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Abstract

GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T
alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the
fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC
is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics
from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection
and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We
implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase
or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC
tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee
nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination
hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also
significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious
alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee
lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied
by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease
implications of gBGC. The phastBias program and our predicted tracts are freely available.
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Introduction

Gene conversion is the nonreciprocal exchange of genetic

information from a ‘donor’ to an ‘acceptor’ sequence, primarily

resulting from the repair of mismatched bases in heteroduplex

recombination intermediates during meiosis [1]. In many cases,

the process of resolving mismatches between G/C (guanine or

cytosine; denoted ‘strong’ or ‘S’) and A/T (adenine and thymine;

‘weak’ or ‘W’) alleles appears to be biased in favor of S alleles [1–

3]. Such GC-biased gene conversion (gBGC) elevates the fixation

probabilities for S alleles relative to W alleles at positions of W/S

polymorphism, and, if it acts in a recurrent manner over a

sufficiently long time, can result in a significant excess of WRS

over SRW substitutions and a consequent increase in equilibrium

GC content. It has been known since the 1980s both that gene

conversion occurs in various eukaryotes [4] and that mismatch

repair can be significantly biased [5]. As complete genome

sequences have become widely available, evidence has accumu-

lated that gBGC may have played an important role in genomic

evolution across many branches of the tree of life. In particular, it

has been argued that gBGC has significantly influenced the

genomic distribution of GC content, the fixation of deleterious

mutations, and rapidly evolving sequences in many species [6–13].

Aside from limited experimental evidence of a GC-bias in

meiosis, mostly from yeast [14], much of what is known about

gBGC comes from two indirect sources of information: global

patterns of variation within or between species suggesting a

fixation bias favoring S alleles [11,12,15–17] and the existence of

numerous loci exhibiting dense clusters of substitutions with a

pronounced WRS bias [7–9,13]. Both types of evidence correlate

strongly with recombination rates, consistent with the hypothesis

that they are caused by gBGC, although other recombination-

associated factors might also contribute [16]. However, these

observations provide limited information about the general

prevalence, strength, and functional consequences of gBGC in

humans and other mammals. Genome-wide patterns of variation

are influenced by diverse forces that act in a highly heterogeneous

manner across the genome, and it is difficult to measure the
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specific contribution of gBGC to these patterns. Clusters of biased

substitutions perhaps provide more direct evidence of a local

influence from gBGC. However, such clusters have so far been

identified by considering either genomic windows of fixed size or

pre-identified genomic segments (such as protein-coding exons or

fast-evolving noncoding regions), which has limited the regions

that can be detected. In addition, many studies have considered

only fairly small numbers of clusters showing extreme substitution

rates and WRS biases.

For modelers of molecular evolution, gBGC is an anomaly—a

process separate and distinct from the fundamental processes of

mutation, recombination, drift, and selection that underlie most

models, yet one with the potential to profoundly influence patterns

of variation within and between species. Like selection, gBGC acts

in the window between the emergence of genetic polymorphism

due to mutation and its elimination due to the fixation or loss of

derived alleles. Unlike selection, however, gBGC is neutral with

respect to fitness. The influence of gBGC at individual nucleotides

can be modeled approximately by treating it as a selection-like

force that depends only on whether a new mutation is WRS,

SRW, or neither [13,16,18]. However, this approach ignores the

close association of gBGC with the notoriously difficult-to-model

process of recombination, which leads to a complex correlation

structure along the genome (i.e., gBGC ‘‘tracts’’ separated by

regions of no gBGC). Owing to these difficulties, with a few

exceptions [9,13,19], gBGC has generally been ignored in

phylogenetic or population genetic models, and considered at

most in post hoc analyses (e.g., by examining identified genomic

regions for an excess of WRS substitutions). These approaches are

clearly limited in efficiency and effectiveness, and there is a need

for improved models of gBGC that can be applied on a genome-

wide scale. There is also a need for high quality annotations of

gBGC-affected regions that can be used by investigators in other

comparative and population genomic analyses.

Another reason to develop improved models of gBGC is that

gBGC-induced nucleotide substitutions provide a unique window

into historical recombination processes, by serving as a proxy for

average recombination rates along a lineage of interest. By contrast,

the other main sources of information about recombination—sperm

typing [20], genotypes for known pedigrees [21], and patterns of

linkage disequilibrium in present-day populations [22]—provide

information about recombination that goes back no farther than the

coalescence time between individuals. Pronounced differences

between the human and chimpanzee recombination maps suggest

that recombination rates in hominoids have changed rapidly [23–

25]. gBGC may provide useful information about the recombina-

tion processes during the critical period between the divergence of

humans and chimpanzees (4–6 million years ago [Mya]) and the

coalescence time for human individuals (roughly 1 Mya, on

average). Notably, archaic hominin genome sequences are of

limited use for this purpose, because they are still few in number and

result in only a modest increase in coalescence times.

In this article, we address these issues by introducing a novel

model-based approach for the identification of gBGC tracts. Our

approach makes use of statistical phylogenetic models that jointly

consider gBGC and natural selection [13]. In addition, it

approximates the recombination-associated correlation structure

of gBGC along the genome using a hidden Markov model. We

have implemented this approach in a computer program called

phastBias, which is available as part of the open-source

PHylogenetic Analysis with Space/Time models (PHAST) soft-

ware package (http://compgen.bscb.cornell.edu/phast) [26]. Us-

ing simulations, we show that phastBias can identify tracts of

various lengths from unannotated multiple alignments with good

power. We then analyze genome-wide predictions of gBGC tracts

in the human and chimpanzee genomes, comparing them with

recombination rates, patterns of polymorphism, functional ele-

ments, fast-evolving sequences, and other genomic features. This

analysis sheds light on the prevalence and fitness consequences of

gBGC, and on recombination processes during the time since the

human/chimpanzee divergence. Our predictions of gBGC tracts

are freely available as browser tracks (http://genome-mirror.bscb.

cornell.edu). We anticipate that these tracks will be useful for

avoiding false positives in scans for positive selection, understand-

ing the evolution of specific loci, and investigating the broader

evolutionary forces shaping the human genome.

Results

Probabilistic Model
We model gBGC tracts using a phylogenetic hidden Markov

model (phylo-HMM) with four states, representing all combinations

of gBGC or no gBGC in a specified ‘‘target’’ genome (e.g., human

or chimpanzee), and of evolutionary conservation or no evolution-

ary conservation across the phylogeny (Figure 1; Methods). The

phylo-HMM framework [27] allows the distinct rates and patterns

of nucleotide substitution for each state to be described using a full

statistical phylogenetic model, and it captures the pronounced

correlations along the genomes in these patterns using a first-order

Markov model. Our phylo-HMM can be thought of as a

straightforward generalization of the two-state model used by the

phastCons program for prediction of evolutionarily conserved

elements [28] that additionally predicts gBGC tracts in the target

genome. We directly consider evolutionary conservation together

with gBGC because the dramatic reduction in substitution rates in

functional elements would otherwise be a confounding factor in the

identification of gBGC tracts. The model allows conserved elements

and gBGC tracts to overlap or occur separately. The joint effects of

gBGC and selection are modeled by treating gBGC as a selection-

like force that specifically favors the fixation of G and C alleles, as in

other recent work. In particular, the influence of selection is

Author Summary

Interpreting patterns of DNA sequence variation in the
genomes of closely related species is critically important
for understanding the causes and functional effects of
nucleotide substitutions. Classical models describe pat-
terns of substitution in terms of the fundamental forces of
mutation, recombination, neutral drift, and natural selec-
tion. However, an entirely separate force, called GC-biased
gene conversion (gBGC), also appears to have an impor-
tant influence on substitution patterns in many species.
gBGC is a recombination-associated evolutionary process
that favors the fixation of strong (G/C) over weak (A/T)
alleles. In mammals, gBGC is thought to promote variation
in GC content, rapidly evolving sequences, and the fixation
of deleterious mutations. However, its genome-wide
influence remains poorly understood, in part because, it
is difficult to incorporate gBGC into statistical models of
evolution. In this paper, we describe a new evolutionary
model that jointly describes the effects of selection and
gBGC and apply it to the human and chimpanzee
genomes. Our genome-wide predictions of gBGC tracts
indicate that gBGC has been an important force in recent
human evolution. Our publicly available computer pro-
gram, called phastBias, and our genome-wide predictions
will enable other researchers to consider gBGC in their
analyses.

