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Abstract

The development of novel antiretroviral treatments has led to a significant turning point in the 

fight against HIV. Although therapy leads to virologic suppression and prolonged life 

expectancies, HIV-associated neurocognitive disorder (HAND) remains prevalent. While various 

hypotheses have been proposed to explain this phenomenon, a growing body of literature explores 

the neurotoxic effects of antiretroviral therapy. Research to date brings into question the potential 

role of such medications in neurocognitive and neuropsychiatric impairment seen in HIV-positive 

patients. This review highlights recent findings and controversies in cellular, molecular, and 

clinical neurotoxicity of antiretrovirals. It explores the pathogenesis of such toxicity and relates it 

to clinical manifestations in each medication class. The concept of accelerated aging in persons 

living with HIV (PLWH) as well as potential treatments for HAND are also discussed. Ultimately, 

this article hopes to educate clinicians and basic scientists about the neurotoxic effects of 

antiretrovirals and spur future scientific investigation into this important topic.
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Introduction

The HIV epidemic led to the development of a myriad of antiretroviral therapies. First 

discovered was azidothymidine (AZT), and after patterns of AZT-resistance emerged, other 

nucleoside reverse transcriptase inhibitors (NRTIs) were developed. Next came non-

nucleoside reverse transcriptase inhibitors (NNRTIs) and protease inhibitors (PIs). Later 

came integrase inhibitors, fusion inhibitors, and entry inhibitors. A pharmacokinetic 

enhancer class (cobicistat) was recently introduced designed to improve the 

pharmacokinetics and increase effectiveness of HIV medications. Today, a regimen 

combining two NRTIs and one integrase inhibitor is typically recommended, though a 

multitude of other options exist based on individual circumstances such as genotypic 

resistance, prior exposure and demonstrated medication intolerance (Saag, Benson et al. 

2018). With the advent of combination antiretroviral therapy (cART; sometimes referred to 

as highly active antiretroviral therapy or HAART), a once fatal disease has become 

indefinitely controllable, leading to drastically increased life expectancies in affected 

patients (Marcus, Chao et al. 2016). Since a definitive cure is not yet available, patients 

require life-long therapy, and with such a prolonged exposure to medications (in addition to 

long-term toxicity from the first-generation medications), a careful consideration of 

neurological adverse effects is warranted.

In particular, antiretroviral use has been associated with a range of neurological toxicity, 

from peripheral neuropathy to neuropsychiatric and neurocognitive deficits in the central 

nervous system (CNS) (Meeker, Robertson et al. 2014). However, it is often difficult to 

distinguish certain adverse effects caused by HIV medications from direct and indirect 

deleterious effects from the virus itself (Treisman and Soudry 2016). One such instance is 

HIV-associated neurocognitive disorder (HAND), a term which describes several disorders 

based on severity of neurocognitive impairment. They are asymptomatic neurocognitive 

impairment (ANI), mild neurocognitive disorder (MND), and HIV-associated dementia 

(HAD), a progressive and life-threatening form of dementia (Antinori, Arendt et al. 2007, 

Letendre 2011). To date, no specific treatment exists for HAND nor is a diagnostic 

biomarker available (Saylor, Dickens et al. 2016). Although other non-neurological 
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conditions have declined in prevalence due to the efficacy of cART, HAND remains 

common in the cART era. It is estimated that about one third of HIV+ patients have a 

HAND diagnosis and over half have neuropsychological impairment (Heaton, Clifford et al. 

2010, Sacktor, Skolasky et al. 2016). Interestingly, the compositional prevalence of its 

subgroups has changed in the cART era. HAD has become increasingly uncommon (2%) 

while rates of ANI and MND actually increased (Heaton, Franklin et al. 2011, Singer and 

Nemanim 2017). This suggests that either cART is unable to adequately suppress HIV in the 

nervous system or that cART use is contributing to the development of HAND (Etherton, 

Lyons et al. 2015).

In this article, we evaluate each of the classes of HIV therapy, reviewing the latest concepts 

and controversies regarding the clinical manifestations and cellular mechanisms of ART-

induced CNS neurotoxicity. Where applicable, we include antiretroviral routes of 

administration in in vivo studies (intraperitoneal, CSF, etc.), and mention when medications 

used in studies are clinically relevant. However, note that estimating clinically-relevant 

concentrations is difficult, given lack of data on antiretroviral CSF:plasma area under the 

curve, predictions that parenchymal concentrations can reach greater levels than in the CSF, 

and the fact that HIV disrupts the blood brain barrier (BBB), allowing for increased 

antiretroviral CSF accessibility (Decloedt, Rosenkranz et al. 2015, Jensen, Monnerie et al. 

2015). We discuss how CNS penetrance by ART may affect neurotoxicity, explore the 

concept of accelerated aging in PLWH (persons living with HIV), and highlight recent 

advancements in the possible treatment of HAND. Peripheral nervous system toxicity is 

beyond the scope of this review and only briefly covered.

