are completely different with independent shape, composition

of foliage, and lighting; as seen in figure 3.9, the map is more complex than the training maps.
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Figure 3.7. Example of Riverine Environment. Notice the complexity of fo-
liage in differing compositions of grass, weeds, bushes, trees, trunks, scarps, and
buoyancy objects. Each map will contain similar foliage species and river color.
However, the placement of foliage, shape of river, and lighting conditions will be
different. Each map will only contain 1 river body due to avoid glitching the ren-
dering.

These maps are also completely new to the VAE, HG-DAgger, and PPO agent, and should provide

the platform a fair comparison of performance.

Since there were so many maps to be made, it was discovered that by following some standard

procedures, one can significantly reduce the creation time from 8-10 to 4-5 hours per map. The

9-step procedure listed in table 3.1 below was made by and for amateurs, thus there is still room

for improvements. Nevertheless, it should be beneficial for whomever is interested in building

high-quality simulation environments.

One other thing to mention about the simulation environment is the way the maps are loaded.

Currently, only 1 map can be in communication with the API, and each map only contains 1 river.

Although one can technically create a simulation that contains multiple maps each with a unique

river, there is no actual way for the API to recognize which map was loaded up at any time during

its operation. This limitation also stems from the fact that reward functions are built around some
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Table 3.1. 9-Step Procedure for Generating Simulation Environment using UE4.

UE4 Editor Procedures Important User’s Notes

1) Open the Airsim
“Blocks” UE4 project,
and Enable Water Plu-
gin

Be sure to first download and compile the Airsim packages in Mi-
crosoft Visual Studio, the “Blocks” simulation will be automati-
cally built. Then, make sure to change the game settings to Airsim
mode inside the UE4 editor. If one so chooses, they can also create
a blank project from scratch instead.

2) Create a Landscape
with Landscape tool

Be sure to enable Edit Layers to allow Water Plugin to automat-
ically deform landscape. Avoid manually adding pieces of land to
prevent random glitches from the Water Plugin.

3) Add a Water Body
River actor from the
Water Plugin, and
Shape the river using
various spline points

Water color must be tuned using absorptivity and reflectivity in-
side the material editor, and water roughness also affects the sur-
face’s shine.

4) Sculpt the Landscape
around the river, and
Paint the Landscape us-
ing a Multi-layer mate-
rial

A Multi-texture material is required to paint landscapes of differ-
ent textures in UE4.

5) Add in scarps around
the river bed

This step is the most tedious and repetitive, but it will make the
river beds look way more realistic.

6) Add in the follow-
ing Actors: Player,
Skylight, Light Source,
HDRI Skydome, Ex-
ponential Height Fog,
post-process volume,
and buoyancy objects

Player actor must be at location (0,0,0) to not glitch the river.
Skylight and HDRI doubles as light sources, but is necessary for
realism towards the edges of the map. Make sure to tune the
height and intensity of Skylight, Light Source, and HDRI to cast
proper lighting and shadows. Exponential Height Fog is a com-
ponent that is automatically rendered if not specified, and thus
one must either make it invisible or include it in the game. The
Post-Process Volume is used to tune the rendering quality. And
finally buoyancy objects are created using Blueprints in UE4 to
mimic floating leaves or branches.

7) Save the current
project as a template

This step is crucial in saving time! It will usually take about 4+
hours alone just to perform steps 1-6. Step 8 and 9 can often take
another 3+ hours.

8) Add Micro-foliage,
Medium-foliage, and
Macro-foliage using the
Foliage tool

These include doing the grass, brushes, water weeds, rocks, over-
hanging branches, trees, and tree trunks around the river.

9) Reset the lighting, re-
build lighting, and ex-
port project

Resetting the lighting is as simple as turning the Skylight on and
off. This step is important because sometimes when editing the
project, the light rendering becomes oversaturated and shadows
become glitched. Rebuilding the lighting is actually not neces-
sary, besides clearing up a warning, once you reset the lighting.
Exporting allows the project to be executed as a game environ-
ment, which may be required to run some simulations.
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Figure 3.8. Aerial View of Short Training Map. This is the first map that
training will be taking place. It has a long straight, 2 turns, and really short length,
which makes it perfect for starting out training.

external knowledge about the rivers in each map provided by the designers. For example, the river

spline coordinates unique to each map, as well as the different starting locations, target locations,

and boundary conditions all have to be manually given to the API. Therefore, it was impossible to

load more than 1 map per iteration of training.

On the other hand, the reason there are no more than 1 river per map is because the water

plugin will start glitching like the figure 3.5 above. Plus, even if the rivers were glitch free, the

boundary functions and reward functions will not work due to overlapping states in the x-axis.

Nevertheless, at least each direction of the river is completely different to each other, meaning the

agent is at least able to train in 2 very different sets of state space during each phase of training.

The agent should still be robust enough, especially compared to prior works where environmental

complexity is largely a non-factor.
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Figure 3.9. One of the 2 Test Maps used in Performance Evaluations.
The test maps are completely new to the VAE and agents.

3.4. UAV Controls

The UAV model is a 1 meter diameter racing drone provided in the Airsim flight simulator.

Since the physics and dynamics of the UAV model is not of interest to this project, only the controls

will be discussed. An API called Fastloop was a low-level PID controller developed to maintain

the UAV’s height and forward velocity. These two values were set constant, eliminating 5 degrees

of freedom from consideration, and leaving yaw rate as the only axis of control for the agent. The

input to the agent is a 2D RGB observation from the onboard camera.