Model-Based Analysis of GC-Biased Gene Conversion
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described using a population-scaled selection coefficient, S~4Nes,

and the influence of gBGC is described using an analogous

population-scaled GC-disparity parameter, B~4Neb (where Ne is

the effective population size) [13] (see also [16,18]). The parameter

B measures the strength of gBGC, and values Bw0 cause WRS

substitution rates to increase and SRW substitution rates to

decrease. A key feature of our approach is that it permits

identification of gBGC tracts of any length based on characteristic

substitution patterns, independent of predefined windows or

genomic annotations.

Because the signal for gBGC in the data is typically quite weak,

we make several assumptions to reduce the complexity of the

model. Briefly, we model negative selection as uniformly

decreasing evolutionary rates on all lineages, we ignore positive

selection, and we assume that the disparity parameter B is the

same for all gBGC tracts. In addition, we pre-estimate the

parameters describing the neutral phylogeny and evolutionary

conserved elements using restricted models, we fix the tract-length

parameter a based on our prior expectation for tract lengths, and

we treat the parameter B as a ‘‘tuning’’ parameter to be set by trial

and error (see summary of model parameters in Table 1). Our

simulation study indicates that fairly high accuracy in tract

prediction is possible despite these simplifying assumptions and

approximations (see below and Methods for details). We have

implemented our model in a program called phastBias in the

PHAST package [26]. PhastBias makes use of existing features in

PHAST for alignment processing, phylogenetic modeling, efficient

HMM-based inference, and browser track generation.

Simulation Study
While the absence of high-quality annotations of gBGC tracts

makes it difficult to assess prediction accuracy, we are able to gain

some insight into the performance of phastBias using simulated

data. To make our simulated data as realistic as possible, we

started with real genome-wide alignments, and simulated new

human sequences only, using our phylogenetic model to define

neutral and conserved sequences, and interspersed gBGC tracts of

fixed lengths (see Methods). This strategy ensures that features

such as variation in mutation rates, changes in equilibrium GC

content, conserved elements, indels, alignment errors, and missing

data are all retained in the nonhuman sequences. We used

phastBias to predict human-specific tracts based on these partially

simulated alignments and compared our predictions with the

‘‘true’’ tracts assumed during simulation. We found that the

nucleotide-level false positive rate was always very low in these

experiments (v4|10{3/bp, Figure S1), so we measured the

specificity of our predictions using the nucleotide-level positive

predictive value (PPV), defined as the fraction of all bases

predicted to be in gBGC tracts that truly belong in gBGC tracts.

Figure 1. Phylogenetic hidden Markov model used by phast-
Bias. The model consists of four states: neutral evolution with no gBGC
(N0), neutral evolution with gBGC (NB), evolutionary conservation with
no gBGC (C0), and evolutionary conservation with gBGC (CB). gBGC is
assumed to influence nucleotide substitution rates and patterns only on
the lineage leading to a designated target genome (human or
chimpanzee in this study). The model generalizes the phylo-HMM used
by phastCons for prediction of evolutionarily conserved elements [28].
The state transition probabilities are defined by four parameters,
denoted m, n, a, and b. See Methods and Table 1 for details.
doi:10.1371/journal.pgen.1003684.g001

Table 1. Summary of HMM parameters.

Parameter Groupa Description Value

l neut Scale factor for neutral branch lengths estimated per 10 Mb block

pb neut Equilibrium nucleotide frequencies estimated per 10 Mb block

k neut Transition/transversion ratio estimated per 10 Mb block

r cons Branch length scale factor in conserved state 0.31c

m cons Transition prob. conservedRneutral 0.022c

n cons Transition prob. neutralRconserved 0.0095c

B gBGC GC-disparity (strength of gBGC) 2, 3d, 4, 5, 10

a gBGC Transition prob. gBGCRnon-gBGC 0.001e

b gBGC Transition prob. non-gBGCRgBGC optimized by EM

aneut = parameters for neutral phylogenetic model, cons = parameters for conserved elements (inherited from phastCons), gBGC = parameters for gBGC tracts.
bMultivariate parameter (three degrees of freedom).
cValues used for the Conservation tracks in the UCSC Genome Browser (see [28]).
dValue used for primary analyses.
eCorresponds to prior expected length of 1 kb.
doi:10.1371/journal.pgen.1003684.t001

Model-Based Analysis of GC-Biased Gene Conversion
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As a measure of power, we used the nucleotide-level true positive

rate (TPR), the fraction of bases in true gBGC tracts that were

correctly predicted as being in tracts.

First, we explored the performance of phastBias on simulated

gBGC tracts of various lengths, generated with several different

values of the GC-disparity parameter (denoted Bsim). Under our

model, increasing Bsim produces tracts with more substitutions and

greater GC bias in their substitution patterns. As expected, both

our power to detect gBGC and the specificity of our predictions

increases with the lengths of the true tracts and with Bsim (Figure 2).

We found that power and specificity were both quite good for

tracts of 1,000–1,500 bases or longer, provided gBGC is

reasonably strong (Bsim§5). Current estimates of the lengths

and GC-disparity of real gBGC tracts [8,29] suggest that phastBias

should have good power for many tracts (see Discussion).

Next, we examined how our choice of the tuning parameters for

expected tract-length (a) and gBGC strength (B) influence

prediction performance. We found that the performance of the

method was not highly sensitive to the value of a, so we decided to

fix the expected tract length at 1 kilobase (kb) (by setting

a~1=1000) based on empirical evidence indicating that mamma-

lian gene conversion tracts are approximately this size [1,29]. By

contrast, the choice of B had a much stronger influence on the

observed prediction performance. Power was highest for small

values of B, regardless of the value used to simulate the tracts

(Bsim) (Figure S2). However, this increase in power comes at only a

modest cost in PPV, which remains fairly high (.90%) except

when the elements are both short and under weak gBGC (e.g.,

mean length~100 bases, Bsim~3). These results suggest that

phastBias is inherently somewhat conservative with its predictions,

and that setting B to a relatively low value helps to improve

sensitivity for tracts having a range of true gBGC intensities, at

minimal cost in specificity.

Predicted gBGC Tracts
We applied phastBias to genome-wide alignments of the

human, chimpanzee, orangutan, and rhesus macaque genomes,

and used it to predict tracts in the human and chimpanzee

genomes likely to have experienced gBGC since the divergence of

these two species 4–6 Mya (see Methods). In separate runs, we

selected either the human or the chimpanzee genome as the

‘‘target,’’ and we set the tuning parameter B to values of 2, 3, 4, 5,

and 10 (in increasing strength of gBGC). As expected from our

simulation study, the number, lengths, and genomic coverage of

the predicted tracts depend fairly strongly on the choice of B. In

particular, coverage decreases from more than 1% to 0.07% as B
is increased from 2 to 10 (Table 2). Because the tracts predicted

with high B are largely found within those predicted with lower B
(Table S1), and because a value of B~3 appears to result in good

power while controlling false positives (see above), we will focus on

the tracts predicted with B~3 for the remainder of the article.

The absolute sensitivity of these predictions of course depends on

unknown properties of true gBGC tracts, but our simulation

experiments indicate that power is fairly good, at least for the

subset of tracts 1 kb or longer with a reasonably pronounced GC-

disparity (Figure 2).

With B~3, the predictions for the human genome include

9,439 gBGC tracts covering 0.33% of the genome (Table 2). These

predicted tracts average 1,018 bp in length (median 788 bp),

consistent with our choice of a~1=1000, but they display a fairly

broad length distribution (Figure 3), indicating that our choice of

tuning parameters is not overly restrictive. Most predicted tracts

contain exclusively or predominantly WRS substitutions (Figure

S3). The statistics for the chimpanzee genome are similar, but in

this case there are somewhat fewer tracts (8,677), their lengths are

reduced (mean = 842 bp, median = 663 bp), and genomic cover-

age is about 25% lower (at 0.25%). The reduced coverage of the

chimpanzee genome holds even if we consider only tracts that

completely fall within regions of high-quality, syntenic alignment

between the two genome assemblies. These differences between

the human and chimpanzee predictions could reflect differences

between species in the degree to which recombination events are

concentrated in recombination hotspots [25] (see Discussion).

The human and chimpanzee predictions are broadly distributed

across the two genomes, but show a clear tendency to cluster near

the ends of chromosomes (Figure 4; Text S1, Figures S4 and S5),

consistent with previous findings [12,15,30]. In human, the

median distance from the nearest telomere is only about one

Figure 2. Power and accuracy for simulated data. The plot shows
true positive rates (TPR; fraction of true gBGC bases correctly predicted)
and positive predictive values (PPV; fraction of predicted bases in true
gBGC tracts) as a function of tract length. Results are shown for two sets
of simulations, one assuming strong BGC (Bsim~10), and the other
assuming weaker BGC (Bsim~5) (see Methods). Both the power (as
measured by the TPR) and the accuracy (as measured by PPV) of gBGC
detection depend strongly on tract length. At shorter lengths (less than
3000 bp) power also depends strongly on the strength of gBGC, while
accuracy does not. Both TPR and PPV are fairly high (80% or more) for
tracts longer than 1 kb that have experienced strong gBGC, and for
tracts longer than 1.6 kb that have experienced weaker gBGC.
doi:10.1371/journal.pgen.1003684.g002

Table 2. Summary of predicted gBGC tracts.

