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Abstract

Motivation: Single nucleotide variant (SNV) detection procedures are being utilized as never before

to analyze the recent abundance of high-throughput DNA sequencing data, both on single and mul-

tiple sample datasets. Building on previously published work with the single sample SNV caller

genotype model selection (GeMS), a multiple sample version of GeMS (MultiGeMS) is introduced.

Unlike other popular multiple sample SNV callers, the MultiGeMS statistical model accounts for en-

zymatic substitution sequencing errors. It also addresses the multiple testing problem endemic to

multiple sample SNV calling and utilizes high performance computing (HPC) techniques.

Results: A simulation study demonstrates that MultiGeMS ranks highest in precision among a se-

lection of popular multiple sample SNV callers, while showing exceptional recall in calling common

SNVs. Further, both simulation studies and real data analyses indicate that MultiGeMS is robust to

low-quality data. We also demonstrate that accounting for enzymatic substitution sequencing

errors not only improves SNV call precision at low mapping quality regions, but also improves re-

call at reference allele-dominated sites with high mapping quality.

Availability and implementation: The MultiGeMS package can be downloaded from https://github.

com/cui-lab/multigems.

Contact: xinping.cui@ucr.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, a precipitous fall in the costs of DNA sequencing has

led to a similarly precipitous rise in the amount of available DNA

sequencing data. Using such data, projects such as the 1000 Genomes

Project (Consortium, 2012) and the International HapMap Project

(The International HapMap 3 Consortium, 2010) have done much to

catalog human genetic variation. Such projects have put an emphasis

on sequencing multiple samples, as it has been demonstrated that
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given a fixed sequencing budget, the total number of population vari-

ants identified can often be increased by decreasing the coverage and

increasing the number of samples sequenced (Le and Durbin, 2011).

This is, in fact, a motivation for the 1000 Genomes Project low-cover-

age pilot project (1000 Genomes Project Consortium et al., 2010).

As single nucleotide variants (SNVs) are the most common type

of sequence variation, many data analysis tools have been created to

detect SNVs from DNA sequencing data. However, the prevalent

single sample SNV detection procedure has proved insufficient with

the availability of data from multiple samples.

There are generally two possibilities for SNV detection using sin-

gle sample SNV callers on multiple sample data. First, it is possible

to pool the multiple sample data, and run single sample SNV callers

on all the data as if it were one sample. This can, however, reduce

the number of legitimate SNV calls, as rare SNVs are often dis-

missed as errors. Also, pooled data genotype calls may not be indica-

tive of the true sample genotypes. For example, if half of the samples

are homozygous reference and the other half are homozygous vari-

ant, then the pooled genotype call will likely be heterozygous, even

when none of the samples are such.

Second, single sample SNV callers can be run on all the samples

independently and the output SNV call lists can be combined. This

procedure may be useful if the analysis objective is to find variants

unique to individual samples. However, for the most part, this pro-

cedure will greatly inflate the false positive rate.

A common solution to these issues is the development of multiple

sample SNV callers. These procedures utilize data from multiple

samples to identify both common and rare SNVs, as well as SNVs

which may have limited support across multiple samples. The

amount of SNVs called would generally be between that of the two

possibilities mentioned above. That is, the goal of multiple sample

SNV callers is to have a good balance of precision and recall with re-

spect to all the samples analyzed.

There are, however, concerns with currently available multiple

sample SNV callers. A primary concern is how to utilize all import-

ant and available information to accurately call SNVs from multiple

samples. Other concerns include the resulting multiple testing prob-

lem that arises, computational performance and robustness to low-

quality sequencing and alignment data.

All of these concerns are addressed with the multiple sample

genotype model selection (MultiGeMS) SNV caller, which will here

be introduced. MultiGeMS builds on the previously published single

sample SNV caller GeMS (You et al., 2012), and estimates sample

genotypes and genotype probabilities for possible SNV sites. Unlike

other popular multiple sample SNV callers, the MultiGeMS statis-

tical model accounts for enzymatic substitution sequencing errors.

Also, in consideration of the multiple testing problem associated

with SNV calling, SNVs are called using a local false discovery rate

(lFDR) estimator. Further, MultiGeMS utilizes high performance

computing (HPC) techniques for computational efficiency and is ro-

bust to low-quality sequencing and alignment data.

