
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Parallel processing of chaos-based image encryption algorithms

Permalink
https://escholarship.org/uc/item/6zc2n027

Author
Raman, Ashwin

Publication Date
2016

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6zc2n027
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Parallel processing of chaos-based image encryption algorithms

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Engineering

by

Ashwin Raman

 Thesis Committee:
 Professor Jean-Luc Gaudiot, Chair
 Professor Nader Bagherzadeh

 Professor Chen-Yu Phillip Sheu

2016

© 2016 Ashwin Raman

i

TABLE OF CONTENTS

 Page

List of Figures ……...……………………………………………………………………………………………… iii

List of Tables …...………………………………………………………………………………………………..….. v

Acknowledgments …………………..…...…………………………………………………………………...…. vi

Abstract of the Thesis ……….……………………………………………………………………………….... vii

1. Introduction .…………………………………………………………………………………………………… 1

1.1. Motivation .………………………………………………………………………………………………... 1

1.2. Organization of Thesis .………………………………………………………………………………. 2

2. Chaos Based Image Encryption …………………………………………………………………………. 4

2.1. Chaotic Maps ……………………………………………………………………………………………... 5

2.1.1. Arnold Cat Map ……………………………………………………………………………….... 6

2.1.2. Henon Map ……………………………………………………………………………………..... 7

2.1.3. Duffing Map …………………………………………………………………………………...… 9

2.1.4. Cross Chaotic Map …………………………………………………………………………... 10

3. Graphics Processing Units ………………………………………………………………………..……… 12

3.1. NVIDIA - GPU architecture ………………………………………………………………………... 14

3.2. CUDA – Programming model …………………………………………………………………….. 15

4. Serial Implementation of Chaos based encryption algorithm ……………………………. 19

4.1. Image format …………………………………………………………………………………………… 19

4.2. Proposed encryption algorithm using chaotic maps …………………………………... 20

4.3. Running Time and Security analysis ………………………………………………………….. 23

4.3.1. Security Analysis technique: Randomness test – NPCR and UACI …….... 23

ii

4.3.2. Experimental Results ………………………………………………………………………. 25

5. Parallel Processing of Proposed Algorithm ……………………………………………………….. 34

6. Conclusion and Future Work ……………………………………………………………………………. 39

6.1. Future Research ………………………………………………………………………………………... 40

References ………. 41

iii

LIST OF FIGURES

 Page

Figure 2.1a Matrix notation of Arnold Cat Map …………………………………………………….. 6

Figure 2.1b Arnold Cat Map transformation …………………………………………………………. 7

Figure 2.2a Lorenz Equations ……………………………………………………………………………… 7

Figure 2.2b Henon Map Equations ……………………………………………………………………….. 8

Figure 2.2c Henon Map after several iterations ……………………………………………………. 9

Figure 2.2d Henon Map initial point …………………………………………………………………….. 9

Figure 2.3a Duffing Map after several iterations ……………………………………………….... 10

Figure 2.3b Duffing Map Equation ……………………………………………………………………... 10

Figure 2.4 Cross Chaotic Map Equation …………………………………………………………….. 11

Figure 3.1 GPU acceleration framework …………………………………………………………… 13

Figure 3.2 GPU vs CPU memory hierarchy ………………………………………………………... 13

Figure 3.3 GeForce Modern GPU Architecture …………………………………………………... 14

Figure 3.4 TFLOPS trend for NVIDIA GPUs ………………………………………………………... 15

Figure 3.5 CUDA Thread Organization ………………………………………………………………. 17

Figure 3.6 CUDA processing flow ……………………………………………………………………… 17

Figure 3.7 CUDA compiling C application ………………………………………………………….. 18

Figure 4.1 PPM image format …………………………………………………………………………… 19

Figure 4.2 Arnold Cat Map Serial implementation ………………………...…………………… 20

Figure 4.3a Key generation algorithm ………………………………………………………………… 21

Figure 4.3b Encryption process …..……………………………………………………………………… 22

Figure 4.3c Decryption process ……………..…………………………………………………………… 23

iv

Figure 4.4 NPCR formula ……………..…………………………………………………………………… 24

Figure 4.5 UACI formula ……………..………..…...……………………………………………………… 25

Figure 4.6a 512*512 input image ……………..………………………………………………………… 27

Figure 4.6b 2048*2048 input image ……………..…………………………..………………………… 29

Figure 4.6c 4096*4096 input image ……………..……..……………………………………………… 31

Figure 5.1 Parallel encryption of 4096*4096 images using Cross chaotic and Arnold

 cat map ……………………………..…..………………………………………………………... 36

v

LIST OF TABLES

 Page

Table 3.1 CUDA function declarations ………………………………………………………......... 18

Table 4.1 Encryption results for 512*512 image size - single encryption step 27

Table 4.2 Encryption results for 512*512 image size - multiple encryption steps 28

Table 4.3 Encryption results for 2048*2048 image size - single encryption step 29

Table 4.4 Encryption results for 2048*2048 image size - multiple encryption

 Steps …………………………………………………………………………………………... 18

Table 4.5 Encryption results for 4096*4096 image size - single encryption step 31

Table 4.6 Encryption results for 4096*4096 image size - multiple encryption

Steps ……………... 32

Table 5.1 Encryption results for 4096*4096 image size – serial and parallel

 Processing …………... 35

Table 5.2 Encryption time for 4096*4096 image pixels without key generation

Time ………….. 37

vi

ACKNOWLEDGMENTS

I would like to express my earnest gratitude to my advisor Professor Jean-Luc

Gaudiot for all his support, guidance and encouragement that helped me throughout my

research work. I would like to thank my committee members, Professor Nader

Bagherzadeh and Professor Chen-Yu Phillip Sheu for lending their precious time and

valuable guidance during this process.