The only other notable function for controlling the UAV is the hover function. Early in the

controls development, it was discovered that the pre-built hover function from Airsim’s library is

highly flawed, in which the UAV will remain in motion due to its prior momentum. Due to this

lingering momentum, if the UAV were to quickly hover and reset to a different location of the

map, it would swing wildly out of control. Therefore, a separate hover function that measured the

relative velocity of the UAV was created within the Fastloop to minimize this issue. However, this
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hover function was still not perfect, in which the UAV will sometimes experience minor drift while

hovering.

3.5. Simulation Controls

Besides the Fastloop, another API script called RunTraining was developed to provide capabil-

ities such as image capture, reward management, and DRL training. More specifically, this script

contains the embedded systems that connect the input images to the VAE, the VAE latent outputs

to the agent, and PPO output to the Fastloop controller.

Note both Fastloop and RunTraining operate in parallel at 10 hz, which is a reasonable rate for

reacting to the environment. And the reason why both API’s are needed is because the Fastloop

must be running at all times to make sure the UAV stays hovering even when the RunTraining is

on performing updates.

There are also other functions within RunTraining that handle the interactions of the UAV

inside the simulation. These regulatory functions all serve 1 main purpose, which is to reset the

simulation so that the agent can move to the next episode.

The first reset function created was for reaching target coordinates. The target reset is as simple

as a line from coordinates on the x-axis. However, for this application it may not be as intuitive

as other projects. The targets from prior works are usually some easily distinguishable hoop that

a UAV can see and fly through; but for a river, it is not as easy to distinguish a finale condition.

Therefore, simple allowing the agent to approach the end of the river as the target is a reasonable

approach.

Another important reset function is the collision function. If the UAV collides with any foliage,

landscape, or assets within the environment, it should reset to a starting location. Sometimes, the

UAV will not detect its own collision properly, during which the UAV will just be stuck in place,

and will require a stasis reset function for that situation. The reset function operates similarly to

the collision function in this case. Reinforcing the necessity of this stasis reset function, sometimes

resetting the UAV position within the simulation can cause the Fastloop to lose all control of the

UAV model. This is an unexplained glitch between Airsim and UE4 that occasionally occurs. Thus,

the stasis reset function is needed to reset the UAV over and over until the API can regain control
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again. During this circumstance, there is no way to detect the glitch, so unfortunately all the data

gathered prior to the reset must be discarded because RunTraining continues to collect data as if

the UAV was not stuck in place. Luckily, this glitch tends to be map specific, so a good way to

deal with this stasis behavior is simply to create a new map. Note that some maps are just bound

to have this glitch, there is no way of telling which map is somehow cursed.

Besides collision and stasis, if the UAV finds a way to fly out of the map somehow, there is

also an out-of-bound reset function for that. However, this was just a fail-safe and was not always

necessary due to the following 2 functions.

Sometimes during the training, an agent will learn to fly in circles. It is possible to use rewards

to discourage this behavior or cut the episode after a certain maximum timestep. However, the

fastest way to deal with this is just to create a function that prevents taking a U-turn. The U-turn

reset simply measures the current heading direction of the UAV, and compares it to the global

direction of the target. In each map, there are two directions the UAV is allowed to fly, and

each direction has an independent target associated with it. The reset function will activate if the

forward flying UAV starts heading backwards for more than 10 timesteps.

The last, but most important reset function is the river boundary function. This function

actually serves dual purposes; one is to limit the exposure to less familiar states for the VAE, and

two is to prevent the UAV from flying out of the map. As discussed in the VAE section, it is

impossible to train a perfect VAE, thus it is reasonable to simply impose a boundary around the

river to reduce the time spent capturing data of undesirable states. Recall the objective of the

project is to fly along the river, thus further exploring the forest state space is unnecessary anyway.

Besides the list of reset functions, there is 1 more function that should be discussed, and that

is the update function. There are different ways to perform updates to the PPO network, either

episodically or non-episodically. At the beginning, it made sense that the agent should update at

the end of each episode, however, this presented a new problem from the parallel access of the 1

GPU.

During the process of resetting to a new episode, the RunTraining API commands the Fastloop

API to move the UAV to a starting location, which requires the GPU. At the same time, if an

update is being performed, the GPU memory will also be accessed to perform the computations.
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And it is precisely due to this overlap in memory access that triggers other CUDA errors to the ones

mentioned before. Despite trying different means to separate the timing of the reset and update,

similar CUDA errors will still occur despite the effort.

More on this tangent about overlapping usage of the GPU. Recall that the hover mode still

causes a bit of drift in the UAV, typically the training is performed when the UAV is in hover

mode. If the UAV were to collide with an object from drifting while the training is occurring, it

will cause multiple collision signals to be sent from the Fastloop to the RunTraining API until the

training is complete. In which, more CUDA errors will then occur and crash the API’s.

For these reasons above, the alternative is simple to perform non-episodic updates. Under

this architecture, the update will be performed only after reaching a certain number of timesteps.

Immediately after this change, most of the CUDA errors were resolved and it became possible to

finally perform training, but only using Monte Carlo Advantage estimates.

