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Abstract  

Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO3) 

surfaces is detrimental to the performance of energy conversion systems such as solid oxide 

fuel/electrolysis cells and catalysts for thermochemical H2O and CO2 splitting. One key reason 

behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively 

charged A-site dopants (for example, 𝑆𝑟!"! ) by the positively charged oxygen vacancies (𝑉!∙∙) 

enriched at the surface. Here we show that reducing the surface 𝑉!∙∙ concentration improves the 

oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-

established understanding that surface oxygen vacancies facilitate reactions with O2 molecules. 

We take La0.8Sr0.2CoO3 (LSC) as a model perovskite oxide, and modify its surface with additive 

cations that are more and less reducible than Co on the B-site of LSC. By using ambient pressure 

X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less 

reducible cations is to suppress the enrichment and phase separation of Sr while reducing the 

concentration of 𝑉!∙∙ and making the LSC more oxidized at its surface. Consequently, we found 

that these less reducible cations significantly improve stability, with up to 30x acceleration of the 

oxygen exchange kinetics, after 54 hours in air at 550 oC achieved by Hf addition onto LSC. 

Finally, the results revealed a “volcano” relation between the oxygen exchange kinetics and the 

oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano 

relation highlights the existence of an optimum surface oxygen vacancy concentration that 

balances the gain in oxygen exchange kinetics and the chemical stability loss.  
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The chemical instability of the perovskite oxide surfaces due to cation segregation and 

phase precipitation limits the performance and durability in multiple applications, including solid 

oxide fuel and electrolysis cells (SOFC/SOEC)1,2, thermochemical3 and photo-assisted4 water 

splitting. State-of-the-art SOFC cathode materials, exemplified by La0.6Sr0.4CoO3
5, 

La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)6, and Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF)7 suffer from degradation of 

surface chemistry and oxygen reduction reaction (ORR) kinetics at elevated temperatures8-13. 

This degradation is because of Sr segregation and separation of SrO-like insulating phases at the 

perovskite surface8,11,14-17, sometimes in the form of complete coverage of the surface by SrO15, 

blocking the electron transfer and oxygen exchange pathways18 and leaving a dopant-poor sub-

surface region. The consequence is detrimental for electrochemical performance, by up to two 

orders of magnitude loss in ORR kinetics9,10. One proposed way against this challenge has been 

coating of LSC19,20 or LSCF13 surfaces with several nm thick layers of La0.8Sr0.2MnO3
13,20 or 

ZrO2
19. Although some enhancement in electrode stability was shown by these surface coatings, 

the underlying mechanisms behind the improvement of the cathode stability have not yet been 

made clear, making it difficult to go beyond these empirical observations.  

In our previous work, the electrostatic attraction of negatively charged dopants to the 

surface that is enriched with positively charged oxygen vacancies was recognized as an 

important driving force for Sr segregation on perovskite oxides11. Consequently, it is reasonable 

to expect that a lower concentration of oxygen vacancies can improve the surface stability and 

ORR kinetics. This may appear contradictory to the well-established understanding that oxygen 

vacancies facilitate ORR21 and other reactions of small molecules on transition metal oxides22-24. 

However, significant degradation of the ORR kinetics because of dopant segregation and phase 

separation is also associated with surface oxygen vacancies11. Therefore, here we propose to 

decrease the surface oxygen vacancy concentration for suppressing the electrostatic driver to this 

detrimental process.  

In this paper we hypothesized that the perovskite oxide surface stability can be tuned as a 

function of the reducibility of the surface. We took La0.8Sr0.2CoO3 as a model system, and 

systematically modified its surface with additive cations, whose binary oxides have lower (V5+)25 

or higher (Nb5+, Ti4+, Zr4+, Hf4+, and Al3+)25-29 enthalpy of oxygen vacancy formation compared 

to that of LSC30. We introduced these additives to the LSC surface at sub-monolayer coverages 
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by a simple method using metal chloride solutions,31,32 and we refer to these surface modified 

samples as LSC-Me (see Supporting Information (SI), Table S1 for details). We found that the 

less reducible cations, i.e. Hf4+, Ti4+, Zr4+, Nb5+ or Al3+, improve the oxygen exchange kinetics 

and stability on LSC, while the addition of V and excess Co lead to stronger degradation. 

Ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and X-ray absorption 

spectroscopy (AP-XAS)33,34 measurements up to 550 oC revealed that these less reducible cations 

make the LSC surface more oxidized and decrease the surface oxygen vacancy concentration, 

leading to a smaller electrostatic driving force for Sr segregation.  

Electrochemical performance of LSC with surface chemical modifications 

We compared the evolution of the surface oxygen exchange coefficients, kq, which 

represents the oxygen reduction reactivity of LSC cathodes as a function of time at 530 °C in air. 

