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Abstract During the past several years, we have achieved
a deeper understanding of the etiology/pathophysiology of
major depressive disorder (MDD). However, this improved
understanding has not translated to improved treatment
outcome. Treatment often results in symptomatic improve-
ment, but not full recovery. Clinical approaches are largely
trial-and-error, and when the first treatment does not result
in recovery for the patient, there is little proven scientific
basis for choosing the next. One approach to enhancing
treatment outcomes in MDD has been the use of standard-
ized sequential treatment algorithms and measurement-
based care. Such treatment algorithms stand in contrast to

the personalized medicine approach, in which biomarkers
would guide decision making. Incorporation of biomarker
measurements into treatment algorithms could speed recovery
fromMDDby shorteningor eliminating lengthyand ineffective
trials. Recent research results suggest several classes of
physiologic biomarkers may be useful for predicting response.
These include brain structural or functional findings, as well as
genomic, proteomic, and metabolomic measures. Recent data
indicate that suchmeasures, at baseline or early in the course of
treatment, may constitute useful predictors of treatment out-
come. Once such biomarkers are validated, they could form the
basis of new paradigms for antidepressant treatment selection.

A. F. Leuchter (*) : I. A. Cook :A. M. Hunter
Laboratory of Brain, Behavior, and Pharmacology,
Semel Institute for Neuroscience and Human Behavior at UCLA,
David Geffen School of Medicine at UCLA,
760 Westwood Plaza,
Los Angeles, CA 90024, USA
e-mail: AFL@UCLA.EDU

A. F. Leuchter : I. A. Cook :A. M. Hunter :K. Faull :
J. Whitelegge :A. M. Andrews : S. F. Nelson
Department of Psychiatry and Biobehavioral Sciences,
Semel Institute for Neuroscience and Human Behavior,
David Geffen School of Medicine at UCLA,
Los Angeles, CA, USA

S. P. Hamilton
Department of Psychiatry and Institute for Human Genetics,
University of California,
San Francisco, CA, USA

K. L. Narr :A. Toga
Laboratory of Neuro Imaging, Department of Neurology,
David Geffen School of Medicine at UCLA,
Los Angeles, CA, USA

K. Faull : J. Whitelegge
PasarowMass Spectrometry Laboratory, Department of Chemistry&
Biochemistry, David Geffen School of Medicine at UCLA,
Los Angeles, CA, USA

J. Loo
Department of Chemistry & Biochemistry,
David Geffen School of Medicine at UCLA,
Los Angeles, CA, USA

B. Way
Social Cognitive Neuroscience Laboratory,
Department of Psychology at UCLA,
Los Angeles, CA, USA

S. F. Nelson : S. Horvath
Department of Human Genetics,
David Geffen School of Medicine at UCLA,
Los Angeles, CA, USA

S. Horvath
Department of Biostatistics, UCLA School of Public Health,
Los Angeles, CA, USA

B. D. Lebowitz
Sam and Rose Stein Institute for Research on Aging,
Department of Psychiatry, UCSD School of Medicine,
San Diego, CA, USA

Curr Psychiatry Rep (2010) 12:553–562
DOI 10.1007/s11920-010-0160-4



Keywords Biomarkers . Major depression . Predicting
treatment response . Brain imaging .Magnetic resonance
imaging (MRI) . Quantitative electroencephalography
(QEEG) . Cordance . Antidepressant Treatment Response
(ATR) Index . Positron emission tomography (PET) .

Pharmacogenomics . Proteomics . Metabolomics

Introduction

The annual costs of major depressive disorder (MDD) are
estimated at 83.1 billion dollars in the United States, with
nearly two thirds of this cost arising from functional
disability [1]. The costs of MDD are high in part because
it takes so long for patients to recover from the illness [2].
Current treatment guidelines recommend that an initial
treatment be tried for long enough a period to determine
how much it will benefit a patient [3]. On average, at least
4 weeks are needed to attain response, and 6 weeks to attain
remission during treatment with an initial selective seroto-
nin reuptake inhibitor (SSRI) antidepressant, but remission
can take 12 weeks or longer [4]. Because most patients fail
to enter remission with the first antidepressant prescribed
[4], they then commonly enter a period of serial trial-and-
error, using switches in or combinations of medications [5]
and typically taking 1 year or more to hit upon a successful
treatment [6, 7]. It is not surprising that using this “hit-or-
miss” approach, 26% of those who fail to improve with the
first treatment simply stop taking medication, frequently
within the first 2 weeks [8], and up to 42% of patients
discontinue medication within the first 30 days [9].

