
UC Irvine
ICS Technical Reports

Title
Static closure of Java dynamic class loading

Permalink
https://escholarship.org/uc/item/6zd8z1dh

Authors
Gal, Andreas
Probst, Christian W.
Franz, Michael

Publication Date
2003-09-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6zd8z1dh
https://escholarship.org
http://www.cdlib.org/

Static Closure of Java Dynamic Class Loading*

Andreas Gal Christian W. Probst Michael Franz
gal@uci.edu cprobst@uci.edu franz©uci.edu

Department of Computer Science
University of California, Irvine

Irvine, CA 92697-3425

September 10, 2003

Abstract

One of Java's most fundamental core concepts is dynamic class loading.
While being very practical in the general purpose domain, the runtime
cost of dynamic class loading poses a significant challenge for the de­
ployment of Java applications in embedded systems. In this paper we de­
scribe a mechanism called static class loading which allows to perform the
resource-intensive class loading process at compile-time while preserving
the full class-loading semantics as defined in the Java specification. This
eliminates the need for a byte-code interpreter and allows to translate all
Java code to native code ahead-of-time, saving valuable resources on the
target platform.

1 Motivation

Out of roughly eight billion processors produced in 2000, nearly 983 were used
in embedded systems [TenOO]. Deployment of microprocessors in the embedded
systems domain is driven by very much different forces than the desktop PC
market. While the PC domain is currently in the process of shifting from
32-bit processors to 64-bit architectures, the embedded system domain is still
dominated by 8-bit architecture accounting for well over 503 of all produced
units. As far as embedded systems are concerned, 32-bit processors are nearly
irrelevant (less than 0.53 market share) and 64-bit processors practically non­
existent. One can also not assume that the embedded systems market will

*Parts of this effort are sponsored by the National Science Foundation under ITR grant
CCR-0205712 ·and by the Office of Naval Research under grant N00014-01-1-0854. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and should not be interpreted as necessarily representing the official views, policies
or endorsements, either expressed or implied, of the National Science foundation (NSF), the
Office of Naval Research (ONR), or any other agency of the U.S. Government.

2

follow the lead of the desktop PC example and adopt more and more powerful
processing architectures just because the technology is available.

Embedded systems are mass produced and savings in the dimension of a
few cents per unit sum up quickly. Manufacturers thus always strive to keep
expenditures in terms of CPU power and memory as small as possible, but
as large as necessary to accomplish the task. Utilizing modern programming
languages such as Java [GJS96, LY96] in this domain is a significant challenge.

Besides the omnipresent resource constraint problem, an embedded system is
also very different from the common PC in many other ways. Most importantly,
embedded systems are usually dedicated systems. While a desktop PC can
be used for many different applications (many of which are installed after the
machine has been delivered to the customer), an engine control unit will spend
its entire lifetime performing exactly that one given task: controlling an engine.
Small bug-fixes and minimal feature improvements aside radical, changes are
very unusual for embedded systems software.

The Java programming language has been designed to be flexible and ex­
tensible - properties that do not necessarily apply to embedded systems in the
same sense that they apply to general purpose desktop computers. In particular,
the concept of dynamic class loading is deeply rooted in the Java execution
model. Class loading allows one to dynamically compose Java programs or to
extend them with additional functionality even at runtime. Unfortunately, this
degree of flexibility comes at very significant runtime costs as we will show in
the course of this paper. Unanticipated evolution as enabled by dynamic class
loading rarely occurs in embedded systems. Thus, the involved runtime costs
are even harder to justify. In this paper, we present an alternative approach to
dynamic class loading that is more suitable for embedded systems. Notably, our
approach reduces the runtime cost for class loading while fully preserving the
original Java class-loading semantics and is thus fully compatible with existing
Java library code and applications.

The remainder of this paper is organized as follows: In Section 2, we discuss
existing approaches to Java class loading and analyze their runtime-cost and
suitability for the embedded systems domain. Section 3 describes our Static
Class Loading (SCL) architecture and Section 4 reports about on prototype im­
plementation of this architecture. The paper ends with conclusions in Section 5
and a discussion of potential future work in Section 6.

2 Related Work

In this section we discuss different approaches to dynamic class loading. We look
into several classes of approaches to Java execution, from the CVM [Mic03], the
virtual machine provided by Sun for small devices, to the smallest available
specification, the J avaCard.

Class loading in the JVM [LY96J is controlled by a class loader. The JVM
uses several of such loaders for initializing the virtual machine and loading
system classes and the application itself. Beside those, an application can also

3

define its own class loaders for special purposes.
In general, the overall class loading process consists of five steps:

1. find and load the appropriate byte-code for the demanded class,

2. verify the byte-code,

3. link and place it into the JVM's data structures,

4. prepare and initialize the class, and

5. execute the constructor.

The result of the class initialization is an instance of j ava. lang. Class,
which identifies the class and is used for the creation of new instances of the
represented class.

Obviously, class loading is a complex process that is requiring not only a lot
of computing resources on the host, but also support from the runtime system.
Namely, the virtual machine needs to be able to locate and download byte-code
and, even more important, verify them. Byte-code verification is a cumbersome
task, and approaches targeting small and resource constrained systems restrict
the availability of loading classes at runtime, or even completely prohibit it.

