Lawrence Berkeley National Laboratory

Recent Work

Title

DECAY STUDIES OF NEUTRON DEFICIENT RARE EARTH ISOTOPES WITH OASIS

Permalink

https://escholarship.org/uc/item/6zc827zz

Author

Gilat, J.

Publication Date 1987-09-01

LBL-23991

BL-2399

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

LEGRICE LANSANCE BITTLEREICO ATOM

NOV 2 U 1987

LICENSE AND DOCUMENTS SECTION

Invited talk presented at the 5th International Conference on Nuclei Far from Stability, Rosseau Lake, Ontario, Canada, September 14–19, 1987

Decay Studies of Neutron Deficient Rare Earth Isotopes with OASIS

J. Gilat, J.M. Nitschke, P.A. Wilmarth, K. Vierinen, and R.B. Firestone

September 1987

This is a Library Circulating Copy which may be borrowed for two weeks.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

i.

DECAY STUDIES OF NEUTRON DEFICIENT RARE EARTH ISOTOPES WITH OASIS*

J. Gilat,** J.M. Nitschke, P.A. Wilmarth, K. Vierinen*** and R.B. Firestone Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

ABSTRACT

We report results on the decay of ¹²⁴Pr, ^{124,125}Ce, ^{124,125}La, ¹³⁴⁻¹³⁶Eu, ¹³⁴⁻¹³⁶Sm, ¹³⁴⁻¹³⁶Pm, ¹⁴⁴Ho, ^{141,142,144}Dy, ^{140,141,142,144}Tb, ¹⁴⁰⁻¹⁴²Gd, and ¹⁴⁰⁻¹⁴²Eu, produced by ⁹²Mo(H.I.,xpyn) reactions at the Berkeley SuperHILAC, and studied with the OASIS on-line mass separator facility. Half-lives, delayed proton branching ratios, γ -ray energies and intensities, partial decay schemes and several J^π assignments are presented. Level systematics of the even mass Nd and Sm isotopes and of the $\nu h_{11/2} - \nu s_{1/2}$ isomers for N=77 are discussed.

INTRODUCTION AND EXPERIMENTAL

The OASIS on-line mass separator facility at the Berkeley SuperHILAC¹ is imminently suited for the study of highly neutron deficient, short-lived nuclides. The salient features of the system are shown in Fig.1. The ready availability of a wide variety of heavy ion beams from the SuperHILAC, including sufficiently intense beams (about 0.1 particle microamperes) of light isotopes of the first transition metal group (e.g. ⁵⁸Ni, ⁵⁴Fe, ⁵²Cr, ⁴⁶Ti, etc.) provides the means of producing, via the compound nucleus mechanism, adequate quantities of highly neutron deficient species, even though their production cross-sections are often less than 1mb. The high temperature (>2800 °C) surface ionization ion source, high ionoptical transmission and computer stabilized H.V. and magnet power supplies of the mass separator permit a rapid and interference-free separation of the desired mass chain. Unknown masses are extrapolated from known, stable isotopes via an NMR mass meter. Finally, the electrostatic ion deflector and fast programmable tape transport system enable time resolved studies of the desired species by an array of particle, x-ray and γ -ray detectors, in singles and coincidence modes, under relatively low background conditions in a shielded spectroscopy laboratory.

In the framework of a systematic investigation of neutron deficient rare earth isotopes, we have observed and characterized about 60 isotopes and isomers, ranging from Z=57 (La) to Z=71 (Lu) and with $124 \le A \le 152$. About half of these species were previously unknown. For the others, the body of available decay data has been substantially extended.

In this brief report we present results for about 30 of these nuclides, produced by the interaction of a variety of beams with enriched 92 Mo targets. The assignment of different decay modes and half-lives observed in a given mass chain to the relevant species is based, in all cases, on the observation of appropriate characteristic x-rays. The results include half-lives, γ -ray energies and relative intensities and, for some cases, partial decay schemes and delayed proton branching ratios.

^{*} This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

^{**} On leave from Soreq Nuclear Research Center, Yavne 70600, Israel.

^{***} On leave from University of Helsinki, SF 00170, Finland.

