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Anupam Mishra

Continuum methods have been used for numerical simulation of solid and fluid
for a long time but they have several constraints. For complex fluids, numerical
simulations using continuum assumptions are very challenging especially when the
phenomena occurring in the system are smaller than the continuum — limit below
which fluid cannot be considered as a continuum. Thermal fluctuation (due to
Brownian motion) become significant at micro and nanoscale. As a result, con-
tinuum methods are not directly applicable at these scales. On the other hand,
when the continuum simulations work for simulations at other scales, they have
an additional challenge(especially in structural dynamics simulations). When the
dynamics of the solid simulations are extreme and high deformations occur in the
system, the continuum methods that are based on the idea of small element /mesh
fail. Generating a mesh, that can be adequate to the dynamics is very difficult and
still one of the big challenges of the continuum simulations. Even if a high-quality
mesh is generated, a severe mesh distortion may occur for certain dynamics. In
those cases, it is important to remesh the system. Thus, having a good quality
mesh is not enough, the meshing process should also be extremely fast. Further-
more, the frequency of remeshing depends on the quality of the mesh, so there
needs to be a balance of quality and efficiency.

In fluid simulations, most continuum methods are based on the Eulerian ap-
proach of the flow field, i.e. system is studied by dividing into small elements/mesh
(typically fixed) and fluid motion is studied through those points. In the La-
grangian specification of the flow field, fluid is assumed to be made of small
particles. These particles are then tracked throughout the simulation to study
the system behavior. These second methods of simulating fluid/solid fall into a
general class called Particle methods. There are several kinds of particle methods
such as Brownian Dynamics, Smoothed Particle Hydrodynamics, and Dissipative
Particle Dynamics(DPD) that vary from each other on length scale, time scale,
and model but have some similarities. Particle methods are very powerful and
can be used to solve the challenges that are faced in the continuum method. In
this dissertation, two problems that are encountered in simulating fluid and solid
are tackled and solutions are proposed.

In simulating fluid using particle methods such as DPD, two major problems
occur. First, particle density fluctuations near the solid-liquid interface, and sec-
ond high computational cost due to solid wall. Particle density in DPD is defined
as the local density of the particle. Density fluctuations occur due to the low solid
wall particle density. One way to tackle it is increasing the solid wall particle den-
sity but that results in even higher computational cost. In this dissertation, first a
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modified version of DPD — multibody Dissipative Particle Dynamics(MDPD)—
is chosen due to its capability of handling the free liquid surface. In the context
of MDPD, a closed-form mathematical framework is developed to model the solid
wall and the original particle wall is replaced by this proposed model. The model
is derived using a modified conservative force and a combination of analytical and
numerical integration. The wall model is simpler and computationally efficient
than traditional approaches of modeling the wall. The proposed wall model is
also capable of mimicking the high-density computational wall that results into
extremely low (less than 1%) density fluctuations. Furthermore, another chal-
lenge in MDPD and particle method community, a discrepancy in wall density is
also solved by normalizing the wall density with fluid density. Several examples
of fluid-solid interaction are used and the superiority of the wall boundary model
is demonstrated. Computational time using wall model is only 30% — 50% of
the computational time using the traditional particle wall. A dynamic case of
solid sphere transport inside a water droplet due to wettability gradient is also
demonstrated. In that example, several parametric studies such as the effect of
wettability gradient, droplet radius and solid sphere radius is studied. The pro-
posed wall model can easily be extended to other particle-based methods such as
SPH and density fluctuations can be reduced. Furthermore, lower computational
time will enable to simulate larger systems for longer times.

In solid mechanics and structural dynamics simulation, there are three steps,
pre-processing(creating the geometry and mesh), numerical simulation, and post-
processing (analyzing the results from obtained data). Mesh generation is one of
the critical stages in numerical simulation and it is still very challenging depending
on the geometry and mesh requirement. The process of mesh generation becomes
even more challenging when there is high deformation physics. In those cases,
the mesh needs to be of high quality and sometimes even after that, remeshing
is required. In this dissertation, a novel, simple and efficient model based on the
particle method for isotropic unstructured mesh generation is proposed. The pro-
posed method uses simple point particles with varying cutoff radii and densities.
The cutoff radii dictate which surrounding particles exert force on the particle.
Several force models are also proposed that affect the convergence speed and ac-
curacy of the system. The mesh generation process follows these steps. First, a
target number density of the particles is defined based on the desired refinement
in the system. Next, a total number of particles is calculated which is a function
of density contour and the system volume. The system is then filled with particles
randomly and is set to reach equilibrium. Furthermore, several numerical schemes
such as implicit and semi-implicit, and their effect on convergence speed and accu-
racy are also described. A Voronoi-Tessellation-Delaunay-Triangulation(VT-DT)
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is developed for two dimensions and three dimensions. VT-DT is used to cre-
ate mesh from the particle position. The obtained mesh consists of triangular
(two dimensions) and tetrahedral (three dimensions) elements. This proposed
mesh generation method achieves higher mesh qualities than do its counterparts
in prior works. For the mesh, several 2D and 3D benchmark cases are used to
demonstrate the capability of the proposed method. Some non-engineering mesh
examples are also demonstrated to showcase the robustness of the method. The
proposed mesh generation model is simple, efficient, and can be used to generate
mesh for any geometry and any level of refinement. Furthermore, the speed of the
mesh generation enables this method to be used on applications where remeshing
is needed.
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Chapter 1

Introduction

Computational Fluid Dynamics(CFD) is a branch of science that solves fluid
flow problems using numerical tools. There are three steps involved in any CFD
study, pre-processing, simulation, and post-processing. Pre-processing is where
the domain is defined and discretized. In this step, any additional or special
boundary or initial conditions are also defined. In the simulation step, govern-
ing partial differential equations are converted into linear algebraic equations are
solved using iteration. The third and final step is to post-process the simulation
and analyze the obtained data. CFD has certain advantages and disadvantages
compared to experimental studies.

In CFD and structural mechanics simulations, there are two broad numerical
techniques to represent the flow/dynamics and simulate it, the Eulerian approach
and Lagrangian Approach. Both these approaches are based on how the flow field
is represented in them. These will be explained below.

1.1 Computational Approaches of Modeling

1.1.1 Eulerian Approach

In the Eulerian approach, the flow field is specified by a function of position
x and time t. For example, the velocity can be represented by

v = f(x,t) (1.1)

In other words, a control volume is chosen initially and usually remains station-
ary in the Eulerian approach. In the next step, the control volume is discretized
in small elements (mesh), and the governing equations are solved for those mesh
elements.
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Figure 1.1: The schematic of the Eulerian and Lagrangian approaches and their
state in high deformation dynamics

1.1.2 Lagrangian Approach

In the Lagrangian approach, fluid/solid are assumed to be made of small par-
ticles. Each fluid/solid particle is tracked through time. As a result, the control
volume in the Lagrangian approach is always changing. If the particle position is
Xo at any time tg, then the dynamics can be determined by X(xq, ).

Unlike the Eulerian approach, the Lagrangian approach is a meshless method,
and the governing equations are solved for particles. In the Lagrangian approach,
there is no convective term as each grid node follows the path of material at
the grid point. In the Lagrangian approach, mesh (the particles) deforms as the
mass/material deforms, unlike Eulerian approach where mesh remains the same
while the mass/material deformation occurs (see Fig. 1.1). Thus, methods based
on Lagrangian approach are also called Mesh-free Particle Methods (MPM).

1.2 Mesh-free Particle Methods

In this section, Mesh-free Particle Methods(MPM) will briefly be introduced.
Meshfree Particle Methods are based on the Lagrangian description and have no
mesh in their calculation. The governing equations are solved for each particle.
MPM can be divided into several classes according to their length scale such
as atomistic/microscopic, mesoscopic, and macroscopic. Examples of atomistic,
mesoscale and macroscale methods are molecular dynamics method [6]), dissipa-
tive particle dynamics (DPD) [7], and Smoothed particle hydrodynamics (SPH)
8], respectively.
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MPMs have significant advantages over mesh-based methods [9].

e One advantage of MPM over mesh based method is that there is no need to
prescribe any connectivity between the particle. Usually, mesh connectivity
need to be defined for mesh-based method.

e Control volume does not need to be described for MPM, the only require-
ment for MPM is a distribution of the particle and definition of the geometry
of the problem.

e Another advantage of using Meshfree Particle Methods is handling particles
in large deformation simulation. There is no need for remeshing in particle
methods unlike mesh based methods.

e The MPMs can incorporate an enrichment of fine-scale solutions of features.
e Particles can be added easily to the area where refinement is needed.

e MPMs are very powerful for simulations where material failure is involved
because the damage of the components, such as fracture can easily be han-

dled.

In flow simulation using MPM, the phenomena are formulated by the inter-
acting particles that have the physical properties of the flow. In this section, a
brief overview of some of the particle methods and the idea behind them is de-
scribed. The particles’ motion is governed by the solution of following Ordinary

Differential Equations(ODEs)[10]

dr
dwy,
dt

where x,,v, denote the location and the velocity of p particle. Here F
represents the dynamics of the simulated physical system and w, is some property
of the particle (e.g, density, velocity etc.).

In this work, the flow simulations that are considered belong to the mesoscopic
scale. Mesoscopic scale (Mesoscale) in physics is a length and time scale which is
somewhere in the middle of continuum scale and atomic scale. The length and
time scale is also shown in figure 1.2.

The smallest length and time scale shown in the figure is nanometers (10~%m)
and picoseconds (107'%s) scale and largest scales are higher than centimeters and

= YF(rp), rq, wp, wy) (1.3)
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seconds. In smaller scales (Atomistic Simulation and smaller), the physics is mod-
eled using either the atoms or semi-empirical methods. In continuum methods,
the fluid(and solid) is considered to be a continuum. In continuum scales, the fluid
is usually modeled using Navier-Stokes equations. In most of cases, the domain
is discretized into small elements and Navier-Stokes equations are solved for the
small elements. As mesoscale methods are in the middle of the continuum and
atomistic method, their formulation can be derived in two ways. A bottom-up
approach from the atomistic method, which usually means a coarse-grained treat-
ment to the atomistic method. For example, dissipative particle dynamics can be
understood as a coarse-grained treatment of molecular dynamics. Alternatively,
the mesoscale formulation can also be derived using a top-down approach. For
example, smoothed particle hydrodynamics’ formulation is derived from taking a
particle approximation of Navier-Stokes equations.

Multi-Scale Modeling
Continuum

. Based on SDSC Blue Horizon (SP3) Methods
Tlmels A 1.728 Tflops peak performance

CPU time = 1 week / processor

100 =
9 10° Atomistic Mesoscale methods
ms - i i
Simulation Lattice Monte Carlo
Methods Brownian Dynamics

Dissipative Particle Dynamics

(us) 106 |-

A
(ns) 10 Monte Carlo (MC)

Molecular Dynamics (MD)
(ps) 1012 =
Tight-binding
(fs) 1015 b= MNDO, INDO/S
L '] L L '] L >
10-10 109 108 107 106 103 104
(nm) (um)
Length/m

FR. Hung, KE. Gubbins, and S. Franzen, Chemical Engineering Education, Fall 2004

Figure 1.2: The length and time scales for multiscale modeling
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1.3 Motivation and Structure of the Thesis

This dissertation is divided into two major sections that fit in an overall particle
method umbrella. Particle-based methods are a group of mesh-free methods that
involve discreet particles to represent and simulate the system. In the mesh-
based methods, the system is divided into small grids/mesh and the physical
properties are defined on the center and faces of those meshes, however in particle-
based method the particles are arbitrarily distributed and physical properties are
assigned to those particles. Due to the particles having their own properties,
the complex structure and deformations can be simulated with higher accuracy.
Computational costs are usually higher for particle-based methods than mesh-
based methods due to large number of particles.

Dissipative Particle Dynamics (DPD) is a mesoscopic stochastic particle-based
technique[11]. DPD is mainly used for simulating dynamic and rheological behav-
ior of the simple and complex fluids. Multi-body Dissipative Particle Dynam-
ics(MDPD) is a modified version of conventional dissipative particle dynamics
that is capable of simulating fluid-fluid and fluid-solid interactions and is capable
of capturing the fluid-fluid interface. In MDPD, modeling fluid-structure interac-
tion is often computationally expensive due to the large number of particles. In
chapter 3, a mathematical framework to model solid wall boundary in MDPD for
fluid-structure interaction problems is proposed. This wall boundary approach is
capable to save significant computation time when doing fluid-structure interac-
tion problem.

In the chapter 4, an application of the boundary wall model is demonstrated.
A solid sphere within a liquid droplet is transported due to the wettability gradient
on the surface. The wall in this case is modeled using the wall boundary model
derived in chapter 3. Several parametric studies are done for this case such as the
effect of the wettability gradient and size of the solid sphere. The wall boundary
model can save more than 70% of computational in the simulations of solid sphere
transport.