2 Methods

The MultiGeMS procedure is motivated by a consideration of the

sequencing by synthesis procedure used by the Illumina HTS plat-

form. Before the well-known stages of base-calling, alignment and

SNV calling, there are many steps leading up to sequencing by syn-

thesis. These steps begin with the acquisition and fragmentation of

the DNA samples to be sequenced, and then include various proced-

ures involving enzymatic binding of complimentary bases. These

procedures include fragment end repair, PCR amplification, bridge

amplification and the pre-base-calling sequencing by synthesis. Each

time bases are enzymatically bound together, a base substitution

error is possible. For example, the non-complimentary bases A and

G may bind. Likewise, C and T may bind in error. When this hap-

pens, a base sequenced by the sequencing by synthesis process may

be in conflict with the alleles of the underlying genotype, leading to

downstream problems in base-calling, alignment and SNV calling.

While recent advances in Illumina platform sequencing and variant

calling pipelines have mitigated many types of sequencing errors, the

MultiGeMS procedure, as a multiple sample SNV caller accounting

for such enzymatic substitution sequencing errors, represents a sub-

stantial contribution to variant calling (see Supplementary Materials

Section 1).

The MultiGeMS procedure requires a FASTA genome reference

file and corresponding Illumina HTS platform alignment data in the

form of PILEUP files for each sample. Hence, sites on the reference

file with a corresponding allele pileup are associated with their refer-

ence base R, observed alleles aligned to the site, and associated base-

calling and alignment quality scores. MultiGeMS assumes alignment

data from a diploid organism, and thus, in theory, a maximum of

only two alleles should be observed in the allele pileup at a site of

any sample. MultiGeMS further assumes that one of these alleles is

R, while the other is the site’s most prevalent non-reference allele N,

which is the observed non-reference allele mode taken after pooling

the site’s sample allele pileups (justification of this assumption and

commentary on triallelic sites is provided in Section 2 of the

Supplementary Materials). At each site, only R and N are con-

sidered. All other alleles in a pileup are discarded Table 1 summa-

rizes the notation used by MultiGeMS as expressed below.

Assuming s samples, let Xij 2 fR;Ng denote the jth

(j 2 f1; 2; . . . ;nig) observed allele from sample i at a particular site

on the reference genome. Given a sample i, all the Xij obtained from

the aligned HTS reads at a given genomic site are independent. Each

site is also assumed to be independent and all the samples are

assumed to be independent. Further, let Yij 2 fR;Ng be defined as

the unobserved ‘sequencing’ allele associated with Xij, that is, the

base that is sequenced in the sequencing by synthesis procedure.

Finally, let Gi be the unobserved genotype associated with sample i,

Table 1. MultiGeMS notation

Notation Explanation

i 2 f1; . . . ; sg sample index

fXijg ni alleles consisting of reference alleles (R) and

‘most prevalent non-reference’ alleles (N); other

alleles discarded

fGig unobserved genotypes

g 2 fRR;RN;NNg; PðGi ¼ gÞ ¼ pg

Yij unobserved ‘sequencing’ allele associated with Xij

qg
k PðYij ¼ kjGi ¼ g; lRN ; lNRÞ where k 2 fR;Ng

lRN, lNR ‘sequencing’ allele (Yij) mutation rates simultan-

eously estimated over (0,0.5] from all samples,

where lRN ¼ PðYij ¼ NjGi ¼ RRÞ and

lNR ¼ PðYij ¼ RjGi ¼ NNÞ
wij ‘weight’ of Xij, based on base-calling and alignment

scores

Dij fXij;wijg
Di fDij : j 2 f1; . . . ; nigg, the observed allele data

h set of 5 parameters: fpgg, lRN, lNR

ei;g PðGi ¼ gjDi; hÞ

Given the assumption that each site is independent, only one site is con-

sidered at a time, and hence a site index variable is not necessary.
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which, in the MultiGeMS framework, can be either RR, RN or NN.

PðGi ¼ gÞ, the probability of genotype g, is notated by pg.