The LSC films treated with chloride solutions of Co, V, Nb, Zr, Ti, Hf, and Al are denoted as 

LSC-Co12, LSC-V12, LSC-Nb19, LSC-Zr15, LSC-Ti15, LSC-Hf16 and LSC-Al15, respectively. 

The numbers indicate the Me/(La+Sr+Co+Me) ratio at/near the film surface with Me being the 

added metal cation at the surface. The kq obtained from electrochemical impedance spectroscopy 

are given in Fig. 1a. Initially, all the samples have similar kq values. Within the first few hours of 

the measurements, the surface exchange kinetics degraded with varying extents on the different 

samples. The LSC, LSC-Co12, and LSC-V12 electrodes degraded most severely, with almost 1.5 

orders of magnitude decrease of kq within the 30 hours of testing. The LSC-Ti15, LSC-Zr15, 

LSC-Hf16, LSC-Nb19 and LSC-Al15 cathodes were more stable, with the best performance by 

LSC-Hf16 having more than 30 times faster oxygen exchange kinetics than that on LSC after 54 

hours.  

The morphology of the electrochemically tested cathode surfaces, shown in Fig. 1b, 

indicates the correlation of the electrochemical stability to the surface chemical stability. On the 

films with fast degradation of kq, i.e., LSC and LSC-V12, a large surface roughness and particle 

coverage is evident. Electrochemically stable films such as LSC-Ti15, LSC-Al15 and LSC-Hf16 

have more stable surface morphology with significantly lower roughness. Our previous 

investigation on the nature of these segregated particles on cobaltites identified them as an 

insulating SrO-related phase which degrades the surface oxygen exchange8,14. From these results, 
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it is clear that the addition of the less reducible cations prevents the segregation of insulating Sr-

rich phases, and improves the electrochemical stability and kinetics significantly (> 10×) 

compared to pristine LSC.  

 
Figure 1. Surface oxygen exchange kinetics and stability on LSC dense thin film cathodes. 

(a) The oxygen surface exchange coefficient, kq, quantified from electrochemical impedance 

spectroscopy measurements over time at 530 °C in air, for the LSC and LSC-Me films. (b)  

Atomic force microscopy images on the LSC, LSC-V12, LSC-Nb19, LSC-Ti15, LSC-Hf16, and 

LSC-Al15 films that were electrochemically tested as shown in Fig. 1a.  

 

Evolution of surface chemical composition 

APXPS on the pristine LSC and the LSC-Ti3, LSC-Ti15, and LSC-Hf16 films provided 

more detailed assessment of the surface chemical stability. The experiments were conducted in 

oxygen pressure (pO2) from 10-6 Torr to 0.76 Torr and up to 550 oC. The analysis of the Sr 3d 

photoelectron spectra allows to quantify the atomic concentration of Sr at the film surface, and 

also the Sr binding environments in the perovskite lattice and in a non-lattice phase at the surface 

([Sr]Lattice and [Sr]Non-lattice, respectively) (Fig. S5, SI)8,35. Our chemical composition analysis 

showed that the total Sr content and the non-lattice Sr concentration is higher on LSC compared 

to that on LSC-Ti3, LSC-Ti15, and LSC-Hf16. LSC-Ti15 and LSC-Hf16 have significantly more 

stable surface Sr composition compared to LSC. [Sr]Total/([Sr]+[La]) at the film surfaces is 
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shown in Fig. 2a. The LSC-Hf16 and LSC-Ti15 films showed only a small increase in the Sr 

content up to 550 °C. Under the same conditions, [Sr]Total/([Sr]+[La]) significantly increased on 

the bare LSC and on LSC-Ti3. In SI, we demonstrate that the environment temperature and 

oxygen pressure govern the Sr-chemistry evolution shown in Figure 2, and not temporal 

variations at each condition (Fig. S6). 

The large amount of [Sr]Non-lattice on the LSC and LSC-Ti3 films (Fig. 2b) are in good 

agreement with the large coverage of their surface with the segregated particles detected from ex 

situ AFM (Fig. 2d). Thus, the [Sr]Non-lattice signal can be reasonably attributed to the signal from 

SrO-rich phase-separated areas of the films8,14. The LSC-Hf16 and LSC-Ti15 samples have a 

significantly smaller amount of [Sr]Non-lattice (Fig. 2b), a much more stable surface chemistry, with 

relatively very small amount of phase-separated particles at the surface (Fig. 2d).  