Finally, although many of the errors associated with the simulations and CUDA had been

resolved, there was 1 last hurdle preventing long-duration training. The problem is that the GPU

memory tended to overload after running the simulation for roughly 20 minutes. Avoiding this

issue required figuring out how to clear the GPU memory, which allowed for prolonged training

duration. This solution does not guarantee that the simulation will never crash, in fact random

crashes were still observed with no discernible reason.

3.6. Reward Function Design

The reward functions are also part of the RunTraining API, and they are all related to the reset

functions. After some testing, it was discovered that they were not all necessary or beneficial to

the training itself, and will be discussed in the Experimental Results. The detailing of the reward

functions will begin with the 2 most important reward signals, the spline reward and forward

reward.

The first and most important reward function was a river tracing reward called the spline

reward. Basically, it rewarded the agent for flying close to the center of the river. To build this

reward function, the spline of a river was mapped in a graph reader, and broken up in equal

spacing to provide coordinate points at each meter-interval in the x-axis. This method was found
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Figure 3.10. Spline Points of Example River obtained using Online
Graph Reader. The points are spaced out in meter increments in the x-axis.
These spline points are used to develop the spline reward function, which deter-
mines the closest point to the UAV at each timestep.

to be the easiest way to obtain the spline from a UE4 environment, as shown in figure 3.10; other

possible methods are Bezier functions or coding a functional Blueprint in UE4. Regardless, it is

recommended to use the simplest method found.

After obtaining the spline coordinates of the river, another function that searches the closest

spline point to the global UAV position was developed. This is where a bit of nuance was introduced;

since the UAV can either be heading forward or backward, it is necessary to actually set the UAV

location to either the ceiling or the floor of the current location along the x-axis respectively.

That way, the spline reward is also encouraging the UAV to head in the proper direction. Once

a matching pair has been found, the absolute distance between the closest spline point and the

global position is measured. The output of this measurement will undergo an S-curve treatment to

transform it into a reward signal, as seen in figure 3.11. This reward signal intends to communicate

that staying closer to the center of the river will provide a higher reward value.

The second reward function that was developed is a forward flight reward, which is a simpler

version of the spline reward. During each timestep, if the UAV is traveling in the correct direction

and visiting new states along the x-axis, then it will receive a reward of 1. This reward is simple
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Figure 3.11. S-Curve Spline Reward Function. The function computes based
on the total distance away from the closest spline point. Thus, if the agent is 3 meters
distance away from the closet point, it will start to receive negative reward. This
should ideally encourage the agent to stay within 3 meters on each side of the center.

Figure 3.12. S-Curve Target Reward Function. This function rewards com-
putes the time took to arrive at the target. It should encourage the agent to reach
the target sooner. This example is river specific based on the length of the river
itself. The standard is that for an average complete episode that last 500 timestep,
the target reward should give around 500 points.

and only encourages the agent to fly as far and as long as possible. It does not directly encourage

flying along the river and is part of the expectation.

The next set of reward functions are all related to the reset functions, which are meant to either

encourage or discourage some sort of behavior. First is the target reward, which is also an S-curve

function much like spline reward, in figure 3.12. However, this time the reward is diminished based

on how many timesteps it took to get to that target. This time-based reward should encourage the

agent to desire the target sooner.
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Figure 3.13. S-Curve Collision Reward Function. This function is universal
for cases of collision, U-turns, and flying out of bound. The computation is also
based on timing; it rewards more poorly early in the episode to discourage the agent
from settling in local minimums. Again, this function is also river specific, in that
different lengths matter to the scaling.

On the other hand, the other reset functions also have time-based S-curve reward to discourage

colliding, taking U-turns, or flying out of boundary early in the episode, universally represented

by figure 3.13. The purpose this time is to avoid creating any local minimums, and disincentivize

making mistakes sooner rather than later.

3.7. Experimental Setup

There are many components to this research, simply looking at the available reward functions

makes it clear that reinforcement learning is not an easy topic. A way to start is by tackling each

objective step by step, meaning looking at the reinforcement learning objective more specifically.

In any reinforcement learning, reward tuning is one of the most important challenges, thus it is

important to conduct some tests to compare which reward signals are beneficial and which are not.

Aside from reward tuning, another challenge of this project is the state space itself. Due to vision

being a huge part of this project, it is very important that some experimental efforts are allocated

to investigating the VAE.

Since VAE is the first part of the pipeline, it is extremely critical to first test its performance

before doing anything else. The Neptune project produced the original VAE model, which the first

round of testing will analyze its performance. Knowing that the Neptune project only flew along

the river, it captured very little data of the surrounding state space. For that reason, extra data

was collected to train a new VAE model for this project specifically. The second round of VAE

testing juxtaposed the performance of the original VAE to the new VAE.
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The next round of testings was to identify the characteristics of the PPO algorithm collectively

dubbed as the pre-training tests. The first minor test was to identify whether continuous action

space was actually more effective than discrete action space. In the literature review, it was

discussed that there were indeed more benefits to using continuous action space. However, the

discrete network was easier to implement than the continuous network. Thus, a test was conducted

to find out if future projects can go the easy route.

The second minor test was to discuss the different reward functions. At the beginning, all the

reward functions were utilized to try to encourage the agent to fly along the river until reaching

the target, while avoiding collisions. The complicated reward signal includes the spline reward,

target reward, collision reward, U-turn reward, and river boundary reward functions. However,

this was not the only reward signal tested due to fear of complications. Simpler reward signals

using only the forward reward or the spline reward were also tested to identify which reward signal

will ultimately be used to train the PPO.