Revisiting the enzymatic base substitution errors described

above, let lRN be the probability that Yij ¼ N, assuming the geno-

type Gi ¼ RR. That is, because of enzymatic base substitution

errors, the ‘sequencing’ allele may not be representative of the geno-

type. Likewise, let lNR ¼ PðYij ¼ RjGi ¼ NNÞ. The MultiGeMS

procedure estimates these ‘sequencing’ allele mutation rates. The

probability expressions of YijjGi are derived in Section 3 of the

Supplementary Materials and are listed in Table 2, where

qg
k ¼ PðYij ¼ kjGi ¼ g;lRN ;lNRÞ: (1)

MultiGeMS also utilizes the Phred-scaled base-calling (Bij) and

alignment (Mij) quality values for each observed allele (Xij).

Specifically, the minimum of an aligned allele’s PðCorrect Base-CallÞ
and PðCorrect AlignmentÞ is taken as the accuracy or weight of that

aligned allele. Given the Phred quality scoring scheme, this weight is

given as follows.

wij ¼ minfPðCorrect Base-CallÞ;PðCorrect AlignmentÞg

¼ 1� 10�0:1minfBij ;Mijg (2)

Collectively, the observed allele data, fXij;wijg, is notated Dij.

Given a correct base-call and alignment, we can assume that

Xij ¼ Yij. We, therefore, propose the following probability distribu-

tion for XijjYij.

PðXij ¼ YijjYijÞ ¼ wij

PðXij 6¼ YijjYijÞ ¼ 1�wij (3)

Figure 1 demonstrates the relationship between Gi, Yij and Xij.

The conditional likelihood of the data given the genotype is

given by the following, where Ið�Þ represents the indicator function.

PðDijGi ¼ g; lRN ; lNRÞ

¼
Yni

j¼1

PðDijjGi ¼ g; lRN; lNRÞ

¼
Yni

j¼1

X
k2fR;Ng

½PðXij;wijjYij ¼ kÞ�PðYij ¼ kjGi ¼ g; lRN; lNRÞ

¼
Yni

j¼1

X
k2fR;Ng

½wIðXij¼kÞ
ij ð1�wijÞIðXij 6¼kÞ�qg

k (4)

Further, assuming that the samples are independent, the com-

plete log-likelihood with parameter h ¼ {pRR, pRN, pNN, lRN, lNR}

and unobserved G ¼ ðG1; . . . ;GsÞ is as follows.

lðhjD;GÞ

¼ logPðDjG; hÞPðGjhÞ

¼ log
Ys

i¼1

Y
g

½PðDijGi ¼ g;lRN ;lNRÞPðGi ¼ gjpgÞ�IðGi¼gÞ

¼
Xs

i¼1

X
g

IðGi ¼ gÞflogPðDijGi ¼ g; lRN ; lNRÞ þ logpgg (5)

The MultiGeMS procedure begins by identifying sites that could

possibly be a SNV. Then, using the above complete log-likelihood, it

runs an EM algorithm estimation procedure (see Supplementary

Materials Section 3) on said sites to accurately genotype both these

sites and the multiple samples at these sites. This multiple sample

genotyping process, or multi-sample genotype model selection, in-

volves calculating the probabilities for the genotypes RR, RN and

NN, and then selecting the genotype with the largest associated

probability. Further, using the local false discovery rate (lFDR) re-

sult in Muralidharan et al. (2012), MultiGeMS then addresses the

multiple testing problem endemic to SNV detection by calling SNVs

if ^lFDR � 0:1 (see Supplementary Materials Section 4). ^lFDR is

given below, where ci are the coverage weights, ei;RR ¼ PðGi ¼ RRj
Di; hÞ and the asterisk (�) indicates final EM iteration values.