	

Figure 2. Surface chemical stability on LSC dense thin films. (a) [Sr]Total/([La]+[Sr]), (b) 

[Sr]Non-lattice/([La]+[Sr]), and (c) [Sr]lattice/[Co] ratios at the surface of the LSC and LSC-Me thin 

films measured in situ at different temperature and oxygen partial pressures by ambient pressure 

X-ray photoelectron spectroscopy (APXPS). (d) Ex situ atomic force microscopy images of the 

LSC and LSC-Me films after the APXPS measurements in (a). 
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In order to reveal the mechanism for improved LSC surface stability with the less 

reducible cations, we measured the X-ray absorption spectra near the Co L2,3 and O K-edges and 

the valence band (VB) structure, from 10-6 Torr to 0.76 Torr of pO2 and up to 550 oC. The Co 

L2,3-edge spectra recorded at different conditions for the LSC-Hf16 film are given in Fig. 3a as 

an example. Chemical shifts of the Co L3-edge main peak were used for estimating the change in 

the Co oxidation state. Fig. 3b summarizes the Co L3-edge position on for LSC, LSC-Ti3, LSC-

Ti15, and LSCF-Hf16 measured at 300 °C, 0.76 Torr. The x-axis in Figure 3b, from left to right, 

points towards an expected lowering of the oxygen vacancy formation enthalpy, or equivalently 

an expected increase of the oxygen vacancy concentration (based on the effects of Hf and of Ti 

at different amounts). The variations of the Co L3-edge positions on these four samples at 

different conditions are provided in Fig. S7, SI. An increase by +1 in the Co valence, for instance, 

from Co3+ to Co4+, shifts the L3-edge position by about 1 eV towards higher photon energies36. 

Comparing the peak positions of Co L3-edge in Fig. 3b, a clear difference in Co valence state 

among these samples can be seen. At 300 °C, 0.76 Torr, the Co oxidation state increases from 

LSC to LSC-Ti3, LSC-Ti15, and LSC-Hf16 (Fig. 4b). The shift in L3-edge position by about 

+0.4 eV should correspond to an increase of the Co oxidation state by about +0.4 on LSC-Hf16 

compared to that on LSC36. This trend, at a first glance, is contrary to the fact that Ti4+ and Hf4+ 

are electron donors, assuming that these cations occupy the Co3+ positions in the perovskite 

structure. Therefore, the large difference between the L3-edge positions of the unmodified LSC 

and the LSC-Hf16 can only be rationalized by a difference in the oxygen vacancy concentration. 

That is, Hf at the surface decreases the oxygen vacancy concentration, leading to an effectively 

higher oxidation state of Co. This resulting trend matches qualitatively what we expect based on 

the oxygen vacancy formation enthalpies in HfO2, TiO2, and LSC, also shown in Fig. 3b. 

Increasing Co oxidation state (i.e. decreasing surface oxygen vacancy concentration) matches the 

trend of increasing enthalpy of oxygen vacancy formation, ∆𝐻!! , such that ∆𝐻!! (HfO2) > 

∆𝐻!!(TiO2) > ∆𝐻!!(LSC)). Note in Fig. 3b that the dashed arrows do not imply a quantitative 

linearity, but are only a guide to the eye to show the qualitative relation between the Co 

oxidation state and the reducibility of the binary oxide of the cation added to the surface. 

We have excluded the possibility that the different oxidation states from LSC to LSC-

Hf16 are caused by different levels of Sr doping, as discussed based on AP-XPS results (SI, 
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Section 5). It is worth to note that we have limited the comparison of the Co L3-edge among the 

samples to the condition at 300 °C, 0.76 Torr, prior to significant Sr segregation on LSC and 

LSC-Ti3 (SI, Section 5). The AP-XAS results were also supported by measuring the Co 2p core 

level spectrum by laboratory X-ray source in ultra-high vacuum at ~10-9 Torr. We have found Co 

to be more difficult to reduce on the LSC modified by Nb, Ti, Zr, Hf, and Al, and easier to 

reduce on the LSC modified by V (Fig. S8, SI).  

 

Figure 3. Oxidation state of Co based on Co L2,3-edge XAS on LSC dense thin films. 

(a) Co L2,3-edge X-ray absorption spectra on LSC-Hf16 at different temperatures and oxygen 

partial pressures. The line marks the Co L3-edge main peak at 300 oC and 0.76 Torr as a 

reference, to monitor the relative changes in Co oxidation state. (b) The Co L3-edge peak 

positions at 300 °C, 0.76 Torr for LSC, LSC-Ti3, LSC-Ti15, and LSC-Hf16 are shown by the 

solid symbols. The arrow under the x-axis shows the direction of decreasing Co oxidation state, 

i.e. increasing oxygen vacancy concentration. The open symbols represent the oxygen vacancy 

formation enthalpy for binary oxides HfO2
29, TiO2

26 and also LSC30. The dashed arrows in (b) 

are a guide to the eye and do not imply a quantitative linearity. 