I would also like to acknowledge other members of the Parallel Systems & Computer

Architecture Lab (PASCAL) research group for their persistent help and constructive

feedback to help me finish my thesis.

vii

ABSTRACT OF THE THESIS

Parallel processing of chaos-based image encryption algorithms

By

Ashwin Raman

Master of Science in Computer Engineering

 University of California, Irvine, 2016

Professor Jean-Luc Gaudiot, Chair

 Previous researches have shown that image encryption could be done using techniques

like DES, IDEA, RES but the new and effective way for fast and secure encryption using

chaos-based cryptography is the most preferred encryption technique. Chaos-based

encryption algorithms are a combination of multiple chaotic maps and the same process

can be repeated for multiple cycles for higher security. But, as the number of steps to

process an image increases the processing time increase too. Another, reason for increased

processing time is the number of pixels being encrypted. Since, chaos-based algorithms are

considered as ideal for encrypting images in real time applications, higher security and

lesser response time are essential.

This research primarily focusses on examining encryption techniques using two-

dimensional chaotic maps and comparing the encryption algorithms security level and

response time for different image sizes. After serial implementation, parts of encryption

and decryption process that can be parallelized are evaluated and implemented using GPU

and CUDA programming and then quantitative results are compared with the serial

implementation.

1

1. INTRODUCTION

1.1 Motivation

Due to the rapid advancement in digital information and communication, security

has become an essential part of digital media. Images, videos and speech are being shared

and distributed in various fields like public use it for bank transactions or business

communications, government use it to share secret confidential data, and in the medical

field, it is used to account patients reports. All these require user authentication, reliability

and accuracy of data and encryption techniques are useful tools to provide that required

security. Consumer electronics like mobile phones use wireless network to share and

receive images and videos which have limited bandwidth that definitely needs multimedia

security.

In real time applications, time to compress or decompress and encrypt or decrypt

the images are major impediments and hence it becomes difficult to handle a large amount

of data. Hence, it is important to decide the right encryption algorithm depending upon the

requirements and resources. It is important to understand that traditional text encryption

algorithms cannot always be used for multimedia encryption, because images and videos

have larger, redundant data and pixel values are highly correlated with each other, hence

using text encryption algorithms like AES, IDEA, RES will take large computational time,

power and will require more space to process. Unlike, text encryption decrypted images

are acceptable even if we have minor inconsistencies as compared to the input image until

those differences are minimal and not noticeable.

2

In the past two decades, there have been several image encryption algorithms

proposed, which can be broadly classified into three major group’s position permutation

[1], value transformation [2] and visual transformation based algorithms.

1.2 Organization of Thesis

The remainder of the thesis is structured into five chapters. Chapter 2 discusses chaos-

based image encryption algorithms. Chapter 3 discusses parallel processing using Graphic

Processing Units and CUDA programming. Chapter 4 evaluates the cryptanalysis of the two-

dimensional chaos-based encryption algorithms discussed in chapter 2. Chapter 4

compares the parallel implementation of encryption and decryption process and does a

detailed analysis. Chapter 6 concludes the thesis with a summary and potential future

work.

 Chapter 1 discusses chaotic maps and their key properties. Also, the close

relationship between chaos theory and cryptography which will explain why chaos-based

image encryption are often preferred over traditional encryption techniques. Then a

detailed explanation of the four two-dimensional chaotic maps Arnold Cap Map, Henon

Map, Duffing Map and Cross Chaotic Map used in this thesis.

Chapter 2 gives a brief overview of Graphic processing units and how it can be used

in the parallel processing of encryption algorithms, a summary of NVIDIA’s GPU

architecture and how to use CUDA for parallel programming.

Chapter 3 evaluates the security properties of the different arrangements using the

chaotic maps explained in earlier chapters. The security analysis is done using commonly

used quantities like the number of changing pixel rate (NPCR) and the unified averaged

3

changed intensity (UACI). Then the response time for these arrangements is calculated for

both encryption and decryption process in a serial implementation.

Chapter 4 is in succession to Chapter 3 where the serial implementation of image

encryption algorithms are analyzed and parallel processed using GPUs and then the rate of

speedup is determined.

Chapter 5 summarizes the thesis work and gives remarks on the future scope.

4

2. CHAOS BASED IMAGE ENCRYPTION

All systems can be broadly classified as deterministic, stochastic (probabilistic) or

chaotic systems of which chaotic systems are most unpredictable. Chaotic maps are often

used in the study of dynamical systems which exhibit behavior that is highly sensitive to

initial conditions and even small perturbations can yield widely diverging outcomes. Still

these systems are deterministic because based on the initial condition future behavior can

be predicted, hence, their behavior could be called as deterministic chaos.

There is a close relationship between chaotic systems and cryptography which

makes chaos based algorithms a natural candidate for image encryption. The two basic

properties of a good cipher are confusion and diffusion and both these are important

features of chaotic systems too. For real-time applications encryption schemes which take

lesser computational time but wouldn’t compromise with the desired security are suitable.

And chaos-based encryption technique is a good amalgamation of high speed, security,

complexity and less power consumption. [3] provides further details about the relation

between chaotic systems and cryptographic algorithms.

The basic principle of chaos-based encryption is to use the dynamical systems to

generate a sequence of numbers that are pseudo-random in nature and these sequences

could be used as a key to encrypt input image. For given parameters [4] two initial

conditions can deviate exponentially into two different trajectories. These parameters can

be used for encryption and decryption and keys can be chosen from these conditions. Due,

to these chaotic parameters and initial condition we could generate a large key space which

further enhances the security. Because of the random behavior, the output seems random

to the attacker whereas only the sender and receiver know that the system is well defined.