^lFDR ¼ exp

X
i

cilogðe�i;RRÞ
X

i

ci

2
664

3
775 (6)

^lFDR is a coverage-weighted geometric mean of fe�i;RRg, where

each e�i;RR is dependent on the estimated ‘sequencing’ allele mutation

rates (l̂RN; l̂NR), the observed alleles (fXijg) and the quality weights

(fwijg). The effect of estimating the ‘sequencing’ allele mutation

rates is to increase SNV calling power at sites dominated by R alleles

(see Section 3.2). In particular, assuming high base-calling and map-

ping quality data, a non-zero estimate of lNR ¼ PðYij ¼ RjGi ¼ NNÞ
allows for the possibility of an enzymatic base substitution error at

bases observed as R, increasing the likelihood of a SNV call determin-

ation. Alternatively at such sites, when lNR is estimated to be near 0,

MultiGeMS is more conservative in its SNV calling, determining only

those sites with extensive evidence of a variant.

3 Results

3.1 Simulation study
To validate the MultiGeMS procedure, we conducted a simulation

of 10 samples of HTS data from the roughly 2.5 Mbp

Thermoanaerobacter sp. X514 reference. Each sample was simu-

lated at an average of 50� coverage using DWGSIM (http://source

forge.net/projects/dnaa/). The data were simulated with three levels

of SNVs: ‘population’ (the set of simulated variants which are pre-

sent in the reads of all samples), ‘group’ (the set of simulated vari-

ants which are present in the reads of a certain subset of samples)

and ‘individual’ (the set of simulated variants which are present in

Table 2. qg
k , given for k 2 fR;Ng and g 2 fRR;RN;NNg, as ex-

pressed as a function of flRN ; lNRg

k ¼ R k ¼ N

g ¼ RR 1� lRN lRN

g ¼ RN 1
2 ð1� lRNÞ þ 1

2 lNR
1
2 lRN þ 1

2 ð1� lNRÞ
g ¼ NN lNR 1� lNR

Unobserved Gi

q
g
k

Unobserved Yij

wij

Observed Xij

Fig. 1. The relationship between Gi, Yij and Xij. The genotype Gi associated

with sample i at a particular site is unobserved. As is probabilistically mod-

eled by qg
k , the unobserved ‘sequencing’ allele, Yij, depends on Gi. Finally, the

observed allele, Xij, depends on Yij and wij
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the reads of only a single sample) SNVs. All samples were simulated

with the population SNVs at a rate of 0.625 per 1000 bp. The group

SNVs were simulated at a rate of 0.3125 per 1000 bp, with half the

samples simulated with group ‘A’ SNVs and the other half simulated

with group ‘B’ SNVs. Finally, each sample was simulated with indi-

vidual sample SNVs at a rate of 0.0625 per 1000 bp. Hence, the

overall SNV rate in every sample was 1 per 1000 bp and the total

number of simulated population, group and individual sample SNVs

were kept roughly the same: 1536, 1536 and 1541, respectively.

Also, it is noteworthy that the DWGSIM option -Q 30 was utilized

to simulate a large standard deviation in the base-calling quality

scores, which can lead to downstream alignment and variant calling

difficulties. The full details of the simulation study are given in

Table 3 of the Supplementary Materials.

MultiGeMS and four popular multiple sample SNV detection

procedures were run on the BWA (Li and Durbin, 2009) aligned

simulation data: FreeBayes (Garrison and Marth, 2012), GATK

(DePristo et al., 2011; McKenna et al., 2010), SAMtools (Li et al.,

2009) and VarScan (Koboldt et al., 2012). For comparison, the two

methods of calling SNVs on multiple samples using a single sample

SNV caller, as described in Section 1, are demonstrated using single

sample GeMS (You et al., 2012). ‘GeMS’ represents the results from

running GeMS on each sample and then combining the resulting

SNV call lists. ‘GeMS-pooled’ represents the results from pooling all

the sample alignment files into one alignment file using BamTools

(Barnett et al., 2011), and then running GeMS on this file.

FreeBayes, GATK, SAMtools and VarScan are also capable of single

sample SNV detection, hence these SNV callers can also be imple-

mented with the aforementioned pooling methods. The overall re-

sults, presented with each SNV caller’s recall, precision and F-score

(the harmonic mean of precision and recall), are given in Table 3.

The ‘CPU Time (min)’ and ‘Max Memory (MB)’ columns of Table 3

will be discussed in Section 3.3. While FreeBayes, GATK, SAMtools

and VarScan are able to detect variants other than SNVs, for ex-

ample insertions and deletions, the release version of MultiGeMS as

described herein is limited to SNV detection. Hence only the SNV

call output of all the tested procedures were compared, without re-

gard to whether these procedures also, by default, detected other

types of variants (which may have impacted needed computational

resources and the SNV call results themselves). See Section 4 for fur-

ther details on the detection of indels and other variant types.