Nucleoside reverse transcriptase inhibitors (NRTIs)

NRTIs, the first class of HIV medications discovered, work by blocking reverse 

transcriptase, thereby preventing the virus from generating functional cDNA via premature 

DNA strand termination (Shah, Gangwani et al. 2016). In ascending order of approval date, 

the NRTIs are azidothymidine/zidovudine (AZT), didanosine (ddl), stavudine (d4T), 

lamivudine (3TC), abacavir (ABC), tenofovir disoproxil fumarate (TDF), emtricitabine 

(FTC), and tenofovir alafenamide fumarate (TAF). Older NRTIs such as AZT were found to 

have more off-target effects, limiting their clinical use relative to newer agents 

(Schweinsburg, Taylor et al. 2005).

Although potent inhibitors of reverse transcriptase, NRTIs also cause off-target inhibition of 

mitochondrial polymerase γ, the enzyme responsible for normal mitochondrial DNA 

replication (Kakuda 2000). Through this inhibition, the primary mechanism of NRTI toxicity 

appears to be mitochondrial toxicity, energy depletion, and oxidative stress, which have been 

demonstrated both in vitro and in vivo (Lewis, Day et al. 2003, Kohler and Lewis 2007, 

Nooka and Ghorpade 2018). The extent of mitochondrial polymerase γ inhibition among 

NRTIs is ddl > d4T >> 3TC > TDF ≥ FTC ≥ AZT ≥ ABC (Bienstock and Copeland 2004). 

This type of mitochondrial toxicity is considerably cell/tissue-dependent. Stavudine impairs 

mitochondria in axons and Schwann cells causing peripheral neuropathy, AZT impairs 

mitochondria in skeletal muscles and causes myopathy, and others can cause lipoatrophy and 

lactic acidosis (White 2001, Abers, Shandera et al. 2014, Margolis, Heverling et al. 2014). 
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Mitochondrial DNA (mtDNA) depletion from NRTI exposure is also persistent, dependent 

on cumulative exposure, and can cause long-term effects even after discontinuation (Poirier, 

Divi et al. 2003, Underwood, Robertson et al. 2015). TAF, a prodrug of tenofovir and a 

component of the vast majority of modern regimens, produces greater intracellular 

concentrations than TDF, which might lead to worse neurotoxicity.

It was previously thought that NRTI neurotoxicity was limited to the periphery, but emerging 

evidence has called this into question. From a clinical standpoint, AZT is known to cause 

insomnia, nausea, and severe headaches, and in high doses can cause seizures (Richman, 

Fischl et al. 1987, Saracchini, Vaccher et al. 1989). Other NRTIs have been linked to retinal 

atrophy, and dose-dependent psychiatric disturbances (Turjanski and Lloyd 2005, 

Gabrielian, MacCumber et al. 2013). One study used magnetic resonance spectroscopy in 

patients as a proxy for brain mitochondrial integrity and their results suggested that 

didanosine and/or stavudine may cause depleted brain mitochondria (Schweinsburg, Taylor 

et al. 2005). On a cellular level too, NRTIs have been implicated in CNS toxicity. Abacavir 

induced endoplasmic reticulum (ER) stress in human astrocytes at therapeutic doses, 

activating all three unfolded protein response (UPR) pathways in vitro (Nooka and 

Ghorpade 2017, Nooka and Ghorpade 2018). Oligodendrocyte dysfunction (both in vitro 
and in vivo with intravenous administration) seen with other ART drugs (such as ritonavir 

and lopinavir) was not observed in NRTIs (Jensen, Monnerie et al. 2015). In mice, long-term 

intraperitoneal NRTI administration at clinically relevant concentrations led to mtDNA 

deletion and mitochondrial toxicity in cortical neurons (Zhang, Song et al. 2014, Hung, 

Chen et al. 2017). Additionally, TDF has been associated with increased risk of developing 

chronic kidney disease (Scherzer and Shlipak 2015) (presumably through mitochondrial 

nephrotoxicity (Rodriguez-Nóvoa, Alvarez et al. 2010)) which, in itself, is known to cause 

cognitive decline (Etgen, Chonchol et al. 2012). Overall, given the link between 

mitochondrial dysfunction and cognitive impairment (Finsterer 2012), researchers have 

suggested that although no direct clinical association has been found, NRTI-related 

mitochondrial toxicity may directly or indirectly contribute to the development of HAND 

(Hung, Chen et al. 2017).

Non-nucleoside reverse transcriptase inhibitors (NNRTI)

NNRTIs include, in order of approval, nevirapine, delavirdine, efavirenz, etravirine, 

rilpivirine and doravirine. Unlike NRTIs, these drugs do not resemble nucleotides/

nucleosides and act on reverse transcriptase noncompetitively to impair cDNA synthesis. 

Although this class is generally better tolerated than NRTIs, resistant HIV strains became 

problematic, necessitating that NNRTIs be used in combination with other antiretrovirals 

(hence cART) (Margolis, Heverling et al. 2014). As a class, the most common adverse event 

is rash, though individual drugs in this class have their own specific side effect profiles 

(Drake 2000).