5

Also, these algorithms are easier and cheaper to be embedded onto small chips, which

make them a good fit for cellular systems.

2.1 Chaotic Maps

Chaotic maps can be represented using continuous and discrete time parameters.

The maps are usually iterative functions with the general representation of f: X → X. The

process of recurrently calling the same function, where the result generated from the initial

condition is fed to the same function again and the process is continued. The output from

these chaotic maps exhibits fractal-like property. Fractals are expanding symmetry which

are repeating patterns, hence, it won’t me incorrect to say that chaotic maps have

periodicity.

Before discussing the chaotic maps, it is important to understand the composition of

images. They are composed of distinct entities known as pixels which are represented

using m*n matrix (m rows and n columns) of pixels.

The number of bits used to represent pixel tells the range of colors an image can

represent. The color scale can be divided into two parts 8 bits per pixel and 24 bits per

pixel. An 8 bits pixel is able to represent 2^8 or 256 different colors of grays, rather the

pixel values represent the intensity of black and white colors. On the other hand, color

pixels are composed of three colors red, green and blue. But, it requires 24 bits to represent

color pixels which increase the range of color variation to 2^24 or 16,777,216 different

colors.

Even though we get a wide range of colors but it gives a sense the amount of

processing almost increases by three times as compared to grayscale images. These

representations are also known as true color. There are more advanced coloring schemes

6

for pixels which fall under deep color with 30 or 36 or 48 bits, but they are out of the scope

of this thesis.

The following sections explain in detail about the chaotic maps in discrete time domain

used in this thesis.

2.1.1 Arnold Cat Map

Arnold Cat maps which was named after Vladimir Arnold. He used an image of a cat

to display the effect of this chaotic map. In this mapping technique, images go through a

transformation that randomizes the original image pixels. It is a good example of

hyperbolic toral automorphism where a torus is given by a square matrix. Figure 2.1a

shows the matrix notation of the mapping transformation.

Figure 2.1a: Matrix notation of Arnold Cat Map [5]

Some key features of this mapping technique are it is area preserving that is the

transformed image requires the same area as the actual image, it can be even deduced as

the determinant of the matrix is 1. Also, if the image is iterated several times the original

image reappears. [6] gives an overview of the properties of Cat map and basic principles of

7

chaos-based systems. Figure 2.1b shows how the linear map changes the unit square and

how the pieces are rearranged after modulo operation.

 Original Image Transformed Image

Figure 2.1b: Arnold Cat Map transformation

Even though the usefulness of Arnold Cat Map is limited, but it illustrates the power of the

science behind the chaos-based system.

2.1.2 Henon Map

Henon Map is a discrete dynamic system, which was developed by Michel Henon as

a simplified version of Lorenz model. In 1963, Edward Lorenz examined three first-order

differential equation which was attracted to a strange attractor. It had chaotic behavior for

several parameter values and initial conditions. These equations as shown in figure 2.2a

are non-linear, deterministic and three dimensional. Because, of its simplicity they were

widely used in areas like electric circuits, motors, chemical reactions.

Keeping the same essential properties as the Lorenz systems, Henon developed a

model which was more accurate, faster and can be more mathematically analyzed.

8

Figure 2.2a: Lorenz Equations [7]

Henon carried out the experimentation using the formula defined in figure 2.2b for

initial conditions a=1.4 and b=0.3 and based on an initial (X0, Y0) condition, the sequence

generated a Henon attractor, which was diverging to infinity or was converging to a strange

attractor. Figure 2.2c shows the Henon attractor after several successive iterations starting

from (X0, Y0). [8] explains in detail the properties of Henon map and how it is derived using

Lorenz systems.

The value of ‘a’ and ‘b’ was decided after carrying out the experimentation for a

wide range of arrangements and it was found that not all of them have a strong attractor.

Also, as discussed earlier chaotic equations depend largely on the initial condition, as the

subsequent x and y coordinates are determined using them. For a given ‘a’ and ‘b’ values

two unstable initial points are deduced to be x0 =0.631354477 and y0=0.189406343 which

is derived using the calculations shown in figure 2.2d. Points close to this point either

converge or diverge towards a fixed point or strong attractor.

Figure 2.2b: Henon Map Equations [9]

9

Figure 2.2c: Henon Map after several iterations [9]

Figure 2.2d: Henon Map initial point [9]

2.1.3 Duffing Map

Another famous discrete-time dynamical system which exhibits chaotic behavior is

Duffing map, figure 2.3a shows the x and y mapping equation. Similar, to Henon map, it

takes input (Xn, Yn) to generate (Xn+1, Yn+1) and hence it is critical to decide the right value of

‘a’ and ‘b’ so that the behavior is chaotic. For a= 2.75 and b=0.2 [10], Duffing map produces

the plot shown in figure 2.3b. Duffing map is derived from a discrete version of Duffing

equation, which is often used for calculating oscillator’s displacements, velocity, and

acceleration. There are no specific research papers which analyze the output for different

initial conditions, so for this research work x0 =0.1933 and y0=0.8087 was derived using a

random number generator.

10

Figure 2.3a: Duffing Map Equation

Figure 2.3b: Duffing Map after several iterations

2.1.4 Cross Chaotic Map

Cross chaotic map is an amalgamation of two chaotic maps, Logistic, and Chebyshev,

the equation is being referenced from [11]. Both, these algorithms are one dimensional and

non-linear dynamic systems and in order to reduce doing the multipart calculations, it is

more efficient to combine these chaotic maps as shown in figure 2.4 and achieve better

security level by using the resultant map in two dimensions.