As shown in Table 3, the SNV callers were conservative in gen-

eral, other than GATK and GeMS. GATK was relatively aggressive,

favoring recall over precision and even calling over 900 more sites

than the total simulated SNV count. Likewise, the GeMS results

demonstrate the issues occuring when single sample SNV call lists

are combined. Despite having the greatest overall recall, GeMS has

the second lowest F-score because of its poor precision. Hence, be-

cause of the resulting inflated false positive rate, the GeMS method

is not recommended, unless perhaps, when searching for rare SNVs.

The best balance of precision and recall, as measured by the

F-score, can be seen in the performance of FreeBayes, with

MultiGeMS as a close second. Each of the other SNV calling results,

such as those from GATK or SAMtools, show a greater relative

weakness in either precision or recall, but not both. Thus, because of

the large standard deviation of the simulated base-calling quality

scores, we can see that FreeBayes and MultiGeMS are robust to

low-quality sequencing data. Of special note is the perfect precision

of MultiGeMS. The only other SNV caller with a precision of 1 is

VarScan, but it also has the lowest recall and F-score values.

The recall results, in Table 4, help us to understand more about

the temperament of each SNV caller with respect to the simulated

population, group and individual SNVs. For example, all the SNV

callers, other than SAMtools, demonstrate better recall for the popu-

lation SNVs compared to the individual SNVs. This behavior is ex-

pected as the population SNV sites would have a higher variant

signal than individual SNV sites. In general, a relatively large num-

ber of variant genotype samples would provide a higher variant sig-

nal, and hence, such a site is more likely to be called a SNV

(naturally, multiple sample SNV caller VCF output indicates the

genotype calls for each sample). Also as expected is the extremely

low individual SNV recall of GeMS-pooled. Since the alignment

data from the 10 samples were pooled into one file, any variant

simulated in just one of the samples would have very low variant sig-

nal. Hence, the GeMS-pooled method is not recommended for mul-

tiple sample data, unless perhaps, when searching for common

SNVs. In contrast to the GeMS-pooled results, the low group and in-

dividual SNV recall results of VarScan does not result from the data

being pooled, as the output VCF file contains columns for each of

the 10 samples.

Table 3. Simulation study results

Count Recall Precision F-score CPU Time (min) Max Memory (MB)

FreeBayes 4476 0.9596 0.9877 0.9735 80.3 204

MultiGeMS 4141 0.8988 1.0000 0.9467 17.5 24

GATK 5574 0.9761 0.8068 0.8834 11.6 1211

SAMtools 3619 0.7541 0.9599 0.8446 29.5 39

GeMS-pooled 3166 0.6544 0.9523 0.7758 10.8 416

GeMS 7843 0.9774 0.5741 0.7234 16.7 417

VarScan 2013 0.4369 1.0000 0.6082 45.6 993

The results are sorted in descending order of F-score, which is the harmonic mean of the SNV caller precision and recall. Total CPU time in minutes and max-

imum procedure memory in megabytes (MB) utilized by the SNV callers running on a single thread for the simulation study analysis are provided in the two far

right columns, respectively.

Table 4. Simulation study recall results, by level of SNV

Count Population Group Individual

GeMS 7843 0.9818 0.9831 0.9676

GATK 5574 0.9792 0.9798 0.9676

FreeBayes 4476 0.9596 0.9661 0.9513

MultiGeMS 4141 0.9772 0.9805 0.7398

SAMtools 3619 0.4805 0.9785 0.8027

GeMS-pooled 3166 0.9818 0.9831 0.0019

VarScan 2013 0.9245 0.3730 0.0143

The results are sorted in descending order of the SNV count.
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Of note is the exceptional population and superior group recall