After completing the 2 pre-training tests, the next test was to learn to properly tune the

hyperparameters. Since there are very few documentations on similar research, not to mention they

also hardly dive into the hyperparameters used, an empirical study to see which hyperparameters

would yield the best results was conducted. Some notable hyperparameters that were tested include

timestep, epoch, learning rate, and standard deviation. Not every hyperparameter listed will be

discussed in the results since most of them are typical to all DRL algorithms; and since PPO is

robust to hyperparameters, there is little more to learn.

The culmination of results from the pre-training tests, plus hyperparameter tuning will yield

attributes of the final agent. And with those conditions identified, the multiphase training can

begin. First, the agent will be trained in the training map only flying forward; at the same time

the agent will also need to learn the left turn, as seen in figure 3.14. Once the agent is proficient

in making left turns, the agent will be moved farther back and begin learning to turn right as well.

After the agent is competent at making both turns, it will need to start flying in both directions

of the map in randomized order.
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Figure 3.14. First Training Map Setup. The line in the center is the spline
of the river, while the green edges are the scarps of the riverbed. Foliage is not
represented in this view as it is not meaningful to display them. Note that each grid
is 10x10 meters. There are 2 starting points for this map, which are used to break
down the initial training into 2 simple parts. The yellow line is where the agent
will be placed at the start of training; it will only need to learn to fly forward and
make a small turn before finding the target. The orange line is where the agent will
start from once it has converged in training part 1. Note the agent will always face
in the tangential to the spline at the beginning of each episode simply to maintain
consistency. The Finish line is kept farther from the edge of the map to reduce the
impact of overexposing the cameras.

After learning to navigate both directions of the first map, the agent will move onto training

in the second map. And subsequently, the agent will then train in a similar manner in the last 2

maps as well. Again, the first 2 maps are shorter and less complicated than the last 2 maps.

After training the PPO agent, the HG-DAgger policy was also trained in the same 4 maps.

This time, the HG-DAgger agent will be provided with a relative number of samples that were

scaled from the number of samples used to train the PPO agent. A comparable ratio of 250:1 was

used to scale the number of samples for HG-DAgger agent. This ratio was synthesized because it

only took 2 episodes for the HG-DAgger agent to achieve the same performance as the PPO agent

in the first river. Thus, for a total of 4020 episodes of PPO training samples to learn 8 rivers, a

total of 16 samples were used to train the HG-DAgger policy.

With the baseline policy well trained, comparison between the two final policies was conducted.

The performance tests are conducted in 2 different maps with a 4:1 training map to testing map

ratio. The analysis will investigate choke points that present issues for the agents. Metrics such

as average elapsed time per episode and maximum distance traveled per episode were investigated.
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Note that these two comparisons are averaged between the two maps, plus the episode length

depends heavily on the individual map. Therefore these two metrics are relative, and do not speak

absolutely of the performance. The last 2 metrics include average distance from the center of the

river and average standard deviation of actions taken were also measured. Again, these metrics

are averaged among the two test maps. All of the metrics were validated under a 5% significance

level.
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CHAPTER 4

Experimental Results

4.1. VAE Analysis

A well performing VAE for this project needs to be able to compress visual inputs and produce

a meaningful latent representation that can capture enough information about the environment.

The images in figure 4.1 shows what a good VAE should do. Although, these are simply the

reconstructions, which does not always reflect the quality of the latent states. It is at least a

reference one can use to judge the performance of the VAE.

The first part of this discussion will analyze the original Neptune VAE’s performance. One big

issue identified is that foliage hanging from the sides are usually blind to the VAE. This first test,

figure 4.2, shows the VAE completely removing the foliage from its perception. This is the most

common way the VAE deals with this unfamiliar state such as overhanging foliage. Other times,

Figure 4.1. Examples Reconstructions of Well-trained VAE. This is a ref-
erence for what a good VAE reconstruction will look like. It should provide a
qualitative analysis on the latent representations.
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Figure 4.2. Neptune VAE - Overhanging Foliage Test. The old VAE cannot
tell that there are foliage overhanging above the river.

Figure 4.3. Neptune VAE - Complex Front Foliage Test. The complexity of
front foliage, typically around corners, seems to challenge the old VAE in thinking
there is a river directly in the bushes. The orange box indicates where the VAE
interpreted as the river path itself.

the VAE might do what is seen in figure 4.3. The largest concern here is also the fact that the

center could be mistaken as the river as well.

Another big issue of the VAE is that it does not recognize tree trunks. It will often treat it as

a complete fuzz, and sometimes, it will instead treat the tree trunk as a piece of the river shown

in figure 4.4. This is an issue because if the VAE recognizes some tree trunks as the river, it will

make the DRL training slightly more difficult.
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Figure 4.4. Neptune VAE - Tree Trunk Test. The old VAE has trouble
understanding tree trunks due to a lack of samples. The worrying thing was that it
treated the tree trunks as a river path, much like the overhanging foliage case. An
orange box is drawn to show where the VAE mistaken as the river.

Figure 4.5. Neptune VAE - River Bank Test. Bright patches of grass and
brightly lit scarps along the river bank also seems to challenge the VAE. One can
clearly observe a river in the reconstruction.

Finally, though there are other issues with the VAE, the last important one to highlight is the

treatment of light patches of grass. From the figure 4.5, grass from the river bank was unfortunately

mistaken for the river itself, and there is no need to explain why this is an issue for any autonomous

agent.