- 1. SuperHILAC BEAM
- 2. TARGET
- 3. INSULATORS (BeO)
- 4. ION SOURCE ANODE (Ta)
- 5. ION SOURCE CATHODE (Ta)
- 6. CAPILLARY TUBES (Ta)
- 7. EB FILAMENT (Ta)
- 8. EXTRACTION ELECTRODE
- 9. EXTRACTION AND FOCUSING
- 10. ANALYZING MAGNET
- 11. FOCAL PLANE DETECTOR BOX
- 12. ELECTROSTATIC MIRROR
- 13. ELECTROSTATIC QUADRUPOLE
- 14. TRANSFER LINE
- 15. CONCRETE SHIELDING
- 16. TAPE DRIVE (IBM 729)

- 17. MAGNETIC TAPE
- 18. DETECTOR BOX
- 19. N-TYPE Ge DETECTOR (52%)
- 20. N-TYPE Ge DETECTOR (24%)
- 21. HPGe DETECTOR
- 22. 718 μ m Si DETECTOR
- 23. 13.8 µm Si DETECTOR
- 24. 1mm PILOT F SCINTILLATOR

2

Fig. 1. A simplified representation of the OASIS mass separator online at the Lawrence Berkeley Laboratory SuperHILAC. The separator and tape system are approximately to scale. The major components are highlighted above.

2

1. Mass 124

 124 Pr, 124 Ce and 124 La were produced via the 92 Mo (36 Ar, xpyn) reaction at 174 MeV, with x = 1,2, & 3 and y = 3, 2, & 1 respectively.

¹²⁴Pr: This new delayed proton precursor is produced with a very low cross section, so we could only measure its proton decay half-life of 1.2(2) s and assign one γ -ray of 142 keV to its decay². Our interpretation of this γ -ray as the 2⁺ \rightarrow 0⁺ transition in ¹²⁴Ce is confirmed by recent in-beam data³.

¹²⁴Ce: In ref. 4, a 6(4) s decay of La x-rays was attributed to ¹²⁴Ce. We assign γ -rays of 120, 253, 544 and 560 keV to this decay. The intensity of these γ -rays is quite low with respect to the ~6 s component of the 511 keV annihilation peak or the La K_{α} and K_{β} x-rays. This indicates that the eveneven ¹²⁴Ce decays predominantly to a low spin (1⁺?) lanthanum isomer, not observed in our experiments.

¹²⁴La: Our measured half-life of 30(2) 2^+ s agrees with that quoted by ref. 4. The $\overline{6^+}$ following γ -rays (energies in keV, relative intensities in brackets) are associated with this decay: 229.8 [100], 421.2 [95], 576.3 [63], 694.5 [11], 1033 [~10] and 1262 [~10]. The 4^+ first four lines correspond, respectively, to the $2^+ \rightarrow 0^+$, $4^+ \rightarrow 2^+$, $6^+ \rightarrow 4^+$ and $8^+ \rightarrow$ 6^+ transitions in the ground state rotational 2^+ band of ¹²⁴Ba, while the other two establish a second 2^+ level at 1262 keV. This decay 0^+ pattern, shown in Fig. 2, is a clear indication of the high spin nature (7+?) of the

parent ¹²⁴La. No direct evidence for the decay of the low spin $(1^+?)$ isomer produced in the decay of ¹²⁴Ce could be found.

2. Mass 125

The reactions ${}^{92}Mo({}^{36}Ar,2pn)$ and ${}^{92}Mo({}^{36}Ar,3p)$ at 152 MeV were used to produce ${}^{125}Ce$ and ${}^{125}La$. The analysis of the data is incomplete, and only preliminary results are presented.