What is needed is an improved method of selecting
antidepressant medications for individual patients. All
medications are thought of as equally effective, but
clinicians have sought to personalize selection by targeting
groups of patients with specific symptoms with medications
that have different putative mechanisms of action (MOAs)
(eg, SSRIs vs serotonin-norepinephrine reuptake inhibitors
vs bupropion). Although some data suggest that subsets of
patients may be more likely to benefit from medications with
particular MOAs, the number needed to treat (NNT) to see
such differences can be so large (NNT = 27) [10] that the
value is questionable. MOA is more routinely considered in
clinical decision making for second-line treatment (ie, after a
patient fails to benefit from initial SSRI monotherapy). The
Sequenced Treatment Alternatives to Relieve Depression
(STAR*D) study examined medications with differing
MOAs—either singly or in combination—after patients
failed to respond to an initial SSRI [4, 11]. The results from
this second level of treatment showed numeric superiority for
switching to medications with a different MOA and slightly
more so for combining treatments with different MOAs,
although none of these differences reached statistical

significance [11, 12]. The field is thus left with no clear
evidence base about how to choose among existing
medications to maximize benefit for the individual patient.

Some have argued that existing monotherapies are
inherently inadequate and that the central challenge is to
develop treatments for MDD with fewer side effects and
more rapid onset of action [13]. Our immediate imperative,
however, is to be “smarter” in our use of existing agents.
We need treatment paradigms for MDD that reliably match
patients with the right treatment either before or early in the
course of treatment to retain the patient in treatment,
minimize disability and suffering, avoid treatment-
emergent adverse events such as worsening suicidal
ideation [14], and prevent the development of negative
attitudes and expectations that may perpetuate poor out-
come [2]. This is the impetus for developing a personalized
medicine approach based on biomarkers that could predict
the likelihood of success with any given treatment. Clinical
care would be greatly improved if we had reliable clinical
predictors of treatment outcome. Most patients who are
going to benefit from our current medications start to
experience some improvement within the first 2 weeks of
treatment, but early symptom improvement is a nonspecific
predictor of benefit. Most early physiologic biomarkers,
such as plasma hormone levels or changes in blood
pressure during treatment, lacked sensitivity and specificity
as predictors. Nevertheless, physiologic biomarkers could,
in theory, speed recovery from MDD by matching patients
with the treatment most likely to be effective for them as a
result of their neurobiologic characteristics. We review here
the literature supporting the use of different types of
biomarkers before or during treatment to direct selection
of an initial or second-line treatment in MDD.

When Should Biomarker Measurements Be Made?

Two complicating factors in biomarker development are the
timing and conditions of measurement. The ideal biomarker
is measurable at diagnosis to assist in selection of the first
treatment. However, pretreatment predictors thus far have
identified indicators only of general prognosis, not which
specific treatment is likely to benefit a particular patient [2].
While some potential biomarkers (eg, genotype) presum-
ably are stable over time, other biomarkers (eg, measures of
gene expression or brain function) may emerge only during
treatment [2, 15]. For this reason, much research now is
aimed at identifying biomarkers that emerge early in the
course of treatment and may indicate whether the medica-
tion that the patient is receiving is likely to lead to
remission [16••, 17••]. To the extent that such biomarkers
are determined by genetic factors and emerge reliably in
response to a particular treatment, they may represent
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“response endophenotypes” [2]. Treatment-emergent bio-
markers are not helpful with the initial treatment selection;
nevertheless, if a biomarker can be used to change an
ineffective treatment to another that is more likely to be
effective within a few weeks of treatment initiation, this
could still shorten the duration and lower the number of
ineffective antidepressant treatment trials [2]. Furthermore,
the use of treatment-emergent biomarkers does offer certain
advantages. First, the measurement of biomarkers “within
patients” likely enhances stability, statistical reliability, and
therefore predictive accuracy of the biomarker. Second, the
measurement of biomarkers in response to newly adminis-
tered treatments may help overcome confounds inherent in
pretreatment, cross-sectional measures (eg, number and
severity of prior episodes, the current phase of illness), and
the extent and types of prior and current treatment [15].
Examination of dynamic measures during the current
treatment may detect features common across individuals
responding to that treatment, regardless of confounding
factors [2]. The literature offers limited guidance as to when
in the course of treatment such treatment-emergent bio-
markers should be measured. For quantitative electroen-
cephalographic (QEEG) measures, it seems that changes in
the first week of treatment are predictive [16••, 17••]. For
changes in gene expression or brain-derived neurotrophic
factor (BDNF) levels, however, the most reliable data are
for pre- to post-treatment changes, and the question of how
early in treatment changes that might be predictive of
outcome could be detected remains unclear.