Species B Number Coverage Mean Length Median Length

Human 2 12362 1.103% 2567 1008

Human 3 9439 0.334% 1018 788

Human 4 7712 0.217% 810 628

Human 5 6750 0.157% 670 514

Human 10 5210 0.073% 400 276

Chimpanzee 3 8677 0.252% 841 663

Chimpanzee 10 7062 0.068% 278 198

doi:10.1371/journal.pgen.1003684.t002

Model-Based Analysis of GC-Biased Gene Conversion
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third that observed for a set of GC-content-matched control

regions (9.6 megabases (Mb) vs. an average of 30.4 Mb over 1000

replicates, pv0:001). Similarly, the median distance between

tracts is less than one third that for the controls, even after merging

tracts less than 1 kb apart to account for possible biases from the

HMM-based prediction method (24.3 kb vs. an average of 86.0 kb,

pv0:001). The chimpanzee predictions are similarly distributed.

In human, there is an obvious cluster of predicted tracts near the

centromere of chromosome 2, reflecting the telomeres of two

ancestral chromosomes that fused at this site along the human

lineage after the human/chimpanzee divergence [15,31]. Howev-

er, the tract density in this region is somewhat lower in human

than in the orthologous telomeric regions in chimpanzee (Figure

S6), consistent with a reduction in the human recombination rate

following the fusion event [12,15] (see Discussion).

Together, the human and chimpanzee tracts account for about

1.2% of all human/chimpanzee nucleotide differences apparent in

our genome-wide alignments (435,729 differences). About half

(214,195) of the nucleotide differences within the tracts can be

confidently explained by WRS substitutions on either the human

or chimpanzee lineage, of which slightly more than half (115,699)

fall on the human lineage. Thus, even with our limitations in

power, our predictions suggest a non-negligible influence of gBGC

on overall levels of human/chimpanzee nucleotide divergence.

Figure 3. Length distribution of predicted human gBGC tracts
(B~3). The predicted tracts average 1,018 bp in length, with a median
value of 788 bp. The length distribution is roughly geometric except for
a deficiency of short tracts (less than 600 bp) and a slight excess of long
tracts. The deficiency of short tracts is typical for predictions based on a
hidden Markov model and most likely primarily reflects limitations of
power in this range. Nevertheless, the full distribution suggests that
phastBias can identify tracts ranging from a few hundred to several
thousand bases in length.
doi:10.1371/journal.pgen.1003684.g003

Figure 4. Genomic distribution of predicted human and chimpanzee gBGC tracts. Both human (blue) and chimpanzee (red) gBGC tracts
are found throughout the genome, but tend to cluster and fall near telomeres. Chimpanzee gBGC tracts are displayed at the corresponding aligned
positions in the human genome. The dense cluster of gBGC tracts near the centromere of chromosome 2 is the site of the fusion of two ancestral
chromosomes on the human lineage. This region is telomeric in chimpanzee and was telomeric for much of human evolution. As illustrated by the
magnified section of chromosome 1, human and chimpanzee tracts often occur in similar regions, but rarely overlap.
doi:10.1371/journal.pgen.1003684.g004

Model-Based Analysis of GC-Biased Gene Conversion
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Recombination Rates
The predicted human gBGC tracts are substantially enriched

for recombination hotspots from the HapMap project [32]: 1,228

(13%) overlap a hotspot, compared with an average of 796 for the

GC-matched control regions (pv0:001). In addition, the average

recombination rate [33] within these tracts is more than twice the

rate in the control regions (3.85 centimorgans per megabase (cM/

Mb) vs. 1.61 cM/Mb, pv0:001; Table 3). A parallel analysis of

the chimpanzee gBGC tracts based on the genome-wide

recombination rate map from the PanMap Project [25] showed,

similarly, that recombination rates in predicted gBGC tracts were

more than twice as high as in control regions (Table 3). Pedigree-

based human recombination maps [21] produced similar results

(data not shown).

At fine scales, the human and chimpanzee tracts show a modest,

but significant, degree of overlap (Figure 4): 605 (6.4%) of the

human tracts directly overlap a chimpanzee tract, compared with

an average of 86 for the control regions (pv0:001). Shared

recombination hotspots account for only a small minority (,1%)

of the overlapping tracts. However, the correlation in tract

locations between species is much stronger at broader scales. For

example, if the fractions of nucleotides in gBGC tracts (‘‘gBGC

density’’) are compared in orthologous genomic blocks of various

sizes, the human/chimpanzee Pearson’s correlation increases from

r~0:25 for 10 kb blocks to r~0:57 for 100 kb blocks, and to

r~0:80 for 1 Mb blocks (Figure S7). These observations mirror

those for human and chimpanzee recombination rates, which

correlate well at scales of 1 Mb or larger but much more poorly at

finer scales [23–25].

To gain further insight into the conservation of the gBGC tracts,

we mapped the human gBGC tracts to orthologous locations in

the chimpanzee genome, and the chimpanzee tracts to ortholo-

gous locations in the human genome. We then compared the

recombination rates in these ‘‘ortho-tracts’’ with those in control

regions, as with the tracts directly predicted for each species.

Unlike recombination hotspots [25], the predicted gBGC tracts do

show significantly elevated recombination rates at orthologous

positions in the other species (Table 3). However, these

recombination rates are not nearly as elevated as those for the

directly predicted tracts. An analysis of the correlation between

gBGC tract densities and recombination rates within and between

species yielded similar results. Human gBGC tract densities are

significantly correlated with human recombination rates, and this

correlation increases with block size. A similar pattern is present in

chimpanzee. When these correlations are examined across species

(e.g., human gBGC densities vs. chimpanzee recombination rates),

they are weaker but still significant (Figure S8). Differences in

recombination rates between species are modestly predictive of

differences in gBGC densities (r~0:20 at 1 Mb; Figure S9). In

general, we find much stronger correlations of gBGC- and

recombination-associated features within species than between

species, but these features nevertheless exhibit residual correlations

between species, probably because they reflect average recombi-

nation rates over millions of years (see Discussion).

In both human and chimpanzee, the predicted tracts show a

weak positive correlation with GC-content on a megabase scale.

This correlation is somewhat stronger for human (Pearson’s

correlation for 1 Mb blocks: r~0:12) than for chimpanzee

(r~0:09), mirroring observations of a stronger correlation of

recombination rate with GC-content in human than in chimpan-

zee [25].

Genomic Annotations
To shed light on the functional implications of gBGC, we

examined the degree of overlap of the predicted human gBGC

tracts with various sets of genomic annotations (listed in Methods).

In comparison with the control regions, we found that the human

gBGC tracts were significantly depleted for overlap with known

protein-coding exons, core promoters (1 kb upstream of annotated

transcription start sites), miscellaneous RNAs, LINEs and SINEs,

while they were significantly enriched for overlap with introns,

lincRNAs, and a collection of ChIP-seq-supported transcription

factor binding sites (Figure S10). However, all of these enrichments

and depletions were modest in magnitude, with fold-changes of

about 0.8–1.3. Overall, the gBGC tracts appear to be fairly

representative of sequences of the same GC content. It is possible

that the depletion for gBGC tracts in protein-coding exons and

promoters could result in part from strong purifying selection

counteracting GC-biased fixation.

GC-Bias in Derived Alleles
To distinguish between fixation- and mutation-related biases,

we compared the derived allele frequencies at polymorphic WRS

and SRW sites in the predicted tracts and control regions. To

control for the possibility of an ascertainment bias from

polymorphic sites at which the derived allele is present in the

human reference genome, we performed this analysis twice: once

with the original gBGC tracts, and once with predictions based on

alignments in which polymorphic sites in the human genome had

been masked with ‘N’s.

Based on pilot data from the 1000 Genomes Project [33] (YRI

population), the predicted gBGC tracts displayed significantly

elevated derived allele frequencies at sites of inferred WRS

mutations compared with sites of inferred SRW mutations (WRS

DAF skew of 0:723+0:006; Figure 5A). This skew in DAFs was

significantly greater than that observed genome-wide

(0:558+0:001) or in recombination hotspots (0:595+0:008;

Figure 5B), and it was larger than observed in any of the 1000

control region replicates (0:573+0:009). The tracts are also far

more biased than any of the regions considered by Katzman et al.