As per the evaluation in [12], for values, of µ=2 and k=6 the system produces great

dynamic behavior. Similar to Duffing map the points x0 =0.1933 and y0=0.8087 generated

using a random generator is used as initial points for the cross chaotic map.

11

Chebyshev Map

+

Logistic Map

=

Figure 2.4: Cross Chaotic Map Equation

12

3. GRAPHICS PROCESSING UNITS

Graphics Processing Units have become an important part of current computational

systems. This progress has been possible because of the stagnation in traditional CPU clock

speed and more people have started shifting focus on using GPUs for general purpose

computing. In the past decade, there has been a significant improvement in the GPU

performance and programmability. It has made GPU appropriate for certain types of

applications with specific characteristics with large computation requirements and

considerable parallelism.

In 1999, the term Graphic processing unit was coined when Nvidia introduced the

first GPU GeForce 256. At the advent GPUs were designed for real-time graphics which saw

its use in fields of physics, medical imaging etc. Since it was built specifically for graphic

applications, it was programmed using OpenGL programming language. But looking at the

bigger scope where GPU computing could be used, new programming languages such as

CUDA and OpenCL were developed that made GPUs more programmable and a new

subfield of research is known as GPGPU or general purpose computing on GPU found its

ways into fields as varied as hydrology, seismography, machine learning, image processing,

stock market price estimation and statistics. [13] has information about how GPU has

evolved over the years and about the different fields it is being used.

GPU-accelerated computing uses GPUs along with Central Processing Units (CPU) to

accelerate applications that have ample parallelism. These performance gains are best

realized when the computation intensity is high and elements are largely independent.

GPU can provide the speed-up by offloading the compute-intensive portions of application

from CPUs as shown in figure 3.1. GPU has more transistors dedicated for data processing

13

than for cache and control as in CPU, shown in figure 3.2. Another thesis [11] discusses in

detail about GPU computation, architecture, and memory hierarchy.

Figure 3.1: GPU acceleration framework [14]

Figure 3.2: GPU vs CPU memory hierarchy [15]

CPU and GPU use different procedures to achieve parallelism, CPU makes the

workload run faster by running one task per thread by using caches, instruction or data

prefetching, including branch prediction and concurrency control. Then to further improve

14

the performance add task parallelism by using multi-core architecture. Whereas, GPU

makes the same workload run faster by using 1000s of threads run parallel and use

pipelining.

GPU can’t be considered as replacements to CPUs as it is not a universal solution to

every computation. There are more serial tasks as compared to parallel, where CPUs

performance is better. Also, with multicore CPUs being developed, some lightweight

parallelism can be handled easily handled with CPUs more efficiently.

3.1 NVIDIA - GPU architecture

 Figure 3.3 shows a basic CUDA capable GPU which is organized into a set of blocks

the size of which has varied with generations.

Figure 3.3: GeForce Modern GPU Architecture [16]

15

The single-precision floating point performance has improved significantly over the

years, as compared to CPU, figure 3.4 shows the TFLOPS (trillion floating point operations

per second) trend for GPU and CPUs. Because, of this rapid advancement in GPU computing

it is adopted in prominent research projects like autonomous vehicles, recommendation

engines, speech recognition, image detection etc.

Figure 3.4: TFLOPS trend for NVIDIA GPUs

3.2 CUDA – Programming model

CUDA is the most commonly used parallel programming model and computing

platform invented by NVIDIA. CUDA makes it easy to use high-level languages like C, C++

and Fortran on GPU, hence a single code can have some part that runs sequentially on CPU

and some part that runs on GPU. Earlier Graphic Processing Units were exclusively used to

render graphics, but over the course of time, GPU programming has improved by

introducing several new extensions and functions.

16

Before, discussing in detail about CUDA programming in detail it is necessary to

understand specifics terms. First, GPU threads are not equivalent to CPU threads. GPU

threads are lightweight, which reduces the complexity of context switching and they are

the most elementary component that processes data.

GPU accelerated system comprises of two components host and device. Device

means one or more GPUs used for parallelism, and the host is mostly the CPU hosting the

application. The serial code executes on the host using CPU threads, the parallel code

executes on one or many devices using GPU threads.

All GPU processes are termed as Kernel functions, which are executed by an array of

threads. To manage thousands of threads run easily, they can be grouped into blocks

which are further grouped into grids. Hence, kernel functions are executed as a grid of

blocks of threads as shown in figure 3.5. All threads are organized in a block uses threadIdx

indexes and blocks use blockIdx to be organized inside a grid, which is predefined variables

in CUDA.

Figure 3.6 explains the basic processing steps for CUDA programming. Copy

processing data from main memory to GPU memory, next CPU instruct the processing

steps the GPU needs to run. GPU executes the program parallel on data in each core and

then the parallel processed results are copied back to the main memory.

Kernel function called by the CPU can only access GPU memory, function

declarations are defined with specific identifiers to distinguish if executed on and callable

from host or device. Table 3.1 shows the functions declarations using qualifiers.

17

Figure 3.5: CUDA Thread Organization [17]

Figure 3.6: CUDA processing flow [18]

18

The CUDA compilation trajectory is very complicated, but the basic CUDA

compilation is as shown in figure 3.7. The program is preprocessed for CUDA compilation

and converted into CUDA binary (cubin). The input program is processed for CPU code into

corresponding host binary file, both are linked together to obtain an appropriate

executable binary file. Detailed information on CUDA programming model could be

referenced from the CUDA programming guide [19].