One problem often encountered in the continuum method is being able to
generate the mesh. It is usually computationally expensive to generate an un-
structured mesh. There have been some works on addressing the mesh generation
problem in the literature but most of them are either very complex or computa-
tionally expensive. A general particle model[12] has also been used recently to
generate the mesh but it involves placing particles layer by layer which can be
computationally expensive for a large domain. In chapter 2, A particle-based
model is proposed that is capable of generating dynamic unstructured mesh.
Chapter 5 shows some results of the generated mesh using this model. A tri-
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angulation scheme based on Voronoi Tessellation and Delaunay Triangulation is
also presented, that is used to convert from particles positions to mesh. Several
two-dimensional and three-dimensional cases are used to demonstrate the model’s

capability.



Chapter 2

Particle Dynamics based
Computational Models

In this chapter, the formulation of particle methods will be described. The
particle methods are meshless methods where the property of the system is carried
via the point particles or particles with definite radii. Depending on the type of
particle method, the particles may have mass, viscosity, strain, etc. The particle
methods are fundamentally different from the traditional mesh-based methods,
such as finite element methods and finite volume methods.

There are two fundamental approaches to describing any physical system us-
ing governing equations: the Eulerian and the Lagrangian description. The big
difference between these two approaches is that while Eulerian description is a
spatial description, Lagrangian is a material description approach. In both ap-
proaches, the equations follow similar steps to reach finalized equations that are
solved numerically. For example, if we take fluid mechanics then there will be
mass momentum and energy conservation equations in both approaches. Another
way to understand the difference between these two approaches is from the defi-
nition of total time derivative. Total time derivative can be expressed as the sum
of local derivative and convective derivative.

D a9 .0
Ezava% (21)
D

where 5 is a total time derivative and % is a partial derivative and the last
term is a convective derivative.

In this chapter, the governing equations of two particle methods will be de-
scribed and then it will be followed by numerical schemes. First, a version of the
general particle model is proposed that will be used to generate the unstructured

mesh in chapter 5. Next, multi-body dissipative particle dynamics(MDPD) is de-
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scribed. Using this mode, a mathematical framework is developed to model the
solid wall boundary condition in chapter 3. The wall boundary model will also be
used in chapter 4 to demonstrate an application.

For both particle methods, a cell-linked list is used to avoid redundancy in
computational cost and is explained in section 2.2. Cell-Linked list is an efficient
way of handling all the neighbors of any particle in the code. Instead of searching
through all the particles and calculating force, a cell-linked list allows reducing
this number significantly. Numerical schemes for all the models are given in the
final section.

2.1 Governing Equations for Each Model

2.1.1 General Particle Model
The motion of each particle is governed by Newton’s second law of motion as

d?r; dv; r;;
i— =m— =F, =Y [~ 2.2
mn dt2 m dt ; ]Tz'j ( )

where F; is net force on particle ¢ due to interaction with all the neighboring
particles 7, while r; and v; are the position and velocity vectors of the particle 1,
respectively. Fj; is the force on i*" particle due to j™ particle and m; is the mass
of particle 7. In the next section, a detailed description of this force is given.

Force Field

In this section, the force field for the proposed model is presented.

Moaghan[13] used the cut-off distance h;; in smoothed particle hydrodynamics
where particles exert force on each other if they lie within a cut-oft distance h;;.
In this work, the concept of cut-off distance is adopted in the general particle
model. In this proposed model, the particles ¢ and j are experience force if they
are within a cutoff distance h;; which may vary with particles ¢ and j. h;; is a
function of the cut-off distance of particle ¢ and j, density and the mass of the
particle ¢. h;; is defined as

h; + h; ; (1/4d)
hy = = i = (’%) (2.3)

Here d represents the dimension of the system (e.g., d = 3 for three di-
mensional system) and p is the “density field” adopted from smoothed particle
hydrodynamics[13] calculated as
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J

neighborhood definition where W;; is any Kernel function[13] centred at i. One
example of Kernel function is a Gaussian function. The dimensions of Kernel
function are 1/L¢. Kernel function will be explained in section 2.1.2.

The particles exerts only repulsive force and the force profile is shown in Figure
2.1b.

a.[® b
2 %e%0 & 90 ¢4 0 o5
o.o.'J.. * .. o
'i-.......O L 0.4 P1 P3
°, ® [ ) o .
000 0 " 09 ¢ 0 | -

/ i \\\\ /,J ’\k) ’ ll \\
l‘\ hi :'— ’ \ I /, 0 0 0.5 1

S

Figure 2.1: The schematic configuration of particles is shown on top in (a). For
particle i (red particle), the neighbor j and k are shown below. The particle j and
1 exerts forces on each other but k£ and ¢ do not exert any force. The normalized
force field distribution is shown in (b)

The force profile is not unique, three sample force profiles P1, P2 and P3 are
shown in Fig. 1.1

e | 2241 H0<s<05
P1: F(s) = hdj—l 10 252 —4s+2 if05<s<1 (2.5)
ij if1<s

Tij
j. Here K is chosen to be 0.6 m?/s?Kg for this work. The force profile is not
unique and there may be other force profiles as shown in Fig. 2.1b.

where s = ;2 and r;; = |r; — rj| is a displacement vector between particles ¢ and

2.1.2 Dissipative Particle Dynamics

In dissipative particle dynamics, the system is filled with point particles that
interact with each other with three types of forces: conservative force, a dissipative
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force and a stochastic(random) force. The dissipative and stochastic force can also
be called as a ‘pair-wise Brownian dashpot’(Figure 2.2). This Brownian dashpot
is momentum conserving (unlike Langevin or Brownian dynamics) that makes the
system hydrodynamic at a large scale.

%
E

i

Figure 2.2: Schematic of interaction between two particles in Dissipative Particle
Dynamics showing conservative, dissipative, and stochastic forces

Multibody Dissipative Particle Dynamics (MDPD) is a modified version of
DPD which is capable of modeling fluid/fluid and fluid/solid interfaces [7]. Sev-
eral interesting fluid-solid phenomena such as liquid drainage [14], droplet detach-
ment from an AFM tip [15], and several other complex fluid-structure interaction
phenomena [16][17][18] have been investigated using DPD and MDPD.

In MDPD, the fluid and solid are made of particles and are governed by New-
ton’s second law of motion. In the current study, the solid wall is assumed to be
frozen for simplicity ([19, 20, 21, 22]) thus force calculation is done only for fluid
particles. The equations of motion for each fluid particle are defined as

dQI'Z'

dv; c D R

(3#1)
where r;, v; and F; denote the position, velocity, and net force exerted on particle
1 by other particles j # i, respectively. The net force F; in Eq. 2.6 includes body
force F g, conservative force Fg, dissipative force Fg and random force Fg“- which
are given by [23]:

Fi = Awo(rij, Re) e+ B (p; + 9;) wp(rij, Ra) e (2.7)

10
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Ffj =y wp(rij, Re) (€.Vij) €ij, (2.8)
Fl = ¢ wr(rij, Re) 05 <L> e (2.9)
Y VAL

Conservative forces accounts for material type, dissipative force is accountable
for the viscosity in the fluid and the Random force accounts for the thermal
fluctuations in the system. In Eqs. 2.7-2.9, 7;; = 7; — 7} is the position vector
from j' particle to the i*" particle with r;; = |F;| and €;; = 7;;/r;;. Furthermore,
A;; is the attractive force amplitude and B the repulsive force amplitudes along
with weighting functions of we and wp with a cut-off of radii R, and Ry = 0.75R,.,
respectively. In the random force expression, the term % comes from integration
of stochastic differential equation and interpreting the random force as a Wiener
process[24]. The weighting functions are given by

we (rij, Re) = max(1 —ri;/ R, 0) (2.10)

wp(rij, Ra) = (maz(1 — ry;/Rp,0))? (2.11)

In the rightmost expression of Eq. 2.7 local density function p; is present which
denotes how crowded the particles in the local vicinity. Warren [25] proposed the
density-dependent repulsion in the conservative force formula empirically and the
local density-function was given as [24]

Pi= 5 Rd Py g — rij/Ra) (2.12)
(j#1)

In Eqgs. 2.8-2.9, v;; = v;—v; is the velocity of the i*" particle relative to the j
particle. The scalars v and ¢ are the amplitudes of dissipative and random forces,
respectively. The system satisfies the fluctuation-dissipation theorem [26] and
thus the amplitude of dissipative and random forces are related by the expression

wr(rij, Re) = £/ (wp(rij, Re)) = maz(1 — 144, 0) (2.13)

and ¢? = 2vkgT where kg is Boltzmann constant and T is the absolute tem-
perature of the system[24]. The parameter 6;; is Gaussian white noise with unit
bandwidth, and At is the time step. Lastly, F g accounts for body forces such as
gravitational force.

The particle and solid wall particles have soft potential interaction, thus par-
ticle penetration is observed for hydrophilic and super hydrophilic systems. To
prevent penetration inside the wall, different reflection treatments have been im-
plemented [27][28]. Three reflection modes are popular to achieve impenetrability:

11
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Bounce-back, Specular reflection, and Maxwellian reflections (see Figure 2.3). In
bounce-back reflection, the particle is reflected along the same ray that it follows
when it impacts the solid wall. The normal and tangential components of the
velocity and force are reversed. In Maxwellian reflection, the particle penetrating
the solid wall returns with velocity in a Maxwellian distribution. The center of the
Maxwellian distribution lies at the wall velocity. In the Specular reflection, only
the normal component of the velocity and the forces are reversed. Revenga [27]
proved that there is a slip velocity in the case of both Specular and Maxwellian
reflection. The bounce-back reflection guarantees the no-slip boundary condi-
tion. On similar note, Visser et al.[29], proposed another reflection mechanism for
boundary treatment called bounce-forward. In their method, the displacement
tangential to the wall during a reflection is preserved, while the position perpen-
dicular to the wall and the velocity change is the same as the original bounce-back
reflection method. In this work, bounce-back reflection has been used.

\

////////g“/\(/////'//

L7777 7777777777777

\
\
\
\
\
\

Figure 2.3: Boundary condition in MDPD simulations (bounce-back, Specular,
and Maxwellian reflections)

Scaling the Domain

In MDPD, reduced units are commonly used for all quantities. The particle
mass, cut-off radius R., and system energy are set to be one in MDPD units. The
parameters in Eqgs. 2.7 - 2.9 for the current modeling approach are listed in Table
2.1 in MDPD units. One of the many advantages of the MDPD (or DPD) method
is that it is a scale-free simulation technique which means one can choose any
set of reference parameters, and the results would still hold unchanged. In the

12
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Parameters Symbol MDPD unit
Time Step ot 0.01
Particle mass m 1.0
Cutoff distance R, 1.0
Repulsive interaction range Ry 0.75
Amplitude of Fp 0 5.61
Amplitude of F¢ 4 Aij —40
Amplitude of F¢ p B 25
System Energy kgT 1.0

Table 2.1: Sample Parametric values for MDPD simulations.

present study, the fluid has no viscous effect because it is quasi-static (low capillary
number). The reference length is chosen as LDPD=1 pym. By assuming the fluid
density and surface tension in the MDPD units to be d and o, respectively, the
conversion of mass and time from DPD units to physical ones are

d*

Mppp = EL%pD (2.14)

/ o
Tppp = MDPD; (2.15)

where d* and o* are the physical density and surface tension of the fluid in the real
units (e.g., SI unit)[26]. The parameters in Eqs. 2.7-2.9 in the current modeling
approach are listed in Table 2.1 in the MDPD units. From the parametric values
provided in Table 2.1, the fluid properties can be calculated. The fluid density,
kinematic viscosity and surface tension are calculated as d = 6.0,v = 7.45 and
o = 7.31 in the DPD units. For water as the fluid, the reference scales are found
to be Tppp = 1.29 x 1077 s, and Mppp = 1.667 x 10716 kg. These scales are
conversion factors from the DPD unit system to the physical SI unit system for
water as the fluid.
Using the above-described MDPD model, a wall boundary model is proposed (chapter]]

3) that is more computationally efficient that the current particle approaches.

13
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Kernel Function

The field function approximation of any function f(z) starts with

f(z) = /Qf(x’)é(x —x")da’ (2.16)

where f is a function of position vector x and é(x — ') is a Dirac delta function
that is given by

N ) 1 ife=2a
5(:E—x)—{ 0 ifza (2.17)

Also, €2 is the volume of the integral that contains x. In Eq. 2.17, Dirac delta
function can be replaced by a smoothing function. The equation represents that
a function is represented in integral form.

f(x) = /Qf(x’) W (x —x’, h)dx' (2.18)

where W is named smoothing or kernel function. A Kernel function is usually
chosen to be an even function that satisfies certain conditions. These conditions
are shown below. The first condition is normalization or unity condition

/ W(x—x" h)dx’ =1 (2.19)
Q

The second condition is called delta function properties, it is observed when
smoothing length A approaches zero

lim W(x —x’,h) =d(x —x’) (2.20)

h—0

The third condition is compact condition
W(x —2',h) =0 when |x—x’| > kh (2.21)

k is a constant related to smoothing function for point at .
The integral approximation for the spatial derivative can be obtained

< Af(x) >= / V.f(x)W(x —x’ h)dx’ (2.22)
Q
which can further be simplified using Divergence theorem

< V.f(x) >= /Qf(x’)v W(x — x’, h)dx’ (2.23)

14
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The continuous integral representation can be written in form of discretized
particle approximation

N

f(x) = Z 7;‘ F(x;) W (x = x5, h) (2.24)

where N is the number of partlcle in support domain of the particle ¢. The particle
approximation for any particle ¢ can be written|8]

m.
f(xi) =2 f(x;) Wy (2.25)
Pj
Similarly,
N
< V.f(x;) >= — Zp—f W, (2.26)
where
W= W,i(x; —xj,h) (2.27)
aw, = X=X 0Wy X, 0W, (2.28)
rij arij rij 81‘7;]'

To summarize, the above particle approximation converts continuous integral
representations and its derivatives to the discretized summation based on set of
particles. If we put density function p(x) then approximation becomes

N
0 = Z 2 W (2.29)
Pj
Furthermore, the support function and neighbor radius assumed is a circle, but
it does not necessarily need to be a circle. If particles are needed to be more
refined in one axis than the other, then an elliptical support function may also be
chosen(as discussed briefly in chapter 6).