[17], which were identified using sliding windows of fixed size and

likely contained a mixture of gBGC tracts and non-tracts. Results

were similar for the CEU (WRS DAF skew of 0:703+0:007) and

CHB-JPT populations (0:678+0:008). These results held for the

Table 3. Recombination rates in gBGC tracts.

Recombination Map Human gBGC Tract Rate (cM/Mb) Chimpanzee gBGC Tract Rate (cM/Mb) GC-matched Control Rate (cM/Mb)

Human 3.85 1.81a 1.61

Chimpanzee 1.33b 1.71 0.78

aObtained by mapping chimpanzee tracts to orthologous positions in the human genome.
bObtained by mapping human tracts to orthologous positions in the chimpanzee genome.
doi:10.1371/journal.pgen.1003684.t003
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tracts based on the polymorphism-masked alignments, although

the magnitude of the skew was somewhat reduced in this case

(0:685+0:007 for YRI; Figure S11). Together, these results

strongly indicate an on-going preference for the fixation of G and

C alleles in the predicted gBGC tracts.

There is much less polymorphism data available for chimpan-

zees than for humans, but data for 10 individual chimpanzees

from the PanMap project [25] indicates a similar ongoing fixation

bias within the predicted chimpanzee tracts (Figure S12). As in

human, the WRS DAF skew in the predicted chimpanzee tracts is

significantly stronger than that observed in recombination hot-

spots. We also compared the WRS DAF skews of the tracts

predicted for each genome and the ‘‘ortho-tracts’’ mapped from

the other genome. As with recombination rates, we found that, in

both species, the predicted tracts have significantly greater WRS

DAF skews than the ortho-tracts (Figure 5B and Figure S12B).

These findings are consistent with gBGC currently acting on a

subset of our predicted tracts in association with transient, species-

specific recombination hotspots.

Fixation of Deleterious Alleles
Theoretical modeling has shown that gBGC, in principle, can

overcome negative selection and result in the fixation of weakly

deleterious alleles [3,8,10]. However, there is currently little direct

empirical evidence of a contribution of gBGC to fixed or

segregating deleterious alleles [11]. Our genome-wide tract

predictions enabled us to investigate the link between gBGC and

deleterious alleles by testing for enrichments for disease-associated

genomic regions in gBGC tracts.

We examined the relationship between the gBGC tracts and

four sets of putatively disease-associated genomic regions: 10,711

polymorphic sites from dbSNP annotated as ‘‘pathogenic’’ or

‘‘probable pathogenic’’ [34]; 43,952 polymorphic sites from the

Human Gene Mutation Database (HGMD) [35] (see also [11]);

11,444 genomic regions from the Genetic Association Database

(GAD) [36]; and 6,435,165 polymorphic sites with evidence of

functional importance (classes 1–5) in RegulomeDB [37]. For the

dbSNP pathogenic and HGMD comparisons, we considered sets

of control regions that overlapped the same number of exonic

SNPs as the gBGC tracts. This control is designed to avoid

misleading findings of significance that simply reflect the GC

content, exon coverage, and/or rates of polymorphism in the

gBGC tracts, since these disease-associated region sets are mostly

found in coding regions. Similarly, we used control regions

matched to SNPs considered by RegulomeDB, since it only

includes non-coding SNPs (Methods).

We found that the gBGC tracts overlapped significantly more

putatively disease-related SNPs from the dbSNP, HGMD, and

RegulomeDB collections, and significantly more of the GAD

regions, than did the matched control regions (Table 4; pv0:05

Figure 5. Human polymorphism data indicates an ongoing preference for the fixation of G and C alleles in the predicted gBGC
tracts. (A) WRS changes in gBGC tracts have significantly higher derived allele frequencies than SRW changes in tracts. This plot is based on data
for the YRI population from the 1000 Genomes Project [33]. Results for other populations were similar (data not shown). (B) The U -norm, a measure
of the degree of WRS bias in polymorphism data [17], is significantly higher in gBGC tracts than in the entire genome or in GC-matched control
regions (see Methods). Recombination hotspots also show somewhat elevated values but much less elevated than the predicted tracts. The U -norm
for human polymorphisms in ‘‘ortho-tracts’’ mapped from the chimpanzee genome is slightly elevated but significantly lower than that for human
gBGC tracts. This is consistent with the lower human recombination rate in chimpanzee tracts compared to human tracts (Table 3). A similar species-
specific skew in derived allele frequencies is seen in chimpanzee gBGC tracts (Figure S12). The error bars indicate 95% confidence intervals.
doi:10.1371/journal.pgen.1003684.g005

Table 4. Enrichment for disease-associated regions.

Disease-associated Region Set gBGC Tract Overlap Avg. Control Overlap p-value

dbSNP Pathogenic 113 46.3 0.005

HGMD 346 178.2 0.031

RegulomeDB (classes 1–5) 26474 20768.4 ,0.001

GAD 485 419.7 ,0.001

doi:10.1371/journal.pgen.1003684.t004
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for each). In the cases of the two collections of disease-associated

SNPs (dbSNP and HGMD), the enrichment within the predicted

gBGC tracts was particularly striking (fold-enrichments of 2.4 and

1.9, respectively), while in the other cases it was more modest but

still significant. These results suggest that gBGC may contribute in

important ways to elevated allele frequencies, and perhaps, to the

eventual fixation of deleterious mutations.

Overlap with Fast-Evolving Sequences
Many fast-evolving regions of the human genome display an

excess of WRS substitutions, leading to the suggestion that gBGC

may play a role in their evolution [6,7,9,13,38,39]. Supporting this

hypothesis, our predicted gBGC tracts overlap 13 of the 202

(6.4%) HARs identified by Pollard et al. [38], more than observed

for any of the 1000 GC-control region replicates (pv0:001).

Notably, the HARs overlapped by gBGC tracts included HAR1,

HAR2, and HAR3, the three fastest evolving sequences in this set.

We also examined an expanded set of 721 HARs [40] and found

that gBGC tracts overlapped 75 of them (10%; pv0:001; see

example in Figure 6). Next, we compared the gBGC tracts with 10

protein-coding genes identified as showing signatures of positive

selection on the human branch based on a likelihood ratio test

[41]. One of these genes is overlapped by a gBGC tract,

significantly more than expected based on exon-aware controls

(p~0:009). The overlapped gene, ADCYAP1, was also highlight-

ed by another group [9] as showing strong evidence of an

influence from gBGC. We repeated our analysis with 157 genes

identified in another recent study as showing signatures of human-

specific positive selection [42], and found that the gBGC tracts

overlapped 11 (7%) of these genes, somewhat more than average

for the exon-aware control replicates (7.4, p~0:077). Considering

our limitations in power (see Discussion), these results indicate the

gBGC has contributed to a substantial fraction of fast-evolving

sequences in the human genome.

Genome Browser Track
Our predicted tracts for human and chimpanzee are available

as a UCSC Genome Browser track at http://genome-mirror.bscb.

cornell.edu (Figure 6). This track displays both our discrete

predictions of gBGC tracts and a continuous-valued plot

indicating the posterior probability that each position is influenced

by gBGC. Using this track it is possible to browse the predicted

tracts in their full genomic context, perform queries intersecting

them with other browser tracks, and download them for further

Figure 6. Illustration of genome browser track. (A) UCSC Genome Browser screen shot focused on the LMAN1 gene (hg18.chr18:55,148,088–
55,177,461). This region contains a predicted gBGC tract (black bar, second track from top); the ‘‘wiggle’’ track below shows the posterior probability
of gBGC at each site computed by phastBias. The gBGC tract overlaps an exon of the gene (blue bar at top; adjacent chevrons indicate introns), a
human accelerated region (26HAR.23; short black bar), and a known missense variant from dbSNP (rs146465318; black tick mark). The phyloP-based
conservation track (‘‘Mammal Cons’’) shows that phastBias can predict tracts that span both conserved and nonconserved regions. The phastBias
track is available at http://genome-mirror.bscb.cornell.edu (hg18 assembly). Notably, this region has an elevated recombination rate (2.5 cM/Mb; not
shown). (B) The multiple sequence alignment for a portion of the gBGC tract (hg18.chr18:55,171,469–55,171,548) illustrates the characteristic
signature of gBGC. This interval has nine human-specific WRS substitutions over 80 nucleotides, four of which fall within the exon. Positions in other
species that match the human sequence are indicated with a period.
doi:10.1371/journal.pgen.1003684.g006
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analysis. We expect this track to be particularly useful for other

investigators who wish to exclude gBGC-influenced regions of the

genome from other molecular evolutionary analyses, such as the

identification of genes under positive selection. The tracts

themselves will also be directly useful for studying the evolution

of recombination rates and their relationship to substitution rates

and patterns.