 Called from: Executed on:

__global__ void kernelFunc() CPU (host) GPU (device)

__device__ float gpuFunc() GPU (device) GPU (device)

__host__ float cpuFunc() CPU (host) CPU (host)

Table 3.1: CUDA function declarations

Figure 3.7: CUDA compiling C application

19

4. SERIAL IMPLEMENTATION OF CHAOS BASED ENCRYPTION ALGORITHM

4.1 Image format [20]

 Having discussed 2d chaotic maps in chapter 2, this chapter will analyze the serial

implementation of the four 2d chaotic maps used in this thesis. For this purpose a program

using C language is developed for the different maps and their combinations.

 Input image used is of ppm format, which is a non-compressed, lowest common

denominator of the image and consumes more space than other compressed formats. It is

an intermediate image format before being converted to a compressed and efficient image

format.

 Each ppm image file has the header data in format as shown in figure 4.1. It

comprises of a “magic number” which can be P3 or P6. P3 image pixels have ASCII text

format and P6 image pixels are stored in byte format. In this thesis, the image of type P6 is

considered. The next line is for the image width and height respectively in ASCII decimal.

The last part is for the maximum allowable pixel value if the value is 255 pixels can range

from 0 to 255. These three lines comprise the information header for the ppm file. There

can also be comments added using “#” sign then the comment text. After the header, the

next set of values represent the pixel values in ASCII format. Pixel values are read from left

to right which is stored in triplets of red, green and blue values. The pixel values can be 1 or

2 bytes long, depending upon the maximum limit set in the information header.

Figure 4.1 PPM image format

20

4.2 Proposed encryption algorithm using chaotic maps

 This section talks over about the serial implementation of two-dimensional chaotic

maps using a C program.

 For Arnold Cat map, it takes the pixel values and shuffles them using simple matrix

multiplication as shown in figure 4.2 where the red, green and blue pixel values are

transformed individually and to maintain the newly mapped index within the image size it

is being modulated with the image width.

 The limitation of using Arnold Cat map is that image width and height must be same

for the transformation to work and decrypted and the original image to be same.

Figure 4.2 Arnold Cat Map Serial implementation

For the other three 2d chaotic maps the steps for the algorithm are different and the

chaotic model formula changes, figure 4.2 shows the two step process of the algorithm’s

implementation.

The first step is to use the chaotic maps to run a recursive process where Xn+1 and

Yn+1 pseudorandom values are calculated using Xn and Yn as shown in figure 4.3a. For

starting the algorithm initial conditions x0 and y0 are explicitly defined, even the other

variables used in the formula are predefined as discussed in Chapter 2 based on the state

21

when the system shows chaotic behavior. This process can run for any value of n, but these

values are going to be used as a key for encrypting the pixel values, hence they need to be

restricted by some constraint. The size of the key stream is a very important parameter

when choosing an image encryption algorithm for real-time application. In this approach,

the above process is repeated for N*N times, where N is the width and height of the image.

Due, to this we will have one pseudorandom value for encrypting one pixel, also, since the

key length depends on the image size it would be unique for a particular image size.

This key generation logic is based on the similar approach used in [21]. Next, the

N*N image is broken into individual red, green and blue pixel values into a 2-d matrix.

Every individual pixel value in then XORed using the key generated in the previous step as

shown in figure 4.3b.

Figure 4.3a Key generation algorithm

22

Figure 4.3b Encryption process

The key generated has x and y, but for XOR operation, we only need one value.

Hence, the key value is obtained by multiplying the Xn with Yn. In the three chaotic maps

used the value of X0 and Y0 are considered between (0, 1]. Due to which most key values are

limited to that range. To make the key values to be spread in the pixel range from [0, 255].

These result obtained after multiplying Xn and Yn are even multiplied with 255 and later

mod with 255 to keep the value within the maximum pixel level. The obtained output pixels

forms the encrypted image.

The decryption process is fairly simple because it is just repeating the same steps

with the encrypted image to get the original image. Arnold cat map can be decrypted by

reversing the assignment. This is the reason to use an equal width and height image so that

the area is preserved and no pixel value is lost in the decryption process. In the case of

Henon, Duffing and Cross chaotic maps the key generation algorithm will remain similar,

but instead of XORing, the input pixels and key, the encrypted image pixels and key will be

XORed to get the decrypted image pixels as shown in figure 4.3c. Because, XOR cipher is

23

like an additive cipher, which implies an input can be encrypted by applying the bitwise

XOR function with key and when reapplying the same XOR operation will even remove the

cipher key.

Figure 4.3c Decryption process

4.3 Running time and security analysis

4.3.1 Security analysis technique: Randomness test – NPCR and UACI

In the past decade, there have been several cryptosystems developed and they are

all being evaluated using cryptanalysis of differential attack. Cryptanalysis became

important after Eli Biham and Adi Shamir published a paper [22] which did a security

analysis of Data Encryption Standard (DES) and various other ciphering techniques. Since

then it is an important evaluation criterion to test a new algorithm. But, it is primarily used

for block ciphers, can be used for stream ciphers or hash functions too. It calculates the

independence between input information and resultant output, and testing if the algorithm

exhibit non-random behavior which allows the secret key to extract easily.

24

But, these evaluations were based on binary representation which is very different

than the image encryption input. An image is a two-dimensional matrix of data with a lot of

redundancy and a large amount of data as compared to text input. All these features compel

to look for a better randomness test.

In image encryption, algorithms strength to resist different attacks is usually

evaluated using two most common quantities number of changing pixel rate (NPCR) and

the unified averaged changed intensity (UACI). It is often regarded that a high NPCR and

UACI value means a higher security level, but it is still not clear if that is always applicable,

because there are some odd use cases where even with higher NPCR and UACI values the

security level is not high.