¹²⁵Ce: Bogdanov et al.⁴ attributed a La x-ray activity decaying with a half-life of 11(4) s to ¹²⁵Ce. In ref. 2 we reported a delayed proton branch in ¹²⁵Ce and measured its half-life as 10(1) s. From the proton branching ratios to the 2⁺, 4⁺ and 6⁺ levels in ¹²⁴Ba we assigned a spin of $5/2^+$ to the ground state of ¹²⁵Ce. The γ -ray spectrum attributed to this decay is very complex: over 70 γ -rays between 50 and 2550 keV were tentatively identified by half-life analysis and coincidence with La x-rays. The strongest γ -rays at 194, 325, 370 and 379 keV decay with a half-life of 14(1) s, rather than 10(1) s obtained from delayed proton and La x-ray decays. This difference of half-lives is probably due to an isomer feeding the same set of levels in ¹²⁵La, but its exact nature has not yet been elucidated.

¹²⁵La: Our half-life of 70(3) s agrees with that of ref. 4. In addition to the 43.7 and 67.2 keV γ -rays assigned in ref. 4, we have identified 30 γ -rays between 70 and 1270 keV. The transitions at 98.8, 134.0, 168.6, 216.7, 232.7 and 384.4 keV were also observed in ref. 5 and attributed to the h_{11/2} and g_{7/2} rotational bands. 3. Mass 134

The reactions ${}^{92}Mo({}^{46}Ti,xpyn)$ with x = 1, 2 & 3 and y = 3, 2 & 1 at 212 MeV were used to produce ${}^{134}Eu$, ${}^{134}Sm$ and ${}^{134}Pm$. Only a 4s tape cycle, optimized for the study of ${}^{134}Eu$, was used, so that only an estimate of the half-life of ${}^{134}Sm$ could be obtained, and the half-life of ${}^{134}Pm$ could not be measured.

¹³⁴Eu: This new delayed proton precursor was produced with a very low cross section, so we could only measure its half-life of 0.5(2) s. Based on production cross section systematics, this is probably the high spin $(\pi h_{11/2})$ member of the isomeric pair typical of most even mass Eu isotopes.

¹³⁴Sm: Our estimated half-life of 10(2) s is consistent with the value of 12(3) s of ref. 6. The following nineteen γ -rays were assigned to this decay (energies in keV, relative intensities in brackets): 51 [1.6], 105 [3], 107 [1], 110 [11], 112 [7], 117 [3], 119 [100], 130 [2], 141 [3], 162 [11], 186 [7], 219 [28], 224 [2], 229 [12], 257 [6], 280 [14], 299 [18], 380 [16], 419 [9], and 15 of them placed in a decay scheme with levels in ¹³⁴Pm at 112.4, 118.9, 229.0, 280.0, 304.9, 409.5, 419.0, 537.5 keV. Since they are populated in the decay of the even-even ¹³⁴Sm these are presumably low (J=1,2) spin states.

¹³⁴Pm: Twenty one γ -rays between 290 and 1750 keV were identified with this decay; eighteen were placed in a decay scheme comprising levels in ¹³⁴Nd at 294.4(2⁺), 735.9(2⁺), 789.3(4⁺), 1089.1(3⁺), 1318.8(4⁺), 1384.0, 1420.5(6⁺), 1541.8, 1605.9, 1669.4, 1697.7, 1956.4 and 2231.9 keV. The levels at 294, 789 and 1421 keV are members of the ground state rotational band; the levels at 736, 1089 and 1319 keV appear to belong to a γ -vibrational band. This part of the decay scheme is in agreement with that recently proposed by Kortelahti et al.⁷, but our placement of some of the higher lying levels differs from theirs. The population of the 6⁺ level in ¹³⁴Nd suggests a J^{\pi} = 5⁺ for the 25s ¹³⁴Pm parent. No direct evidence for the decay of the low spin ¹³⁴Pm species produced in the decay of ¹³⁴Sm was observed.

4. Mass 135

 135 Eu, 135 Sm and 135 Pm were produced by 92 Mo(46 Ti,xpyn) with x = 3, 2 & 1 and y = 0, 1, & 2 respectively, at 192 MeV.

¹³⁵Eu: A half-life of 1.5(2) s for this new isotope was determined from the decay of the Sm K x-rays, and a weak γ -ray at 120.8 keV was assigned to its decay. Delayed proton emission, though energetically possible, was not observed, consistent with the systematics of other even N precursors.