It is important to note that difficulty in identifying
practical biomarkers is not unique to the treatment of
depression. Although there are successful biomarkers for
disease processes (eg, elevated thyroid-stimulating hor-
mone in hypothyroidism), relatively few biomarkers in
clinical medicine are useful for choosing a particular
medication treatment. The challenges are particularly great
for identifying biomarkers for brain diseases because of the
relative inaccessibility of the brain and limited understand-
ing of the basis of basic pathophysiology of disease [18].

Which Biomarkers Appear to Have Clinical Usefulness?

At the present time, no biomarkers have sufficiently proven
utility to be ready for clinical application. However, several
types of biomarkers show promise for predicting clinical
response. The evidence supporting each type of biomarker
is considered separately below.

Brain Structural Measures

Several different brain structural measures have demon-
strated usefulness as pretreatment predictors of treatment

outcome. Recent meta-analyses of structural neuroimaging
studies indicate that depressed patients have reduced gray
matter in multiple areas, including the anterior cingulate
cortex (ACC) [19], subgenual cingulate cortex [20], and
hippocampus [21]. The most robust evidence is for the
hippocampus, for which larger volumes predicted better
response after 8 weeks of pharmacotherapy in two separate
samples [22, 23]. Furthermore, in a prospective study,
smaller hippocampal volumes were predictive of clinical
outcome 3 years later [24]. In another prospective study,
larger hippocampal volume was associated with a lower
probability of relapse in men at a 2-year follow-up [25].
The predictive utility of structural data is not limited to the
hippocampus, as gray matter density in the ACC and
posterior cingulate cortex was also predictive of clinical
remission following 8 weeks of fluoxetine treatment [26].
Notably, of the studies cited above, only one group has
examined the relationship between treatment and brain
structure directly by longitudinal assessment [24]. Studies
also have been limited by small sample sizes, measure-
ment approaches that used manual delineation of the
hippocampus/amygdala, or whole brain voxel-based mor-
phometry methods sensitive to registration and partial
volume confounds.

The structural integrity of the fiber tracts between neural
areas affected in depression is another source of informa-
tion that may facilitate prediction of treatment response.
Although the application of diffusion tensor imaging to the
study of depression in adulthood is relatively novel,
evidence from studies of individuals with late-life depres-
sion indicates that this imaging technique, which tracks the
diffusion properties of water through brain tissue in vivo,
has predictive potential for delineating treatment responders.
For example, nonresponders to 12weeks of citalopram [27] or
escitalopram treatment [28] showed a greater prevalence of
microstructural abnormalities in white matter pathways
connecting the cortex with limbic and paralimbic areas such
as the anterior cingulate, as estimated using regions-of-
interest and voxel-based analysis approaches. These abnor-
malities may be associated with poorer outcome because
they impair mood regulatory interactions between prefrontal
and limbic areas [29]. The integrity of these corticolimbic
pathways is adversely impacted by adverse life events [30]
as well as genetic polymorphisms (eg, 5-HTTLPR) [31].
Although diffusion tensor imaging metrics of fiber integrity
may constitute a useful predictor of treatment outcome, there
are insufficient data to assess its usefulness. Prior studies
also have been limited to measuring scalar metrics such as
fractional anisotropy, which reflects the extent to which
diffusion is directionally restricted in a voxel in arbitrarily
delineated white matter regions. This approach may overlook
significant findings in nonstudied regions. Furthermore, the
automated voxel-based approaches that have been used at
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times, while convenient for exploratory analysis, are
susceptible to registration confounds that may contribute to
regional discrepancies in findings. No study to date has
incorporated more refined tractography measurement
approaches to better determine whether the structural
connectivity of specific white matter tracts predicts treatment
response.