 As shown in figure 4.4 NPCR value focusses on the entire number of pixels where C1

and C2 are images before and after encryption respectively and C1 (i, j) and C2 (i, j) are one-

pixel value at i and j coordinate. T denotes the total number of pixels. If the pixel values of

input and output images are same then the bipolar array D has a value 0 and if the values

are different then the value is 1. The overall NPCR value ranges between [0, 1].

Figure 4.4 NPCR formula

25

 Another commonly used parameter for randomness test is UACI which is used to

calculate the averaged difference between the input and encrypted image pixels, shown in

figure 4,5. Here C1 (i, j) and C2 (i, j) denote the same as NPCR pixel values, here F denotes

the largest supported pixel value, for this thesis it will be 255. Hence, even UACI value

ranges from [0, 1].

Figure 4.5 UACI formula

Based on the experimental findings in [23] comparing two encryption outputs based

on their test scores quantitatively is not accurate. It is noticeable that NPCR values are

often close in the range of 99-100%. Hence, it is preferable to have a high NPCR value, but

the differences are not very significant. But, UACI values calculated using numerical and

experimental results it is clear that many image encryption methods fail UACI test because

of either too low or too high scores. For different image size, we have different theoretical

UACI critical values anything outside that range is fails the randomness test.

4.3.2 Experimental Results

 These experiments are performed on different image sizes using the above-

mentioned encryption techniques, based on which the encryption and decryption times,

NPCR and UACI values are calculated. These experimental results show that to achieve

higher security processing time increases substantially too.

26

 If we combine the different chaotic maps as a combination of encryption steps the

processing time will be almost equivalent to the summation of the individual encryption

process. Hence, it is critical to maintaining a balance between achieving better security and

running time of the algorithm. Since chaotic maps are used for image encryption in real-

time applications it is important to improve the processing time.

Image encryption and decryption time, NPCR and UACI values are dependent upon

two factors image or pixel size and chaotic map used. In differential attacks, if a minor

change in the input image can bring significant change in the cipher image then the

differential attack is difficult and NPCR and UACI are the used to measure them.

In case, of encrypting using Arnold Cat Map it is relatively faster than the other

chaotic maps, but the NPCR and UACI are smaller, which shows that the degree of security

can be weaker when we compare with other chaotic maps which have more complex

quadratic, cubic and trigonometric key generation algorithms and encryption technique.

As, mentioned earlier NPCR and UACI values are often considered with certain

upper and lower bound, hence in certain odd cases if we have a higher NPCR and UACI

values can’t be called as better encryption algorithm unless this trend is consistent across

multiple input images with different pixel sizes.

The following experiments are performed using one chaotic map or by combining

Henon, cross chaotic and duffing maps with Arnold Cat Map. Based, on the results, it is

evident that as the image size increases the encryption and decryption time increases much

faster, which is a bottleneck when faster response time is expected.

27

Figure 4.6a 512*512 input image [24]

Encryption
Technique

Encryption
Time (ms)

Decryption
Time (ms)

NPCR UACI

Arnold Cat Map 11 11 90.2584080 31.592369

Henon Map 37 34 98.690414 30.126399

Cross Chaotic Map 86 71 98.745346 35.752609

Duffing Map 45 33 99.385071 37.220723

Table 4.1 Encryption results for 512*512 image size - single encryption step

28

Encrypted Image +
Encryption Technique

Encryption
Time (ms)

Decryption
Time (ms)

NPCR UACI

Arnold Cat Map

11 11 90.2584080 31.592369

Arnold Cat Map + Henon

Map

50 48 99.541092 36.888738

Arnold Cat Map + Cross

Chaotic Map

109 90 99.533844 36.731957

Arnold Cat Map + Duffing

Map

50 47 99.602509 36.754821

Table 4.2 Encryption results for 512*512 image size - multiple encryption steps

29

Figure 4.6b 2048*2048 input image [25]

Encryption
Technique

Encryption
Time (ms)

Decryption
Time (ms)

NPCR UACI

Arnold Cat Map 337 207 99.295521 23.552930

Henon Map 574 595 98.669314 26.934233

Cross Chaotic Map 1194 1234 98.743224 32.040857

Duffing Map 671 600 99.398541 33.488615

Table 4.3 Encryption results for 2048*2048 image size - single encryption step

30

Encrypted Image +
Encryption Technique

Encryption
Time (ms)

Decryption
Time (ms)

NPCR UACI

Arnold Cat Map

337 207 99.295521 23.552930

Arnold Cat Map + Henon

Map

786 800 99.577570 31.871477

Arnold Cat Map + Cross

Chaotic Map

1390 1363 99.599671 32.699511

Arnold Cat Map + Duffing

Map

799 809 99.613428 33.114105

Table 4.4 Encryption results for 2048*2048 image size - multiple encryption steps

31

Figure 4.6c 4096*4096 input image

Encryption
Technique

Encryption
Time (ms)

Decryption
Time (ms)

NPCR UACI

Arnold Cat Map 710 946 99.292421 23.546194

Henon Map 2259 2183 98.690414 26.947997

Cross Chaotic Map 4801 4687 98.736620 32.036465

Duffing Map 2681 2384 99.400342 33.524418

Table 4.5 Encryption results for 4096*4096 image size - single encryption step

32

Encrypted Image +
Encryption Technique

Encryption
Time (ms)

Decryption
Time (ms)

NPCR UACI

Arnold Cat Map

710 946 99.292421 23.546194

Arnold Cat Map + Henon

Map

3069 3207 99.580973 31.889175

Arnold Cat Map + Cross

Chaotic Map

5536 5770 99.602526 32.745837

Arnold Cat Map + Duffing

Map

3202 3266 99.615389 33.144419

Table 4.6 Encryption results for 4096*4096 image size - multiple encryption steps

On comparing the NPCR and UACI values cross chaotic and duffing maps are more

efficient than the others also when the encryption process comprises of multiple

33

encryption steps using a combination of Arnold Cat map with Henon, Duffing and cross

chaotic maps the results are further improved, but this increases the total encryption time

even more. There is a direct co-relation between the image size, level of security and

encryption time.