¹³⁵Sm: Our measured half-life for this isotope is 10(1) s, in agreement with ref. 6. The following 22 γ -rays were assigned to this decay (energies in keV, relative intensities in brackets): 49 [15], 55 [100], 77 [50], 105 [70], 116 [6], 124 [5], 127 [68], 160 [2], 182 [17], 190 [77], 237 [80], 286 [67], 313 [16], 341 [12], 351 [15], 363 [65], 418 [20], 428 [54], 543 [20], 573 [35], 755 [35], 1132 [17]. From our data we extract a delayed proton branching ratio of $\sim 5 \times 10^{-4}$ for this isotope. The 2⁺ \rightarrow 0⁺ 294 keV transition in ¹³⁴Nd (but not the 495 keV 4⁺ \rightarrow 2⁺ transition) was observed to be in coincidence with the protons. This indicates a low spin (1/2 or 3/2) for the parent ¹³⁵Sm.

¹³⁵Pm: About 40 γ -rays between 100 and 1200 keV were assigned to the decay of ¹³⁵Pm. The tape cycle of 40 s optimized for ¹³⁵Eu was too short for a reliable half-life determination. However, two distinct decay patterns of the strong γ -rays could be discerned: The 199 keV γ -ray, identified as an $11/2^- \rightarrow 9/2^-$ transition in ¹³⁵Nd and associated with the decay of a high spin $(11/2^-)^{135}$ Pm species⁸, decays with a single component half-life of ~50 s. Most other γ -rays, such as 129, 208, 245, 263, 270 and 398 keV exhibit a complex growth-decay pattern, and are probably associated with a low spin Pm species produced in the decay of the low spin ¹³⁵Sm.

5. Mass 136

The reactions ⁹²Mo(⁴⁶Ti,pn) and ⁹²Mo(⁴⁶Ti,2p) at 192 MeV were used to produce

4

5

ų.

¹³⁶Eu and ¹³⁶Sm.

¹³⁶Eu: Twenty eight γ -rays between 100 and 1500 keV were assigned to the decay of ¹³⁶Eu; the lines at 255 [100], 432 [34], 535 [9] and 576 [10] represent respectively the $2^+ \rightarrow 0^+$, $4^+ \rightarrow 2^+$, $6^+ \rightarrow 4^+$ and $8^+ \rightarrow 6^+$ transitions in ¹³⁶Sm, indicating a high (7⁺?) J^{\pi} assignment for the parent. Excess intensity of the $2^+ \rightarrow 0^+$ transition indicates however that a low spin ¹³⁶Eu species is also present in high abundance. This conclusion is borne out by the observation that the $4^+ \rightarrow 2^+$ transition decays with a significantly shorter half-life than the $2^+ \rightarrow 0^+$. We are thus led to postulate two ¹³⁶Eu species: ¹³⁶mEu (J^π = 7⁺?) with a half life of 3.2(5) s and ${}^{136g}Eu$ (J^{π} = 1⁺?) with a half life of approximately 5 s. The copious production of the low spin member in a heavy ion reaction suggests an IT path between the two species, but the relevant transitions have not been identified. Both species appear to be delayed proton precursors. Analysis of the γ -rays associated with this decay indicates a γ -vibrational band based on a second 2⁺ level at 713 keV in ¹³⁶Sm.

¹³⁶Sm: The tape cycles, optimized for ¹³⁶Eu, were too short for a half life determination for this isotope. About 40 gamma transitions between 90 and 800 keV were assigned to its decay, most of them of low energy and roughly the same low intensity. The only exception is a strong line at 114.5 keV, about equal in intensity to the sum of all other lines. A $J^{\pi} = 1^+$ assignment to the 114.5 keV level in ¹³⁶Pm is indicated by the strong GT β^+ branch to this level. This, in turn, establishes the ground state of the 136 Pm species as 2⁺, which is not identical with the 1.8 m 5⁺ species reported in ref. 8. The existence of a $5^+/2^+$ isomeric pair is not unexpected for Pm isotopes.

6. Mass 140 140 Tb, 140 Gd, and 140 Eu were produced via the 92 Mo(54 Fe,xpyn) reaction at 298 MeV with x=3,4 & 5 and y=3,2 & 1. The analysis is incomplete, and no absolute normalizations are yet available. ^{140m}Eu was also produced by ⁹²Mo(⁵²Cr,3pn).