 

We next show that the evolution of the valence band (VB) as well as the O K-edge 

spectra also support a more oxidized surface when LSC is modified by Hf and Ti, consistent with 

the Co L2,3-edge XAS above. The VB spectra of LSC and LSC-Hf16 films at different conditions 

are shown in Fig. 4a,b. For the LSC, the intense peak located at around 1.5 eV at 300 °C arises 
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from the Co t2g states hybridized with the O 2p states37. On the other hand, on LSC-Hf16, this 

peak was absent at the same condition. The intensity of this peak is tied to the number of 

electrons at the Co t2g orbital37, and provides information on the Co oxidation state. Therefore, 

the absence of this peak on LSC-Hf16 indicates that Co is more oxidized than on LSC, in line 

with the Co L-edge XAS results.  

 
Figure 4. Oxidation state on LSC based on valence band and O K-edge. (a, b) Evolution of 

the valence band structure from X-ray photoelectron spectra measured in situ on (a) LSC and (b) 

LSC-Hf16. The arrow indicates the low energy peak which reflects the hybridization of Co t2g 

states with the O 2p orbital. The greater the intensity of this peak, the more electrons in the t2g 

states of Co. (c, d) O K-edge spectra of (c) LSC and (d) LSC-Hf16 films at different 

temperatures and oxygen partial pressures. The dashed lines in each plot mark the position of the 

O 2p ligand hole peak. The presence of this peak indicates p-type doping and therefore an 

increased Co oxidation state, as seen on LSC-Ti15 and LSC-Hf16. 
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Figs. 4c,d summarize the evolution of the O K-edge spectra on LSC and LSC-Hf16 films. 

In line with the unchanged valence band structure (Fig. 4b), the O K-edge spectra on LSC-Hf16 

remained unaltered throughout the measurements. A sharp pre-edge peak at around 528 eV 

(shown by the arrows in Fig. 4d) indicates the existence of O 2p ligand holes on LSC-Hf1638. In 

contrast, this peak was absent on LSC at 300 °C and pO2 of 0.76 Torr. The presence of this peak 

indicates increased p-type doping and a more oxidized Co on LSC-Hf16 compared to that on 

LSC. 

The VB and the O K-edge spectra for LSC film surfaces modified by different amounts 

of Ti are shown in Figs. S9, S10. The evolution of VB and O K-edge on LSC-Ti3 were 

essentially similar to those of LSC. With a higher concentration of Ti as on LSC-Ti15, the 

spectra were similar to those of LSC-Hf indicating also a more oxidized Co valence at the 

surface. 

At 450-550 °C, the VB as well as O K-edge XAS of LSC and LSC-Hf16 become similar, 

with the disappearance of the Co t2g - O 2p peak on LSC, as well as the appearance of the ligand 

hole pre-edge peak on LSC. The variations of the [Sr]Lattice as a function of temperature can 

explain this behavior. Raising the temperature up to 450-550 °C substantially increases the 

[Sr]Lattice/[Co] (Fig. 2c) on LSC and LSC-Ti3. The larger Sr doping level in the near-surface 

region is charge compensated by Co becoming more oxidized. This decreases the intensity of Co 

t2g-O 2p peak in the VB and forms the O 2p ligand hole peak in the O K-edge spectra on LSC 

and LSC-Ti3 at 450-550 °C. As a result, at 300 oC the difference in the VB and O K-edge among 

the samples is mainly due to a difference in oxygen vacancy concentrations. On the other hand, 

at 450-550 °C the enrichment of [Sr]Lattice near the surface of LSC governs the evolution of the 

VB and the O K-edge spectra. 

Bonding environment of the surface additive cations 

AP-XAS also allow for extracting the local bonding environment of the cations added 

onto the LSC surfaces. Fig. 5 shows the Ti L2,3-edge on LSC-Ti15 under different measurement 

conditions. Each L2,3-edge shows two peaks due to the crystal field splitting (t2g and eg states). 

Comparing the Ti L2,3-edge XAS with the spectra reported in literature on TiO2
39 and SrTiO3

40
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(SI, Fig. S11), we found that the deposited Ti cations on LSC are not coordinated as in TiO2. 

Rather, the spectra shape indicates that Ti sits in an octahedral crystal field similar to that of 

perovskite SrTiO3
40, schematically shown in Fig. 5. This suggests that the Ti cations possibly 

occupy Co sites in the perovskite lattice of LSC at the surface. By occupying the B-sites in the 

perovskite, the presence of Ti on LSC can largely change the electronic structure and the oxygen 

vacancy formation energy of LSC.  