2.2 Cell-Linked List Strategy to Avoid Compu-
tational Redundancy

In all the particle methods, the force calculation steps involve going over all the
particles for each particle. The double loop over N particles is in order of O(N?).
In an actual simulation with a cutoff radius of r., the particle only interacts with
only a small number of elements that can be approximated as 4w /3rZps where py

15
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CX

Figure 2.4: Schematic of cell and particle distribution in the domain

is the number density. The cell linked list algorithm reduces this complexity from
O(N?) to O(N).

First of all, the system domain is divided into small cells (see Fig. 2.4), where
the edge of these small cells must be at least r¢. A good value can be r.; = L;/ L
where L.; = [L;/rc]. [—] is a floor function, that is the largest integer less than or
equal to that number. If a particle is located in any cell, then all its interaction
particles must be in the 26 cells (in the case of three-dimensional system) that
surrounds the cell. If there is a cell with index @ = (€pycy,cy) with 0 < ¢, <
Ly —1,0<¢, <L, —1,0<¢c, <L, — 1

¢=cyLeyLe, + cyLe, + c, (2.30)

To find the cell of any particle with position T,

[htbple; = [1i/7ei] (2.31)

These particles in one cell are arranged in a linked list. The flow chart in
Fig. 2.5 describes the implementation of the cell-linked list. This is one of many
possible implementations of the cell list. In the diagram, Iscl is an array im-
plementation of the linked lists and lIscl[i] holds the particle index to which the

16
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cell 1 cell 3

© @

ccll@ @ cell 2
Ol ©
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Figure 2.5: A sample data structure showing cell-linked list algorithm

it" particles points. head holds the index of the first particle in the c‘'h cell, or
head|c] = EM PTY if there are no particles in the cell.

2.3 Numerical Scheme

Particles follow Newton’s second law of motion to evolve. For the general
particle model, the main goal is to optimize the computational time and focus on
the speed of the numerical method. Similarly, speed is the main focus for MDPD.
Verlet integration is used for these two models as it is a stable and fast method.

2.3.1 FEuler Method

The Euler method is the simplest way to integrate or solve ordinary differential
equations(ODE). Euler methods also introduce Runge Kutta methods that are
also popular for solving ODE.In simple terms, Euler methods can be understood
as simply Taylor expansion

1d 1 d?
ﬁ ngtll) (I — .771) + 5 g{i?l) (.T - l’1>2...

f@) = fla1) + (2.32)
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Now, if this equation is compared with well know Newton’s equation
L
x(t) = xo + vt + Qat (2.33)

With above equations, Euler method can be expressed as

WO _ fle.ve) (2.31)

Ynt1l = Yn + f(tna yn)dt (235)

The euler method approximates the solution of an ODE by using only first deriva-
tive. This approximation is bad, and errors associated with this approximation
can add up in some cases (Fig. 2.6). In the Euler method, the only way to counter
this issue is to decrease the time step, or use a similar more stable method such
as backward Euler method. In other words, the Euler method is not always stable

0.5]

0]

0 0.5 1 1.5 2

Figure 2.6: Ordinary differential equation f(x) = e solution using different
discretization. The solutions show negative values for a higher dx that are impos-
sible. Red curve is the exact solution.

and often causes instability if the time step is not small enough. In the case of
simple kinetics, another method called Verlet integration may be better suited
than the forward Euler method.

18
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2.3.2 Numerical Scheme for general particle model and
MDPD

Verlet integration is a popular method to integrate Newton’s equations of
motion. ]
x(t + At) = x(t) + v(t) At + 5aAt2 (2.36)

a(t) +alt+ A1) 2,37

v(t+ At) = v(t) +

The above-mentioned equations can further be simplified to

At

Vopl = Vit Un— (2.38a)
At

Xn+1 = Xp + Vn+%7 (238b)
At

V41 = Vn+% + (ln+17 (238C)

In the above equation set, the first and the third equation can be combined

At At
Vil = Vi Qoo+ - (2.39)
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Chapter 3

Analytical Numerical Boundary
for Multi-body Dissipative
Particle Dynamics

The complex fluids, soft matter, and their behavior involve a large range of
length and time scales, and thus simulating them are challenging problems. Dis-
sipative particle dynamics is a group of methods that were developed to address
this issue in the mesoscale regime. Mesoscale belongs to the scale between the
atomistic scale and continuum scales. If quantum effects are neglected then the
atomistic scales are where Hamilton’s equations are solved using Molecular Dy-
namics(MD). The MD simulations are very fast and can be finished in a frac-
tion of second[30]. On the other hand, Navier-Stokes-Fourier hydrodynamics and
other continuum theories assume fluid as a continuum. The continuum length
scales range from microns to above. The mesoscale is roughly characterized by
10 — 10*nm and 1 — 10%ns. Due to this scale, the MD simulations require a large
number of atoms which is not feasible. Similarly, the continuum simulations start
failing due to the small scale and fluid not behaving like a continuum.

Dissipative particle dynamics are a group of methods based on point parti-
cle assumption that tackles the complex fluid simulation at the mesoscale. The
method became popular due to its simplicity and capability of capturing the
phenomena of complex fluids at the mesoscale. The DPD and MDPD model is
described in chapter?2.

In this chapter, a mathematical framework has been developed to analytically
model a complex wall with closed-form expressions in the context of multi-body
dissipative particle dynamics (MDPD). There have been several attempts to ana-
lytically model the influence of solid walls and non-periodic boundary conditions
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in the conventional DPD approach|[31][18]. However, there is a limited number of
studies for these boundary conditions associated with MDPD that capture static
and dynamic fluid-structure interactions through direct modeling of fluid-solid
particle interactions. In section 3.2.2, the analytical wall approach is presented
followed by validation case studies in section 3.2.3. Computational results for one
complex geometry with validation of the Wenzel law are discussed in section 3.2.4.
A brief derivation of the forces using the integral approach is given in section 3.4.

3.1 State of the Art in MDPD and Wall Bound-
ary

Wetting is an important phenomenon in various applications such as surfac-
tants, spray cooling, and nanolithography[32][33]. A proper description of wet-
ting is essential to many important problems in the modeling of fluid behavior.
Droplet contact angle on a surface is a quantitative metric of surface wettabil-
ity. There are numerous experimental studies measuring liquid contact angles on
surfaces of varying chemistry and geometrical complexity [34][35][36][37][38][39].
Robust computational approaches to deal with fluid-structure interaction for var-
ious droplet sizes and morphological characteristics of the solid surfaces are vital
[40][41].

Molecular dynamics and Monte Carlo simulations have been used to study the
behavior of droplets on solid surfaces [42][43][44][45]. While atomistic methods are
very accurate when good interaction potentials are available, these methods are
only feasible up to small length scales and time scales[45][46][47]. A course-grained
method is required to reduce the computational cost at larger scales. There are
many different coarse-grained methods that have been used to simulate mesoscale
phenomena[48]. Dissipative particle dynamics (DPD) is a particle-based coarse-
grained method proposed by Hoogerbrugge et al. [11]. In this approach, each
DPD particle is a cluster of several molecules of a specific fluid/solid /vapor phase
(analogous to course-grained modeling in molecular dynamics but with additional
particle interactions beyond the conservative terms generally applied in MD) [25].
Later, DPD was modified to simulate the hydrodynamics behavior of fluid-solid
interaction[16]. In all of the previous studies, dealing with boundary conditions
has been a challenging issue [27]. In addition to the fundamental challenges of
formulating the wall interactions, common solutions, such as incorporating forces
of frozen wall particles, add a drastic computational cost to the modeling. Since
the wall particles are frozen, an equivalent interaction formulation from the wall
can be found without using the explicit wall particles and significant computa-
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tional expense can then be saved. The goal of the present work is twofold: (a) to
obtain a consistent set of fluid-solid interaction parameters for a wall consisting
of explicit particles in MDPD, i.e., normalization, and (b) to develop a semi-
analytical framework for MDPD to model the wall without the need for explicit
wall particles.

In this work, a modified model for fluid-solid interaction is first discussed
which can be used to model the three-phase contact line without local density
contribution [49]. This work, for the first time, employs an analytical model
(integral approach) for the solid wall boundary condition in MDPD that brings
substantial gain in computational efficiency and thus expands the scope of its
applicability to curved or complex walls. The model is first normalized to address
the discrepancies in the wetting that exist in the present literature and is then
validated through several benchmark studies such as a Wenzel model. Moreover,
comparisons between both the fully numerical and the semi-analytical (integral
force model) approaches are drawn. Time efficiency, accuracy, and limitations of
the proposed model are thoroughly discussed.

In prior studies using MDPD, the repulsive component of conservative force
(Eq. 2.9) was defined as a function of local density[15]. Local density is measured
based on the number of particles, either of the same type (single-type or liquid)
or multi-type particles (i.e., liquid and solid), within the cut-off radius Ry of a
given particle. In single-type local density calculations, when the water particle
approaches the wall, there is a gradual decrease in the local density for both
fluid and wall particles due to the reduction in the number of same type particles
within each particle’s cut-off radius. In this study, multi-type particle-particle
interactions have been used. Recently, the repulsive term in the conservative force
has been redefined independent of local density, i.e., a new form of conservative
force is used[49]:

Fg =A wC(TOéJ’? RC) €y + B wC(raja Rd) €qj (3.1)

Using the above expression simplifies the conservative force because there is
no local density of the wall in the expression as in conventional MDPD models.

3.2 Results for Wall Boundary

3.2.1 Normalization

In previous studies [7][49][18], the results from the simulation of a droplet on a
wall depend on the density of wall particles, which is unphysical when representing
a solid wall. To have the results independent of wall density, a normalization of
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the local density is needed. In prior work, many choices for the number density of
the wall have been tried resulting in inconsistent A,. In several studies, the wall
density is taken to be equal to the fluid density [16] while in some other studies
the wall number density is significantly higher than the fluid density [49].

Ps Ay range Method Local Density Appraoch
6.0 - MDPD Multi-type[25]

8.0 15-40 MDPD Multi-type [50]
1080 823 DPD (18]

6.0 8-22 MDPD Single -type[31]
6.88 5-40 MDPD Multi-type[51]

25 6-12 MDPD Single -type[49]
5.12 25-50 MDPD Multi-type [26]

Table 3.1: Wall density number p; used in prior work and the range of corre-
sponding Ay;.

In Table 3.1, wall density from some studies is shown. As can be seen from
Table 3.1, because of different number densities and/or local density approaches,
different A, values or ranges have been obtained in these studies. The large
Ag range is a result of variation in liquid and wall density at the interfaces. In
other words, when the number density of the wall changes, the magnitude of the
force on fluid-particle varies, and thus, the interaction between the wall and fluid-
particle differs. Hence, there has not been any consistent scale for Ay for different
wettability of a surface. Figure 3.1 shows the effect of Ay on the contact angle
of a water droplet on a flat wall for different number densities of the solid wall
particles. To calculate the contact angle, the boundary of the droplet is found by
calculating the local density of the particles throughout the droplet. As can be
seen, the change in the A, range due to the solid wall density number is clear
and it is in agreement with prior work in Table 3.1. This can be explained from
Eq. 2.7 where increasing solid wall particle density increases the repulsion force.
Hence, a smaller attraction force (in absolute value) is needed to obtain the same
contact angle. It is concluded that lower values of A, result in the same contact
angle for a wall with a higher density.

In this study, the fluid particle number is assigned to be around 13,000 and
kept within 1% of that number throughout the study. To obtain consistent results
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independent of the wall density, the solid wall particles’ contribution in both local
density and forces calculations are normalized. We, therefore, split the summation
in the local density of the liquid particle into liquid neighbors’ contribution (1) and
solid neighbors’ contribution (s) as shown in Eq. 3.2(also see Fig. 3.2)

— 15 l Tij ? ! - T'ij ?
Pi= 2 Z(l_ﬁi) +£Z( _R_;) 32
J#i J#i
Note that for simplicity the subscript “i” for the i** particle is dropped in the
rest of the work, e.g., p F expression due to the wall. In Eq. 3.2, the second
term on the right-hand side (summation over solid neighbors) is scaled with the
density ratio of liquid and solid. In other words, the contribution of the solid wall
particles in either the local density or the force calculations will be normalized as
given in Eq. 3.2 for any given value of p;.
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Figure 3.1: Effect of A in the droplet contact angle on a flat surface with different
solid wall density number ps in (a). After normalization, the effect of solid wall
number p, on the droplet contact angle 6 for different Ay in (b). The inset figure
shows the local density distribution contour used to predict the contact angle
using the spherical cap approach in (a).