34

5. PARALLEL PROCESSING OF PROPOSED ALGORITHM

Important properties of image encryption algorithm are redundancy and a large

quantity of data. But, often these image pixels are independent of each other, and hence,

can be managed independently. The response time for the image encryption algorithm

implemented in the previous step can be improved if the encryption process can be

parallelized using graphic processing units (GPU).

Chaos-based encryption algorithm has two phases, first is key generation using the

two-dimensional chaotic maps, followed by XOR operation using those key to encrypt each

pixel value. The key generation process is recursive where (Xn+1, Yn+1) key values are

dependent upon (Xn, Yn) key values, which makes it difficult to parallelize the key

generation process, hence the initial focus is on parallelizing the encryption phase and to

improve the response time.

To perform the parallel processing the GPU used is Tesla M2090. It will have the

following configuration of threads,

1 block = 256 threads

If the image is 2048*2048 which is the number of pixels, therefore, we need

2048*2048 threads running in parallel based on which the number of blocks required is

16384.

2048*2048/256 = 16384 blocks

If the serial key generation and serial encryption processes are separated into two

phases, and their individual time is being considered it can be seen that the key generation

and encryption XOR operation can be equally time-consuming. We could reduce the XOR

35

time by parallelizing it using GPU and parallel programming. Table 5.1 shows the

encryption and decryption time excluding the key generation time.

 The parallel encryptions are performed on large image sizes to show the scale of

improvement as compared to serial processes. Based on the above-mentioned GPU

configurations the speed up averages at 60-80, which is really a good improvement and if

these encryption processes are on multiple images it would be even higher.

Encryption
Technique

Serial

Encryption
Time (ms)

Serial

Decryption
Time (ms)

Parallel

Encryption
Time (ms)

Parallel

Decryption
Time (ms)

Henon Map

 +
Arnold Cat Map

1265

1519

22.388128

24.660032

Cross Chaotic Map

+
Arnold Cat Map

1794

1601

22.388256

24.665600

Cross Chaotic Map

+
Arnold Cat Map

1432

1792

22.436319

24.686369

Table 5.1 Encryption results for 4096*4096 image size – serial and parallel processing

So, the only bottleneck is the key generation algorithms, as the performance

improvement would not be substantial if the key generation process can’t be parallelized.

But unlike other key generation algorithms for text input where the key used is highly

36

dependent upon the input text. In the image encryption process, the key generation

algorithm depends upon the image size, predefined initial input conditions and the chaotic

map equation and not the pixel values.

Using this property of key generation the overall time for encrypting multiple

images can be improved. Figure 5.1 shows four 4096*4096 size images using one key

generation step and that encrypts all the four images.

Figure 5.1 Parallel encryption of 4096*4096 images using Cross chaotic and Arnold cat

map

37

Encryption
Technique

Parallel Encryption

Time (ms)

Cross Chaotic Map
+

Arnold Cat Map

 22.417984

22.414848

22.387552

22.374945

Table 5.2 Encryption time for 4096*4096 image pixels without key generation time

[26][27]

Table 5.2 shows the image encryption time for the large size images but with single

key generation step, the key generation takes almost 2310 ms. These results are being

obtained by using cross-chaotic maps which have the highest encryption and decryption

time among the other chaotic maps.

38

Hence, the speedup based on the encryption time for four images using serial and parallel

processing is calculated as follows:

Cross Chaotic + Arnold Cat Map serial encryption of 4096*4096 image = 5536 ms

(from table 4.3)

For 4 images the encryption time = 5536*4 = 22144 ms

Encryption time for parallel processing four images of same sizes =

(22.417984 + 22.414848 + 22.387552 + 22.374945) = 89.595329 ms ≈ 89.6 ms

Total encryption time = key generation time + encryption time = 89.6 + 2310 = 2399.6 ms

Speedup = 22144 / 2399.6 = 9.23 times

39

6. CONCLUSION AND FUTURE WORK

From the above-discussed encryption schemes, some principles could be used for

more robust and efficient image encryption algorithms. The primary focus of this thesis is

to understand chaos-based image encryption technique still in its progressing phases, but

which has a lot of scope in various fields. In the past decade, there has been several new

image encryption techniques developed or enhancements for the existing techniques being

done. Similarly, this research work does an analysis of the two-dimensional chaotic maps

and how they are implemented as encryption algorithms.

The main focus of this thesis is to do a run-time analysis of these algorithms using

different levels of security and image sizes. It was found that even though existing

algorithms are secured, but for these algorithms to be used for real-time applications it is

necessary to even improve the processing time of these encryption algorithms. There is a

direct correlation between the encryption steps and the average encryption and decryption

time.

But, because of the property of image pixels being separate entities they can be

encrypted independently and hence this research uses Graphic processing units (GPU) to

parallel process these image pixels and then profile their behavior based on different

parameters. The results were improved substantially, because the time complexity is

reduced from quadratic O (n^2) to constant O (1) time, Even though using GPU, we need to

transfer the data from host system to the GPU device which is an overhead, but this varies

from machine to machine, there are also efficient ways of making it less time consuming

and above all when compared with the overall time improvement this overhead time is

minuscule.