values of MultiGeMS compared to the other multiple sample SNV

callers. However, the reason for FreeBayes’ superior overall F-score

in Table 3, is the lower individual SNV recall of MultiGeMS. When

greater individual SNV recall is required, a larger lFDR threshold

can be used, though this is not generally recommended (see

Supplementary Materials Section 4). The results of various lFDR

threshold values can be seen in Table 5. Though it is notable that

the MultiGeMS F-score at the lFDR threshold of 0.4 is slightly

greater than that of FreeBayes, we acknowledge that the results of

any SNV caller can be filtered in various ways to suit the user’s ob-

jectives. Table 4 of the Supplementary Materials provides the

MultiGeMS simulation study recall results by lFDR threshold and

level of SNV. There we see that increasing the lFDR threshold

greatly increases the individual SNV recall results, without much af-

fecting the recall results of the population or group SNVs.

As we can see, MultiGeMS demonstrates perfect precision along

with robustness to low-quality sequencing data. It also boasts excep-

tional recall of simulated population and group SNVs. However,

care is needed when using MultiGeMS on multiple sample data

known to harbor individual or rare SNVs.

3.2 Human data analysis
In addition to simulated data, the MultiGeMS procedure was also

validated using data from 10 human samples. The 10 samples are

NA12878 and NA12877, and 8 of their offspring: NA12879,

NA12880, NA12882, NA12883, NA12885, NA12886, NA12888

and NA12893. These data were retrieved from ‘WGS sequencing

BAMs for the entire pedigree produced by Illumina as part of their

Platinum project’, additionally a ‘gold standard variant dataset’ is

available from the Genome in a Bottle Consortium (https://sites.stan

ford.edu/abms/content/availability-phase-consistent-gold-standard-

variant-set-na12878-and-rtgtools-software). As many SNV callers,

MultiGeMS treats all samples, such as the 10 samples from the

aforementioned family, independently. However, work has been

done to model family relationships in variant calling, for example,

see Li et al. (2012). The full details of this human data analysis are

given in Table 6 of the Supplementary Materials. Also, Section 5 of

the Supplementary Materials considers the addition of an unrelated

sample to this human data analysis.

The aforementioned SNV callers were run on the data isolated to

chromosomes 18-22. As shown in Table 6, MultiGeMS displays

good precision and recall, but is not top-ranked in terms of these

metrics or F-score. Also, as in Section 3.1, we see the superiority of

MultiGeMS to GeMS and GeMS-pooled.

As indicated in Section 2, an accounting of enzymatic substitu-

tion sequencing errors provided motivation for the MultiGeMS

SNV caller. It is evident that bases with such errors may be high in

base-calling quality, and the corresponding read mapping quality

will also be high if only a small number of mismatches occurs. For

samples at a given genomic site where R is the dominant allele, the

estimated lNR is often larger than the estimated lRN, suggesting that

the R allele is more likely to be perceived as an enzymatic base sub-

stitution error than the N allele. This would increase the likelihood

for an RN or NN genotype call and therefore a SNV call. If lRN and

lNR are assumed to be zero, as is the case with many other SNV call-

ers, a SNV call will be most likely missed at such sites.

On the other hand, at a site where N is the dominant allele, the

estimated lNR is often smaller than the estimated lRN, suggesting

that the R allele is less likely to be perceived as an enzymatic base

substitution error than the N allele. This would increase the likeli-

hood for an RN genotype call and therefore lead to a SNV call. If

lRN and lNR are assumed to be zero, as is the case with many other

SNV callers, the likelihood of the NN genotype call will be high

which will still lead to a SNV call. Therefore, as shown in Table 7,

we see the increased SNV calls at R allele-dominated sites and only

a slight increase in SNV calls at N allele-dominated sites.

Sometimes bases with enzymatic substitution sequencing errors

may be high in base-calling quality but low in read mapping quality

if many mismatches occur. Although mapping-quality-based SNV

detection methods will most likely not make a SNV call if the map-

ping quality score is low, MultiGeMS takes extra caution in making

SNV calls in this situation. For the cases such as RR! N ! N

(Gi ! Yij ! Xij, as in Fig. 1) with low mapping quality scores, if

lRN is not very close to 0, the low wij and high estimated lRN will

inhibit a MultiGeMS SNV call. This possibly explains the marginal

better performance of MultiGeMS in low-mapping quality regions

as shown below.