Hf, Zr or Nb could not be examined by XAS due to the photon energy of the experiment 

beamline being limited to 900 eV. Nevertheless, it is known that all of these tested cations can 

occupy B-sites in perovskite oxides41-44. Therefore, we can reasonably assume that similar 

perovskite-like bonding environments would be obtained also for these transition metal cations 

(SI, Section 9). Their presence as dopants into the Co-site of LSC alters the oxygen vacancy 

formation energy at LSC surface because the bonding between the added metal cations and 

oxygen is much stronger than the Co-O bonds. 

 

Figure 5. Coordination environment of Ti on LSC-Ti15. Ti L2,3-edge X-ray absorption 

spectra under different measurement conditions. The dashed lines mark the separation of t2g and 

eg peaks in both the L2 and the L3 edges. Schematic representation of the evolution of the Ti 

coordination at the LSC surface, from disordered at 300 °C to perovskite coordination of Ti 

atoms at the B-site of LSC at 450-550 °C (visualized using the VESTA software45). 
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General effect of the surface additive cations on the Sr segregation and ORR kinetics 

We can now summarize the effect of the less reducible additive cations on Sr segregation. 

Upon incorporation into the perovskite lattice at the surface, the less reducible cations, 𝑀𝑒!"∙ , can 

impact the LSC electronic structure and stability in three possible ways: i) 𝑀𝑒!"∙  decreases the 

surface 𝑉!∙∙ concentration (and lead to a more oxidized Co), and thus, suppress the electrostatic 

attraction of 𝑆𝑟!"!  toward the surface, ii) 𝑀𝑒!"∙  provides donor doping and decreases the Co 

oxidation state, or iii) 𝑀𝑒!"∙  attracts 𝑆𝑟!"!  toward the surface because of their own positive 

charge. Based on the obtained in situ XPS and XAS data above, we found that ii) and iii) are not 

evident, while a more oxidized Co is dominant (i.e., outcome i) as shown in Figs. 3,4. This 

proves that the most likely main effect of the surface doping is to decrease the surface 𝑉!∙∙ 

concentration (and thus the positive charge) and to relieve the electrostatic attraction of 𝑆𝑟!"!  

toward the surface, thereby suppressing the phase-separation of Sr-rich particles (Figs. 1,2). 

It is intriguing to observe that faster and more stable oxygen exchange kinetics was 

achieved with a decreased oxygen vacancy concentration on LSC. This finding is shown 

explicitly by the volcano-like dependence of the oxygen exchange kinetic coefficient, kq, on the 

difference between the enthalpy of oxygen vacancy formation in the corresponding binary oxide 

(i.e. MeOx) and that in LSC (Fig. 6). In this plot, we chose the phases of the binary oxides that 

are thermodynamically stable under our experimental conditions. Based on this plot, we propose 

∆𝐻!! of binary oxides MeOx as a descriptor for the stability of oxygen exchange or ORR kinetics 

on LSC-Me. As shown in Fig. 6, kq increases with increasing ∆𝐻!!(MeOx), reaching peak at 

LSC-Hf among the tested compositions here. Further increase of ∆𝐻!!(MeOx) leads to a slower 

ORR kinetics seen on LSC-Al. We attribute the increase in kq with increasing ∆𝐻!!(MeOx) to the 

decreased surface oxygen vacancy concentration that reduces the electrostatic attraction of Sr 

and stabilizes the surface cation composition. Further increase of oxygen vacancy formation 

enthalpy by adding Al onto the surface did not lead to faster ORR kinetics (although it did 

improve the surface composition stability as shown in Fig. 1b), likely because of a too low 
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concentration of surface oxygen vacancies as reactive sites. Note the similarity of this plot to the 

same behavior shown as a function of varying concentration of Ti addition onto LSC (Fig. S13). 

This volcano plot, to some extent, challenges the well-accepted knowledge that a high oxygen 

vacancy concentration is desirable in facilitating oxygen exchange kinetics on transition metal 

oxides21-25. It is true that oxygen vacancies do facilitate reactions with oxygen molecules by 

providing the necessary reaction sites. However, they also drive the detrimental Sr segregation 

process which slows down the ORR kinetics. We believe that the same concept is applicable not 

only to LSC but also to other state-of-the-art perovskite oxide catalysts, such as LSCF and 

BSCF. 