Although considerable data link brain structural meas-
urements to treatment outcome, these measures seem to be
primarily indicators of general prognosis. Although they
may indicate the likelihood that a patient will recover,
regardless of the treatment selected, they have not been
examined for their usefulness in selecting a particular
option from a set of potential treatments for individual
patients.

Brain Functional Measures

As an alternative to assessing the structural integrity of
brain areas and networks associated with treatment out-
come, assessing the functional properties of these circuits
may provide a more complete picture of a patient’s
biological state before treatment. Two types of functional
MRI data have demonstrated the most promise as bio-
markers of treatment outcome: 1) intrinsic connectivity
analyses performed while the patient is resting in the
scanner with eyes closed; and 2) task-related activations,
specifically the viewing of negative emotional facial
expressions.

The functional connectivity between regions can be
assessed by measuring spontaneous low-frequency (typi-
cally 0.01–0.1 Hz) fluctuations in resting state blood
oxygen level-dependent signal [32], which are phase locked
between areas. The correlation in these fluctuations
between cortical and limbic areas therefore serves as a
functional connectivity measure that reflects functioning in
these mood-regulating pathways. Anand and colleagues
[33] were the first to use this technique to show that
corticolimbic connectivity is decreased in depression.
Anand and colleagues [34] also showed that corticolimbic
connectivity increased as scores on the Hamilton Depres-
sion Rating Scale decreased during treatment, suggesting
that assessment of resting state corticolimbic connectivity
could be useful for predicting antidepressant treatment
response.

Anadditionalmethodofassessingfunctionwithin theneural
circuitry for emotional processing is reactivity to theprocessing
of negative facial expressions. When viewing negative facial
expressions, depressed patients show exaggerated changes in
activity in the limbic system, particularly the amygdala, in
comparisonwith healthy controls [35]. Studies that have used
baseline neural reactivity to emotional facial expressions as a
predictor of treatment response generally have been under-

powered, but encouraging signs indicate that this task [36,
37] and analogous tasks [38] may be of utility for prediction.
Increased reactivity seems to normalize after successful
antidepressant pharmacotherapy [39, 40] and cognitive-
behavioral therapy [41], and may be a sufficiently consistent
finding to be of eventual clinical utility. When viewing
negative emotional faces, depressed patients have greater
amygdala activation but also reduced coactivation of the
dorsal anterior cingulate and increased coactivation in the
subgenual cingulate [42]. In a treatment study, 8 weeks of
fluoxetine administration ameliorated the deficient connec-
tions between the amygdala and anterior cingulate [43].
These changes in task-related reactivity are complementary
to differences between treatment responders and nonres-
ponders in resting state connectivity within corticolimbic
circuits [44].

Fluorodeoxyglucose positron emission tomography
(PET) scanning has shown some promise as a predictor of
response to medication [45]. The number of studies
indicating some predictive value for fluorodeoxyglucose
PET is encouraging, although results have been inconsistent
[45] and confounded by relatively small sample sizes and
heterogeneity in treatment techniques, as well as in imaging
methods. PET imaging with the serotonin transporter ligand
[(11)C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-
benzonitrile], or DASB, which binds to the serotonin trans-
porter, has not been shown to predict treatment response in
MDD, although patients with depression have low DASB
binding potential [46, 47]. DASB binding potential also is
associated with the HT2A single-nucleotide polymorphism
(SNP) that has been associated with SSRI treatment response
in some studies, suggesting that this technique may be
worthy of further study [48].

The best-documented brain functional biomarker for
predicting antidepressant treatment response is QEEG.
QEEG signals are generated by assemblages of neurons in
the cortex and deeper structures and as such provide a
global measure of brain function [49]. Responders to
medication differ from nonresponders in QEEG power,
either in the resting state or during simple tasks [50]. Three
complementary measures of brain electrical activity have
shown significant promise for predicting treatment re-
sponse: cordance, low-resolution brain electromagnetic
tomography (LORETA), and the Antidepressant Treatment
Response (ATR) Index. Cordance is a QEEG power
measure (calculated from a full scalp electrode array) that
is more strongly associated with perfusion of cerebral
cortex underlying each electrode than other power measures
[51, 52]. Cordance accurately characterizes brain function
on the cortical convexities (eg, dorsolateral prefrontal
cortex) and has demonstrated usefulness for characterizing
medication response [53–60]. LORETA extends the topo-
graphic capabilities of QEEG, enabling characterization of