^{140m}Tb: Proton emission has been assigned to this isotope on the basis of coincidence with Gd K x-rays. The absolute proton branching ratio is $7\pm 2x10^{-3}$. γ -rays of 328.4 and 627.8 keV were observed and assigned as the $2^+ \rightarrow 0^+$ and $6^+ \rightarrow 4^+$ transitions respectively. The $4^+ \rightarrow 2^+$ transition is known to exist at 508 keV and was obscured by an intense annihilation peak. The 328.4 keV transition is twice as intense as the 627.8 keV γ -ray and no evidence of an $8^+ \rightarrow 6^+$ transition was found. We tentatively assign the isomeric decay to a $6^$ isomer, predicted by systematics. The halflife of 2.4(2) s is adopted for this isotope. No evidence for a low spin ^{140g}Tb was observed.

¹⁴⁰Gd: 38 γ -rays between 160 and 1150 keV have been assigned to the decay of 140 Gd. A half-life of 15.8(4) s is adopted for this isotope. A partial decay scheme is shown in Fig. 3.

Fig. 3. Decay of ¹⁴⁰Gd.

^{140m}Eu: 174.8- and 185.2 keV γ -rays are observed with a half-life of 125(2) ms. The 174.8 keV transition is strongly populated by ¹⁴⁰Gd decay and is presumed to deexcite a 1⁺ level of that energy. The 185.2 keV γ -ray is only weakly populated by ^{140g}Gd decay and is not in coincidence with the 174.8 keV γ -ray. The 185.2 keV γ -ray is intense and must deexcite to the ground state. We thus presume that both levels are populated by unobserved low-energy transitions from an isomer with a half-life of 125 ms.

¹⁴⁰*g*Eu: A half-life of 1.51(2) s was adopted for this isotope. 18 γ -rays between 190 and 2000 keV have been assigned to its decay and 15 have been placed in a decay scheme comprising levels in ¹⁴⁰Sm at 531, 991, 1246, 1442, 1599, 2283, 2309 and 2482 keV. The γ -rays populated in this decay are also observed in equilibrium with ¹⁴⁰Gd decay, consistent with production from a low-spin ¹⁴⁰Eu parent. However, the decay scheme is dominated by feeding to the 2⁺ level at 531 keV and to excited levels which deexcite through the 2⁺ but not the ground state. The 4⁺ level is only weakly populated by γ -ray deexcitation and no evidence for excited 2⁺ states was obtained. We cannot reconcile the ¹⁴⁰*g*Eu spin at this time; the most likely values are 0⁻, 1⁻, or 2⁻ with considerable unobserved decay intensity accounting for the apparent 2⁺ feeding. Such a spin would be inconsistent with the systematics of the heavier Eu isotopes and might indicate a breakdown in the Z=64 semi-magic shell. No evidence could be found for a ~20s ^{140m}Eu reported by Habs et al.⁹, presumably due to an erroneous assignment of ¹⁴⁰Gd.

7. Mass 141

¹⁴¹Dy, ¹⁴¹Tb, ¹⁴¹Gd and ¹⁴¹Eu were produced by the ⁹²Mo(⁵⁴Fe,xpyn) reaction at 276 MeV, with x = 2, 3, 4 & 5 and y = 3, 2, 1 & 0, respectively. ¹⁴¹Gd and ¹⁴¹Eu were also produced by the ⁹²Mo(⁵²Cr,2pn) and ⁹²Mo(⁵²Cr,3p) reactions at 210 MeV.

 141 Dy: This 0.9(2) s delayed proton precursor was reported in an earlier publication.² No further details of its decay features could be observed, due to the low production cross section.