Of the NNRTIs, the most infamous for CNS toxicity is efavirenz, which in the past was also 

one of the most commonly prescribed cART components due to its efficacy and favorable 

pharmacokinetics (Shah, Gangwani et al. 2016). Efavirenz has been associated with both 

neurological (dizziness, insomnia, vivid dreams, headache, and impaired concentration) and 
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psychiatric (paranoia, hallucinations, anxiety, mania, and depression) adverse effects 

(Apostolova, Funes et al. 2015). These adverse effects occur in upwards of half of patients 

taking efavirenz and although they typically resolve after several weeks, some can be more 

persistent (Arendt, de Nocker et al. 2007). The adverse effect most classically associated 

with efavirenz is vivid dreams. An ambulatory electroencephalogram (EEG) study found 

that patients taking efavirenz (in a dose-dependent manner) had longer sleep latencies and 

shorter duration of rapid eye movement (REM) sleep, which was theorized to result in more 

intense REM periods (i.e. vivid dreams) (Gallego, Barreiro et al. 2004). This lack of sleep 

efficacy (which typically persists for over 3 months of therapy) also would explain the 

daytime fatigue and somnolence experienced by patients on the medication (Moyle, Fletcher 

et al. 2006). Psychiatric symptoms caused by efavirenz exposure can be even more disabling 

for certain patients. The population of PLWH already have higher rates of psychiatric 

disorders than the general population (with nearly half of PLWH screening positive) (Bing, 

Burnam et al. 2001). Clinicians therefore need to carefully screen and monitor their patients 

when prescribing efavirenz, especially since it may cause increased rates of suicidality 

(Mollan, Smurzynski et al. 2014), although this remains controversial (Kenedi and Goforth 

2011). However, when mental illness contraindicates this drug, using alternative regimens 

which have less convenient dosing schedules could lead to decreased ART adherence 

(Kenedi and Goforth 2011).

The mechanisms responsible for efavirenz neurotoxicity (or more relevantly, its main 

metabolite, 8-hydroxy-efavirenz, a more potent neurotoxin than the parent drug) are 

currently not well elucidated (Apostolova, Funes et al. 2015, Grilo, Joao Correia et al. 2017). 

Recently, there has been considerable scientific interest in understanding how 

pharmacogenetics impacts its CNS side effects. Research suggests that, similar to NRTIs, 

the toxicity of efavirenz is mediated by oxidative stress and consequent mitochondrial 

dysfunction (in addition to elevating intracellular pro-inflammatory factors) (Shah, 

Gangwani et al. 2016, Ciavatta, Bichler et al. 2017). Furthermore, efavirenz is consistently 

found to be more neurotoxic than other ART drugs tested, consistent with its clinical side 

effect profile. In one experiment of four antiretrovirals in primary rat neurons, efavirenz was 

the only one to cause ER stress and mitochondrial toxicity at clinically-relevant 

concentrations (Blas-García, Polo et al. 2014). In an in vitro study, efavirenz elicited a dose-

dependent (encompassing the range of clinical concentrations) impairment in striatal nerve 

terminal mitochondrial respiration, leading to depleted ATP levels at the synapse (Stauch, 

Emanuel et al. 2017). In a recent in vitro and ex vivo study, efavirenz was the only NNRTI 

(and more potently than ART drugs in other classes) that demonstrated detrimental effects 

on neuronal viability, morphology, respiration, and excitability when exposed to rat cortical 

neurons at target plasma concentrations (Ciavatta, Bichler et al. 2017).

Given the well-characterized CNS side effect profile of efavirenz and the persistence of 

HAND in the cART era, researchers were interested in its effect on cognitive function. As 

expected, efavirenz is associated with long-term cognitive impairment. In a recent large 

cohort study, patients taking long-term efavirenz had significant neurocognitive impairment 

in many domains compared to those taking lopinavir-ritonavir. This effect was less among 

HCV seropositive individuals (Ma, Vaida et al. 2016). Another large study observed 

efavirenz use was associated with HAND, with higher education acting as a protective factor 
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(Ciccarelli, Fabbiani et al. 2011). Switching patients from efavirenz to an alternative regimen 

did not lead to improvement in neurocognitive measures after 10 weeks, suggesting that 

efavirenz likely leads to persistent neurocognitive dysfunction (Payne, Chadwick et al. 

2017).

Other drugs in the NNRTI class in addition to efavirenz are known to have CNS toxicity, 

with nevirapine being more toxic than the remaining NNRTIs (Shah, Gangwani et al. 2016). 

However, compared to efavirenz, these drugs’ CNS side effects are less studied, less 

frequent, and less significant in clinical practice (Abers, Shandera et al. 2014).

Protease Inhibitors (PI)

In the HIV life cycle, once mRNA is translated into protein precursors, a virally-encoded 

protease is required to cleave these into mature proteins (Flexner 1998, Brik and Wong 

2003). The protease enzyme as a therapeutic target led to the development of protease 

inhibitors, including saquinavir mesylate, ritonavir, indinavir, nelfinavir mesylate, lopinavir, 

atazanavir sulfate, fosamprenavir calcium, tipranavir, and darunavir. Of note, after 

discovering the cytochrome P450-inhibiting effects of ritonavir, it is now used mostly as a 

pharmacokinetic booster, allowing for less-frequent dosing of PI-containing regimens (Lv, 

Chu et al. 2015). In comparison to NNRTI-containing regimens, PI-based regimens were 

found to have lower rates of resistance (Riddler, Haubrich et al. 2008), though the use of PIs 

has been limited by their drug-drug interactions and off-target toxicities. In particular, they 

can cause lipodystrophy syndrome (due to homology between protease enzyme and two 

lipid metabolism enzymes) and insulin resistance (which in some cases, can lead to the 

development of diabetes), in addition to cardiovascular disease (Carr 2000, Brown, Cole et 

al. 2005, Lv, Chu et al. 2015). Newer PIs, such as darunavir, have been designed specifically 

to minimize these off-target effects (Pokorná, Machala et al. 2009).