 

Figure 6. Dependence of oxygen surface exchange kinetics on the reducibility of the 

LSC surface. The oxygen surface exchange kinetics of LSC-Me, represented by the kinetic 

coefficient kq, exhibit a volcano-like dependence on the enthalpy of oxygen vacancy formation 

(∆𝐻!!) in the binary oxides, MeOx. The x-axis is the difference between the ∆𝐻!! of the binary 

oxides (i.e. V2O5 (α-phase, orthorhombic)25, Nb2O5 (α-phase, orthorhombic)28, TiO2 (rutile 

phase)25,27, ZrO2 (monoclinic phase)29, HfO2 (monoclinic phase)29, and Al2O3 (α-phase, 

hexagonal)26) and that of LSC30. The y-axis shows the oxygen exchange coefficient, kq, on LSC-

Me, where the surface Me concentrations are within 12-19%, measured after 27 hours of testing 

at 550°C in air. The dashed line is a guide for the eye only. 
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Conclusion  

We achieved significantly improved surface chemical and electrochemical stability on a 

model perovskite electrocatalyst, LSC, by modifying its surface with less reducible cations. The 

best performance was achieved by Hf modification of the surface, giving rise to 30x faster 

oxygen exchange kinetics than that on the unmodified LSC after 54 hours at 530 °C. The 

dominant effect of introducing these cations on the surface chemistry of LSC was two-fold: i) 

they reduce the Sr enrichment and phase separation into insulating particles at the surface, and ii) 

they induce an effectively more oxidized surface with a lower concentration of oxygen vacancies. 

Both of these outcomes were consistently shown by the Co L2,3 edge, O K edge and the VB 

structure obtained by AP-XPS/XAS. We believe i) is an outcome of ii) – that is, the decrease in 

the surface oxygen vacancy concentration and the positive charge consequently decreases the 

electrostatic driving force for 𝑆𝑟!"!  segregation towards the surface and phase separation. Ti L-

edge spectra showed that the additive cations enter a perovskite-like coordination on LSC. Based 

on this we propose that the surface additive cations serve as dopants and can largely alter the 

surface electronic structure and reduction enthalpy on LSC. Lastly, we revealed a volcano 

relation of the stability of the ORR kinetics to the oxygen vacancy formation energy at the 

surface. This volcano plot indicates that one can optimize the performance of the perovskite type 

electrocatalysts by finding an optimum oxygen vacancy concentration that balances the gain in 

ORR kinetics and the chemical stability loss. The proposed approach provides a feasible and 

novel way of designing stable and highly reactive perovskite oxides for electrochemical 

applications. 

 

Methods 

Film fabrication and additive cation deposition at the surface. Dense La0.8Sr0.2CoO3 films were 

deposited onto substrates using pulsed laser deposition (PLD) with a KrF excimer laser of 248 nm 

wavelength. The La0.8Sr0.2CoO3 target was purchased from MTI Corp., USA. The films were deposited at 
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650 °C under oxygen pressure of 10 mTorr on the single crystalline Yr0.08Zr0.92O2 (YSZ) (100) substrates 

(MTI Corp., USA) with a 15 nm thick Gd0.2Ce0.8O2 interlayer grown at the same conditions as the LSC 

films. The LSC film thickness was around 25 nm. After the growth process, the films were cooled down 

to room temperature in 2 Torr of oxygen.  

To remove excess Sr and to modify the surface with the metal cations, the LSC thin films 

were dipped in to aqueous chloride solutions of the corresponding metals31,32. The deposition 

parameters are summarized in Table S1 (SI). For samples which were not treated with the metal 

cations, the excess surface Sr-rich phase formed during the PLD process was removed by 

dipping of the films into a 0.1 M HCl aqueous solution for 10 sec at room temperature10. After 

the chemical treatment the films were washed with water and isopropanol and dried in the air 

flow at 260 °C for 1 min. 

Surface chemical composition and morphology of the modified LSC films. We examined the 

chemical composition and morphology at the surface of the LSC films and the modified LSC 

films (LSC-Me) using X-ray photoelectron spectroscopy and atomic force microscopy (AFM). 

The XPS core level peak shapes and atomic fractions of Co, La, and Sr were similar for the as-

prepared LSC and LSC-Me films. The LSC-Me films had also comparable additive cation 

fraction, defined as Me/(La+Sr+Co+Me) of 12-19% at the surface (See SI section 1). The films 

treated with chloride solutions of Co, V, Nb, Zr, Ti, Hf, and Al are denoted as LSC-Co12, LSC-

V12, LSC-Nb19, LSC-Zr15, LSC-Ti15, LSC-Hf16 and LSC-Al15, respectively, where the 

numbers indicate the Me/(La+Sr+Co+Me) ratio at/near the film surface. The surface morphology 

of the LSC-Me films in their as-prepared condition was smooth, identical to that of the dilute 

HCl-treated LSC (Fig. S1, SI). Thus, we hypothesize that the metal additive is deposited in the 

form of a thin and smooth wetting layer at room temperature before further annealing. 