Discussion

This paper describes an analysis of predicted gBGC tracts in the

human and chimpanzee genomes, based on a new computational

method called phastBias. PhastBias makes use of a hidden Markov

model and statistical phylogenetic models that consider the

influence of both natural selection and gBGC on substitution

rates and patterns. Unlike previous methods for identifying

signatures of gBGC, it does not depend on a sliding window or

predefined annotations of protein-coding genes or conserved

noncoding elements [9,13,15,19], but instead can flexibly identify

tracts of various sizes directly from genome-scale multiple

alignments. The method appears to have good power for tracts

of about 1 kilobase or longer, provided gBGC has acted with a

reasonably high average intensity along the lineage of interest. Our

predictions in the human and chimpanzee genomes cover about

0.3% of each genome and explain 1.2% of human/chimpanzee

single nucleotide differences. Consistent with the hypothesis that

they are caused by gBGC, the predicted tracts are correlated with

recombination rates, tend to fall in subtelomeric regions, and

exhibit an ongoing fixation bias for G and C alleles. In addition,

they are enriched for disease-associated human polymorphisms,

and they tend to overlap previously identified fast-evolving coding

and non-coding regions, suggesting that gBGC has contributed

significantly to both deleterious mutations and rapid sequence

evolution. Overall, our analyses indicate that gBGC has been an

important force in the evolution of human and chimpanzees since

their divergence 4–6 million years ago.

Many attributes of the predicted gBGC tracts are consistent

with the hypothesis that recombination is the driving force behind

the observed patterns of biased substitution. Nevertheless, the tract

locations are only partially correlated with recombination rates in

human and chimpanzee. Moreover, while the tracts are enriched

for recombination hotspots in both species, there are thousands of

hotspots that do not overlap a gBGC tract, and the majority of

tracts do not overlap a hotspot. These differences can be explained

by several factors. First, the hotspots we have analyzed reflect

recombination patterns in modern human populations, while the

gBGC tracts reflect average patterns since the divergence of

humans and chimpanzees. Many current hotspots presumably

have not had sufficient time to produce a detectable signature of

biased substitution, while many extinct hotspots contributed to

gBGC for long periods of time in the past. Second, models of

gBGC suggest that it can occur in conjunction with both crossover

and noncrossover recombination events, but current recombina-

tion maps reflect crossover events only [3]. An imperfect

correlation of these types of events, together with statistical noise

in current estimates of crossover rates, likely accounts for some of

the absence of correlation between recombination rates and gBGC

tracts. Third, biased substitution rates are influenced by many

factors other than recombination, such as mutation rates, natural

selection, and GC content [43]. For example, strong purifying

selection at or near a hotspot could eliminate the signature of

gBGC. Finally, limitations in power for both recombination events

and gBGC tracts undoubtedly reduce the apparent correlation

between these features.

The locations of the human and chimpanzee tracts are strongly

correlated on megabase scales, but, like recombination rates, they

differ significantly on fine scales, and few human and chimpanzee

tracts directly overlap one another (Figure 4; Figure S7).

Nevertheless, even at fine scales, the human and chimpanzee

gBGC tracts agree better than recombination hotspots, which are

essentially uncorrelated between the two species [25]. This

observation probably stems from the fact that gBGC tracts reflect

time-averaged recombination rates, and historical recombination

rates were presumably better correlated than those in present-day

humans and chimpanzees. In general, the predicted gBGC tracts

provide a valuable window into historical recombination process-

es, but this window is ‘‘blurred’’ by time-averaging over millions of

years. Nevertheless, together with other sources of information

about historical recombination processes—such as new methods

based on patterns of incomplete lineage sorting (K. Munch, T.

Mailund, J.Y. Dutheil, and M.H. Schierup, submitted)—predic-

tions of gBGC tracts may help to provide a more detailed picture

of the evolution of recombination rates in hominoids.

The different time scales associated with crossover-based

recombination maps and our predicted gBGC tracts are partic-

ularly well illustrated by the region of the chromosome 2 fusion in

human (Figure S6). Consistent with its location near a centromere

in the human genome, this region displays no elevation of

crossover rates in human populations, while the orthologous

regions of the chimpanzee genome show elevated crossover rates

typical of telomeres. Accordingly, this region exhibits little WRS

DAF skew in human, but a clear skew in chimpanzee. However,

the density of predicted gBGC tracts in this region is elevated in

both species, only slightly more so in chimpanzee than human,

suggesting that this region was telomeric for most of the

approximately 6 million years during which human-specific

recombination-associated substitutions could have occurred. Thus,

our observations indicate that the fusion event is fairly old relative

to intraspecies coalescence times but young relative to the human/

chimpanzee divergence time. They are qualitatively consistent

with Dreszer et al.’s [15] estimate of 0.74 Mya (95% confidence

interval: 0–2.81 Mya) for the date of the fusion event and

inconsistent with the argument that this event contributed to the

initial speciation of humans and chimpanzees [44].

Despite the overall similarity of the human and chimpanzee

predictions, the coverage of the predicted tracts is about 25% lower

in the chimpanzee genome. A possible cause of this difference is the

greater concentration of recombination events in hotspots in

humans [25]. This difference could lead to a stronger population-

level signal for gBGC in humans, allowing for more predictions and

longer predicted tract lengths. It has been proposed that the

difference in the concentration of recombination events may derive

from differences in the activity of the hotspot-specifying protein

PRDM9, which shows substantially greater allelic diversity in

chimpanzees than in humans [25]. Consistent with this hypothesis,

Auton et al. [25] found a much weaker signal for sequence motifs

potentially involved in PRDM9 binding at chimpanzee hotspots

than at human hotspots. In an attempt to shed light on the ancestral

binding preferences of PRDM9, we applied motif discovery

methods to the predicted gBGC tracts in the human and

chimpanzee genomes. However, in both species this analysis turned

up only a few motifs, none of which resembled the well-defined

motifs reported for the human genome [25,45]. This absence of

strong motifs may occur because the ancestral recombination

hotspots in both species are more like those in present-day

chimpanzees than humans. Alternatively, it may simply reflect the

difficulty of motif discovery given rapidly evolving PRDM9 binding

preferences and the time-averaged nature of the gBGC tracts.
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Given what is currently known about gBGC, it is impossible to

obtain direct measurements of the completeness and accuracy of

our predicted tracts. Our simulation experiments suggest that both

sensitivity and specificity are reasonably good for tracts at least 1

kb in length with B§5, but we often miss shorter or less biased

gBGC tracts (Figure 2), and the true distributions of tract lengths

and B values are unknown (although average estimates of B~1:3
[46] and B~8:7 [8] have been reported for highly recombining

regions). It is important to bear in mind that B represents an

average along an entire branch of the phylogeny. Many regions

may have experienced quite strong gBGC but for short

evolutionary intervals, resulting in small average values of B and

poor detection power. Thus, while our genome-wide predictions

improve on what is currently available, it seems plausible that they

still represent the ‘‘tip of the iceberg’’—a relatively small subset of

all genomic regions significantly influenced by gBGC, perhaps

unusual for their length or GC-disparity.

It is worthwhile to consider two other indirect sources of

information about our power for gBGC tract prediction. First,

Katzman et al. [17] found that about 20% of the 40 kb genomic

intervals they examined show significant WRS DAF skew. If we

conservatively assume one 1–2 kb tract per gBGC-influenced

window, this observation would imply that at least 0.5–1.0% of the

human genome has been influenced by gBGC on population

genomic time scales, compared with the phastBias estimate (for

B~3) of 0.3%. Second, using a method optimized for the analysis

of individual HARs, Kostka et al. [13] estimated that 24% of

HARs experienced significant gBGC (19% exclusively and 5% in

combination with positive selection), or 3.7 times as many as

overlap our phastBias predictions (6.4%). Thus, these two

imperfect indicators of power suggest that, with B~3, phastBias

underpredicts gBGC tracts by a factor of at least about 2–4. The

genomic coverage of our B~2 predictions may be closer to the

truth (1.1%; Table 2), but these predictions appeared to be of

poorer quality on inspection, apparently because the phylo-HMM

states with and without gBGC were insufficiently distinct to

control false positive rates.

While the likelihood ratio tests of Kostka et al. [13] appeared to

have greater power for gBGC in HARs overall, phastBias

sometimes achieves improved sensitivity by considering the entire

genome (including flanking sequences) rather than just a

designated collection of elements. Indeed, of the thirteen HARs

that overlap one of our gBGC tracts, three were not identified by

Kostka et al., apparently for this reason. These instances of

improved sensitivity are especially noteworthy given that phastBias

must address the more difficult problem of unconstrained genome-

wide prediction, with the attendant potential for large numbers of

false positives predictions.