Results from cell and animal studies of PI neurotoxicity have been mixed. In one in vitro 
study, darunavir did not cause mitochondrial toxicity in rat neurons at clinically relevant 

concentrations, unlike efavirenz (Blas-García, Polo et al. 2014). Lopinavir and to a lesser 

extent, amprenavir, caused disruption of astrocytic glutamate homeostasis in vitro and were 

associated with gliosis and neurobehavioral deficits in mice exposed to oral doses 

(Vivithanaporn, Asahchop et al. 2016). Lopinavir, but not darunavir, was neurotoxic to 

primary rat neuroglial cultures. This was thought to be mediated by oxidative stress (Stern, 

Lee et al. 2018). In another in vitro study, darunavir caused reactive oxygen species (ROS) 

production in astrocytes although not at clinically relevant concentrations (Latronico, Pati et 

al. 2018). Intravenous ritonavir and lopinavir (at doses based on human plasma and CSF 

levels) had detrimental effects on mice oligodendrocyte maturation in vivo which was 

reversed with drug cessation (Jensen, Monnerie et al. 2015). Investigators studying the 

effects of ART on neurotransmitter release found that indinavir reduced in vitro synaptic 

acetylcholine transmission at plasma-level concentrations (Ekins, Mathews et al. 2017).

PIs also appear to cause certain CNS effects on a clinical level. Ritonavir was shown to be 

more neurotoxic than other PIs and can cause nausea, dizziness, and circumoral paresthesia 

(Markowitz, Saag et al. 1995). However, using ritonavir as an pharmacokinetic enhancer 

Lanman et al. Page 6

J Neuroimmune Pharmacol. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



allows for lower doses, which reduces the frequency of adverse events (Hill, van der Lugt et 

al. 2009). Several studies (Bacellar, Muñoz et al. 1994, Pettersen, Jones et al. 2006) have 

found increased risk of peripheral neuropathy with PI use (although a recent analysis found 

the independent risk from PIs is small (Ellis, Marquie-Beck et al. 2008)). Based on results 

from aforementioned cell and animal studies, it is feasible that PI use could contribute to 

neurocognitive dysfunction. HAND has been associated with myelin disruption (with 

reduced levels of myelin basic protein) and structural white matter deterioration on imaging 

(ritonavir and lopinavir have oligodendrocyte toxicity (Jensen, Monnerie et al. 2015)). 

Furthermore, since neurotransmitter system dysfunction could help explain ART CNS 

toxicity, the authors who found impaired synaptic acetylcholine transmission with indinavir 

suggested that this may contribute to cognitive dysfunction (Ekins, Mathews et al. 2017). An 

autopsy study found that PI exposure increased the risk of cerebral small vessel disease, 

which was, in turn, associated with neurocognitive impairment (Soontornniyomkij, Umlauf 

et al. 2014). A large study did not find differences in neurocognitive performance with PI 

use, in comparison to triple therapy, after several years (Arenas-Pinto, Stöhr et al. 2016). 

Another study found that CSF viral escape (when HIV is detectable in CSF but not in the 

serum) is associated with PI use, but did not lead to worse neurocognitive performance 

(Pérez-Valero, Ellis et al. 2019). PI use is associated with hyperbilirubinemia, but this was 

not shown to affect neurocognitive function (Barber, Moyle et al. 2016). Despite the link 

between PIs and certain neurologic adverse effects, there is little, if any, clinical or 

preclinical evidence of a link between their use and HAND.

Integrase Inhibitors

Integrase is an HIV-encoded protein necessary for integration of viral cDNA into host DNA 

and after 12 years of development, the first agent in the integrase inhibitor class, raltegravir, 

was introduced in 2007 (Pommier, Johnson et al. 2005), followed by dolutegravir, 

elvitegravir, and most recently approved, bictegravir in 2018. In general, these drugs are 

some of the most efficacious among antiretrovirals, have low rates of resistance, and are 

relatively tolerable in the clinical setting (Patel P. 2018). The most common side effects of 

this class include diarrhea, nausea, and headache (del Mar Gutierrez, Mateo et al. 2014). In 

clinical trials, raltegravir had lower rates of CNS adverse events than efavirenz and similar 

rates of severe adverse effects relative to placebo (Lennox, DeJesus et al. 2010, Steigbigel, 

Cooper et al. 2010, Nguyen, Isaacs et al. 2011). Subsequent studies found higher rates of 

myalgia in patients taking raltegravir although this was rarely a cause for discontinuation 

(Lee, Amin et al. 2013). A large study in Botswana found evidence for neural tube defects 

associated with dolutegravir use during pregnancy (Zash, Jacobson et al. 2017, Zash, 