¹⁴¹Tb: The half life of this new isotope was determined as 3.5(2) s, and 35gamma transitions between excited levels of ¹⁴¹Gd were assigned to its decay, and fitted to a decay scheme comprising levels at 113, 198, 258, 378, 492, 514, 552, 646, 662, 753, 758, 895, 940, 990, 1100 and 1132 keV. The lower portion of this level scheme can be seen in Fig. 4. Most of the levels populated by the β^+ +EC decay of ¹⁴¹Tb, decay to the $11/2^{-}$ isomeric state at 378 keV, and only very few transitions cross this level to the low spin structures near the ground state of ¹⁴¹Gd. This establishes the high spin nature of the 3.5 s Tb species. No indication of a low spin ¹⁴¹Tb could be found in the data.

^{141m}Gd (24.5 s)

Intensities I(γ + ce) per 100 parent decays

Fig. 4. IT decay of 141m Gd.

¹⁴¹Gd: Redon et al.¹⁰ recently reported the discovery of ¹⁴¹Gd with a half-life of 22(3) s, assigned six γ -rays to its decay and proposed a partial decay scheme. Our much more comprehensive data clearly show the presence of two distinct species: a 24.5(9) s high spin (11/2⁻) isomer at 378 keV, decaying by both β^+ + EC (86%) to (mostly) the 11/2⁻ 96 keV isomeric state in ¹⁴¹Eu and by an isomeric transition (14%) a low spin (1/2⁺) ground state, which decays by β^+ + EC to the 5/2⁺ ground state of €.

¹⁴¹Eu. The half life of ¹⁴¹ g Gd is about 20 s; a more precise value is difficult to extract from our data. The decay schemes of the two isomers are shown in Fig. 5. Thirty six of the forty γ -rays assigned to these decays have been placed with no overlap between the decay of the two species. The delayed protons that were observed in the decay of ¹⁴¹Gd appear by half life analysis and lack of coincident γ -rays to originate from the low spin ground state, with a branching ratio of $3\pm 1 \ge 10^{-4}$.

¹⁴¹Eu: Our data on the decay of the 40 s ¹⁴¹ ^gEu agree almost completely with those of Deslauriers et al.¹¹, and will not be elaborated here. The results regarding the 11/2⁻ isomeric state at 96.4 keV, however, differ significantly from those of Ref. 9. Our half-life value is 2.7(3) s compared to 3.3(3) s¹¹, but, more importantly, the β^+ + EC branching ratio is only about 7% instead of 67%, resulting in a logft value of 5.1 for the $\pi h_{11/2} \rightarrow \nu h_{11/2} \beta$ transition, rather than the unusually low value of 4.1 suggested by ref. 11. Since in our work ¹⁴¹Sm is produced only by decay of ¹⁴¹Eu, the activity ratio ^{141m}Sm/^{141g}Sm is a direct and reliable measure of the above branching ratio.

Fig. 5. Decay of 141g Gd and 141m Gd.

8. Mass 142

'n

¹⁴²Dy, ¹⁴²Tb and ¹⁴²Gd were produced via the ⁹²Mo(⁵⁴Fe,xpyn) reaction at 250 MeV with x=2,3,4 and y=2,1 & 0 respectively. ¹⁴²gEu was obtained from the decay of ¹⁴²Gd. ¹⁴²Tb was also procuded by ⁹²Mo(⁵²Cr,p3n). These isotopes formed a series of equilibrium pairs which together with K x-ray and annihilation data allowed the determination of absolute EC, β^+ , and γ -ray intensities.

¹⁴²Dy: Proton emission was assigned to this decay on the basis of coincidence

with Tb K x-rays². The absolute proton decay branching ratio is $\sim 8 \times 10^{-3}$. A 181.9 keV γ -ray, deexciting a level of the same energy was observed with an absolute intensity of 4.3 ± 1.2 per 100 decays. The total EC/ β^+ ratio for ¹⁴²Dy decay is 0.111 \pm 0.005. A half-life of 2.3(3) s is adopted for this isotope.

^{142m}Tb: This isotope decays by IT with a half-life of 303 ± 7 ms. γ -rays of 181.9 (also seen in the decay of ¹⁴²Dy) and 211.6 keV are associated with this decay. The decay scheme for this isotope is given in Fig. 6.