For the reasons above, it was decided that a mild retrain of the VAE will need to be completed

for ensuring good DRL training. After incorporating new samples from flying into the forest, up
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Figure 4.6. New VAE Reconstruction Validation. This is the performance
of the newly trained VAE.

Figure 4.7. New VAE Training Progression. The new VAE was trained with
bonus samples, and the losses at 50 epoch have converged well.

close and into foliage, and under different lighting conditions, some improvements are made to the

VAE.

First, the new VAE’s general performance can be seen in the reconstruction sample figure 4.6.

The figure 4.7 shows a total of 50 epochs was used to train this VAE.

Tree trunks are now somewhat recognized by the new VAE. It will often be treated as a faintly

blue hue, mostly a mixture of grey to brown tree trunks, seen in figure 4.8.

Complex frontal foliage can now be somewhat differentiated from the river itself; the box in

figure 4.9 indicates a better match for the river body than the figure 4.3 from the original VAE.

Thus, the new VAE appears to have a higher probability of recognizing the real river.
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Figure 4.8. New VAE - Tree Trunk Test. The same tree trunk sample was fed
into the new VAE. One can observe that the trunk is at least somewhat recognized
now. It should no longer interpret it for river states.

Figure 4.9. New VAE - Complex Front Foliage Test. The same complex
sample was used, and one can observe from the orange box that the reconstruction
recognized where the river was truly at. Compared to before, this new improvement
will have a lower chance of confusing the agent.

There are still challenges with overhanging foliage, unfortunately demonstrated in figure 4.10,

most likely due to a lack of samples for overhangs. These images are second most difficult to

capture, therefore there is a lack of expert samples here.

Speaking of which, the most difficult samples to capture are light patches of grass; therefore,

that issue remains unresolved. To limit the exposure to bad VAE states, artificial boundaries are

placed around the rivers to stop the episodes if the agent flies out of the river. This preventive
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Figure 4.10. New VAE - Overhanging Foliage Test. Some foliage blending
in with the river can still occur. However, in vision-based learning, and one must
expect this type of potentiality.

measure is important since states within the forest can be mistaken as the river due to bright patches

of grass and complex foliage. Regardless, the new VAE has improved recognition of complex foliage

structures and tree trunks, it will go on to perform well in novel environments.

4.2. Pre-training Tests

The first pre-training test performed was to determine whether a discrete or continuous action

space will be used for the PPO agent. The training was performed with the forward reward signal,

and the evaluations found similar behavior described by the comparisons performed by a different

team [37]. The discrete agent had large fluctuating outputs at each timestep and performed

relatively shaky, whereas the continuous agent had mostly smoother outputs leading to more stable

performance. This result is despite flying straight down the first river; therefore, it was decided

that this project will use a continuous action space model.

The second pre-training test performed was to identify an effective reward function that can

encourage the desired behaviors. Originally, the complicated reward signal was supposed to com-

municate to the agent that crashing into foliage is bad, flying away from the river is bad, taking

U-turns were bad, staying along the river is good, and reaching the end of a river is good. However,

none of the many PPO configurations were able to train under this complicated reward function.

The reason for this is because for pure vision-based learning in natural environment, it is can be
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Figure 4.11. Forward Reward Agent Evaluation. Again the center line is the
spline of the river, while the pink edges are the scarps around the riverbed. The
colored lines are 2 example trajectories this agent took. The agent collided or flew
out of bound in these two demonstrations. The forward reward signal failed to train
the agent to fly along the river. The agent was only able to make left turns; and
once it had to start farther back, it failed to make a right turn.

difficult to identify certain conditions. For example, how to communicate whether the agent had

reached the target. It is perhaps not even necessary to do so in an obstacle avoidance problem.

Therefore, following examples from prior works simply does not work for this project. The end

result is that the complex reward signal degraded the learned representation of the environment.

Resulting in degrading performance over time.

Since the goal was to train the agent to fly along the river for as long as possible, the forward

reward, a simple positive reward each timestep may be enough to encourage this behavior. The

rationale was that if the UAV crashes or flies away from the river, it will receive less reward than if

it had not crashed. Therefore, the agent should be properly motivated to fly forward while avoiding

crashing to maximize rewards. However, what was discovered was that this reward function does

not do well to encourage the agent to stay along the river. It somehow causes the agent to take the

shortest path forward, flying into the forest if it has to, as seen in the figure 4.11. The important

thing to note is that this agent also trained from the first starting point in figure 3.14, but it

was when it had to start from the second starting point that it began to exhibit this left-veering

behavior without being able to find a way out. Moreover, recall that the forest states may look
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similar to the river states, which can cause issues for the agent. Thus, it was found to be stuck in

some local minimum and only knew how to take left turns.

Based on this result, a different reward function was needed to train the PPO agent. Again,

the spline reward function encourages the agent to travel towards the next closest spline point in

the target direction. This reward signal was successful in training the same test agent to complete

the river without collisions. The same test agent in this case only refers to having the same

hyperparameters. Thus, the spline reward function was the one chosen for all the training.