Makhema et al. 2018). The most common neuropsychiatric effect reported with raltegravir 

and dolutegravir is insomnia which was reversible after drug cessation and can be improved 

by switching to morning dosing schedules (Gray and Young 2009, Capetti, Di 

Giambenedetto et al. 2017). Other neuropsychiatric effects linked to integrase inhibitors 

include depression and anxiety and have been found to have higher rates than initially 

suggested by clinical trials (Harris, Larsen et al. 2008, Curtis, Nichols et al. 2014, Fettiplace, 

Stainsby et al. 2017, Harris 2018). A large clinical study found that the discontinuation rates 

due to adverse events for raltegravir, dolutegravir, and elvitegravir were 3.6, 3.8, and 5.0% 
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(Penafiel, de Lazzari et al. 2017). Dolutegravir had higher rates of discontinuation due to 

neuropsychiatric effects compared to raltegravir and elvitegravir. These results were 

consistent with findings from a previous cohort study which additionally showed an almost 

three-fold increase in discontinuation rate in female patients and older patients (Hoffmann, 

Welz et al. 2017). When bictegravir was introduced, trials found rates of neuropsychiatric 

effects comparable to dolutegravir, suggesting a class effect of integrase inhibitors (Gallant, 

Lazzarin et al. 2017, Sax, Pozniak et al. 2017).

Although reports of neuropsychiatric effects from integrase inhibitors suggest neurotoxicity, 

underlying mechanisms for such toxicity are not fully understood. In one in vitro study, 

raltegravir did not cause mitochondrial toxicity in rat neurons at clinically-relevant 

concentrations, unlike efavirenz (Blas-García, Polo et al. 2014). In another, raltegravir 

caused ROS production in astrocytes, although not at clinically relevant concentrations 

(Latronico, Pati et al. 2018). However, an in vitro study found that elvitegravir but not 

raltegravir nor dolutegravir was neurotoxic to primary rat neuroglial cultures at clinically 

relevant plasma level concentrations. This effect was thought to be mediated by the 

integrated stress response (ISR) rather than strictly oxidative stress (Stern, Lee et al. 2018). 

The ISR is normally an adaptive response to cellular stressors which restores homeostasis 

but with prolonged exposure to certain insults, this response activates pathways that lead to 

cell death (Pakos-Zebrucka, Koryga et al. 2016).

A clinical study of dolutegravir-containing ART found high dolutegravir concentrations in 

the CSF, suggesting a possible mechanism by which concentration-dependent neurotoxicity 

causes CNS adverse effects (Letendre, Mills et al. 2014). Other than neuropsychiatric 

effects, integrase inhibitors do not appear to cause significant neurocognitive impairment. 

On the contrary, dolutegravir is being studied as a possible treatment for HAND, as 

discussed later.

Entry Inhibitors

To infect a host cell, the HIV envelope proteins gp41 and gp120 bind to host CD4 and then 

to a co-receptor, typically CCR5 or CXCR4. In 2003, enfuvirtide, a gp41 inhibitor was 

approved and later maraviroc, a CCR5 antagonist, gained FDA approval. Very recently, 

ibalizumab, a monoclonal antibody against CD4, gained approval in 2018. These drugs 

prevent viral entry into host cells. Of note, HIV-2 uses different chemokine receptors and 

therefore this class is only effective with HIV-1 (Saraiya, Kanagala et al. 2018).

Enfuvirtide use in ART is limited by its requirement of twice-daily parenteral administration 

due to poor solubility and rapid removal from circulation (although research shows that 

conjugating it with polyethylene glycol may help with this problem) (Cheng, Wang et al. 

2016). However, it remains an effective therapy for drug-resistant HIV when other regimens 

have been exhausted (Lalezari, Henry et al. 2003. Enfuvirtide was initially thought to have 

increased rates of peripheral neuropathy (Fung and Guo 2004, yet subsequent studies found 

no clear evidence of this link (Cherry, Duncan et al. 2008). To date, there have been no 

significant reports of CNS toxicity in enfuvirtide, and in general, it has a favorable safety 

profile with adverse events mostly limited to injection-site reactions (LaBonte, Lebbos et al. 

Lanman et al. Page 8

J Neuroimmune Pharmacol. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2003, Oldfield, Keating et al. 2005, Manfredi and Sabbatani 2006, Treisman and Soudry 

2016).

Maraviroc is a slowly reversible, noncompetitive CCR5 antagonist. Similar to enfuvirtide, 

maraviroc has favorable tolerability, a limited resistance pattern, and is a potent agent in 

virologic failure cases (Emmelkamp and Rockstroh 2007, Emmelkamp and Rockstroh 

2008). In clinical trials, maraviroc monotherapy achieved rapid viral load reduction in a 

matter of days (Fatkenheuer, Pozniak et al. 2005), and the most common side effects were 

similar between maraviroc and placebo (Yost, Pasquale et al. 2009). However, maraviroc is 

only effective in patients with CCR5-tropic HIV-1, a feature that limits its use and requires 

tropism testing prior to use (Emmelkamp and Rockstroh 2008). Unfortunately, all trials on 