556 Curr Psychiatry Rep (2010) 12:553–562



brain activity not only on the cortical convexities but also in
deeper specific cortical areas (eg, the ACC and medial
orbitofrontal cortex) [61]. While cordance may in fact
reflect activity of areas such as the ACC that is projected to
the surface [62], LORETA permits attribution of electrical
activity to specific deeper structures. Cordance and LOR-
ETA require whole-head electrode montages to collect data,
which provide a view of function over all cortical regions;
therefore, these techniques are well-suited to exploration of
brain function. They share the disadvantage of requiring up
to 75 min to record in a QEEG laboratory facility. The ATR
Index is a biomarker optimized to predict medication
response that is calculated from data collected from a
five-electrode montage tightly focused on the frontal
regions of the brain, and can be recorded in only 10 min
in a general office-based setting [16••, 17••].

Most studies of brain functional biomarkers are of small
size and therefore are inadequate to fully assess the utility
of the biomarkers. One of the largest studies performed,
which examined ATR, is the national multisite study
Biomarkers for the Rapid Identification of Treatment
Effectiveness in Major Depression (BRITE-MD), which
evaluated neurophysiologic and genomic predictors of
response and remission in MDD. BRITE-MD enrolled
375 MDD patients and collected comprehensive clinical,
neurophysiologic, and genomic data. BRITE-MD devel-
oped one of the only predictors of differential response to
two antidepressants with different putative MOAs (escita-
lopram and bupropion) using the ATR Index as a
dichotomous predictor [16••, 17••]. A positive ATR
biomarker predicted response and remission to escitalopram

with 74% overall accuracy, and those with a positive ATR
were more than 2.4 times as likely to respond to
escitalopram as those with a negative ATR (68% vs 28%;
P=0.001) [16••]. Conversely, those with a negative ATR
who were switched to bupropion treatment were 1.9 times
as likely to respond to bupropion alone as those who
remained on escitalopram treatment (53% vs 28%;
P=0.034) (Figs. 1 and 2) [17••].

Critically, this is one of the only instances in which a
biomarker has predicted differential response to two
antidepressant medications with distinct MOAs. The NNT
to see a benefit from the use of the ATR Index based on
these results is 10 to 11, which is within the range proposed
for a clinically useful measure [2, 17••]. However, these
results must be interpreted with the caveat that treatment
was not assigned prospectively on the basis of ATR Index
values [2]. It is encouraging that another group indepen-
dently replicated these findings in a naturalistic study with
antidepressants selected by clinician choice [63]. These
results are encouraging and warrant further exploration of
these two medications with distinct MOAs using a wider
range of biomarkers.

Genomic Measures

Pharmacogenetic investigations postulate that responsive-
ness to or tolerability of treatment may be influenced by
inherited factors. Several observational studies suggest an
inherited basis for antidepressant treatment outcomes.
Despite evidence that pharmacokinetic factors under genetic
control are correlated with response and toxicity to tricyclic

Fig. 1 Logistic regression mod-
el of escitalopram and bupro-
pion responders stratified by
Antidepressant Treatment
Response (ATR) Index values.
ATR values are shown for
patients randomly assigned to
each treatment and who
responded to escitalopram or
bupropion treatment. Patients
who responded to escitalopram
tended to have higher ATR
values, and those who
responded to bupropion tended
to have lower ATR values.
Markers represent observed
values, and lines represent
modeled values
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antidepressants, there has been little evidence to suggest that
this is the case with response to or tolerance of the SSRIs [64].
The current widespread use of SSRIs in treatment of
depression has resulted in a large body of literature on SSRI
pharmacogenetics [65]. Most of these studies focus on
candidate genes related to monoamine function, including
the serotonin transporter (the molecular target for SSRIs),
tryptophan hydroxylase-1, monoamine oxidase A, and the
type 2A serotonin receptor. These studies have demonstrated
only a few associations with treatment response, most of
which have not been consistent.