In principle, gBGC can overcome purifying selection and help

to drive deleterious alleles to high frequencies [3,8,10], but it has

been difficult to find direct empirical evidence for a reduction in

fitness (genetic load) caused by gBGC. Our predicted gBGC tracts

are significantly enriched for disease-associated polymorphisms in

current human populations, suggesting that gBGC has helped to

drive at least some of these alleles to appreciable frequencies, and,

indeed, may still be active in maintaining them. We attempted to

establish an orthogonal link between gBGC and deleterious alleles

by looking for evidence of purifying selection in chimpanzees and

other species at the locations of WRS substitutions within the

predicted human tracts (Text S1). The idea behind this analysis

was that, if a substantial number of these mutations were driven to

fixation by gBGC despite negative selection against them, one

would expect an excess of evolutionary conservation, a deficiency

of polymorphisms, and/or a skew toward low-frequency derived

alleles at orthologous locations in other species, relative to an

appropriate control. However, this analysis yielded inconclusive

results: the human tracts are significantly enriched for overlap with

evolutionarily conserved elements at locations of WRS substitu-

tions (Figure S13), but evolutionary conservation scores and

chimpanzee polymorphisms do not display the expected patterns

(Figures S14, S15, and S16). It seems likely that the signal for

excess conservation in the gBGC tracts is simply too weak to detect

by these methods, owing to the sparseness of functional sites within

the tracts and the difficulty of establishing appropriate control

regions. Nevertheless, it may be possible in future work to develop

refined comparative genomic methods for measuring the genetic

load associated with gBGC.

Methods

Probabilistic Model
Our phylogenetic hidden Markov model has four states: one

that assumes both evolutionary conservation and gBGC (CB), a

second with gBGC but no conservation (NB), a third with

conservation but no gBGC (C0), and a fourth with neither

conservation nor gBGC (N0) (Figure 1). To avoid over-parame-

terization, we make the following simplifying assumptions. First,

we model gBGC only on the lineage leading to a pre-defined

‘‘target’’ genome (human or chimpanzee), because gBGC is

expected to be a transient phenomenon, typically affecting a single

lineage in any genomic position of interest. gBGC tracts are

allowed to occur on other lineages, but these tracts are expected to

have a negligible influence on inferences in the target genome and

are not directly modeled. Second, negative selection, in contrast to

gBGC, is assumed to apply uniformly across all branches of the

phylogeny. Third, positive selection is ignored. We omit positive

selection and lineage-specific negative selection from the model

because they are expected to be fairly rare, to leave a relatively

weak signal in the data at human-chimpanzee evolutionary

distances [47], and to primarily operate at a somewhat different

genomic scale from gBGC (e.g., at the level of individual binding

sites or clusters of amino acids, rather than genomic tracts of

hundreds or thousands of bases). We expect our modeling

framework to be robust to occasional sequences under positive

or lineage-specific selection, because the primary signal for tract

prediction is a WRS substitution bias, and selection generally will

not produce such a bias consistently across many bases. Finally, we

assume that the strength of gBGC and the strength of negative

selection in the target genome are constant across the genome. A

similar homogeneity assumption is employed in phastCons and

appears to have a minimal impact on power and accuracy for

element identification [28].

With these assumptions, the phylogenetic models for the four

states are defined as follows (with further mathematical details

given in Text S1).

1. Neutral/No gBGC (N0): Neutral evolution is described by an

HKY substitution model [48], with free parameters for the

transition/transversion ratio (k) and stationary nucleotide

frequencies (p). We assume the accepted tree topology for the

species under consideration: (((human, chimpanzee), orangu-

tan), rhesus macaque). The branch length proportions were

obtained from the Conservation tracks in the UCSC Genome

Browser (assembly hg18) [49]. (They were originally estimated

from fourfold degenerate sites in protein coding genes under a

strand-symmetric general reversible model.) These branches

were scaled locally to accommodate regional variation in

mutation rate (see below).
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2. Neutral/gBGC (NB): This model is identical to the neutral

model except that it assumes gBGC influences substitution

rates and patterns on the lineage leading to the target species

(human or chimpanzee) according to the model of Kostka et al.

[13]. The strength of gBGC is described by the GC-disparity

parameter Bw0, which increases the rate of WRS substitu-

tions and decreases the rate of SRW substitutions.

3. Conserved/No gBGC (C0): Evolutionary conservation is

modeled, as in phastCons, by multiplying the branch lengths

of the neutral model by a factor r (0ƒrƒ1). In all other

respects, this model is identical to the neutral model.

4. Conserved/gBGC (CB): This model is identical to model C0

except that it assumes gBGC acts with strength B on the

lineage leading to the target species.

The state-transition probabilities are defined by four parame-

ters, denoted m, n, a, and b (Figure 1, Table 1). The parameters m
and n are inherited from phastCons [28] and describe the

conditional probabilities of transitioning from a conserved state to

a neutral state, and from a neutral state to a conserved state,

respectively. The parameters a and b are analogous, defining the

conditional probabilities of transitioning out of, and into, a gBGC

tract, respectively. The sixteen possible state transition probabil-

ities are obtained by multiplying the appropriate pairs of

conditional probabilities and enforcing the standard normalization

constraints (Figure 1). This ‘‘cross-product’’ construction corre-

sponds to a prior assumption of independence for the two types of

transitions (conservation < no conservation and gBGC < no

gBGC).

Given a multiple sequence alignment, standard algorithms for

statistical phylogenetics and hidden Markov models can be used to

calculate the likelihood of the data under this model, to predict the

most likely state path (Viterbi), or to calculate the marginal

posterior probability of each state at each alignment column

(reviewed in [27]).

Parameter Estimation
In principle, the nine free parameters in our model (Table 1)

could all be estimated directly from the data by maximum

likelihood, using an expectation maximization or numerical

optimization algorithm. In practice, however, parameter estima-

tion is difficult because there are no validated gBGC tracts to use

for supervised training of the model, and the signal in the data is

not sufficiently strong to support a fully unsupervised estimation

procedure. Instead, we partition the parameters into three groups:

those for the neutral substitution process, those for the model of

conserved elements, and those specific to the gBGC tracts. The

first two groups of parameters are pre-estimated from the data

without consideration of gBGC, by what can be considered an

empirical Bayes approach. The parameters in the third group are

then estimated by a combination of methods.

Specifically, the free parameters for the neutral substitution

process (l, p, and k) are estimated per alignment block (see below)

using phyloFit [26], after conditioning on the tree topology and

branch-length proportions (as described above). This strategy

assumes that conserved elements and gBGC tracts are sparse and

have at most a minor effect on average substitution rates for large

genomic blocks. The three additional parameters that describe

conserved elements (r, m, and n) are inherited directly from

phastCons and therefore were simply set to the values used for the

Conservation tracks in the UCSC Genome Browser. The

remaining parameters include the GC-disparity B and the gBGC

transition probabilities a and b. As discussed in the Results section,

we found that a—which can be interpreted as an inverse prior

expected length for gBGC tracts—has only a weak influence on

our predictions (within a reasonable range) and decided to simply

fix it at 1/1000, corresponding to a prior expectation of 1 kb

tracts. We treated B as a ‘‘tuning’’ parameter and considered

various possible values in a plausible range. The final parameter,

b, was estimated from the data (separately for each alignment

block) by expectation maximization, conditional on fixed values of

all other parameters.

Tract Prediction
To predict gBGC tracts based on our model, we computed

marginal posterior probabilities for the four model states at each

genomic position using the forward/backward algorithm. We then

computed the marginal posterior probability of gBGC by

summing the probabilities for states NB and CB, and we predicted

tracts by applying a threshold of 0.5 to this probability (i.e., the

predicted tracts are maximal segments in which every position has

a posterior probability of at least 50% of gBGC). We settled on this

strategy after discovering that the more conventional Viterbi

algorithm performed poorly in this setting, evidently due to

uncertainty about the endpoints of tracts. This uncertainty causes

the probability mass for a putative gBGC tract to be distributed

across many possible HMM state paths, and as a result, the Viterbi

algorithm often fails to predict a tract even when the posterior

probability of gBGC is close to one. A potential drawback of our

thresholding strategy is that fluctuating posterior probabilities

could lead to highly fragmented tract predictions. However, we

found that the posterior probability function was quite smooth in

practice (probably owing to small values of the state transition

probabilities) and fragmentation was not a problem. For example,

at B~3, only about 2% of the predicted human tracts fall within

50 base pairs of another tract. Nonetheless, when analyzing the

genomic distribution of gBGC tracts relative to one another and to

telomeres, we merged adjacent tracts (within 1 kb) in order to

reduce any bias introduced by over fragmentation (Text S1).