CXCR4 inhibitors have failed due to peripheral toxicity (Shah, Gangwani et al. 2016). In in 
vitro toxicology studies, maraviroc was the least toxic to astrocytes compared to a number of 

ART drugs from other classes, with a TC50 10,000-fold higher than CSF concentrations 

(Latronico, Pati et al. 2018). One in vitro study showed that it may cause pro-inflammatory 

activation of microglia cells in rats (Lisi, Tramutola et al. 2012). However, a subsequent 

study provided evidence against this claim, showing that by blocking CCR5 in the CNS, 

maraviroc could ameliorate neuropathic pain (when administered intrathecally in rats) by 

restoring the balance of pro- and antinociceptive factors in astrocytes and microglia 

(Piotrowska, Kwiatkowski et al. 2016). There have been no substantial clinical reports of 

neurocognitive impairment with maraviroc. Rather, maraviroc and a similar investigational 

drug, cenicriviroc, are being studied as potential treatment options for HAND, as discussed 

below.

Ibalizumab, the most recent entry inhibitor, has advantages over others in the class. Its 

weekly dosing could improve adherence and its unique mechanism of action could prevent 

cross-resistance of HIV. Although data on neurotoxicity screening in this medication is 

sparse, it has also been fairly well-tolerated with no significant neurological effects reported 

(Jacobson, Kuritzkes et al. 2009, Bruno and Jacobson 2010).

Pharmacokinetic Enhancers

When ritonavir was initially approved at a 600mg twice daily dose, toxicity (nausea, 

vomiting, diarrhea, etc.) led to discontinuation in up to a third of patients (Rublein, Eron Jr 

et al. 1999, Monforte, Lepri et al. 2000). Additionally, it led to many drug-drug interactions 

due to its cytochrome P450 inhibiting effects (predominantly CYP3A4 but also CYP2D6) 

(Kumar, Rodrigues et al. 1996, Rathbun and Rossi 2002). In humans, ritonavir increased the 

area under the curve (AUC) of CYP3A-metabolized drugs by up to 20-fold in humans and 

increased AUC of CYP2D6-metabolized drugs by 145% (Hsu, Granneman et al. 1998). 

Given that most PIs undergo metabolism through the CYP3A pathway, researchers quickly 

realized the potential of using ritonavir to “boost” levels of these drugs. Trials comparing 

ritonavir to dual protease inhibition with ritonavir and another drug led to substantial 

improvements in viral suppression and allowed ritonavir to be used at less toxic doses (Yu 

and Daar 2000, Michelet, Ruffault et al. 2001). With this discovery, the pharmacokinetic 

enhancer class was incidentally created. Adding an enhancer to an ART regimen allows for 

reduced pill burden, simpler regimens, and improved adherence, which all lead to increased 
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antiviral efficacy (Xu and Desai 2009). Ritonavir itself does not appear to have serious CNS 

effects although by boosting levels of other drugs, it theoretically has the potential to 

indirectly propagate such neurotoxic effects of antiretrovirals (Danner, Carr et al. 1995, Carr 

and Cooper 2000).

Cobicistat is a CYP3A inhibitor designed to enhance the activity of antiretrovirals similar to 

ritonavir, but holds several unique advantages such as an easier dosing schedule and a more 

favorable side effect profile (Xu, Liu et al. 2010, Larson, Wang et al. 2014, Marzolini, 

Gibbons et al. 2016, Tseng, Hughes et al. 2017). Similar to ritonavir, it is possible that it 

could promote potential neurotoxic effects of the medications it enhances. Although no 

evidence of neurotoxicity has been reported, it has not been extensively tested relative to 

other HIV medications.

Blood Brain Barrier (BBB)

HIV invasion of the CNS occurs early in disease progression, with the virus being detected 

in CSF as early as 8 days after initial exposure, leading to activation of pro-inflammatory 

responses in the CSF and brain parenchyma (Valcour, Chalermchai et al. 2012). In around 

5-20% of HIV+ patients on ART, HIV is detected in the CSF despite elimination in the 

plasma below detectable limits, a term called CSF viral escape (Canestri, Lescure et al. 

2010, Joseph, Cinque et al. 2016). This entity can be divided into three categories- 

asymptomatic, neuro-symptomatic (clinical and progressive CNS disease), and secondary 

(increased CSF virus resulting from a secondary infection) (Ferretti, Gisslen et al. 2015). 

The CSF reservoir created by this escape is associated with elevated CSF levels of neopterin 

(a marker of macrophage activation), and is thought to increase the risk of HAND (Chen, 

Gill et al. 2014, Gisslén and Hunt 2019). It was theorized that if antiretroviral drugs could 

penetrate the BBB, this HIV reservoir could be effectively reduced, leading to improvement 

in CNS insult. To estimate exposure to the CNS by antiretrovirals, researchers developed the 

CNS penetration effectiveness (CPE) scale. Each drug is ranked from one (lowest 

penetrance) to four (highest penetrance) based on factors such as CSF concentration and 

drug pharmacology (Letendre, Ellis et al. 2010). The CPE scale’s negative correlation with 

viral RNA in the CNS (the higher the score, the lower the viral load) was validated in several 

studies (Letendre, Marquie-Beck et al. 2008, Marra, Zhao et al. 2009). CPE correlation with 

neurocognitive performance is less clear.