4.3. Hyperparameter Tuning

There are many hyperparameters that are important to the algorithm, however, many of them

are fairly standard and without anything new to contribute. Parameters such as epochs, learning

rate, ε, and standard deviation all mainly affect the rate of convergence; within this project, they

all demonstrated expected behaviors. These results are expected since PPO’s bound ensures that

incremental updates are always in the direction of the advantage. Thus, regardless of how large

or small some of these hyperparameters are, they will not have a large effect on the convergence,

hence PPO’s robustness to hyperparameters. On the other hand, the hyperparameter of timestep

turned out to have a major impact on the learning process.

The timestep defines the size of the experience trajectory, and turns out tuning the value of

this hyperparameter had the largest effect on convergence rate, success of learning, and stability of

training. It was discovered that a static timestep was actually detrimental for training the agent

in maps of different length; this was most likely due to the fact that the ends of the river had

very different states to the body of the river. Therefore, if the timestep was too small, sometimes

the agent will train with trajectories that did not experience the full variety of states, and end up

having degrading performance when revisiting those states. As a consequence, the agent will also

have a less stable learning process overall, as seen in figure 4.12.

On the other hand, if the timestep of the trajectory was too large, the agent will require a very

long training process. If the agent visits an unfamiliar state and performs badly in those states,

it will usually require lots of time for the agent to learn how to avoid those states with a long

experience trajectory. Sometimes, the agent will just get stuck at a local minimum and visit poor
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Figure 4.12. Training Results of Using a Very Small Timestep. The conse-
quence of using a timestep hyperparameter that is too small to adequately capture
at least an entire episode will result in degrading performance. This problem occurs
because it is necessary to capture all the nuances of an episode for each experience
trajectory. Otherwise, the agent will experience distribution shift. Note that similar
degrading performance can still happen if the timestep was too large instead. That
problem occurs when the agent performs a poor update and begins to obtain an
overwhelm distribution of bad data.

states over and over; this can happen when the experience trajectory does not have a majority

distribution of good performing states. Conceptually speaking, due to PPO being an on-policy

algorithm, it must train on the most recent samples. If the samples were predominantly poor,

then there’s a distribution bias towards those states, and will be a challenge to recover from those

states. Thus, since small timesteps will cause degrading performance and large timesteps will cause

convergence issues, the best practice was found to scale the timestep to the length of the river itself.

For shorter training maps that are usually 80 meters in length, the best timestep value was

found to be 1000. This value allowed at least 1 full fly-through experience each iteration of training

with simulation running at 10 hz. It is important that each iteration observes the river ends, but

should have predominant experience flying within the river body. Using this timestep, then training

in the same map was now successful, as seen in figure 4.13.

The training was a lot more stable compared to before, and definitely showed signs of improve-

ment when visiting new states instead of degradation. As for longer maps that are double in length,

the timestep chosen was also doubled as well. Although, maintaining the same timestep would have

been ideal for maintaining consistency, it was found that the original timestep was too small for the

longer maps; thus, the best practice was to scale this hyperparameter based on river length. There
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Figure 4.13. Training Results of Using a Correctly Sized Timestep. Scal-
ing the timestep such that it will capture between 1-2 episodes of experience was
found to have the best training results. It lead to more stable learning and better
convergence.

were also the considerations to scale other hyperparameters to the river length as well, however

tests found them to have negligible impact, especially when compared to the timestep’s effect on

training.

4.4. Multiphase Training Analysis

The training was conducted in multiple phases similar to curriculum learning, but not strictly

adhering to its concepts. Simply, the project trains the agent in increasingly difficult environments

based on length of river, complexity of foliage, and lighting. The initial training was conducted

from the middle of the first river, from figure 3.14, flying in the positive x-direction. It was decided

the agent should collect some good rewards simply flying along the river before making turns. So

starting on the straight should be beneficial to its initial training.

The agent will only need to make a tiny left turn to reach the end of the river in each episode.

The training result from this PPO agent was recorded below in figure 4.14. Since the agent operated

in the continuous action space, it simply traveled forward without applying much input in the

beginning; thus, it obtained relatively good rewards even just flying forward along the first sector.

As it begins to learn to make tighter turns it obtains higher rewards, but only until it crashes on

the left side of the river. After it observes those new states on the left, it corrects its policy to

maintain a safer distance and starts obtaining better rewards again. After converging for the left

turn, the agent was moved farther away from the target and now has to perform right turns as well.
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Figure 4.14. Training Results of First Map in only 1 Direction. This is
the first of all training for the PPO agent. It starts from the midpoint of the river
as discussed before.

It took the agent some time to explore the new states and figure out how to optimize its policy

to do both turns. After training on the forward (positive-x) direction of the map, the backward

direction was also added to the training as well. To make this policy more robust, both directions

were trained alternatively and randomly with the results displayed in figure 4.15. Notice that the

performance at the beginning seemed to fluctuate rapidly. This is due to having to explore both

directions at the same time. Again, because this is a vision-based learning problem, it is difficult

to have a more steady learning process. It took roughly 1879 episodes for the agent to reach

convergence on completing 1 direction of the map with consistent success. On the other hand, it

only took the HG-DAgger agent only 1-2 episodes to reach convergence with similar experience.

Hence, the ratio of PPO-to-HG-DAgger sample ratio is 250:1. Anyway, it was time to move on to

a different map to continue training.

The second map was slightly more complicated than the first river, with a slightly different

shape, lighting, and foliage. The policy, at this point, was able to directly train both directions

of the map at once; and it took about 793 episodes to reach stable performance as seen in figure

4.16. Notice again that the performance at the beginning fluctuated rapidly. This time, not only
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Figure 4.15. Training Results of First Map in Both Directions. The target
direction of the training is randomized. This is the third part of training that took
place. There are a bit more fluctuations in performance at the beginning because
the agent need to learn both directions at the same time.

does the agent have to learn from both directions of the map, but the map itself is completely new.