Characterization. A Veeco/Digital Instrument Nanoscope IV was used to perform tapping 

mode AFM for characterizing the surface morphology. Ex situ XPS measurements have been 

performed to estimate the surface cation composition using a Perkin-Elmer PHI-5500 ESCA 

Spectrometer with monochromated Al Kα (1486.65 eV) X-ray source under a base pressure of 

10-9 Torr with the emission angle of 20°. At this configuration, the photoelectron inelastic mean 

free paths (IMPF) for La 3d, Sr 3d, Co 2p, V 2p, Ti 2p, Nb 3d, Zr 2p, and Hf 4d are 0.3 nm, 0.7 

nm, 0.3 nm, 0.4 nm, 0.4 nm, 0.6 nm, 0.6 nm, and 0.6 nm, respectively. The quantitative analysis 
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of the XPS spectra was performed using the Multipack 9.0 software. The XPS experiments at 

450-500 °C and at pressure of 10-9 Torr were performed to observe the reduction features in the 

Co 2p peak (with a photoelectron emission angle 90° and an IMFP of ~1 nm), using an Omicron 

DAR 400 Mg/Al dual anode non-monochromated X-ray source, an Omicron EA 125 

hemispherical analyzer and an Al Kα X-ray source.  

EIS measurements were performed on asymmetrical cells with the LSC thin film working 

electrodes grown on YSZ single crystal substrates. Dense platinum current collectors in the form 

of a grid (25×25 µm2 of open area in every 50×50 µm2 repeat unit in the total 7.3×7.3 mm2 

current collector area) were deposited on the LSC thin films by means of photolithography and 

RF sputtering. Porous Ag layer served as the counter electrode. Platinum wire leads were 

connected to the current collector and the counter electrode with the aid of the lab-designed 

mechanical clip made of Pt-Ir 20% alloy wire (4N purity, ESPI metals, Ashland OR). Parstat 

2273 potentiostat was used to perform the EIS measurements in the frequency range of 100 kHz 

to 1 mHz with an AC amplitude of 5 mV and 0 V DC bias at 530 °C in air during up to 54 hours. 

 The half cells for electrochemical tests had the LSC or LSC-Me thin films as the 

working electrode and the pasted porous Ag as the counter electrode. The EIS data obtained on 

the cells (Fig. S4, SI) were modeled with circuits consisting of two R//CPE (a resistor in parallel 

to a constant phase element) (Fig. S4)46. The kq values were calculated from the surface 

polarization resistance (arc in the lower frequency region46,47) data measured by EIS48. The 

details about the kq calculations are given in the Section 3 of SI. For selected composition 2-3 

samples were tested electrochemically (Fig. S12, SI). Variation of the measured kq values ranged 

from +/-10% for bare LSC to +/-40% for LSC-Hf, in part because of the variability in the PLD-

prepared base LSC films and, in part, because of the different concentrations of additives that 

were put at the surface. The results for LSC, LSC-Ti15, and LSC-Hf16 shown in Fig. 2 represent 

a batch of samples that were deposited at the same time to ensure consistency of the base film. 

Regardless of the batch of samples, the general trend shown in Fig. 2 reveals the significantly 

better stability and higher kq are consistent among all samples with the less reducible additives at 

the surface. ZView software was used for the data fitting and analysis. 
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In situ ambient-pressure X-ray photoelectron and absorption spectroscopy (AP-XPS/XAS). 

Near ambient pressure XPS/XAS measurements at elevated temperatures on surfaces of LSC and 

LSC-Me thin films were performed at the Beamline 9.3.2, Advanced Light Source, Lawrence 

Berkeley National Laboratory. The LSC thin films were placed on a ceramic heater, with 

thermocouples mounted directly onto the surfaces for surface temperature measurement. The 

XPS/XAS spectra were collected under the following conditions of temperature, T, and oxygen 

pressure, pO2: 1. T = 300 °C, pO2 = 0.76 Torr; 2. T = 450 °C, pO2 = 1×10-6 Torr; 3. T = 550 °C, 

pO2 = 1×10-6 Torr; 4. T = 550°C, pO2 = 0.76 Torr. At each condition, samples were equilibrated 

for 30 min before the measurement, and the XPS and XAS measurements at each condition took 

about 2-3 hours in total. The XPS spectra were collected at incident photon energy of 370 eV, 

with the following order: a low-resolution survey with binding energy (BE) of 200eV~-10eV, 

then high-resolution scans of Sr 3d, La 4d, Co 2p and VB. The IMFP for the photoelectrons was 

below 0.8 nm for all the spectra collected. For each condition, the XAS spectra of O K-edge and 

Co L2,3-edge were collected right after the XPS measurement. The O K-edge and Co L-edge 

spectra were collected with photon energy range of 515-580 eV and 760-810 eV, respectively. 