Several large genome-wide association studies (GWAS)
used the STAR*D pharmacogenetic sample. Because the
findings have been extensively reviewed previously [66,
67], only the most prominent findings are highlighted here.
In an analysis of 763 SNPs in 68 candidate genes, a single
SNP in the type 2A serotonin receptor was reported to show
statistical association with citalopram response [64, 68].
Several research teams have specifically addressed the
association between citalopram treatment response and
genetic variation in the serotonin transporter using the
STAR*D sample [68–70]. Most showed no association to
measures of efficacy, while one showed modest association
for a particular haplotype in only a subset of the STAR*D
sample [70]. Taken together, these studies suggest an
overall lack of association between this most obvious of
candidate genes and citalopram response. A recent GWAS
of drug response, made up of 700 German inpatients from
two cohorts treated with a variety of drugs, found that no
SNP was significant at a genome-wide level using results
from individual (n=339) or pooled (n=361) genotyping

[71]. A set of 328 SNPs was carried forward and genotyped
in 832 Caucasians from STAR*D for replication. While 46
SNPs showed P values <0.05, none withstood multiple-test
correction. Garriock and colleagues [72••] performed
comprehensive GWAS on the STAR*D sample for response
and remission phenotypes and identified 41 and 39 SNPs with
principal components ancestry-adjusted P<0.0001 in remis-
sion and response phenotypes, respectively. They found
modest levels of association, although nothing at the
proclaimed genome-wide significance level (P<5×10−8).
The strongest finding for response and remission occurred
51 kb upstream of the gene UBE3C (P=3.63×10−7; additive
OR, 1.68), which encodes ubiquitin protein ligase E3C, a
gene found to be significantly downregulated in a stress-
induced manner in primates in the adult ventromedial
prefrontal cortex. More recently, 706 European individuals
treated with escitalopram or nortriptyline underwent GWAS,
with the strongest finding in the combined sample localizing
to a duplicated region of chromosome 1 (P=3.82×10−7).
The authors carried out drug-specific analyses and reported a
genome-wide significant finding for nortriptyline-treated
individuals (P= 3.56× 10−8) within the uronyl-2-
sulfotransferase gene, while they found a suggestive finding
in the coding region of the interleukin-11 gene (P=2.83×
10−6) for escitalopram-treated individuals. There is little
overlap among the three GWAS, suggesting prominent
heterogeneity between studies and low power within any
single study [73]. The lack of strong, clear, and consistent
associations between genetic polymorphisms and treatment
response is in some ways not surprising; depression is a
complex and heterogeneous disorder, and multiple additive

Fig. 2 Logistic regression mod-
el of escitalopram and bupro-
pion remitters stratified by
Antidepressant Treatment
Response (ATR) Index values.
ATR values are shown for
patients randomly assigned to
each treatment and who remitted
with escitalopram or bupropion
treatment. Patients who remitted
with escitalopram tended to
have higher ATR values, and
those who remitted with bupro-
pion tended to have lower ATR
values. Markers represent
observed values, and lines
represent modeled values
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genetic factors are likely to be associated with response.
These reports do not offer a comprehensive assessment of
the role of variation across the genome or of the potential for
multiple additive effects [72••].

Gene expression analysis in neuropsychiatric disorders
has been challenging due to the relative inaccessibility of
brain tissue. Direct assessment of postmortem brain
samples from individuals with MDD has indicated some
differences in gene expression that are correlated with
disease state [74]. These studies indicate detectable differ-
ential gene expression in at least subregions of the central
nervous system. To assess expression in living humans,
these studies have been extended to the assessment of gene
expression via analysis of mRNA from circulating mono-
nuclear cells in whole blood [75, 76]. Support for the
analysis of gene expression in peripheral blood comes from
the assessment of inter- and intraindividual differences in
primate blood and brain. It was recently demonstrated that
interindividual gene expression differences can be con-
served in primate brains and primate peripheral blood,
extending the general model for how blood sampling
provides useful information on interindividual expression
differences in brain subregions [77]. Limited small studies
have demonstrated gene expression changes from leukocyte
mRNA in response to antidepressant or lithium treatment in
patients with MDD or bipolar disorder [75]. In some small
studies, antidepressant treatment tended to normalize gene
expression patterns, and the degree of normalization was
proportional to the degree of symptom improvement [75,
78, 79]. These data suggest that peripheral expression
signatures may be relevant to MDD and that the disease
state is reflected in expression changes in the leukocyte
transcriptome. However, sample sizes have been limited;
therefore, information about the reliability of these findings
for predicting treatment response is unknown. Rich sets of
data have been generated, however, to study gene expres-
sion as quantitative traits controlled by specific DNA
variants in mice, humans, and other species. These data
demonstrate strongly that cis-regulatory DNA variants
control the basal level of gene expression in a variety of
tissues, including blood, and contribute to the neurologic
phenotypes in the mouse. These expression quantitative
trait loci are a powerful resource for complex disease gene
mapping, as recently reviewed by Cookson et al. [80]. The
promise of this technique suggests it should be pursued for
development of possible biomarkers in the future.