Figure 3.1 depicts the change in the contact angle of a water droplet of a flat
wall after normalization. As expected, the contact angle for each A, number
asymptotically approaches a constant value at a higher solid wall density number.
Although a similar approach has been already proposed in DPD modeling [20][18],
we apply it to MDPD simulations for the first time in the present investigation.
Analytical expressions derived for solid wall interaction forces on adjoining fluid
particles are discussed in the following sections.
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3.2.2 Wall Boundary Approach

While the wall particles are frozen, these particles still take part in the cal-
culation of the fluid particles as neighbors. More specifically, the fluid particles
that are closer to the wall have wall particles within their cut-off radius, and
there is a component of force due to these wall particles. This study focuses on
imposing a force due to the wall via applying an analytical formulation, rather
than considering each pairwise interaction with the frozen wall particles. A set of
algebraic expressions (i.e., forces) for the boundary is used to represent the solid
wall. This approach significantly reduces the computational cost of simulations,
especially for a highly dense wall. The resultant force on an MDPD particle due
to the wall is derived by integrating the force due to each individual wall particle.
Note that we again split the summation terms into two sets for liquid and for solid
neighbors, and an integral approach is then used to find a closed-form expression
for the wall particle contribution (see for instance Eq. 3.2) [18]. Generally, these
formulae or expressions are given by the following equations:

RQ*ZQ
<Y >= / / p1g(r)Y rdrdz (3.3)
z r=0

where g(r) is the radial distribution function of the DPD particle, and < Y >
is the integral value of Y within the cut-off radius Ry (or R.) on the domain 2
[20][18] as shown in Fig. 3.2 (particle-particle interaction) and Fig. 3.2 (integral
approach). Note that the factor 27 represents the axisymmetry of the domain in
the 3D configuration. The value Y can be either a local density function or force
component as will be discussed below. Also, because of the high wall density, the
radial distribution function g(r) is assumed to be 1.0 in this work [18].

For the local density due to the solid wall, the Y-term is replaced by Eq. 3.2,
then the summation is replaced by the integration. The local density due to the
wall at particle i, ps), can be expressed as

5 5. 5 3
pis(0a) = pr |05 = Z0a + 553 - §6§ + 153 (3.4)
where 64 = h/Ry(see Fig. 3.1). This term will be added to the local density
for particle ¢ which represents the wall effect in multi-type particle density calcu-
lations. In other words, the local density for particle i is now p equation where j
is the list of the DPD liquid neighbors to the particle ¢ within the cut-off radius
Ry.
Similarly, conservative, dissipative and random forces reintegrated in the do-
main €2,. The derivation and final force expressions are given in section 3.4.
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Final set of equations can be used to simplify the numerical modeling by
removing the solid wall from the calculations. The equations are validated by
comparison to the explicit particle approach and forces are compared in Fig 3.1.
The model is derived for a flat wall; however, it can also be used for curved walls
with a large radius of curvature as will be shown in section 3.2.4. If the radius of
curvature of the wall R,y is within a certain limit (R, > 3R.), the model is
valid and can be used with the error being less than 5%.

o o o o o OTo0 o 0O o o O 0o o
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Figure 3.2: Schematic for the portion of wall particles within a cutoff radius Ry (or
R, ) that contributes to the force on liquid particle ¢ for particle-particle approach
(black shaded particle) in (a) and integral approach (dark-gray area) in (b)

3.2.3 Benchmark Cases

To verify the mode, all the forces(conservative and dissipative) are validated
with particle approach. In figure 3.3, one such verification is shown. As it is
evident from the figure that the force using the wall boundary model is identical
to the particle wall. To further validate our model, we simulate a droplet on
a flat wall, and we generate a similar relationship between contact angle and
Ag (see Fig. 3.4). For this simulation, the total number of fluid particles is
13,062 in both integral and particle approaches, in particle approach total number
of wall particles is 85,312 where the wall density is chosen to be p, = 25.0.
We compared this relationship with available literature [49], and an excellent
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Figure 3.3: Comparison of the conservative, dissipative and random forces between
particle-particle and integral approaches for different distance from the wall h.
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Figure 3.4: Comparison between the particle approach (PA) and integral approach
(IA) for contact angle on a flat surface.
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agreement is obtained, especially at small Ay. In our analytical approach, the
equation is integrated using the value of p; = 6.0. With the analytical approach,
we save more than 50% of computational cost for this case. More details of
computational savings will be discussed in section 3.2.4.

To evaluate the capabilities and stability of the present model, the density fluc-
tuation in the vicinity of the solid wall and thermal energy (kg T) are calculated
for a droplet on a solid flat wall. The same droplet configuration used in Fig. 3.5
is considered here with an Ag=-16 or 6 ~ 100°. For density fluctuation, rectan-
gular blocks (bins) with dimensions of 10100.1 are considered in the core of the
droplet as shown in the inset in Fig. 3.1. The average density number (temporal
and spatial average) is calculated in these bins in the same fashion of molecu-
lar dynamic simulations [52][53][54][55]. As expected, increasing the wall density
number damps the density perturbation near the solid wall as shown in Figure
3.5. Moreover, the results from the IA show the reduced fluctuations around the
average density (about 6.1). kgT can be calculated from the kinetic energy for the
water droplet, i.e., 3/2kgT = m/2N where N is the number of DPD particles in
the water droplet. This specific energy, kg7, is shown in Figure 3.5 for different
wall density numbers for PA and TA. The results show an excellent agreement
with the iso-thermal approximation of the MDPD modeling of this system.
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Figure 3.5: Effect of increasing solid wall density on the density fluctuation(left)
The density fluctuations observed using the wall boundary model(right).

Further, we use the integral approach (IA) to simulate a droplet on a curved
surface and compare it with the particle approach (PA). Contact angle on a droplet
for a curved surface can no longer be defined using Young’s equation [56], i.e.,
the contact angle, in this case, is not the same as the one on a flat plate. For
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Figure 3.6: Effect of surface curvature on contact angle for the particle approach
(PA), and integral approach (IA).

a hydrophilic droplet, the contact angle on a curved surface is higher than the
contact angle for a droplet on a flat plate. By varying the radius of the curved
surface to infinity, it ultimately corresponds to a flat plate and the contact angle
of the droplet converges to its contact angle of the flat plate. In Fig. 3.6, the
contact angle of a droplet for one hydrophilic case is shown for various radii of
curvature and the contact angle is different for different radii. The contact angle
is found to reach a constant value after reaching a certain radius of curvature
asymptotically converging to its value on the flat surface.

3.2.4 Computational Efficiency

The analytical model was validated and compared with the explicit all particle
simulations in section 3.2.3. For the comparison, a wall number density of 25 has
been taken in particle simulations. In this section, the advantage and limitations
of the integral approach are given.

The CPU time reduction is expressed using the percentage E(

E(%) = 10024~ 114 (3.5)
lpa
where t is the CPU time used in the simulation, and the subscripts “PA” and
“IA” stand for the particle-particle and integral approaches, respectively.

The time consumed to obtain the results shown in Fig. 3.3 is used to calcu-
late E with different solid wall density number as shown in Fig. 3.7. As the wall
density number increases, the number of wall particles participating in the compu-
tational algorithm also increases. On the other hand, in the integral approach, the
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P
Figure 3.7: The percentage reduction in the CPU time E using the integral ap-
proach against its counterpart particle approach.

total number of particles remains the same (liquid particle), thus computational
cost remains almost unchanged. Moreover, with increasing complexity in geom-
etry, wall density, and domain size, the particle-particle approach tends to have
more computational cost when compared to the integral model. In the integral
approach, the computational cost primarily depends on liquid particle numbers,
thus when the wall complexity is increased, the integral approach is the more
efficient of the two approaches.

To describe the homogeneous wetting regime, the Wenzel model has been
previously used [57]. According to the Wenzel model, the contact angle on a
rough surface can be estimated by

cos Oy = rcost (3.6)
where Oy is the Wenzel angle, r is the surface roughness ratio and 6 is the contact
angle on a flat surface. The roughness ratio is defined as

Ao
T Ay
where A is area of the surface, and Ag is the projected area of the surface. A

2D geometry is taken into consideration to validate the analytical approach for a
complex wall geometry (see Figure 3.8).

r

(3.7)
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Figure 3.8: The comparison of analytical results with the theoretical equation for
Wenzel law.
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In Fig. 3.8, results from Wenzel equation validations are shown. The contact
angle is depicted against Wenzel contact angle for theoretical, numerical, and semi-
analytical counterparts. The analytical approach shows good agreement with
both the particle approach and theoretical approaches. This is also an extra
validation of the model used in the present work. Finally, a substantial amount of
computational time has been saved in such geometries (about 45%) with p, = 25.
This is because of the highly curved wall, which adds a substantial number of
extra particles compared to the flat wall.

3.3 Discussion

In previous MDPD works, different wall densities had been used which resulted
in different ranges of Ay values (solid-liquid interaction parameter) for wetting
characterization. To solve this discrepancy in the literature, normalization is
carried out in this work. A consistent A, range is obtained for different surface
wettability. To do so, a high wall number density number (e.g. 25 or more) is
required.

The particle approach used in previous works for the wall is computation-
ally expensive for large domains, high wall density, and complex geometry. In
this work, a wall model is developed using a combination of analytical and nu-
merical integration, which substantially reduces the computational cost. As the
wall complexity and domain size are increased, it is shown that this model has
an advantage over traditional particle approaches. The conventional particle ap-
proach for the wall takes about 100 — 300% more time when compared to the
presented integral model for the same geometrical configuration. The results for
the test cases are compared with those obtained from the particle approach and
they match well. Thus, the analytical wall model provided in this investigation is
an accurate and simple tool to simulate fluid-structure interaction in MDPD while
saving computational time. The presented integral (derived for a flat wall) also
gives accurate results for a wall with sufficiently large curvature. The minimum
radius of curvature to which it can be applied accurately is 3R..
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3.4 Derivation of the Wall Boundary Method

In this work, the forces due to the solid wall are derived using a combination of
numerical and analytical expressions. These equivalent forces have been used for
all the simulation procedures. In the particle-particle approach, the wall is made
of particles (see Figure 3.9) which means for fluid particle ¢, individual pair-wise
forces resulting from each wall particle are calculated. The resultant force on the
fluid particle due to the wall is the sum of the forces by each wall particle within
the cut-off radius. As the number density increases, the number of particles in the
zone within the cut-off radius for particle ¢ increases. Force on the fluid particle
due to one wall particle is governed by|[49]

o o o o o o OTod o 0o o o O o o

o o o © o o o © ¢ © 0o 0o 0o O o O

Figure 3.9: Schematic for the portion of wall particles within a cutoff radius Ry (or
R, ) that contributes to the force on liquid particle ¢ for particle-particle approach
(black shaded particle) in (a) and integral approach (dark-gray area) in (b)

FS =A wc(Tij, Rc) €5 + B wc(mj, Rd) €;j (38)
Total conservative force on particle ¢ due to the full wall is governed by
FOAN=)"F = Awc(rij, Re) e (3.9)
J#i J#i
Ideally, the actual number density of 25.0 or more is enough to make the wall
essentially continuous. This wall density is normalized for the fluid number density
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(i.e., pp = 6.0) as explained in chapter 2. For a continuous wall, the summation
changes to integration. For instance, if we express any term due to wall in the
conservative attractive force term in the integration form then it will become

R, (R2—22) on

FCA _ / / / pAwo(ry, Ry eyadrdids (3.10)

z=h =0 6=0

Where F4 is attractive component of the conservative force. It can further be
simplified and expressed as

R, V/(R2=2%)

FC’A — 27TplAij / / (1 — R;) rdrdz (311)

z=h =0

where 72 = 22 + 22, Upon integration, it is simplified as:

1 1 1 1
FOA = 27 R3 Ay p, {ﬂ - 152 + 553 — 554} (3.12)

where § = h/R.. As discussed before, the conservative attraction force has iden-
tical form but with cut-off radius Ry and amplitude B. Similarly, integration are
performed for the dissipative and random components of force, and the following
expressions are derived

1 2 1 1 1
— 50+ 5 (— + = log(5)> + 564 - —55] (3.13)