Several studies found that regimens with higher CPE were associated with better 

neurocognitive function in addition to lower CNS levels of TNF-α, a prominent 

inflammatory marker (Cysique, Waters et al. 2011, Smurzynski, Wu et al. 2011, Tiraboschi, 

Muñoz-Moreno et al. 2015, Carvalhal, Gill et al. 2016). In contrast, other studies found 

either no effect or the opposite effect with higher CPE scores correlating with lower 

neurocognitive performance or higher risk of dementia (Marra, Zhao et al. 2009, Cross, 

Combrinck et al. 2013, Caniglia, Cain et al. 2014). Some found that ART intensification 

with high-CPE medications did not a translate to reduced intrathecal immunoactivation 

(Yilmaz, Verhofstede et al. 2010, Dahl, Lee et al. 2011). Furthermore, one study found that 

interrupting ART is associated with improved neurocognitive performance (Robertson, Su et 

al. 2010). Participants in this study took older, more toxic regimens, so the relevance of this 
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finding for newer ART is unclear. Another study found that placing patients on higher CPE 

regimens only improved neurocognition in patients who were impaired at baseline (Tozzi, 

Balestra et al. 2009). Authors of these studies suggest that although highly-penetrating 

regimens are effective at reducing the CNS viral reservoir, they also have higher potential to 

exert neurotoxicity. Future investigation is required to determine which regimens can 

optimally suppress HIV in the CNS while simultaneously minimizing neurotoxicity, in the 

hopes of stabilizing or improving neurocognition.

Aging and Antiretrovirals

With the advent of ART, HIV+ patients have been living longer, and while this is a step in 

the right direction, the graying of this population brings with it certain clinical ramifications 

(Kirk and Goetz 2009). For instance, age-related multimorbidity in PLWH (including 

metabolic syndrome and vascular disease) may also contribute to neurotoxicity, with the 

resulting polypharmacy increasing the risk of drug-drug interactions that could cause CNS 

injury (Alonso-Villaverde, Aragonès et al. 2010, Tarr and Telenti 2010). Although the 

underlying mechanisms remain largely unclear, HIV and aging appear to independently 

contribute to neurocognitive decline and HAND development (Cañizares, Cherner et al. 

2014, Seider, Luo et al. 2014, Coban, Robertson et al. 2017). This suggests that HIV patients 

experience premature and accelerated aging, although some researchers question whether 

the root cause is HIV itself or rather the deleterious effects from therapy (Smith, de Boer et 

al. 2012).

A working hypothesis to explain the accelerated aging phenomenon is that age-related CNS 

injury resulting from toxicity of ART and concomitant drugs enhance vulnerability to CNS 

complications, even in those with virologic control. Aging-related changes in drug 

distribution, binding proteins, metabolism and elimination can lead to greater ART drug 

exposure in the elderly (Mangoni and Jackson 2004, Klotz 2009, Winston, Jose et al. 2013). 

Aging causes structural and functional changes in the BBB, such as decreased endothelial 

cell counts, choroid plexus epithelium flattening and calcification, as well as thickening of 

basement and arachnoid membranes. These changes result in increased BBB permeability 

which may likely affect ART CNS pharmacokinetics (Erdő, Denes et al. 2017). PI 

distribution in the CNS seems to be particularly affected by age, with studies showing that 

elderly HIV+ patients have decreased clearance of lopinavir and darunavir, longer half-life 

of indinavir, and higher total exposure of atazanavir (Zhou, Havlir et al. 2000, Crawford, 

Spritzler et al. 2010, Avihingsanon, Kerr et al. 2013, Winston, Jose et al. 2013, Calza, 

Colangeli et al. 2017).

Current research is investigating ways to mitigate accelerated cognitive aging in PLWH. One 

trial (NCT02936401) is currently assessing the use of Mindfulness Based Stress Reduction 

as a method to improve function in patients older than 60 with HAND. Another 

(NCT03483740) is testing cognitive remediation group therapy in a similar cohort of older 

individuals with HAND. A comprehensive review of potential HAND treatment is discussed 

below.
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Experimental HAND Treatment

Given the persistence of HAND in the cART era and the possible contribution from 

antiretroviral neurotoxicity, a number of previous and current trials have investigated 

possible therapeutic options to combat HAND (Cross and Kolson 2017). These include 

drugs already approved for treating other neurodegenerative diseases (selegiline and 

memantine) (Schifitto, Navia et al. 2007, Schifitto, Zhang et al. 2007), drugs predominantly 

used for nonneurologic conditions (minocycline, fluconazole, intranasal insulin 

[NCT03277222], and statins [NCT01600170]) (Rezaie-Majd, Maca et al. 2002, Sacktor, 

Miyahara et al. 2011, Gerena, Skolasky et al. 2012, Nakasujja, Miyahara et al. 2013, 

Meulendyke, Queen et al. 2014, Sacktor, Skolasky et al. 2018), and antioxidants (Coenzyme 

Q10, heme oxygenase-1, and dimethyl fumarate) (Cross, Cook et al. 2011, Louboutin and 

Strayer 2018, Velichkovska, Surnar et al. 2018).