Genome-Wide Alignments and Preprocessing
Our analyses of both simulated and real data were based on

genome-wide alignments obtained from the UCSC Genome

Browser (http://genome.ucsc.edu) [49]. We began with the 44-

way vertebrate alignments produced with multiz [50] (hg18

assembly) and extracted the rows corresponding to the human,

chimpanzee, orangutan, and rhesus macaque genomes, discarding

alignment columns containing only gaps in these sequences. We

also discarded columns in which the human genome contained a

gap. Human-referenced alignments were used for both the human

and chimpanzee gBGC tract predictions, as chimpanzee-based

multiple alignments are not available. For convenience in

processing, the resulting four-way alignments were partitioned

into blocks of approximately 10 megabases (Mb) in length. The

boundaries between blocks were required to occur in regions

uninformative about gBGC (due to greater than 1 kb with lack of

alignment with the other species). We experimented with several

alternative block sizes, ranging from 1–30 Mb, and found that the

predictions were fairly robust to the choice of block size (Table S2).

Simulation Study
We simulated human sequences with gBGC tracts for each 10

Mb block in the real genome-wide alignments as follows. First, we

identified positions at which any sequence contained a CpG

dinucleotide, because substitution rates are likely to be substan-

tially elevated at such sites. Next, we used phastCons to identify

conserved elements in the four species. We then fitted a

phylogenetic model to the alignment columns in each of four
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categories (neutral/non-CpG, conserved/non-CpG, neutral/

CpG, conserved/CpG) by estimating k, p, and l for the most

data-rich category (neutral/non-CpG), then estimating a separate

l for the CpG category (using phyloFit) and applying a branch-

length scale-factor of 0.31 to the conserved categories. Next, we

defined an alternative ‘‘gBGC’’ instance of each of the four

estimated models by modifying the substitution rate matrix for the

human branch according to our model of gBGC [13] and a given

choice of B (here denoted Bsim). In this way, we obtained eight

phylogenetic models, representing all combinations of conserva-

tion/no conservation, CpG/no CpG, and gBGC/no gBGC.

We generated synthetic human sequences by assigning one of

these eight models to each alignment column, as follows. The

conservation and CpG status of each column was maintained as

originally annotated, so that the synthetic alignments would

resemble the original ones as much as possible. The gBGC status

was set to ‘‘no gBGC’’ for most columns, but set to ‘‘gBGC’’ for

tracts of fixed size at randomly selected locations, at an average

gBGC coverage of 0.1%. We then simulated a new human base

for each alignment column conditional on the assigned phyloge-

netic model and the observed chimpanzee, orangutan, and rhesus

macaque bases. This was accomplished using the ‘postprob.msa’

function in RPHAST, which computes the marginal distribution

over bases at any node in the phylogeny conditional on a given

phylogenetic model and collection of observed bases, using the

sum-product algorithm. This function computes the desired

distribution for the human base if the human sequence is masked

and treated as missing data in the input. A particular base was

selected by sampling from this marginal distribution.

We performed this simulation procedure for combinations of

Bsim[f3,5,10g and fixed tract lengths of 200, 400, 800, 1600,

3200, and 6400. For each set of simulated alignments, we

predicted gBGC tracts as described in the previous section,

assuming several different values for the tuning parameter B. For

each data set and value of B, we calculated the true positive rate

(number of correctly predicted gBGC bases/total number of

gBGC bases), false positive rate (number of incorrectly predicted

gBGC bases/total number of non-gBGC bases), and positive

predictive value (number of correctly predicted gBGC bases/

number of predicted gBGC bases).

Genomic Annotations
We compared the predicted gBGC tracts with exon and intron

definitions from Gencode version 3c and Ensembl genes [51], and

with annotations of lincRNAs, miRNAs, miscRNAs, small non-

coding RNAs, NMD transcripts, and pseudogenes from Gencode

version 14 [52]. We also compared them with LINE and SINE

elements from the rmskRM327 table in the UCSC Table Browser

[53], and with a set of high-confidence predictions of transcription

factor binding sites based on ChIP-seq data from ENCODE [54].

In addition, we compared the tracts with genome-wide recombi-

nation rate estimates from the 1000 Genomes Project [33],

recombination hotspots from the October 2006 release of

HapMap [32], and chimpanzee recombination rate estimates

from the PanMap project [25].

Disease-associated SNPs were obtained from several sources.

SNPs annotated with ‘‘pathogenic’’ or ‘‘probable pathogenic’’

clinical significance were downloaded on October, 25, 2011 from

dbSNP [34]. The HGMD dSNPs were obtained from the

Supplementary Material of reference [11]. Regions of the human

genome with positive genetic associations with disease were taken

from the Genetic Association Database [36] on February 2, 2012.

The level of evidence for the function of non-coding SNPs was

downloaded from the RegulomeDB [37] web site on December

12, 2012. All data not in reference to the GRCh36/hg18 assembly

were mapped to hg18 using the ‘liftOver’ tool from the UCSC

Genome Browser.

Control Regions
To evaluate the statistical significance of various properties of

interest, we compared the predicted gBGC tracts with sets of

control regions matched to them in number, length distribution,

and chromosome assignment. We also ensured that the control

regions were matched to the gBGC tracts by GC content (by

stratifying predictions and controls into 100 bins), which is known

to correlate strongly with several relevant genomic features. We

obtained a null distribution for each statistic of interest (such as the

number of tracts overlapping exons, or the number human tracts

overlapping orthologous chimpanzee tracts), by computing a value

of the statistic for each of 1000 randomly sampled replicates of the

control regions. One-sided empirical p-values were computed as

the fraction of sampled control sets for which the statistic was at

least as extreme as observed in the predicted tracts. As noted in the

text, we occasionally considered alternative sets of control regions

designed to accommodate known biases in genomic regions of

interest. For example, when evaluating the significance of overlap

with disease-associated SNPs from HGMD and dbSNP, we used

control regions matched to the predicted tracts in terms of their

degree of exon overlap, since these sets consist mostly of coding

SNPs. Similarly, for RegulomeDB, which is focused on non-

coding SNPs, we used control regions that matched the overlap of

the gBGC tracts with the set of SNPs considered by RegulomeDB.

Analysis of Derived Allele Frequencies
Our analysis of human derived allele frequencies was based on

genotype data and ancestral allele predictions from the low-

coverage pilot data set from the 1000 Genomes Project released in

July 2010 [33]. These comprise SNP calls for the 22 autosomes in

three HapMap population panels: YRI (59 individuals), CEU (60

individuals), and CHB-JPT (60 individuals). The chimpanzee

derived allele frequency analysis was based on genotype data for

10 individuals downloaded from the PanMap project [25]. SNP

locations were mapped to the human genome, and the 1000

Genomes predicted human chimpanzee ancestral allele was used

to identify the derived allele. Sites with a low quality genotype call

(GQ quality score less than 5), more than two alleles, or no

predicted ancestral allele were not considered. We computed the

WRS DAF skew of all human and chimp gBGC tract SNPs as

normalized U values from a Mann-Whitney U test on the derived

allele frequencies of WRS and SRW SNPs, as previously

described [17]. A WRS DAF skew of 0.5 indicates no bias, and

values greater than 0.5 indicate that WRS mutations are favored.

Supporting Information

Figure S1 False positive rates from simulations. Each point in

the plot represents the false positive rate obtained by analyzing a

set of simulations in which all tracts have the same strength and

length. The solid lines show the total false positive rate, calculated

as the total fraction of bases outside of gBGC tracts that were

assigned to gBGC tracts by phastBias using B~3. The dashed

lines show the false positive rates only counting predicted tracts

which do not overlap simulated tracts. Most false positives come

from uncertainty in the tract boundaries, especially for short tracts.

(PDF)

Figure S2 Additional simulation results. Power and accuracy for

gBGC tract prediction as a function of (A) gBGC strength (Bsim),

(B) the tuning parameter B, (C) mean tract coverage, and (D)
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mean tract length. Solid lines represent basewise true positive rate

(TPR) and dotted lines represent positive predicted value (PPV). In

each plot, tracts were simulated with Bsim~5, a geometric length

distribution with a mean of 1 kb, and mean coverage of 1%, unless

otherwise specified by the x-axis. The phylo-HMM was run with

the same parameter settings used for the genome-wide predictions,

including B~3, except in (B) (where B is varied).

(PDF)

Figure S3 WRS bias distribution for human substitutions in

gBGC tracts for B~3. Histogram of WRS bias, which is

computed for each tract as the fraction of all WRS and SRW

substitutions along the human lineage which are WRS. Human-

chimpanzee substitutions were polarized by assuming the allele

observed in orangutan (ponAbe2) was ancestral.