^{142g}Tb: Proton emission was assigned to ^{142g}Tb on the basis of coincidence with Gd K x-rays. The absolute proton decay branch from this isotope is $\sim 3 \times 10^{-5}$. A partial decay scheme for this isotope is shown in the figure. The absolute intensity of the 515.3 keV γ -ray is 24.9±1.7 per 100 decays. The total EC/ β^+ ratio for ^{142g}Tb decay is 0.033±0.004. A half-life of 597(17) ms is adopted for this isotope.

¹⁴²Gd: 42 γ-rays between 100 and 1800 keV; were assigned to this decay and placed in a decay scheme comprising levels in ¹⁴²Eu at 178.8, 280.3, 284.4, 496.7, 503.1, 526.2, 585.8, 591.3, 614.5, 619.8, 631.7, 660.9, 935.7, 1412.7, 1438.4, 1480.8, 1485.8 and 1779.1 keV. The 178.9 keV γ-ray has an absolute intensity of 11.2±1.1 per 100 decays. The EC/β⁺ ratio for ¹⁴²Gd decay is 1.08±0.11 per 100 decays. A half-life of 70.2(6) s was adopted for this isotope.

 142m Eu: The previously known¹² decay scheme for this 2.4(2) s isotope was confirmed. The absolute intensity of the 768.0 keV γ -ray is 10.2±0.7 per 100 decays and the total EC/ β^+ ratio is 0.112± 0.018.

Fig. 6. Decay of $^{142g+m}$ Tb.

9. Mass 144

¹⁴⁴Ho, ¹⁴⁴Dy and ¹⁴⁴Tb were produced by the ⁹²Mo(⁵⁸Ni,xpyn) with x=3,4 & 5 and y=3,2 & 1 respectively and by the ⁹²Mo(⁵⁶Fe,xpyn) reaction with x=1,2 & 3 and y=3,2 & 1, respectively. The decays of ¹⁴⁴Ho, ¹⁴⁴Dy, and ^{144m+g}Tb were investigated. K x-ray and annihilation intensities and equilibrium information were exploited to determine absolute γ -ray intensities. Apart from minor differences, the results agree with those of refs. 10, 13 and 14

¹⁴⁴Ho: Proton emission was assigned to this isotope on the basis of coincidence with Dy K x-rays. The half-life for the protons was 0.7(1) s².

¹⁴⁴Dy: A half-life of 9.1(5) s was determined for ¹⁴⁴Dy. Proton emission was assigned to this isotope on the basis of coincidence with Tb K x-rays². The absolute proton decay branching ratio is $6\pm1\times10^{-3}$. 21 γ -rays were identified with ¹⁴⁴Dy decay populating levels at 0, 196.5, 298.7, 396.7, 469.5, 532.2, 615.9, 620.0, 774.4, 793.3, and 1237.2 keV. The absolute intensity of the 298.7 keV gamma ray is 13.7±1.1 per 100 decays.

^{144m}Tb: This isomer was determined to decay by IT (62%) and EC+ β^+ (38%), with a half-life of 4.1(1) s. No evidence for proton emission was observed. 15 γ -rays were assigned to ^{144m}Tb decay. The absolute intensity of the 743 keV γ -ray is 38±3 per 100 decays of ^{144m}Tb.

^{144g}Tb: Decay to levels at $0(0^+)$, 743.0(2⁺), 1877.2(2⁺), and 1886.8(0⁺)keV was observed. The 1144 keV γ -ray deexciting the 1886.8 keV level was determined to have an absolute intensity of 5.3±0.3 per 100 decays. No half-life for ^{144g}Tb could be determined because it was produced in equilibrium with both ¹⁴⁴Dy and ^{144m}Tb.