Although some ART drugs are associated with neurotoxicity, several ongoing trials are 

testing treatment intensification approach for cognitive improvement. One trial 

(NCT01448486) investigated the effects of raltegravir intensification on neurocognitive 

performance but was unfortunately stopped prematurely due to insufficient patient 

recruitment. Maraviroc intensification in humans caused an improvement in 

neuropsychiatric performance, hypothesized to result from reducing the HIV burden in 

monocytes, leading to two current clinical trials (NCT02159027 and NCT02519777) 

(Burdo, Weiffenbach et al. 2013, Ndhlovu, Umaki et al. 2014). Cenicriviroc, when given to 

HAND patients, led to decreased inflammatory monocyte activation and subtle improvement 

in cognitive performance (D'Antoni, Paul et al. 2018).

Apart from a few mild successes in trials listed above, we still have not discovered a 

consistent and efficacious treatment or prevention of HAND. The explanation for this lack of 

effectiveness is multifactorial. Inherently, clinical trials frequently fail despite promising 

preclinical results, due to inadequate patient recruitment/retention, fundamental differences 

between animal models and human subjects, unforeseen adverse effects, etc. More 

specifically, the underlying epidemiology, natural progression, and pathogenesis behind 

HAND still eludes us. Does persistent HAND despite virologic suppression result from 

incomplete antiretroviral CSF penetration, direct or indirect neurotoxicity from 

antiretrovirals, or something else entirely? Without a clear pathological target, developing 

specific treatment modalities becomes exceptionally challenging. This is why the impetus 

for the aforementioned clinical trials came either from medications that showed 

neuroprotection in other diseases or simply came from incidental findings in the clinic. As 

such, it is unlikely that these therapies could actually reverse ART-induced specific 

neurotoxicities rather than simply imparting general neuroprotection. In order to properly 

confront this disease entity, more research to provide answers to preclinical questions about 

HAND is essential.

Conclusions

Antiretroviral neurotoxicity is a growing body of research, with novel molecular, cellular, 

and animal studies uncovering the pathogenesis of such toxicity and relating it to clinical 
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manifestations seen in patients. Each medication has a unique side effect profile, but 

understanding their long-term effects is becoming increasingly relevant, as the development 

of new therapy extends the average lifespan of PLWH. New challenges are being uncovered 

with this aging population, given that they experience longer cumulative ART exposure, 

have more comorbidities, and develop changes in their pharmacokinetic responses to such 

drugs (Erdő, Denes et al. 2017). Although HIV exerts neurotoxic effects on the brain and 

can use the CNS as a reservoir for replication, the fact that regimens with higher CPE do not 

necessarily lead to cognitive improvement has led researchers to hypothesize that ART itself 

may, in part, contribute to neurotoxicity (Caniglia, Cain et al. 2014). This theory is 

supported by the persistence of HAND in the cART era (Heaton, Clifford et al. 2010).

Despite the potential for ART-induced neurotoxicity, viral load reduction in the plasma and 

CNS should remain the principal objective of antiretroviral treatment. Moving forward, we 

advocate for the following: 1) clinicians maintain a high level of suspicion of HAND (even 

when sufficiently treated), 2) scientists continue to unravel the epidemiology and 

pathogenesis of ART-induced neurotoxicity with rigorous studies, and 3) researchers 

develop and assess novel treatment options for such neurotoxicity, including HAND.
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Table 1

Antiretroviral medications by class, including year of approval and CNS penetration effectiveness (CPE) 

score, a measurement of how well medications penetrate the CNS

Abbreviation Approval
Year

CPE
Score

NRTI

azidothymidine/zidovudine AZT/ZDV 1987 4

didanosine ddI 1991 2

stavudine d4T 1994 2

lamivudine 3TC 1995 2

abacavir ABC 1998 3

tenofovir disoproxil fumarate TDF 2001 1

emtricitabine FTC 2003 3

tenofovir alafenamide TAF 2015 1

NNRTI

nevirapine NVP 1996 4

delavirdine DLV 1997 3

efavirenz EFV 1998 3

etravirine ETR 2008 2

rilpivirine RPV 2011 -

doravirine DOR 2018 -

Protease Inhibitors

saquinavir mesylate SQV 1995 1

ritonavir* RTV 1996 1

indinavir IDV 1996 3

nelfinavir mesylate NFV 1997 1

lopinavir LPV 2000 3

atazanavir sulfate ATV 2003 2

fosamprenavir calcium FOS 2003 2

tipranavir TPV 2005 1

darunavir DRV 2006 3

Fusion Inhibitors

enfuvirtide T-20 2003 1

CCR5 Co-receptor Antagonists

maraviroc MVC 2007 3

Integrase Inhibitors

raltegravir RAL 2007 3

dolutegravir DTG 2013 -

elvitegravir EVG 2014 -

bictegravir BIC 2018 -
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Abbreviation Approval
Year

CPE
Score

Post-Attachment Inhibitors

ibalizumab IBA 2018 -

Pharmacokinetic Enhancers

ritonavir* RTV 1996 1

cobicistat COBI 2014 -

*
Ritonavir is used clinically as a PK enhancer rather than an antiretroviral.
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