Consider the union of the sites called by the multiple sample

SNV callers and those sites validated as SNVs on chromosome 22

(the analyzed chromosome with the lowest average read mapping

quality).We can divide these sites by average mapping quality quar-

tiles and compute the F-score for each SNV caller. Let us call the set

of such sites with average mapping quality between the minimum

and the first quartile as ‘quarter 1’, the set of such sites with average

mapping quality between the first quartile and the median as ‘quar-

ter 2’, and so on. As shown in Table 8, MultiGeMS is the top-ranked

SNV caller, in terms of F-score, in quarter 1. That is, MultiGeMS

has the advantage at low mapping quality sites.

Table 5. MultiGeMS simulation study results

Count Recall Precision F-score

0.1 4141 0.8988 1.0000 0.9467

0.2 4308 0.9347 0.9995 0.9660

0.3 4438 0.9538 0.9901 0.9716

0.4 4510 0.9635 0.9843 0.9738

0.5 4638 0.9698 0.9633 0.9666

The results are sorted by the lFDR threshold values in the first column.

Table 6. Human chromosomes 18–22 data analysis results

Count Recall Precision F-score

SAMtools 522 597 0.9858 0.8544 0.9154

VarScan 519 860 0.9766 0.8509 0.9094

MultiGeMS 543 457 0.9874 0.8229 0.8977

FreeBayes 552 472 0.9690 0.7944 0.8730

GeMS-pooled 499 267 0.8390 0.7612 0.7982

GeMS 715 224 0.9858 0.6243 0.7645

GATK 799 770 0.9954 0.5637 0.7198

The results are sorted in descending order of F-score.

Table 7. SNV call counts for two versions of MultiGeMS, the regu-

lar version (second column) and the l � 0 version (third column),

by sites of various R allele proportion values

R Proportion Count Count (l � 0)

½0:75; 1� 136 993 192

½0:5; 0:75Þ 173 011 48758

½0:25; 0:5Þ 103 626 99466

½0; 0:25Þ 129 827 128688
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In considering the performance of the SNV callers with rare

SNVs, HTS alignment and validated variant data from one unre-

lated human sample can be analyzed along with the 10 related

human samples as described above. The unrelated sample, identified

as 1245 (data available upon request), was sequenced as part of a

clinical trial and is not distinguished with any unusual genetic or

data characteristics. The results for chromosomes 18–22 are pro-

vided in Table 9. Compared with Table 6, we see that other than the

GeMS-pooled precision, the SNV caller performance metrics have

all decreased. This indicates that the unrelated sample data is noisy

relative to the data of the 10 related samples. It is of interest to note,

however, that the relative ranking of MultiGeMS, with respect to

the F-score, has increased from the third to the first position. See

Section 5 of the Supplementary Materials for more details.

3.3 Computational performance
Both the CPU time in minutes and the memory usage in megabytes

(MB) were recorded for the tested SNV callers for both the simula-

tion study in Section 3.1 and the human chromosome 22 analysis in

Section 3.2. The computational resources used during the data pre-

processing necessitated by GeMS, GeMS-pooled, MultiGeMS and

VarScan were also recorded.

For the simulation study analysis, the specifications of the com-

puter used are CPU: AMD OpteronTM Processor 6376 2.3 GHz and

RAM: 512 GB. Total CPU time and maximum procedure memory

utilized by the SNV callers running on a single thread are provided

in Table 3, whereas other computational performance details are

given in Table 5 of the Supplementary Materials. It is noteworthy

that the MultiGeMS procedure has the lowest memory requirement

of all the tested SNV callers. Also, MultiGeMS outpaces all the mul-

tiple sample SNV callers other than GATK. Though, while GATK

requires 5.9 fewer minutes than MultiGeMS, its memory require-

ment is roughly 50 times greater than MultiGeMS.

For the human chromosome 22 analysis, the specifications of the

computer used are CPU: AMD OpteronTM Processor 6136 2.4 GHz

and RAM: 16 GB. The single thread results are listed in Table 10.

Also, since MultiGeMS and GATK have multiple thread options,

the results of these SNV callers running on four threads are listed in

Table 7 of the Supplementary Materials.