1
FP% = —2myu,p; | —
v pl[ 973 20

45

1 71 1 1
FP% = —myv.p | — + 6% [ — + ~log(0) | — 56" + —06° 14
Ff=¢ {\/ 2kpTF e, + \/ QkBTFD’ZeZ} (3.15)

where v, and v, are the particle’s velocity in the x and z directions.
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3.5 Maple Code for the Wall Boundary(MDPD)

restart:
int(int ((1-sqrt(x"2+z72) /1) *z/(x"2+2"2) *x,
x =0..sqrt(1°2-z"2)), z = 0..h, AllSolutions);
int(int ((1-sqrt (x"2+272) /1) *z/(x"2+z"2) *x,
x = 0..sqrt(1°2-z72)), z = 0..h) assuming h>0;

int(int ((1-sqrt(x"2+z72) /1) *z/(x"2+2"2) *x,
x = 0..sqrt(1°2-z"2)), z = 0..h) assuming h>O0,
(-z°2)"(1/2)> 0, (-z"2)"(1/2)<(r_c"2-z"2)"(1/2) ;

int (int ((1-sqrt(x"2+z72) /1) *x"3/(x"2+z2"2) *x,
x = 0..s8qrt(172-z"2)), z = 0..h) assuming h>0,
(-z~2)"(1/2)> 0, (-z"2)~(1/2)<(r_c"2-z"2)"(1/2);

int (int ((1-sqrt (x"2+z272) /1) *x~3/(x"2+2"2) *x,
x = 0..sqrt(172-z"2)), z = 0..h, AllSolutions);

int(int ((1-sqrt(x"2+272) /1) *xxz"2/(x"2+272) *x,
x = 0..sqrt(1°2-z72)), z = 0..h) assuming h>0,
(-z"2)"(1/2)> 0, (-z"2)~(1/2)<(r_c"2-z"2)"(1/2);

int (int ((1-sqrt(x"2+z272) /1) *x*xz"2/(x"2+2"2) *x,
x = 0..sqrt(1°2-z"2)), z = 0..h,Al1Solutions);
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Chapter 4

Application of Wall Boundary
Method

4.1 Transport of Solid Sphere

In this chapter, the wall boundary method derived in the previous chapter has
been used and an application is demonstrated. The specific application chosen
is flow measurement. Recently, flow measurement using multi-body dissipative
particle dynamics(MDPD) has been used to overcome the challenges in micro and
nanoscale. MDPD overcomes both the computational cost and limited computa-
tional domain. In this work, MDPD has been used to simulate the dynamics of
a solid sphere in mesoscale fluidic systems. A droplet is kept on a surface with
a wettability gradient. Due to the wettability gradient, the droplet feels a force
field that results in the droplet moving from lower to higher wettability end. A
solid sphere is put on the droplet’s trajectory and the droplet’s motion causes
the solid particle to move along with droplet. The interaction and dynamics of
the droplet with surface and solid particle have been simulated in this work. For
the first time, a velocity field inside a moving droplet around the solid particle
is also investigated. The numerical results greatly extend the understanding of
the flow field in the micro and nanoscale and can be used for various micro-fluid
applications. Although the solid sphere and the wall are modeled using the wall
boundary method, the wall and the solid particle are still shown in all the figures
to make it simpler to visualize the system.
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4.1.1 State of the Art in Particle Transport in Fluid

The physics of fluid flow has been drawing the interests of scientists from old
times[58][59]. Fluid dynamics is a fundamental branch of science that deals with
fluid in motion and their interaction with the surrounding environment. Fluid-
structure interaction has various applications from macro scale such as flow past
airfoil and airplane wings[60] to smaller scale such as interaction of the tethered
DNA with surrounding fluid[61]. The flow physics of the droplet in microfluidics
has been studied using both experiments and numerical simulations[62][63][64].
While liquid droplet dynamics have been extensively studied, the interaction of
liquid droplet with solid particle has only limited work in literature. Moumen
et al.[62] performed experiments on the droplet’s motion on a horizontal surface
with a wettability gradient. In the work done by Moumen et al, it was found
that the velocity of a droplet was a strong function of position along the wetta-
bility gradient. Kinoshita et al.[63] and Lu et al. [64] used microparticles image
velocimetry(pPIV) for the internal flow of a droplet and 3D velocity field was
reconstructed from the 2D pPIV experimental data. Ma et al.[65] reported an
experimental investigation of a flow field inside droplets, and showed that cap-
illary number and droplet geometry had almost no effect on the flow dynamics
inside the droplet. In micro and nanoscale, digital microfluidics is a relatively
new technology that enables precise control of small liquid droplets[9]. Lan et
al.[17] studied the digital microfluidic manipulation of solid microparticles where
they designed an optimization tool for the manipulation of the microparticle in
microfluidic systems. Experimental methods such as PIV and particle tracking
velocimetry(PTV) have been a great tool to study fluid flow[66][67]. There have
been several experimental studies with particles in a fluidic environment where
the velocity field inside the droplet is observed using PIV and PTV [68][69]. How-
ever, there is no computational work where the velocity field inside a moving
droplet around a solid particle has been investigated. At bigger scales, continuum
methods such as the finite volume method (FVM) and finite elements have pre-
viously been used to solve such problems [70][71]. These methods are based on
solving Navier stokes equations numerically[72]. On a smaller scale, however, the
continuum methods such as FVM are not valid anymore. This happens because
there are thermal fluctuations present in the system at this scale and fluid can no
longer be modeled as a continuum|[73]. Particle methods such as smoothed parti-
cle hydrodynamics[74][75] do not consider thermal fluctuations in the system, so
there is a need for a computational model which considers random motions of the
particle at nanoscales. Atomistic methods such as Molecular dynamics and Monte
Carlo simulations have previously been used to study the interaction between fluid
and solid surfaces [42][43][44][76][77]. Atomistic methods are very accurate and
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precise because of their good empirical potential correlation. Even with modern
computational capabilities, often these methods are limited to a small length and
time scale. [46] MD simulations usually are in the length scale of 107! meters
and time scale of 107! seconds[47] To solve the issues with limited system size
and time limit, MDPD method is being used in this case. The contact angle of a
sessile droplet has been a problem for a long time and MDPD had been used to
simulate such systems [49][78][79]. Like DPD, the length and time scale of MDPD
simulations are larger than atomistic simulation methods. MDPD has been used
to examine several phenomena at the mesoscale such as water oil displacement in
capillaries[14] coalescence of sessile microdroplet[80] and reproducing interfacial
properties of the water-wall systems [81]. However, MDPD has not been used
till now to examine the velocity field inside a droplet. In this manuscript, the
flow physics of a solid particle inside a moving droplet has been examined, and
the effect on its dynamics due to various parameters such as wettability gradient,
droplet radius has been studied.

The droplet rests on the wall initially. The wall is assumed to be frozen
and the wall boundary model is used to model the wall. The droplet particles,
howeve,r experience force from the wall and other droplet particles. These forces
are conservative, dissipative, and random. The conservative force accounts for
the chemical property of the particles and is different for the wall-droplet and
droplet-droplet interaction. The dissipative and random forces are identical for
both pairs. A detailed description of these forces are given in chapter 2. The
parameter values are given in Table 4.1

The solid sphere is made of solid MDPD particles which are arranged in a
high-density manner. The density of the sphere is higher on the outer surface, so
it has a shell-like structure. Solid particle’s interaction with solid wall has been
modelled based on the solid-solid contact model reported by[82]. It is assumed
that the substrate material is an elastic material and the solid particle is rigid.
The depth of indentation d,, is given by the following equation.

9F? ’
normal
. -~ normal 4.1
din ( 16R,E? ) (41)
where F,orma 18 normal force, E is the elastic modulus of the substrate and R, is
the radius of the solid sphere.

4.1.2 Configuration and system

The initial setup is shown in the figure. The solid particle is kept on the wall
at x = —10, and due to the adhesion force, it is attached to the wall. The normal
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Parameters Symbol MDPD value
Particle mass m 1.0
System energy kgT 1.0
Cut-off radius of attractive force R, 1.0
Cut-off radius of repulsive force Ry 0.75
Attraction parameter (liquid-liquid) Ay —40
Repulsion parameter By 25
Amplitude of random force ) 6.0
Time step AT 0.01
Liquid particle density p 6.1
Liquid-Vapor surface tension o 7.30
Liquid dynamic viscosity v 7.45

Table 4.1: Parametric values for MDPD simulations.

force from the wall balances adhesion force and the net force on the solid particle
is zero. The initial position of the liquid droplet is x = z;, the radius of the
liquid droplet is R;. The wettability gradient is applied on the wall (explained
in the next section) from x; to xy. The contact angle and x; is 146° degrees and
at xy, it is 36°. The simulation is performed in the computational domain of
size 120X80x80. Other parameters are tabulated in Table 4.2. The wettability
gradient has been modeled by the varying contact angle, which varies according
to the following equation.

0 =146 — &)(x — ;) (4.2)

(zp —

4.1.3 Dimensional Analysis

In the MDPD, all parameters are used in reduced units and they are given
in Table 1. To convert a parameter from MDPD units to physical units, many
different approaches have been described in previous works[83][84] . If density,
viscosity, and surface tension of fluid in SI units are assumed to be d*, v* and
o* respectively. The following formulations are used to find the reference length
LDPD mass MDPD and time TDPD[26]-

d* vt .o
L = —(—)— 4.3
brED d (nu) o* (4.3)
v
T = 2 4.4
pPD = L LDPD (4.4)
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Parameters Symbol MDPD value
Young’s modulus of the wall E le+6
Initial position of the liquid droplet X —40
Attraction parameter with the substrate wall Agg —-1.0
Repulsion parameter with the liquid By 3
Radius of the solid sphere R, 1
Contact angle at the hydrophobic end 6o 36
Contact angle at thehydrophilic end 0 146
Initial distance between the droplet

and the solid sphere d 10

Table 4.2: Parametric values used for modeling the solid particle and wettability
gradient

d*
Mppp = —Lppp (4.5)

If the working fluid is water, then DPD unit length is calculated to be equal to
about 10nm. Using eqs 4.4 and 4.5, the unit time and mass is calculated and
found to be 1.3e — 10 s and 1.63e — 22 kg.

4.1.4 Defining the wettability gradient

In this work, the wettability of the surface is an important factor, the droplet is
driven by the capillary force which is generated from the wettability gradient. The
wettability of the surface can be changed by modifying the conservative force. The
repulsion coefficient is kept constant as described in Table 4.1 and the attraction
coefficient is changed to modify the wettability of the surface. To formulate the
wettability (and static contact angle) as a function of Ag. Figure 4.1 shows
the effect of Ay on static contact angle. Water on hydrophilic and hydrophobic is
shown in the inset. The data from the current work is compared with the reported
data by Chang et al [39]. The contact angle of the droplet matches very well with
reported data in the literature [39]. The data from Ay — 6 curve is used to fit a
third-order polynomial and Ay as a function of  is obtained.

Ay = 8.825¢ — 60° — 1.888¢ — 36% + 0.31396 — 48 (4.6)
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(a) (b) 140! —3$— This simulation
4§ —e— Chang et. al. (2016)
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Figure 4.1: The surface tension of the liquid droplet is validated by simulating a
droplet(left), the Ay — 6 relationship is validated with literature

4.1.5 Results
Model Validation

In simulations, we calculate the interfacial tension by using Irwing-Kirkwood
equation[85]

F12 = /[ zz %(pxx +pyy)]dx (47)

where I'j5 is the interfacial tension between fluid 1 and fluid 2. where p,,, py,
and p,, are the three diagonal components of the pressure tensor. The interface
in this calculation is z — y plane. In terms of the interparticle forces, this can be
expressed as

F12 = ALZ(ZZJ: Fja’rijz — %(Fia/rga, + Fga,’l"za,);i > ] (48)

where F2 ) FZ , FZ_, are x,y, and z components of the force between particle ¢
j. A; is interface area. Similar formula can be applied for solid-liquid interface[86].
The setup for calculating surface tension is shown in Figure 4.1.

In MDPD simulations, viscosity is usually obtained by simulating periodic
Poiseuille flow[87][88].We divide our simulation cell into two halves and apply a
specific body force in those half in opposite direction. After the steady state is
reached, we calculated the velocity profile and compared it with the theoretical
results(Figure 4.2).
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3 . . .
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Figure 4.2: The validation of the numerical model and the viscosity using
Poiseuille Flow

Solid Particle

Figure 4.3: Schematic of the bounce-back scheme(left), The initial condition of
the system. The surface has a lower contact angle towards the right thus moving
the droplet and transporting the solid sphere with it

42



Chapter 4. Application of Wall Boundary Method

Transport of Solid Sphere

Initially, the physics flow of liquid droplet without any solid particle on its
path is simulated. The wettability gradient on the wall causes the droplet to
move from x; towards xy. Further, a solid particle is put in the trajectory of
the droplet as shown in Figure 4.3. In this case, the droplet still moves because
of the wettability gradient and it has similar dynamics before it reaches the solid
particle. The travel history of the particle is shown in Figure 4.4. The figure shows
the z position of the particle with time. Initially, the z position is zero when the
particle is on the wall and the adhesion force is balanced with the normal force.
When the solid particle is picked up the z position is higher and then the solid
particle comes to an equilibrium height. Various stages and the velocity field of

](} | ——— X l l |
S “
() "“"-wf"“vt,\::*-‘I_‘“ N ,-.,»"'" '“‘--_,.-*"""‘”‘"-",r-.-:::.t;*w"' _
u F’__,!/"
10t :_,»-' |
;" _;
4 . f"
20F ,-w""m ]
'."‘"
-~
230 pemes |
_40 o e e - ‘"‘“"“‘““"“1"‘““"“‘"“““"‘“—“"'*"-“' *1"' ——————— «-"—-H---—-H«—_
0 500 1000 1500
I

Figure 4.4: The X,Y, and Z coordinate of Center of Mass of the solid sphere.
One thing to highlight is that the solid sphere gets picked up by the droplet as
reflected in Z-coordinate of the sphere

the droplet and solid particle’s dynamics are shown in Figure 4.5. As the droplet
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reaches the solid particle, initially, the liquid particles surround the solid. In the
next stage, the solid is picked up and is lifted high, and then lowers down to a
certain height. Further, the droplet keeps moving and the solid particle moves
inside the droplet. The solid particle’s velocity is less than the velocity of the
liquid droplet. Thus, there is a relative velocity between liquid and solid particle
and it moves from right to left of liquid. In the final stage, the solid particle stays
at the tail end of the droplet. The velocity field in all stages is shown in Figure
4.5. The total time to travel the same distance with and without the particle on
the droplet’s trajectory is calculated. The droplet takes more time when it carries
the particle.