Thus, the rewards remained rocky for more episodes than the first map.

The final phase of training took place in 2 different maps, each were double in length to the first

2 maps with highly peculiar shapes, different lighting conditions, and greater foliage complexity.

The agent was still able to train in both directions of each map at the same time and with less

training samples required. It took roughly 291 episodes to train the first long river and 309 episodes

to train the second long river, of which one is shown below in figure 4.17 .

What was discovered was that it will take a decreasing amount of samples to train a policy that

is already well adapted to a similar task. The cutoff points are rather well defined because clear

evidence of actor drift is apparent after training for a long time. For example, the performance

will begin to degrade after a certain number of episodes due to overfitting, and that is where the

training has passed its peak performance.

There is one other issue, however, which is getting stuck in local minimum after poor updates.

When this occurs, it may be easy to misconstrue an earlier checkpoint as the finished agent.
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Figure 4.16. Training Results of Second Map in Both Directions. This is
the fourth part of training, where the agent will need to train in both directions of
the map at the same time. Once again there are fluctuations in performance at the
beginning because it is not only having to train in both directions, but also train in
a completely new map.

Figure 4.17. Training Results of the Last Map in Both Directions. This
is the final phase of the training process. There is nothing new in the procedures
leading up to this point. The rewards also communicated the same insights from
before.
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Therefore, restarting training from that earlier checkpoint a couple more times was required to

confirm whether the policy had actually converged to its peak performance.

Now, one may assume the decrease in sample requirement was only due to the rivers being twice

as long, and therefore requiring half the number of episodes. However, recall that the experience

trajectory was also doubled in length, thus there are no contradictions to the observation made.

Despite changing the length and shape of the river, lighting conditions, and complexity of

foliage, the PPO training clearly benefited from the generalization of the VAE. It is most likely

impossible to obtain similar results without some form of state reduction or feature extraction

element in the loop if the task complexity were to increase.

Finally, to touch base on imitation learning agent again. It took 4020 episodes to fully train

the PPO agent. And using the comparable ratio of 250:1, the HG-DAgger will need a total of 16

samples total to gain a fair comparison. After training the HG-DAgger agent, the performances in

training maps were successful just like the PPO agent. Therefore, the HG-DAgger agent is ready

to be tested in the performance test against the PPO agent.

4.5. Performance Test

To reiterate, the baseline HG-DAgger agent was trained using the same 4 maps as the PPO

agent. Due to the relative training process, it should be a fair comparison to observe whether PPO

and HG-DAgger had the same performance. Based on a 4:1 ratio, training maps to testing maps,

a total of 2 rivers were used to examine the null hypothesis. Each algorithm ran a total of 10

trials per river for the P-value test. Note for both rivers, the agent starts from the left side and

attempts to fly to the end of the right side. A deeper dive into the performance will be discussed

as a collective after first viewing some trajectory graphics.

For test map 1, the performance of PPO and HG-DAgger are shown in the figure 4.18; note

the vertical-axis is actually flipped. Towards the end of the river, it can be seen that there was

a specific choke point where both algorithms found difficulty navigating. It can be seen, in figure

4.19, that this was due to a bright patch of bushes nestled between some dimmer tree branches.

This situation is challenging for the agents because it looks similar to the river. However, it would

still appear that since PPO was closer to the center of the river, it was able to recognize and avoid
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Figure 4.18. Test Map 1 Performance. A total of 10 trials were performed for
each agent. PPO was successful in navigating this environment, while HG-DAgger
witnessed collisions at the choke point. Notice that this choke point actually affected
both agents.

the turn from a slightly different entry angle. This may have been the result of training with a

reward function that encouraged staying close to the center of the river. If that is indeed the case,

then that would be a benefit to using DRL. Just note that although only 1 choke hold had been

shown here in test map 1, there were many similar locations that both the agents were able to

successfully avoid.

Moving on to the performance on the 2nd test map, which can be seen in figure 4.20. This time

there appears to be a couple choke points in the map, both of which have caused confusion for the

algorithms. The first choke, in figure 4.21, appears to only affect the PPO agent, where 4/10 trials

had caused a deviation from the rest of the trials. This first choke is an example of a choke that

the agents were able to eventually identify as a dead end after approaching closely. Perhaps it is
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Figure 4.19. Test Map 1 Choke Point. This is the first location that actually
affected both agent’s performance. The suspect is that there was a very bright
patch of bush, boxed in yellow, that highly contrasted its surrounding trees. This
challenged the agents to distinguish whether it was the correct path to take. The
agents also took slightly different angle of entry towards this choke point, the PPO
agent was able to tell the correct path, while the HG-DAgger simply went straight.

due to there being a tree directly above the bright shrub that allowed the VAE to correct its guess

within close proximity.

The second choke point, in figure 4.22, caused collisions for 3/10 trials of the PPO agent, and

also for the HG-DAgger agent. There are clear similarities between this choke point and the one

from the first test map. What was interesting is that of the 4 PPO trials that were headed towards

this choke point directly, only 3 of them were collisions. This was due to the slight changes in angle

when facing the choke point, which allowed 1 of those 4 trials to recognize that it was actually just

foliage and make a recovery. Nevertheless, it can definitely be seen that the angle of entry matters

a lot in vision-based scenarios.