40

But, the main bottleneck is the encryption key generation algorithm, as chaos--

based encryption algorithms are based on the principle of feedback system where current

values are dependent upon the previous values. Hence, they can’t be parallelized, to

overcome this issue, multiple images are being encrypted using single key generation step.

When implemented using four images of 4096 by 4096 pixels and a single key generation

step speedup of ~10 times was achieved.

6.1 Future Research

During the research of this thesis, several interesting problems were faced which

can be solved as future work. A summary of some additional research are as follows:

 Study other image encryption algorithms like a hash function, Advanced Encryption

Standard (AES) based, complex chaotic maps with three and four dimensions and

other authentication schemes. Similarly, compare their results and parallel process

them to find the most efficient image encryption technique.

 Improve the key generation algorithm so that it can be parallelized which would

improve the response time substantially without requiring multiple images to use

the same key stream.

41

REFERENCES

[1] Sinha, A., & Singh, K. (2003). A technique for image encryption using digital signature.

Optics communications, 218(4), 229-234.

[2] Panchal, D., Jani, C., & Panchal H., "An Approach Providing Two Phase Security of

Images Using Encryption and Steganography in Image Processing." International

Journal of Engineering Development and Research. Vol. 3. No. 4 IJEDR, 2015.

[3] Mao, Y., & Chen, G. (2005). Chaos-based image encryption. Handbook of Geometric

Computing, 231-265.

[4] Lawande, Q. V., Ivan, B. R., & Dhodapkar, S. D. (2005). Chaos based cryptography: a

new approach to secure communications. BARC newsletter, 258(258).

[5] Wikipedia contributors. "Arnold's cat map." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 9 Aug. 2015. Web. 2 Mar. 2016.

[6] Peterson, G. (1997). Arnold’s cat map. Math45-Linear algebra http://online.

redwoods. cc. ca. us/instruct/darnold/maw/catmap. htm.

[7] Wikipedia contributors. "Lorenz system." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 8 Jan. 2016. Web. 2 Mar. 2016.

[8] Hénon, M. (1976). A two-dimensional mapping with a strange attractor.

Communications in Mathematical Physics, 50(1), 69-77.

[9] Wikipedia contributors. "Hénon map." Wikipedia, The Free Encyclopedia. Wikipedia,

The Free Encyclopedia, 12 Dec. 2015. Web. 2 Mar. 2016.

[10] Wikipedia contributors. "Duffing map." Wikipedia, The Free Encyclopedia. Wikipedia,

The Free Encyclopedia, 10 Oct. 2013. Web. 2 Mar. 2016.

42

[11] Maotai, Z., & Sha, J., "Simulation Results." Communications and Information

Processing International Conference, ICCIP 2012, Aveiro, Portugal, March 7-11, 2012,

Revised Selected Papers. Part II. Berlin: Springer, 2012. 139-41. Print.

[12] Wang, L., Ye, Q., Xiao, Y., Zou, Y., & Zhang, B. (2008, May). An image encryption

scheme based on cross chaotic map. In Image and Signal Processing, 2008. CISP'08.

Congress on (Vol. 3, pp. 22-26). IEEE.

[13] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008). GPU

computing. Proceedings of the IEEE, 96(5), 879-899.

[14] NVIDIA GPU computing, 2011, http://www.nvidia.com/object/what-is-gpu-

computing.html.

[15] Möckel, M. (2015). High Performance Propagation of Large Object Populations in

Earth Orbits. Logos Verlag Berlin GmbH.

[16] Rege, A. (2008). An Introduction to Modern GPU Architecture. En ligne].

[17] Romero, M., Urra, R., CUDA Programming Information and Resources

http://cuda.ce.rit.edu/cuda_overview/cuda_overview.htm

[18] "CUDA." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 16

Feb. 2016. Web. 1 Mar. 2016.

[19] Nvidia, C. U. D. A. (2011). NVIDIA CUDA C Programming Guide Version 7.0 (2015).

[20] Bourke, P., PPM image files, http://paulbourke.net/dataformats/ppm.

[21] Kumar, S., Sinha, B., & Pradhan, C. (2015). Comparative Analysis of Color Image

Encryption Using 2D Chaotic Maps. In Information Systems Design and Intelligent

Applications (pp. 379-387). Springer India.

43

[22] Biham, E., & Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems.

Journal of CRYPTOLOGY, 4(1), 3-72.

[23] Wu, Y., Noonan, J. P., & Agaian, S. (2011). NPCR and UACI randomness tests for image

encryption. Cyber journals: multidisciplinary journals in science and technology,

Journal of Selected Areas in Telecommunications (JSAT), 31-38.

[24] Delaboudiniere, J. P., Artzner, G. E., Brunaud, J., Gabriel, A. H., Hochedez, J. F., Millier,

F., ... & Kreplin, R. (1995). EIT: extreme-ultraviolet imaging telescope for the SOHO

mission (pp. 291-312). Springer Netherlands.

[25] [Untitled image of mountain road scenery]. Retrieved from

http://wallpapersforipad.com/hd/amazing-ipad-wallpapers/

[26] [Untitled image of rainbow bridge Tokyo]. Retrieved from

http://www.thousandwonders.net/Rainbow+Bridge#pictures

[27] [Untitled image of eiffel tower]. Retrieved from

http://travellerguidance.com/wallpapers-eiffel-tower-in-paris-hd-2560x2048-

406068-eiffel/