(PDF)

Figure S4 Distance to telomere and recombination rate

correlate with gBGC-tract proximity. This figure shows box plots

of the distribution of the log distance to the nearest gBGC tract,

stratified by log distance to nearest telomere (first column) and

recombination rate (second column) for both human (first row)

and chimp (second row). For both species we observe that gBGC

tracts are closer together towards the end of chromosomes (panels

A and C), and that they are further apart in areas of low

recombination rate (panels B and D). These empirical observa-

tions agree with the results of our linear modeling analysis (Text

S1).

(PDF)

Figure S5 gBGC tracts are clustered and closer to telomeres

than expected by chance. This figure shows qq-plots contrasting

quantiles observed in gBGC tracts (x-axis) with medians of

quantiles observed across GC-matched control sets (points, y-axis).

The gray regions correspond to the data range observed across

control regions (with the 1% highest and 1% lowest values

removed). The vertical blue dashed line denotes the median for the

gBGC tracts. Panels A and B show these plots for distance to

nearest gBGC tract and the distance to nearest telomere in

human; C and D show the corresponding plots for chimpanzee.

(PDF)

Figure S6 Signatures of recombination around the fusion site on

human chromosome 2. Shown are predicted gBGC tract densities

per megabase (top), crossover rates [25,33] (middle), and DAF

skews (bottom; see Methods) for a 20 Mb region centered on the

fusion site on human chromosome 2 (gray vertical line). Separate

lines represent data from the human genome (black) and the

orthologous regions of chromosomes 2a and 2b in the chimpanzee

genome (red). All measures are standardized by subtracting the

chromosome-wide mean and dividing by the standard deviation.

The raw data were smoothed using a Gaussian filter with s~2.

See the Discussion for interpretation of these differences between

human and chimpanzee.

(PDF)

Figure S7 Human and chimpanzee gBGC tracts are found in

broadly similar locations, but exhibit fine-scale differences. The

fraction of bases in gBGC tracts is correlated between human and

orthologous chimpanzee regions (Figure 4). The strength of this

correlation increases as larger blocks of the genome are considered

(x-axis). The gray bars give the average and standard deviation of

the correlations observed between the gBGC fraction in 1000 GC-

matched human control regions and the orthologous chimpanzee

regions.

(PDF)

Figure S8 Correlation of recombination rates and gBGC tract

densities within and between species. Recombination rates and

gBGC densities are significantly correlated within species, and this

correlation is more pronounced at larger scales (dark blue and

dark red bars). When gBGC tract densities and recombination

rates are compared across species (human gBGC tract densities

vs.chimpanzee recombination rates or chimpanzee gBGC tract

densities vs.human recombination rates; light blue and light red

bars, respectively) they show weaker but still significant correla-

tions. This plot considers only blocks that have nonzero values for

all four statistics of interest.

(PDF)

Figure S9 Differences in gBGC tract density between human

and chimpanzee are modestly correlated with differences in

recombination rate. Bars show the Pearson correlation between

the difference between xh{xc and yh{yc, where xh and xc are

the human and chimpanzee gBGC tract densities, respectively,

and yh and yc are the human and chimpanzee recombination

rates, respectively. Average values were computed for windows of

various sizes (x-axis). All correlations are significantly greater than

zero (10 kb: p = 0.01; 100 kb p = 6.5e–05; 1 Mb: p = 6.7e–11; 5

Mb: p = 1.7e–07).

(PDF)

Figure S10 Genomic features significantly enriched or depeleted

in gBGC tracts. For each genomic feature, we compared the

number of overlaps observed with gBGC tracts with those

observed in 1000 random GC-matched control regions. The gray

bars give the minimum and maximum overlaps observed in the

random sets. Shown are all features that are significantly (pv0:05)

underrepresented (blue) or overrepresented (red) in the tracts. See

the Methods for a full list of genomic features considered. Note

that the tracts are more strongly enriched for recombination

hotspots (not shown, 1.546) and for high recombination rates

(Table 3), both of which were considered separately.

(PDF)

Figure S11 Human polymorphism data indicate an ongoing

preference for the fixation of G and C alleles in the predicted

gBGC tracts. This figure shows the same plots as Figure 5, but is

based on an analysis in which polymorphic sites were masked from

the alignments. (A) WRS changes in gBGC tracts have

significantly higher derived allele frequencies than SRW changes.

This result was obtained on the YRI population from the 1000

Genomes Project, and patterns for other populations were similar

(data not shown). (B) The U -norm, a measure of the degree of

WRS bias (see Methods), is significantly higher in gBGC tracts

than in the entire genome or in GC-matched control regions.

Recombination hotspots also show somewhat elevated values but

much less elevated than the predicted tracts. The error bars

indicate 95% confidence intervals.

(PDF)

Figure S12 Chimpanzee polymorphism data indicate an ongoing

preference for the fixation of G and C alleles in the predicted

chimpanzee gBGC tracts. This figure shows the same analysis as

Figure 5, but is based on chimpanzee polymorphism data for 10

individuals (20 chromsomes per site) from the PanMap project. (A)

WRS changes in chimpanzee gBGC tracts have significantly higher

derived allele frequencies than SRW changes. (B) Echoing the bias

patterns observed in human polymorphism, the U-norm, a measure

of the degree of WRS bias (see Methods), is significantly higher in

chimpanzee gBGC tracts than in the entire genome and human

gBGC tracts mapped to the chimp genome. Chimpanzee

recombination hotspots also show somewhat elevated values but
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much less elevated than the predicted tracts. The error bars indicate

95% confidence intervals.

(PDF)

Figure S13 WRS sites within the predicted human tracts are

enriched for phastCons elements compared to controls. Enrich-

ments were calculated as the number of WRS substitutions within

tracts falling in phastCons elements, divided by the number

expected if these were distributed independently. The histograms

show enrichment in our sets of 1000 GC- and exon-aware control

tracts, and the arrow shows the value observed in the B~3 gBGC

tracts.

(PDF)

Figure S14 Conservation at sites of WRS substitutions within

tracts. PhyloP scores were calculated at sites within the predicted

human tracts at which WRS substitutions occurred on the human

lineage. They were also calculated at sites of similar human-

specific WRS substitution within the GC- and exon-matched

control groups (1000 replicates). The scores were calculated for

mammalian alignments from which the human and chimpanzee

sequences had been removed. A higher phyloP score (x-axis)

indicates greater evolutionary conservation. Although there are

slight differences between the distributions for the tracts and the

control groups, there is no clear excess of conservation at WRS

sites in the tracts.

(PDF)

Figure S15 Number of chimpanzee polymorphisms in regions

orthologous to the gBGC tracts, compared to controls. We

observed significantly more chimpanzee polymorphisms in regions

orthologous to the tracts than those orthologous to the control

groups. This is the opposite of the observation that would be

expected if the regions orthologous to the tracts were under

purifying selection in the chimpanzee.

(PDF)

Figure S16 Derived allele frequency spectrum of chimpanzee

polymorphisms in regions orthologous to the tracts. The top plot

shows the derived allele frequency spectrum (polarized using the

orangutan allele) for chimpanzee polymorphisms in regions

orthologous to the B~3 gBGC tracts, compared with the

minimum and maximum from 1000 control groups. The bottom

plot shows the fraction of samples from each control group with a

higher frequency than observed in the real tracts. We observe no

significant excess of low-frequency derived alleles in regions

orthologous to the tracts.

(PDF)

Table S1 Relative coverage of human gBGC tracts for various

values of B. Each value in the table represents the fraction of

nucleotides in the human gBGC tract predictions for the value of

B indicated for the row that also fall in the predictions for the value

of B indicated for the column. The numbers on the main diagonal

are one by definition. The numbers above the main diagonal

indicate the coverage of smaller sets (higher B) by larger sets (lower

B), while the numbers below the main diagonal indicate the

coverage of larger sets by smaller sets.

(PDF)

Table S2 Relative coverage of tracts predicted using various

block sizes. This table shows the robustness of tract predictions to

the block size used in analysis. The tracts presented in the paper

were computed in 10 Mb blocks (highlighted). As discussed in the

Methods section, several free parameters were estimated separate-

ly for each block, including the rate into the gBGC state. In each

row of this table is shown the fraction of bases predicted at a given

block size which were also predicted using the block size indicated

by the column header. Most pairs of block size choices have

overlaps of greater than 80%, except for the case of 1 Mb blocks,

where some overfitting appears to occur. Inspection of the

predictions indicates that most differences between predictions

are due to short tracts for which the posterior probability for

gBGC is near the threshold of 50%.

(PDF)

Text S1 Text describing additional analyses in support of the

manuscript.

(PDF)
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