The collective performance in both test maps are shown in the figure 4.23 and 4.24, where

the records show how long the episode elapsed, maximum x-distance traveled, average distance

from the center line, and standard deviations of actions taken. The P-test shows that the results

47



Figure 4.20. Test Map 2 Performance. A total of 10 trials were performed
for each agent. PPO was largely successful in navigating this environment, while
HG-DAgger witnessed collisions at the second choke point. Choke point 1 seemed
to only affect PPO agent, while the HG-DAgger was able to avoid its influence.
Meanwhile, choke point 2 caused collisions for both agents.

obtained are statistically significant, therefore the null hypothesis of PPO and HG-DAgger being

the same can be rejected.

The first observation is concurrent with the graphics from above where the PPO agent was

able to fly an average of 21.10% farther and 24.82% longer in the same riverine environments. This

results shows that PPO agent was more robust to distribution shift than HG-DAgger, which is not

surprising since DRL allows the agent to explore a larger state space.

The second observation is that the actions taken by the PPO agent appear to be more aggressive

than the HG-DAgger policy. Since both agents trained on the same maps, this observation was not

only the result of there being bias on the expert’s performance, but also that the PPO agent had
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Figure 4.21. Test Map 2 Choke Point 1. This location is once again defined
by the contrast between the bright shrubs to the shady trees. The difference this
time is that there’s a tree trunk directly behind the shrubs. That may have been
the reason why the PPO agent ultimately recognized it apart from the river and
steered away from the choke.

more exploration of the state space. Furthermore, training with a reward function that rewarded

staying close to the center of the river may have caused the PPO agent to fly closer to the center

on average of 58.49%. Subsequently, it was no surprise that the standard deviation of actions were

differed by 57.35% because PPO needed to take more aggressive turns in order to stay close to the

center of the river.

Finally, the results obtained in this project would not have been possible without the VAE.

Despite having some shortcomings still, the VAE still improved the learned representations of the

agents. Without this state reduction system, there would have been no way to achieve these results

solely relying on vision-based observations. Thus, the trade-off worth considering for future research

is really which state reduction models to use. Nevertheless, in this experiment, it was discovered

that PPO was significantly different from HG-DAgger after training and performing in the same

environments.
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Figure 4.22. Test Map 2 Choke Point 2. This choke had a long streak of
bright foliage as seen in the yellow box. It did not have a tree trunk like the first
choke, and was a lot challenging to identify for the agent. Nevertheless, the angle
of entry may have had a strong influence on the reaction to this choke point.

Figure 4.23. Average Episodic Elapsed Time and Episodic Distance Trav-
eled. The results show mean and standard deviation of all 20 trials. The results
are statistically significant with P-Values of 0.00001. Note that these are average
episodic values, which are unique to these 2 test rivers.
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Figure 4.24. Average Distance Away from River Center and Actions
Standard Deviation. The distance away from the center can tell the story of
whether the agents were tracing the river or simply flying along. The action STD
can determine how aggressive and twitchy the agents behave. The results are also
statistically significant with P-Values of 0.00001. These results a more generalized
and less unique to specific rivers.
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CHAPTER 5

Conclusions

5.1. Summary

In retrospect, the project tested whether DRL is necessarily different to IL in navigating complex

synthetic environments, and found it to be significant. The project’s first contribution is to use

DRL in a novel application that aimed to elevate the complexity and realism. This project also

tackled the challenging task of vision-based obstacle avoidance in open synthetic environments, and

have found ways to improve sample efficiency and quality of learned representations. The second

contribution of this project is to develop a vast amounts of photo-realistic simulations that other

students can use for their DRL projects. Over the course of this work, over 50+ high quality maps

were developed and shared.

The third contribution of this project is to investigate the challenging task of reward shaping

in vision-based learning. It was discovered that for operating in natural-looking environments,

complex reward signals can have degrading effects on the agents. This project also analyzed the

most important hyperparameter in training on-policy algorithms. Properly scaling the experience

trajectory is critical to obtaining proper convergence. The multiphase training process based on

increasing levels of difficulty showed benefits of sample efficiency and convergence stability.

The last contribution of this project is to compare PPO with HG-DAgger agent in novel envi-

ronments after conducting comparable training. There was significant improvement in performance

for PPO agent in new environments. PPO showed a higher degree of robustness towards distribu-

tion shift as well as validating the benefits of proper reward shaping. The end result of this novel

project is a UAV policy capable of performing vision-based obstacle avoidance in complex riverine

environments.
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5.2. Future Works

The main objective of future research is to transfer the current works to real-life applications. A

big concern for this is safety, which is heavily impacted by the performance of the VAE. The impor-

tance of good observations cannot be understated, and this project truly unveiled the limitations

of the VAE. The findings discovered that complicated reward signals cannot be used if the obser-

vations are too noisy. Therefore, a recommendation for future works is to create a more robust

state reduction system either with segmentation models [27] [39], VAE+GAN [20], or CMVAE

with other observations mixed in [10].

Besides dealing with the state reduction issues, there’s always the problem of distribution shift.

As discussed before, it is possible to train that same system to judge whether new observations are

sufficiently different from the training set [3] [16]. After recognizing a sufficient level of distribution

shift, a separate system may be trained to guide the agent back to safety regions of operation.
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