-40 -30 =20 -10 0 10

Figure 4.5: Various stages of dynamics of the droplet and solid particle due to
wettability gradient
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Effect of Droplet Size

The size of the droplet has a great impact on the transport process of the solid
particle. For z; = 40, the radius of the droplet is varied, and the impact on the
dynamics of the droplet and solid particle is studied. It is observed that as the
droplet size is increased, the droplet moves faster. In Figure 4.6, solid particle’s
position at different times is displayed. When the droplet radius is increased from
5 to 6, the particle velocity is slower but as it is increased further, it becomes
higher and higher.

20 ' '
----- R=5
10| = R=6 ]
----- R=7 p
Or k= ,,-“;:;i':"'f"
=10 ¢ P -
20+ 7 4o’ -
Pl g
r.{;‘_’f
230 pt -
-40 - >y o
0 500 1000 1500
t

Figure 4.6: The effect of different solid sphere radius, increase in radius causes
the faster transport

Effect of Wettability

The solid wall’s wettability gradient is one of the factors which is crucial factor
for flow physics and the transport of solid particle. The parametric study with
different values of xy has been performed. The values of z; are kept constant
throughout at —40, the different values of z; chosen are 0,20, and 40. Static
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contact angle at xy is kept the same at 36° and the wettability gradient is kept
in such a way that the contact varies linearly in the wall. Thus, the wettability
gradient is higher when zy = 0 and lower when z; = 40. From Figure 4.7, the
droplet and the solid particle move faster when the wettability gradient is higher,
and it moves slower for a lower wettability gradient. The droplet reaches the solid
particle sooner when the wettability gradient is higher and to travel the same
distance, it takes a lower time for a low wettability gradient. In the figure, for the
particle to reach from x = —30 to x = —10, the droplet with x; = 0, 10, 20, 40
take 700,750,800 and 900 (in MDPD unit) respectively. Here it is noticeable
that the velocity of the droplet significantly reduces as the static contact angle
reduces. In other words, the droplet for xy = 0 travels faster than any other cases

1() T T
..... _\Tf.—() o
- = Py
0 === =10 o
..... x =20 ey 7
b ’ ,c‘""z Lol
10 | ==e- x =40 ot i :
- | Y
A
-20 #::':... /J"; ]
£
[l &f ’.“jl
30 ped -
-40 ' '
0 500 1000 1500

Figure 4.7: The effect of final position x, there is no significant difference among
them

for initially but as the static contact angle reduces, the velocity slows down, and
eventually it reaches to = 0 in the end. For other z; values, the trend still
follows the wettability gradient order. Near x = 0, it is evident from the figure
that the droplet with x; = 20 and 2y = 40 traveled almost the same distance.
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4.1.6 Discussion

In the current work, the physics of solid particle within a liquid droplet under
a wettability gradient in a mesoscopic fluidic system has been modeled. MDPD
has been used to develop the numerical model. Wettability gradient results in
different static contact angles for the droplet at its end, which causes the droplet
to move. The droplet moves and when it reaches the solid particle, the liquid
particle surrounds the solid and lifts it. The solid particle moves inside the droplet
from one end to another and then remains in the tail end throughout the process.
Various parametric studies have been done in the work, such as the effect of droplet
radius. The droplet radius has a mixed effect on the solid particle’s velocity. It
first decreases but as the radius keeps increasing it increases. Higher wettability
gradient results in a higher velocity of the solid particle thus faster transportation.
The velocity field inside the droplet is investigated for the first time and the
obtained results help understand the fundamentals behind the flow field inside
the droplet around a solid in the mesoscale regime.
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Chapter 5

Mesh Generation using General
Particle Model

In this chapter, the general particle model derived in chapter 2 has been used to
generate an isotropic unstructured mesh. Mesh generation is an important stage
in computational fluid dynamics (CFD) and structural mechanics. Generating
mesh is computationally expensive, and becomes more challenging for a domain
with complex geometry and in regions with high field variable gradients. The pro-
posed method is based on the particles in the system interacting with each other.
The equilibrium length and mass of the particles depend on the desired refinement
in that region. The force potential acts as a driving potential for the particles and
cause the particles to move, and rearrange to the final desired locations. The
particles achieve a final convergent position that has a uniform density through-
out the domain and no resultant force on them. A Voronoi Tessellation-Delaunay
Triangulation(VT-DT) method is used to generate mesh from final particle posi-
tion.

5.1 State of the Art in Mesh Generation

Mesh-based methods such as FEM and FVM are used to solve or simulate a
wide range of physical phenomena such as fluid flow, heat transfer, mechanical
deformation, and chemical reactor flow [89][90][91]. The principle behind these
methods is to divide the physical system into small meshes and convert the par-
tial differential equations (PDEs) into equations with finite form, i.e., algebraic
equations. The mesh generation is an important step and often a difficult task
for complex domains [92], and the need for a good optimized and efficient mesh
generation method becomes important [93][94].
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The mesh generation has been studied and researched using many techniques
over the last few decades [95][96][97][98][99][100]. The mesh generation meth-
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Figure 5.1: Mesh generation methods Advancing front method(top-left), Oc-
tree method[1] (top-right), Delaunay Triangulation[2] (bottom-left) and Particle
Method|3](bottom-right)

ods can generally be divided into four categories(see Figure 5.1): the advancing
front methods, Delaunay methods, Octree methods, and particle based methods.
In the advancing front methods, mesh generation starts from the boundary ele-
ments, and then inside elements are constructed in layers [101][102]. The main
challenge in this method is often to decide which face to advance and whether to
choose a new or a preexisting vertex [103]. The answer to these two questions
critically determines the quality of the resulted mesh [104][93]. Delaunay method
[105] uses the triangulation of nodes in the domain. Triangulation is formed and
then refined further to add, modify or delete nodes. In the entire process, the
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empty circumcircle criterion of the mesh is kept preserved [106][107]. The empty
circumcircle criteria dictate that for each of these triangles, the circumcircle of the
triangle (from the nodes) contains no internal nodes. The Delaunay method is
efficient to produce a good quality mesh in two dimensions but is not guaranteed
to have a good quality mesh near the boundary and in three dimensions. There
have been modifications to Delaunay methods to counter its drawbacks but they
may suffer from other problems such as speed and accuracy of generating new
mesh [108][109]. Octree methods [110] use mesh refinement by adding children
nodes recursively [111].

In addition to these methods for mesh generation, particle-based methods have
also been getting popular recently [112][3][113][114]. One of the first particle-based
approaches was proposed by Witkin and Heckbert [115] where the particles are
constrained to the surface with a binary potential. They used this method to
distribute particles homogeneously on a surface. This method had some disad-
vantages such as too many free parameters, and the low speed of the convergence.
Recently, Meyer et al. [116] improved this method by proposing a new energy
function that is scale invariant. They then showed that the resulting method can
provide a fast and efficient mechanism to distribute particles on a sample surface.
Later, Brosnon et al. [117] extended this idea to generate the mesh using the parti-
cles. In these methods, adding and deleting particles continuously is a time taking
step, and this slows down the method. Fu et al. used meshless-particle method
smoothed particle hydrodynamics (SPH) [3] approach to propose a method using
particle relaxation technique to generate a mesh. Using bead-spring model have
been used to generate the mesh [118] [119] but most of the methods either do not
show the robustness or require a mesh for an initial condition [120]. It is also
computationally expensive to generate an initial condition for bead-spring model
as it requires adjacency. The method proposed in this work does not need a mesh
for the initial condition, does not require adjacency, and is based on a simple force
field model making it an efficient and robust method.
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Chapter 5. Mesh Generation using General Particle Model

5.2 Defining the System

5.2.1 Initial Condition

In the proposed model, number density is defined as the quantitative measure
of how dense the particles are distributed. If the overall density (p) is assumed
to be uniform in the domain. Therefore, this number density, n;, depends on the
mass of the particle as

1 1 51
n; X - o - a (5.1)
where r; is the radius of the particle.

To create a mesh with controllable refinement, a target number density and
target mass profile is defined for particles in the domain. The mass of particles
varies in the domain and depends on the desired refinement. The ratio between
largest to smallest mass in the domain is refinement ratio v. Knowing the number
density and mass profile, the total number of particles for the domain can be
calculated as.

N = /Q ndVv (5.2)

Once the total number of particles is found, the initial condition is generated
by locating particles according to their mass and number density. Technically,
any initial condition should be able to get final convergent results. Szabo[130]
proposed a great method to fill the particles in a domain to generate a suitable
initial particle location with a given number density. This approach is used in the
present work.

5.2.2 Boundary Condition

The boundary treatment in a mesh generation process is important because
the geometry of the system can be arbitrary and complex. The proposed force
field model can handle fixed boundary and symmetric boundary conditions. In the
fixed boundary, the particles initially are distributed along the boundary surface
(in three dimensions) or boundary line (in two dimensions) according to their
number density and mass. These boundary particles are not allowed to move
in the direction normal to the surface. Ghost particles are used to support the
boundary particles and particles near the boundary. In the symmetry boundary
condition, the mirror image of particles is generated across the symmetry line.
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Algorithm 1: Unsteady Force Field

compute Total number of particles Eq. 5.2;
distribute particles for initial condition;
for all particle 1 do

L assign mass; find neighbors;

while convergence criteria do

for all i do

compute F; Eqgs. 2.5 and 5.2;
compute v;(t + At);

compute x;(t + At);

update neighbors;

update mass ;

Algorithm 2: Steady Force Field

compute Total number of particles Eq. 5.2;
distribute particles for initial condition;
for all particle + do

L assign mass; find neighbors;

while convergence criteria do
for all + do
L equate Force for each particle i to be zero (Eq. 5.3);

generate matrix A to solve for Ax = B;
solve for x = A\B;
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5.2.3 Numerical Details

Although, there is no direct relationship between convergence speed and accu-
racy of any numerical simulation. Typically, there is a general trade-off between
the two. To achieve higher accuracy in simulation, one might have to give in on
the convergence speed (computational cost). In mesh generation, the interest is
to achieve high convergence speed. The accuracy of simulations matters but it is
not higher priority as there is no physics involved. Eventually, the final particle
positions is the goal. From the described numerical method and force profile in

Algorithm 3: Hybrid Method

compute Total number of particles Eq. 5.2;
distribute particles for initial condition;
for all particle 1 do

L assign mass; find neighbors;

while convergence criteria® do

for all + do

compute F; Eqgs. 2.5 and 5.2;
compute v;(t + At);

compute x;(t + At);

update neighbor;

update mass;

while convergence criteria do

for all i do
L equate Force for each particle i to be zero (Eq. 5.3);

generate matrix A to solve for Ax = B;
| solve for x = A\B;

*Until the particles have reached to almost steady state

previous chapter, there is a modification made here. The force profile is taken to
be linear

After calculating the net force on a particle, Verlet integration(section 2.3.2)
is used to integrate equations to determine the particle velocity. The algorithm is
summarized in the pseudo-code in Algorithm 1.

Steady State Solver

Since the resultant force should eventually be zero on each particle, it is pos-
sible to solve the equations directly. The position of the particles can be directly
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calculated using iteration approach. The speed of this solver strongly depends on
the initial condition of the system.

> Fy=0 (5.3)

Hybrid Solver

While the unsteady method is robust and solved implicitly, it is still not as
fast as a steady state solver. For the steady state solver to converge, the particles
should not be a lot further from their convergent solution. In the hybrid method,
the equations are solved implicitly using an unsteady solver until a good transition
position. The steady approach is used after a good position is obtained. The
hybrid method is both as robust as unsteady and faster than the unsteady method.

5.2.4 Voronoi Tessellation-Delaunay Triangulation Dual-

it
A e
e o ! [
~ ) A
“’ \ - ~ -
~ [ . .
r\_ ______ f‘ b .
I \ (] "’
1 \
® ’
1 ® 1 ’ PY
1 "-_ ’
- 1 - R §
-__4. .* r ~. -
P S 'r ~:-
4 1
. ’ . [ I A [ ]
’ ' ’ ‘k
’ I ® - -
\ ¢ -
- ® \ ’ ’
~ 1 y
~
\.~ ’f)--~~_r‘- ______ { °
. - - ~
r v S
’ ' -~
' PY 1 ° ~
-

Figure 5.2: A description of transformation from Voronoi Tessellation to Delaunay
Triangulation. The blue symbols are nodes and the cell center of Voronoi Tessel-
lation. These nodes become vertices of the triangles in Delaunay triangulation

Voronoi tessellation is a method to divide a domain with several into small

cells. For each node, all points in its cell are closer to that node than to any other
node. The boundary segments between two cells are equidistant to the two nodes
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of those corresponding cells. There is a dual relationship between Voronoi Tessel-
lation and Delaunay triangulation, where one can be transformed into another.
The circumcentre of Delaunay triangulation, when connected form the Voronoi
cells with all the triangulated points on the circle and no point inside the cir-
cle. Similarly, the center of Voronoi cells are vertices of Delaunay triangulation.
In our proposed mesh generation method, we use this duality to transform the
particles into triangulated mesh. We first generate Voronoi tessellation for the
convergent particles and then use the duality to find the Delaunay triangulation.
The obtained Delaunay triangulation is the desired mesh. One example of con-
verting Voronoi tessellation to Delaunay triangulation is shown in Figure 5.2. In
the figure, the blue nodes are the particles and the centre of Voronoi cells. Af-
ter the triangulation, the same nodes become the vertices of the triangles. The
triangulation is shown in red color with Voronoi cells in black dashed lines.