The XAS spectra were collected using partial electron yield (PEY) mode, with electron kinetic 

energy of 275 eV and 589 eV for O K-edge and Co L-edge, respectively. This renders IMFPs of 

emitted electrons to be ~0.7 nm for the O K-edge and ~1.1 nm for the Co L-edge. The 

normalization of XAS spectra was performed using the ATHENA software49.  
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Figure captions 

Figure 1. Surface oxygen exchange kinetics and stability on LSC dense thin film cathodes. 

(a) The oxygen surface exchange coefficient, kq, quantified from electrochemical impedance 

spectroscopy measurements over time at 530 °C in air, for the LSC and LSC-Me films. (b)  

Atomic force microscopy images on the LSC, LSC-V12, LSC-Nb19, LSC-Ti15, LSC-Hf16, and 

LSC-Al15 films that were electrochemically tested as shown in Fig. 1a. 

Surface chemical stability on LSC dense thin films. (a) [Sr]Total/([La]+[Sr]), (b) [Sr]Non-

lattice/([La]+[Sr]), and (c) [Sr]lattice/[Co] ratios at the surface of the LSC and LSC-Me thin films 

measured in situ at different temperature and oxygen partial pressures by ambient pressure X-ray 

photoelectron spectroscopy (APXPS). (d) Ex situ atomic force microscopy images of the LSC 

and LSC-Me films after the APXPS measurements in (a). 

Figure 3. Oxidation state of Co based on Co L2,3-edge XAS on LSC dense thin films. (a) Co 

L2,3-edge X-ray absorption spectra on LSC-Hf16 at different temperatures and oxygen partial 

pressures. The line marks the Co L3-edge main peak at 300 oC and 0.76 Torr as a reference, to 

monitor the relative changes in Co oxidation state. (b) The Co L3-edge peak positions at 300 °C, 

0.76 Torr for LSC, LSC-Ti3, LSC-Ti15, and LSC-Hf16 are shown by the solid symbols. The 

arrow under the x-axis shows the direction of decreasing Co oxidation state, i.e. increasing 

oxygen vacancy concentration. The open symbols represent the oxygen vacancy formation 

enthalpy for binary oxides HfO2
29, TiO2

26 and also LSC30. The dashed arrows in (b) are a guide 

to the eye and do not imply a quantitative linearity. 

Figure 4. Oxidation state on LSC based on valence band and O K-edge. (a, b) Evolution of 

the valence band structure from X-ray photoelectron spectra measured in situ on (a) LSC and (b) 

LSC-Hf16. The arrow indicates the low energy peak which reflects the hybridization of Co t2g 

states with the O 2p orbital. The greater the intensity of this peak, the more electrons in the t2g 

states of Co. (c, d) O K-edge spectra of (c) LSC and (d) LSC-Hf16 films at different 

temperatures and oxygen partial pressures. The dashed lines in each plot mark the position of the 

O 2p ligand hole peak. The presence of this peak indicates p-type doping and therefore an 

increased Co oxidation state, as seen on LSC-Ti15 and LSC-Hf16. 
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Figure 5. Coordination environment of Ti on LSC-Ti15. Ti L2,3-edge X-ray absorption spectra 

under different measurement conditions. The dashed lines mark the separation of t2g and eg peaks 

in both the L2 and the L3 edges. Schematic representation of the evolution of the Ti coordination 

at the LSC surface, from disordered at 300 °C to perovskite coordination of Ti atoms at the B-

site of LSC at 450-550 °C (visualized using the VESTA software45). 

Figure 6. Dependence of oxygen surface exchange kinetics on the reducibility of the LSC 

surface. The oxygen surface exchange kinetics of LSC-Me, represented by the kinetic coefficient 

kq, exhibit a volcano-like dependence on the enthalpy of oxygen vacancy formation (∆𝐻!!) in the 

binary oxides, MeOx. The x-axis is the difference between the ∆𝐻!! of the binary oxides (i.e. 

V2O5 (α-phase, orthorhombic)25, Nb2O5 (α-phase, orthorhombic)28, TiO2 (rutile phase)25,27, ZrO2 

(monoclinic phase)29, HfO2 (monoclinic phase)29, and Al2O3 (α-phase, hexagonal)26) and that of 

LSC30. The y-axis shows the oxygen exchange coefficient, kq, on LSC-Me, where the surface Me 

concentrations are within 12-19%, measured after 27 hours of testing at 550°C in air. The dashed 

line is a guide for the eye only. 