Proteomic and Metabolomic Measures

Proteomic and metabolomic biomarkers of treatment
response in MDD remain in very early stages of develop-
ment, and none have demonstrated reliability for predicting
treatment response. These potential biomarkers are attrac-

tive for further research, however, because of the relatively
constrained space of biomarker targets. Still, the field faces
several challenges. First among them is the source of
materials to be examined. Cerebrospinal fluid might be
considered as the source most closely reflective of brain
activity, but it is not easily accessible on a routine, risk-free
basis that is likely to be acceptable to patients. Urine,
although perhaps the most easily collected in humans, is
furthest removed from brain function, and the degree to
which saliva is reflective of brain function is uncertain
given the present state of the field. Thus, plasma appears to
be the rational source for proteomic and metabolomic
measurements because it is easily accessible, and many
small molecules from the brain reach the circulation en
route to excretion; several also are exchanged or transported
across the blood–brain barrier.

Proteomic investigations in MDD mostly have been
performed on cerebrospinal fluid [81] and specific brain
regions collected at autopsy [82]. Comprehensive proteo-
mic investigations of plasma from MDD patients have yet
to be reported. Furthermore, no clinical study has been
directed at identifying protein signatures related to different
treatments and responses in MDD. Metabolomic reports,
although limited, highlight the opportunities that metab-
olomic investigations have for research on MDD [83].
Paige and colleagues [84] compared gas chromatography–
mass spectrometry profiles of plasma extracts from depressed,
remitted, and never-depressed older adults, revealing differ-
ences in levels of several fatty acids, glycerol, and
γ-aminobutyric acid. Focused investigations of one or a few
metabolites in bipolar disorder and MDD have drawn
attention to the role of neurotransmitter abnormalities
(norepinephrine, dopamine, serotonin, γ-aminobutyric acid,
glutamate/glutamine) and lipids, including arachidonic and
other fatty acids [83].

Of all serum protein measures, BDNF is the most clearly
implicated in the pathogenesis and treatment of MDD [85].
The origins of serum BDNF are unclear, and in animal
models, it does cross the blood–brain barrier [86]. There is
strong evidence of low serum BDNF in unmedicated MDD
patients and recovery of serum BDNF levels after antide-
pressant therapy [87], including in a large meta-analysis
[88]. These findings suggest that BDNF has the potential to
be a biomarker of treatment response, although only a few
studies have explored changes during treatment in humans
[87–89].

Conclusions

The development of biomarkers to guide treatment
decision making in MDD would offer significant advan-
tages. Several putative biomarkers have been identified
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that provide information about the general prognosis for
recovery from depression and, in some instances, about
whether a specific treatment may lead to remission.
Several questions must be addressed before biomarkers
can be introduced into clinical practice. These include the
following:

1. When is the optimal time in the course of treatment to
measure such biomarkers to obtain maximum predic-
tive accuracy?

2. Are these biomarkers predictive of differential response
(or remission), or instead of prognosis for any treatment
that the patient would receive?

3. Do the biomarkers have sufficient sensitivity, specific-
ity, and reproducibility for predicting response and
remission that they can be relied upon in clinical
practice?

For some putative biomarkers, data suggest that the
answers to these questions are favorable and that clinical
application may be practical and useful. It is likely that no
one biomarker alone will be sufficient to direct clinical
treatment decisions, and that a panel of multimodal
biomarkers may be necessary to obtain the degree of
accuracy necessary for clinical utility. Research should
focus on replicating existing findings and examining groups
of biomarkers in sufficiently large cohorts of patients with
MDD to examine the clinical effectiveness of biomarker-
guided treatment.
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