CONCLUDING REMARKS

The experiments summarized in the foregoing section have yielded a large body of new spectroscopic data on previously unknown or poorly characterized highly neutron deficient rare earth isotopes. Almost all of the odd mass and odd-odd isotopes studied exhibit isomerism due to the prominence of the $h_{11/2}$ neutron and proton shells in this mass region. The heavy ion induced reactions, which are the only practical means of producing these isotopes, exhibit a strong preference for the production of

the high spin member of each isomeric pair. However, our practice of simultaneously following several members of a given isobaric decay chain, in and out of equilibrium, enabled us to study also the low spin species or, at least, infer their existence. The nuclear structure information underlying our data has not yet been fully elucidated. A pertinent problem is the persistence of the Z=64 closed shell as one moves away from N=82 shell, or the predicted onset of prolate or triaxial deformation below $N=78^{15-17}$. The apparently anomalous J^{π} of the ground state of ¹⁴⁰Eu suggested by our data may indicate such an effect. In contrast, Fig. 7 shows the systematics of the $\nu h_{11/2}$ - $\nu s_{1/2}$ isomers for N=77. Our newly established levels in ¹⁴¹Gd follow closely the systematics of analogous levels in the other isotones 8,18 . This indicates that the Z=64 shell has little effect on the spectroscopy of these neutron levels. However, the B(E3) transition rate for the 120 keV $11/2^- \rightarrow 5/2^+$ transition is only $\sim 9x10^{-4}$ Weisskopf Units, i.e. about 5-10 times slower than the rate observed for the other three isotones.

		<u>11/2</u> - 1.6	520 5 s					
11/2 - 447 20 s		• • •		<u>11/2 - 457</u> 10 s		. · · · ·		
						<u>11/2</u> -24	378 1 s	
<u>3/2+</u> 5/2+	296 296	<u>5/2</u> + <u>3/2</u> +	286	<u>5/2+</u> <u>3/2+</u>	267 223	<u>5/2 +</u> <u>3/2 +</u>	258 198	
3/2+	83	3/2+	109	3/2+	112	3/2+	113	
/2+	0	1/2+	0	1/2+	0	1/2+	· 0	

Fig. 7. Level systematics of N=77 isotones.

 $^{139}_{62}$ Sm₇₇

¹⁴¹₆₄Gd₇₇

¹³⁷₆₀Nd₇₇

Fig. 8 shows the systematics of low-lying levels in even Nd and Sm isotopes. A smooth downward trend with increasing deformation is observed for both the ground state rotational band and for the γ -vibrational band. The only significant deviation is the position of the second 2⁺ level (and the associated γ -vibrational band) in ¹³²Nd. This is in contrast with the smooth behavior of the samarium isotopes and throws a considerable doubt on the interpretation of the ¹³²Nd spectrum, recently proposed by ref. 7.

¹³⁵₅₈Ce₇₇

9

Fig. 8. Level systematics of even Nd and Sm isotopes.

REFERENCES

- 1. J.M. Nitschke, Nucl. Instr. and Meth. 206, 301 (1983)
- 2. P.A. Wilmarth et al., Z. Phys. A325, 485 (1986)
- 3. K.L. Ying et al., J. Phys. G: Nucl. Phys. <u>12</u>, L211 (1986)
- 4. D.D. Bogdanov et al., Nucl. Phys. A307, 425 (1978)
- 5. J. Gizon et al., Z. Phys. A285, 259 (1978)
- 6. D.D. Bogdanov et al., Nucl. Phys. A275, 425 (1977)
- 7. M. Kortelahti et al., Z. Phys. <u>A327</u>, 231 (1987)
- 8. C.M. Lederer and V.S. Shirley, Table of Isotopes 7th ed., Wiley (1978)
- 9. D. Habs et al., Z. Phys. A250, 179 (1972)
- 10. N. Redon et al., Z. Phys. A325, 127 (1986)
- 11. J. Deslauriers et al., Z. Phys. A283, 33 (1977)
- 12. G.G. Kennedy et al., Phys. Rev. C12, 553 (1975)
- 13. D.C. Sousa et al., Phys. Rev. <u>C25</u>, 1012 (1982)
- 14. E. Nolte et al., Z. Phys. A306, 223 (1982)
- 15. I. Ragnarsson et al., Nucl. Phys. A233, 329 (1974)
- 16. G.A. Leander et al., Phys. Lett. <u>110B</u>, 17 (1982)
- 17. J.A. Cizewski et al., Phys. Lett. 175, 11 (1986)
- 18. J. Deslauriers et al., Z. Phys. <u>A325</u>, 421 (1986)

۰

Ļ

Ň

うちょう

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720