In this work, we use particle position to generate Voronoi tessellation, and
then using the duality, we transform it to Delaunay triangulation. The obtained
triangulation gives a simple triangular mesh of high quality.

5.3 Results for Mesh Generation

In this section, a criterion for mesh quality is first described. Then, several
benchmark cases(in 2D and 3D) are simulated using the proposed method.

5.3.1 Criteria for Mesh Quality

A mesh with smaller elements is usually of higher quality than a coarser el-
ement. The quality of the mesh is checked by parameters that will be defined
below.

The mesh quality is usually described by several qualitative parameters such
as skewness and angle distribution among many others. The isotropic triangular
mesh are generated from our proposed method. Various quantitative parameters
are used to evaluate the quality of isotropic triangular mesh obtained by the
proposed approaches[131][132]. In this work, the goal is not to compare different
methods of quantifying the quality of the mesh, but to use a few of them to check
the mesh quality. There are multiple definitions and ways to calculate skewness,
equiangular definition of skewness is used in the present work,

emam - 06 06 - emzn
m—0, "’ 0.

Equiangle Skewnss = max (5.4)
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where 6, is the angle of the equiangular face of the cell. Since we are generating
triangular mesh, the value is 60°. 6,4, and 0,,;, are the maximum and minimum
values of the angle for all cells. We also measure the angle of the triangle §[133].

The value of skewness should not exceed 0.85 and 6 for a triangular mesh
should be as close to 60° as possible for a better mesh. Another property that we
calculate is the mesh quality ¢ [134] and it is defined as

Semin

™

q= (5.5)

The value of ¢ should be close to unity for most of the mesh elements. The
mean value of ¢ should exceed 0.5.

5.3.2 Benchmark Cases
A disc and a square

Two cases are considered here in the disc and square case. In the First case, a
circular disc with refined mesh on the boundary with larger coarser mesh near the
center is simulated. The boundary particles of the disc are fixed and are initially
distributed according to the target mass and target number density profile. A
rectangular domain with a space of circular shape inside it is the second case.
In this case, the desired refinement of the mesh is on the surface at the center.
This case represents 2D complex geometry. For these cases, the final convergent
position along with triangular mesh is shown in the Figs. 5.3. In Fig. 5.4, the
distribution of all the angles for the triangular mesh is plotted in a histogram and
a major fraction of all the angles are in the range 45 — 75 degrees. This signifies
that triangular elements are closer to equilateral triangles and mesh elements are
of high quality. Further, a mesh quality parameter ¢ defined by Eq. 5.5 is also
calculated for each triangular element of the mesh and shown in Figure 5.5. The
value of ¢ is found to be very high which is an acceptable value for mesh. The
mesh skewness for the circular and square discs are calculated to be 0.11 and 0.13,
respectively, and they are well under the threshold value of 0.85.

Five Rings in a square

In this second benchmark case, the capability of handling the curved boundary
is demonstrated. A rectangular domain is chosen and five rings are placed inside.
The desired mesh is refined closer to the ring boundary and coarser mesh further
from the boundary. The final particles position and generated mesh are shown
in Figure 5.6. The particle size in this figure is kept constant for visibility. The
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Figure 5.3: A disc and a rectangular domain with disc-shaped space are sim-
ulated separately. The final particle position is displayed in figure (top), the
radius(proportional to mass) profile is shown by the use of colored contour, The
final mesh for both the cases are presented are also shown(bottom)
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Figure 5.5: The histograms of mesh quality in triangular mesh for the cases in
Figure 5.3
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Figure 5.6: a. The particle distribution b. The final mesh for five ring case is
shown. c¢. The distribution of angle in the mesh element and d. Mesh quality ¢

60



Chapter 5. Mesh Generation using General Particle Model

angle distribution is plotted in a histogram and shown in Figure 5.6¢c. A majority
of angles are in the range 45 — 75, some mesh elements have some skewness and
the angle are not close to 60 degrees but overall the skewness is calculated to be
0.12. The average mesh quality for this case ¢ is calculated to be 0.86 which is
well above the cut-off for a good quality mesh.
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Figure 5.7: a. The particle distribution b. The final mesh for Jordan curve case
c. The distribution of angle in the mesh element and d. Mesh quality ¢

Jordan Curve

A Jordan curve is a planer non-intersecting loop that divides the plane into two
sub-regions, inside and outside. The final convergent position of the particles and
the mesh generated by using VT-DT duality is shown in Figure 5.7. The method
can generate a mesh of good quality. The quality is shown in the histograms of
mesh element angle and the mesh quality(q). The particles in this method can
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be of different size and thus any small or random curvature in the domain can be
meshed with the same efficiency and accuracy.
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Figure 5.8: a. The particle distribution b. The final mesh for an island in a lake

case is shown. c. The distribution of angle in the mesh element and d. Mesh
quality ¢

A lake with an island

A lake with an island is chosen as the next benchmark to generate a mesh.
Two random Jordan curves are chosen for the geometry of the lake and island
making sure the island is smaller than the lake. The inside sub-region of the lake
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including the island is the desired area for mesh generation. The boundary of the
lake and the interface between the lake and the island is chosen to be a region
with refined mesh. The particles are transformed into the triangular mesh and are
shown in Figure 5.8. The average Mesh skewness and mesh quality ¢ are found
to be 0.26 and 0.76 respectively which is well over the criteria for a good mesh.
The angle distribution for triangular mesh element and mesh quality distribution
is shown in Figure 5.8.

Porous Media

Porous media often have no strictly defined boundary so it becomes more
challenging to generate mesh for them. Using the proposed method, each media
can be considered as a Jordan curve and the mesh for the whole domain can
be generated. If there is any island-type structure with a different phase, that
part can be considered similar to the previous benchmark case of A lake with
an island. In this benchmark, a two-phase porous media domain is taken as a
benchmark case for mesh generation. The final particle position is obtained and
shown in Figure 5.9. The colors of different particles denote different phase. The
particles’ position is then transformed into triangular mesh and is shown in the
Figure 5.9. The triangular elements are as expected and the angle is mostly near
60°. Furthermore, the mesh quality ¢ is plotted in a histogram and is found to
have a mean of 0.89.

Case Equiangle Skewness Mesh quality(q)
One Ring in a square  0.11,0.13 0.86,0.84

Five Rings in a square 0.12 0.86

Jordan Curve 0.2 0.8

Island in a Lake 0.26 0.75

Porous Media 0.17 0.89

Table 5.2: Values of various mesh quality parameters for all the benchmark cases

For all the benchmark cases shown, the obtained mesh is of good quality. The
refinement zone is chosen in all the benchmark cases. If the refinement is not
needed then the refinement ratio v can simply be assumed as one. The mass of
each particle becomes equal in that case. The mesh quality is quantified with
several parameters such as angle distribution, Mesh skewness, and ¢q. The mean
values for the last two parameters are also shown in Table 5.1. The angle of all
the mesh element is also shown on the histograms for all the cases, and the values
of and distribution of the angles reflect the quality of mesh of obtained.
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Three dimensional Cases

\
I

1. Observation Deck, 2. Tip, 3. Front Area, 4. Back Area 5. Tail, 6. Fin

Figure 5.10: Schematic of the blimp geometry(on the left) and particle distribution
on the surface

For the three-dimensional cases, there are two things to understand. The
surface mesh is in three-dimensional domain but is a two-dimensional mesh. When
generating this surface mesh for three-dimensional geometry, one needs to make
sure the particles move only on the surface geometry and do not move out of the
surface. For two-dimensional cases, it was easier as there was no third axis(eg.
Z-axis), however in the three-dimensional cases, a local surface spline needs to
be defined. This step is obtained by either using the equation of the surface(if
already known) or dividing the surface into small sections and doing a polynomial
fit. Once the surface spline is obtained, the simulation is allowed to run and the
particles are constrained to the surface. This is achieved by dividing the force
on any particle into two components, one parallel to the surface and the second
normal to the surface. The particle then is allowed to move only along the surface.
This allows for the particle to remain on the surface and reach equilibrium. One
example of such motion is shown in 5.10. The geometry of a blimp is chosen and
its schematic is shown. To generate the surface mesh for the blimp, a series of
three-dimensional splines are generated and the particles are allowed to move only
on the surface. The final equilibrium position of the particles on the blimp surface
is also shown.

Once the surface particles are obtained, then Voronoi Delaunay triangulation
can be used to generate the surface mesh. The next example chosen for surface
mesh generation is a teapot. The surface mesh is generated and shown in Figure
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Figure 5.11: A teapot with tetrahedral mesh with two cut sections to show the
inside mesh

Figure 5.12: Schematic of identifying whether a point is inside or outside the
domain
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5.11. The teapot geometry has several challenging parts to mesh. On the top, the
top knob needs to be meshed finer than other parts, and a more refined mesh is
chosen there. Similarly, the spout and the lid-pot interface are also chosen to be
more refined. The final mesh with different viewing is shown in Figure 5.11. The
mesh quality is calculated and none of the elements are extremely skewed.

To generate a three-dimensional mesh, first, the domain needs to be defined.
Once the surface mesh is obtained, the three-dimensional tetrahedral mesh can
either be generated inside or outside. To identify whether a point is outside or
inside a domain, a line is drawn toward one of the boundaries (Figure 5.12, if the
line intersects with the domain boundary odd number of times then the point is
inside the domain. Similarly, if the line intersects with the domain boundary an
even number of times, then the point lies outside the domain boundary. Using
this logic, the inside and outside of the domain are defined. Once this has been
determined, the total number of particles are calculated and filled in the system.
The system is set to reach equilibrium and final positions of the particles are
obtained.

For the rest of the cases, only final mesh is shown as that is the desired result.
It is important to note that the final mesh is obtained from the particle positions,
similar to shown in the above examples.

Once the particles’ positions are obtained, VIT-DT duality is used to generate
tetrahedral mesh. In the next few paragraphs, several three-dimensional cases
are chosen to demonstrate the capability of the method. Next, three-dimensional
case of a sphere within a cube is chosen to generate the mesh. This case is can be
considered as an extension of benchmark 1 to three dimensions. The convergent
particles’ positions are shown in Figure 5.13. The Voronoi tessellation obtained
in a three-dimensional case is a convex tetrahedral(as opposed to a triangle in the
case of two-dimensions). The VT-DT duality still holds in three dimensions and
the triangulation results in tetrahedral mesh(triangles in the case of two dimen-
sions). The particles’ positions are transformed into the tetrahedral mesh and
shown in Figure 5.13. A cross-section of the cube with the particle position(with
the sphere in a different color) and mesh section is also shown. Overall the mesh
obtained in three-dimensional benchmark is of good quality and can be used for
simulations in porous media and representative volume elements methods. Next,
a cylinder in a cuboid is chosen. The total number of tetrahedral element chosen
for this case are 5285, the mesh generated are adaptive with larger tetrahedral
inside. The mesh is refined near the interface. In Figure 5.14, an isotropic and
front view of the surface mesh is shown. The surface mesh obtained is of high
quality and none of the elements are highly skewed. In Figure 5.15, few slices are
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Figure 5.13: a. The particle distribution b. The final mesh for three-dimensional
case is shown. c. The distribution of angle in the mesh element and d. Mesh
quality ¢
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Figure 5.14: A cylinder in a cube and its tetrahedral mesh is shown

S
IS
SHAIRINVAA

s

¥
W
K

il

QD
5’"’"&
Ay
l s
A A7

Figure 5.15: For the case ’A sphere within a cube’ Different cut sections

inside
tetrahedral mesh
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cut from the mesh to show the tetrahedral mesh. The tetrahedral mesh obtained
has no highly skewed element.

Next, several examples from Mechanical Engineering are chosen. First, a hinge
is chosen to generate tetrahedral mesh. In Figure 5.16 and 5.17, one part of the
hinge and its mesh is shown. The total number of tetrahedral element chosen for
the first part of the hinge is 16445. Different slices of the mesh are taken and the
inside mesh is shown in 5.17. In the Figure 5.18, the other complementary part
of the hinge and its mesh are shown. For this part of the hinge, the total number
of tetrahedral elements is 15442.
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Figure 5.16: a. Three-dimensional tetrahedral mesh for a hinge, A section has
also been taken and shown in the right

The next case chosen is a 'nut’ with threads. The mesh for this case is shown
in 5.19. The overall mesh in this case is of good quality, but near the threads, the
elements need to be very small. Because of this, the total number of elements, in
this case, is higher than usual(46638).