A disparity can be seen in the RAM utilized in GATK and

VarScan compared to the other multiple sample SNV callers. Since

GATK and VarScan are based on the Java programming language,

they tend to utilize more of the available memory than the SNV call-

ers written in C (SAMtools) or Cþþ (MultiGeMS, FreeBayes).

Given single thread processing, Table 10 identifies MultiGeMS

as the most memory efficient SNV caller. It is also the second fastest,

in terms of total CPU time. As seen in Table 7 of the Supplementary

Materials, running on multiple threads can further improve the

MultiGeMS SNV calling time. This, however, comes at a cost of

using more memory. In particular, though GATK on 4 threads can

complete the SNV calling in about 3 h, 11 GB of RAM are utilized.

The performance of MultiGeMS on four threads seems more reason-

able, especially for computers with limited RAM, requiring less than

3.5 h and much less RAM.

Given these results, it is expected that modern high-performance

computers will have no difficulties in performing the SNV calling

procedures described in Section 3. For computers with limited re-

sources, multiple sample SNV callers based on C/Cþþ, especially

MultiGeMS and FreeBayes, will be especially efficient.

4 Discussion

Since each genomic site is considered independently in the

MultiGeMS likelihood, analysis of each site can be parallelized for

simultaneous computation. Therefore, we have utilized parallel

computing based on the multi-core CPU framework (OpenMP tech-

nology, GNU C/Cþþ) for increased procedure performance.

The MultiGeMS software package currently supports the input

of the SAMtools pileup alignment format (http://samtools.source

forge.net/pileup.shtml) and will soon support SAM/BAM alignment

files (Li et al., 2009). For more information on filtering SAM/BAM

files before converting to SAMtools pileup files, please see the PDF

document entitled ‘Filtering Alignment Files’ (https://github.com/

cui-lab/multigems).

The MultiGeMS algorithm can be expanded to call other types

of variants, such as insertions and deletions, by extending the usage

of the N variable in the existing framework. This area of investiga-

tion would need to consider the impact of utilizing the base-call

quality scores when calling indels or other variant types, as com-

pared to SNVs. For users currently desiring an indel calling analysis,

procedures such as FreeBayes, GATK, SAMtools, VarScan or

DINDEL (Albers et al., 2011) are available and can be added to an

analysis pipeline. Likewise, procedures are available for the detec-

tion of other types of variation, such as copy number variation.

Table 8. Human chromosome 22 data analysis F-score results divided by mapping quality quarters

Quarter 1 Quarter 2 Quarter 3 Quarter 4

MultiGeMS 0.5127 (9319) 0.7747 (10 137) 0.9550 (23 976) 0.9772 (27 753)

SAMtools 0.4971 (9656) 0.8099 (9163) 0.9613 (23 610) 0.9784 (27 696)

VarScan 0.4929 (9254) 0.7912 (9426) 0.9589 (23 335) 0.9782 (27 390)

FreeBayes 0.4073 (13 284) 0.6614 (11 874) 0.9494 (23 141) 0.9777 (27 165)

GeMS-pooled 0.3906 (12 046) 0.6766 (11 173) 0.9230 (22 209) 0.9432 (25 856)

GeMS 0.2944 (22 607) 0.4803 (20 800) 0.9266 (25 490) 0.9764 (27 818)

GATK 0.2569 (26 829) 0.3872 (27 563) 0.8830 (27 921) 0.9717 (28 111)

The F-score and SNV count (in parentheses) are provided for each SNV caller and mapping quality quarter. The results are sorted in descending order of the

‘Quarter 1’ F-score values.

Table 9. Human chromosomes 18–22 data analysis results with an

additional unrelated sample

Count Recall Precision F-score

MultiGeMS 615 349 0.8628 0.7364 0.7946

VarScan 636 082 0.8608 0.7108 0.7787

SAMtools 654 780 0.8684 0.6966 0.7731

FreeBayes 666 385 0.8508 0.6706 0.7500

GeMS-pooled 410 884 0.5994 0.7662 0.6726

GATK 946 836 0.8802 0.4883 0.6282

GeMS 918 512 0.8818 0.5042 0.6416

The results are sorted in descending order of F-score.
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