The next case chosen is a gear geometry. The schematic of the geometry is
shown in 5.20. The gear geometry is inspired by the sprocket of the bicycle.
The chosen gear has 32 teeth/grooves. These grooves are isosceles trapezoids in
shape. The gear also has a center cylinder that has a circular hole in it. The
center cylinder is connected to the outer teeth by four hands. Each of these hands
has an oval shape hole in it. These types of geometries have holes to reduce the
weight. The thickness of the center cylinder is more than the rest of the gear.
For this case, the desired mesh chosen is uniform everywhere with a high number
of particles. The generated mesh is shown in Figure 5.21. The mesh at different
parts with zoomed in and slice (to demonstrate the inner tetrahedral mesh) is
shown in 5.22. The total number of elements in this gear is 374692. The last
case chosen for this set is a socket. In Figure 5.23, the surface mesh is shown at
different angles. In the same figure, a cross-section is also taken to show the inner
tetrahedral mesh. The total number of elements in this case is 834125.
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Figure 5.17: a. Some more sections from other axes to show the adaptive meshing
mechanism

Figure 5.18: For the hinge in 5.16, the mesh for second part of the hinge, the
inside tetrahedral mesh are also shown in the right
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Figure 5.19: The case 'nut’ and its tetrahedral mesh with cut section to show the

inside mesh

and side view(on

)

on the left

(

Figure 5.20: Schematic of the gear geometry top view

the right)
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Figure 5.21: The gear full tetrahedral mesh and different sections(zoomed in) to
show the detailed mesh

73



Chapter 5. Mesh Generation using General Particle Model

Y
PAVIYY SN
JAVAY, F:‘\ﬁ

Pa

{

USSR

RN

»

Dk
N ,A'é-".' L
QAN AANK

EINAAZRINAL

Figure 5.22: Different viewing angle for the gear case, A slice through the X plane

to show the inside tetrahedral mesh

74



Chapter 5. Mesh Generation using General Particle Model

Figure 5.23: A socket and its mesh with detailed mesh with different viewing
angles and cross-sectional cut
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Apart from the examples from the engineering world, the proposed method is
capable of generating a mesh for other examples as well. Unlike engineering world,
these geometries are not defined by equations or any shape. For these examples,
the geometries are imported using an STL file. After the geometry is imported,
surface splines are generated and then the surface mesh is generated. Once the
surface mesh has been generated, a similar process is followed to generate the final
three-dimensional mesh.

Three cases are chosen for this set of examples. In Figure 5.24, 5.25, and 5.27,
a parasaurolophus is chosen to created the mesh. In Figure 5.24, different views
of the surface mesh are shown. Inner tetrahedral mesh is shown in Figure 5.25.
The total number of elements, in this case, is 20457.

Figure 5.24: Tetrahedral and surface mesh shown for the 'parasaurolophus’
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Figure 5.25: Sliced sections for the "parasaurolophus’ to show the tetrahedral mesh
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Figure 5.27: The surface mesh of 'parasaurolophus’ and Stanford bunny

Figure 5.28: The surface mesh of 'parasaurolophus’ and Stanford bunny
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The next case is the famous Stanford bunny. The surface mesh of the Stan-
ford bunny is shown in Figure 5.26 and 5.27. The geometry of the Stanford bunny
is imported from opensource resource as STL file. An STL file defines the sur-
face by way of triangles. The STL file imported has thousands of triangles with
the coordinate of the vertices. Once the STL file is imported, the outer surface
is re-constructed and three-dimensional splines is generated. Once three dimen-
sional spline is generated, the surface area is calculated and the total number of
particles(N) is calculated accordingly. Then, N number of particles are inserted
on the surface and set to reach equilibrium. Once the particles reach equilibrium,
they are frozen and used as a boundary condition for three-dimensional case. For
three-dimensional case, a similar process is followed. First, the total number of
particles is calculated and then inserted inside the system. Then the particles are
set to reach equilibrium. For the boundary, a bounce back/ghost particle scheme
is followed. Final obtained particles go through VT-DT triangulation and a mesh
is obtained. The final mesh is shown in Figures 5.26 and 5.27.

5.4 Discussion

5.4.1 Comments on Numerical Schemes

In addition, different numerical schemes have their advantages and disadvan-
tages. In this work, a linear force profile has been used to reduce the computational
cost. Furthermore, instead of using an explicit numerical scheme, implicit numer-
ical schemes is also computationally efficient. However, as the number of particles
increases, the computational cost saved is lesser in implicit than explicit numerical
schemes. Since the goal of the present work is not accuracy but speed, there are
several ways it can be achieved and a balance needs to be obtained. The overall
interest is in reaching the final particle position, which can also be obtained by
simply using an inverse of the matrix algorithms (such as LU decomposition) and
finding the final particle positions. It is important to note here that matrix inver-
sion is not easy and can be even more expensive than explicit numerical schemes
for the higher number of particles. Thus depending on the number of particles,
different schemes can be more optimum than others.

Summary

In this chapter, a novel, computationally efficient method to generate isotropic
unstructured mesh using particles has been proposed. First, the boundary of the
domain is defined and particles at the boundary are fixed. Next, the target mass
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and number density profile for the particles in the domain is calculated. The total
number of particles is calculated using the target mass profile, dimension, and
density of the domain. The target mass profile behaves as a controllable variable
that enables control of the mesh including refinement. The three methods are
described to solve for the position of the particle. The unsteady method is robust,
fast, and is solved implicitly. A second steady method is described that uses
the advantages of a good initial condition and is more efficient than the first
implicit approach. A third hybrid method is explained that can switch between
the unsteady and steady methods dynamically.

A Voronoi tessellation is generated using the final position of the particles.
The VT-DT duality is used to generate the triangular mesh. Several benchmark
cases are presented in the paper to show the capability of the method. The final
mesh quality that is obtained from Delaunay Triangulation is of very good quality
and with very little to no skewness.
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Chapter 6

Conclusions and
Recommendations

In this chapter, a conclusion of the dissertation will be presented in the first
section. In the second section, a recommendation for future work will also be

described.

6.1 Conclusion

The particle methods are very powerful and robust. For the flow simulation,
particle methods such as multi-body Dissipative Particle Dynamics(MDPD) are
capable of simulating complex fluid and liquid-vapor interface in mesoscale. How-
ever, simulating fluid in mesoscale is computationally expensive as the solid wall
particles are taken into consideration even when their dynamics are not the focus.
Furthermore, the local density of the fluid near the solid-liquid interface experience
oscillation. Local density fluctuations are not physical as the fluid is considered
to be incompressible. The reason behind the density fluctuation is also the solid
wall and the solid particle density. When trying to solve the density fluctuations,
the solid particle density needs to increase, which makes the first problem even
worse i.e. computational time is even higher. The local density change in particle
also needs to be smooth and not abrupt. So, the increasing particle density is
not enough and it needs to be normalized to liquid/fluid particle density. In this
work, an analytical-numerical formulation is derived to model the wall boundary
in the context of MDPD. The derived wall model is capable of reproducing the
same effect as a traditional solid wall made of particles. The advantages of using
the proposed wall model are three folds and are as follows
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e The wall model is computationally cheaper than the traditional particle wall.
Several static and dynamic cases are used to demonstrate the efficiency of
the method. In some cases, the method can save as much as 90% of the
computational time.

e The density fluctuation near the solid-liquid interface is reduced to less than
0.1% of the traditional particle wall. The reduction of the density fluctuation
is done without increasing the particle density(which would further increase
the computational cost in a traditional particle wall).

e The wall model is normalized to the fluid density. This eliminates the dis-
crepancies of correct solid wall particle density in the literature. Without the
normalization, the Ay and contact angle relationship is different in different
literatures which physically should not be possible. With normalization,
there is only one value of contact angle for a certain A, Furthermore, the
model is also validated for high curvature surface and example of a solid
sphere within a droplet is demonstrated.

In this work, several static cases of solid-fluid interaction are chosen to demon-
strate the capability of the method. In chapter 4, a dynamic case is chosen to
demonstrate the wall model robustness. In this case, a solid sphere is transported
inside the droplet on a surface due to a wettability gradient. The solid sphere
and solid wall are modeled using the wall boundary model. This example also
demonstrates the wall boundary model’s capability in handling high curvature
surfaces. Furthermore, the effect of solid sphere radius, wettability gradient, and
droplet radius is also studied.

Even when the numerical simulations are performed in continuum methods,
the particle methods can be used to make them more efficient. In all structural
dynamics(and fluid dynamics) simulations, mesh generation is a critical step in
terms of the quality of the mesh and mesh generation time. In this dissertation, a
novel particle method for isotropic unstructured mesh generation is developed. In
structural dynamics, the speed of mesh generation is very important as there might
be a need to remesh the system if the initially generated mesh is failing(mesh dis-
tortion) with high-speed dynamics(deformation). The mesh generation becomes
even more challenging when the domain is very complex(e.g. curved interface).
Thus both the quality and the speed of mesh generation are important. In this
work, both are solved efficiently. In the current literature, most of the mesh gen-
eration methods are based on either Delaunay triangulation, Octree method, or
Advancing front methods and all of those have some drawbacks. The proposed
particle method is capable of generating two-dimensional and three dimensional
isotropic unstructured mesh with high quality.
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Particles in the domain have a varying cutoff radii and densities and interact
with each other based on a given potential. The cutoff radius and density depend
on the desired refined profile. The desired refinement profile is a surface func-
tion(for two dimensions) or a volume function(for three dimensions). The total
number of particles in the system depends on the desired refinement Next, the
particles are filled in the system, and the system is left to reach equilibrium. The
time to reach equilibrium depends on the system volume, initial condition, force
potential, and numerical scheme. A Voronoi-Tessellation-Delaunay-Triangulation
is also developed for two dimensions and three dimensions. VT-DT is used to
create a mesh from the particle position. The obtained mesh consists of triangu-
lar elements (two-dimensional) and tetrahedral elements (three-dimensions). The
method has the following contributions.

e The particle method is capable of generating an isotropic unstructured mesh
for any shape or geometry.

e The mesh has full independence on the desired refinement. It is possible to
have very refined mesh in some sub-region of the geometry and bigger mesh
in others.

e Depending on the complexity of the domain, different numerical schemes
are proposed to prioritize speed or stability.

For the mesh, several two-dimensional and three-dimensional benchmark cases
are used to demonstrate the capability of the proposed method. Several examples
from the non-engineering fields are also demonstrated. The speed of the mesh
generation method is fast and thus can be used in places where remeshing is
required.

For two-dimensional cases, the final mesh obtains is triangular while tetrahe-
dral shape grids are generated for three-dimensional cases. The mesh quality is
also examined and demonstrated by checking the overall skewness of the grids and
the skewness of the most skewed grid. Although in the current work, the parti-
cle method also has a few limitations such as only isotropic unstructured mesh
can be generated. Oftentimes, it might be required to generate structured mesh
or anisotropic unstructured mesh. The work, however, is a good beginning for
mesh generation using the particle approach and future recommendations will be
described in the next section.
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Figure 6.1: An example of generating a structured mesh for a non-rectangular
geometry [4][5]

6.2 Future Recommendation

The wall boundary method for MDPD derived in this work eliminates the
density fluctuation near the liquid-solid interface and also reduces the compu-
tational cost with traditional particle wall. The model is accurate for the wall
with a radius of curvature more than three times the cutoff radius of the parti-
cle. The wall boundary model for the surface with a lower radius of curvature
can be done using a similar analytical-numerical approach. In the present work,
the wall boundary model has been used for solid sphere transport using a liquid
droplet on a surface with a wettability gradient. The model can also be used for
other mesoscale complex fluid cases such as coalescence-induced droplet umping,
droplet bouncing from a hydrophobic surface and surface energy-induced droplet
jumping. The wall boundary model can also be extended to other versions of DPD
such as Energy Dissipative Particle Dynamics and Smoothed Dissipative Particle
Dynamics. Furthermore, the wall boundary model is not specific to DPD, it can
also be applied to other particle methods such as SPH. That will enable other
particle methods to reduce computational time significantly and get rid of any
density fluctuations near the wall if any. The mesh generation model presented
in this work is capable of generating isotropic unstructured mesh. The current
model can further be improved by adding the capability of generating anisotropic
unstructured mesh. Anisotropic unstructured mesh can decrease the total num-
ber of grids by a large amount. If the gradient of physical properties is high in
only one direction, then the desired number of grids is high only in that direction.
This modification can be achieved by adding a weighting factor to the axes. In
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addition, a structured mesh can also be generated using this model. Structured
meshes are simple and more efficient. A structured mesh also requires significantly
less memory on the computer, which results in the lower computational cost for
the simulation. Since structured mesh has all neighbor defined well, accessing the
property of the neighboring cell is much easier(e.g. can be stored in an array and
neighboring cell can be accessed by i + 1,7 — 1). Although generating structured
mesh is very challenging but normalizing or mapping the domain to a simpler
domain and then generating the mesh(see Figure 6.1). Although mapping the
domain to a simpler (e.g. rectangular domain) is a simple process but it does not
work for all geometries. An efficient method of generating structured mesh that
can be useful for several applications and make simulations more efficient.
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