The rules for loading classes are fixed in the JVM specification [LY96]. In
principle, a class is only loaded when needed. However, the JVM .can decide to
load classes ahead of time. The only restriction imposed is the order in which
loaded classes are initialized. Since beside the class itself the JVM also needs to
transitively load the superclasses and implemented interfaces, the class loading
process can be recursive.

The CVM is Sun's implementation of the CDC specification [Mic03]. Re­
garding class loading, it basically implements the process outlined above. Fig­
ure 1 shows a piece of code that is going to load a class, create an object of the
class and call a method on the object.

Class c = Class .forName("unloadedClass ");
Object o = c. new Instance ();
(unloadedClass) o .m();

Figure 1: Loading a class in Java

The elements needed are a class loader, which is going to look up the class's
byte-code, verify it and load it, the implementation for j ava. lang. Class, and
the JVM support in order to insert the class at runtime into the virtual machine's
data structures. Looking up the class will either load it from a local archive or
over a network connection, resulting in a delay. Additionally, the verifier is
going to need some time, delaying the class initialization even further. Figure 2
shows the size of some of the parts relevant to the class loading process for some
of the virtual machines discussed. The given numbers are approximate in that

4

some functionality is scattered over several object files. All the numbers have
been taken on 32 bit machines, since some of the technologies are not available
on 8 or 16 bit architectures. This in contrast to our approach that is able to
handle arbitrary architectures.

VM file size [kb]
component CVM KVM GCJ

class loading 10 10 9
verifier 43 13 110
interpreter 15 11 21
total 68 34 140

Figure 2: Object-file sizes of components relevant for class loading

Sun's CLDC specification defines the KVM [Mic99) as the virtual machine
for devices that provide very restricted resources. While "K" stands for kilobyte,
in a useful configuration the KVM needs closer to one megabyte of RAM than
merely kilobytes. In contrast to many other virtual machines for small devices,
the KVM allows class loading, however only using the standard class loader.
Additionally, it uses a two-step approach to verification - all classes need to
be preverified, resulting in class files that are annotated with stack maps, which
describe the possible stack states at run time. The verifier then only checks
these stack maps in linear time. The resulting annotated class files are on
average 12.53 bigger than the original ones, resulting in more storage space or
communication time needed. The preverifier itself is 115KB in size.

The KVM also supports the JavaCodeCompact utility, which combines Java
class files and generates a C file, that can be linked with the Java virtual ma­
chine. This allows reducing an application's footprint at the cost of restricting
dynamic class loading.

GCJ is the Java extension for the Gnu C compiler [Fre03]. It is a portable,
optimizing, ahead-of-time compiler and compiles Java source code and byte­
code to native machine code. The compiled applications are linked with the
GCJ runtime, namely libgcj, which provides the core class libraries, a garbage
collector, and a byte-code interpreter. Using this interpreter, the resulting native
code can dynamically load and interpret class files.

However, this offsets the benefits of native code generation. On the one
hand the resulting binary is small and fast, on the other hand an 8MB library
is needed to enable dynamic class loading.

As our prototype implementation, JPure [BBM+o1) translates mobile code
in its entirety into machine code before execution. While being originally
designed for small embedded controlle~s, the JPure project endeavored to scale
Java down to devices typical of that domain. The main reasons were the
inefficient code generation performed by the GNU Java Compiler (GCJ) and
the non-availability of small Java API subsets at that time. JPure did not deal
with dynamic class loading at all and instead partially rewrote Java libraries.
However, this is a cumbersome and error prone task that, even more important,

5

hinders the compilation of applications out of the box.
Even smaller Java implementations such as Tiny VM [Sol03b], leJ OS [Sol03a),

and J avaCard [Sun03) succeed in further reducing the VM overhead by dropping
dynamic class loading entirely . The lack of dynamic class loading support
causes the same engineering problems that have been previously observed in
JPure.

3 Static Class Loading

In this section we describe our Static Class-Loading approach, which maintains
the class loader semantics of the Java Virtual Machine (JVM), but saves re­
sources on the target system by performing class-loading at compile-time in
anticipation of actual class-loading requests at runtime.

As discussed in the previous section, in a traditional Java Virtual Machine
the runtime system performs a number of complex operations when a class is
to be loaded: First, the VM looks up the class in the file system, then parses
the class file and readies it for execution, which involves in many cases some
form of just-in-time (JIT) compilation. As a final step, static class members are
initialized if the class-loading request called for it.

Java class-loading requests are ubiquitous in the standard Java library im­
plementations distributed by Sun Microsystems. Even the smallest available
Java library version, the Java 2 Platform Micro Edition (J2ME) in its smallest
configuration, the Connected Limited Device Configuration (CLDC), contains
7 dynamic class-loading requests. The requested target class is in many cases
not unambiguously predictable.

Figure 3 contains a section from the implementation of the Character class
in the J2ME runtime library. In this example, dynamic class loading is used to
select dynamically at runtime an appropriate case converter. The actual target
class is selected using a user-configurable option (property).

ccName =
System. getProperty (11 j ava. lang. Character. caseConverter 11

);

if (ccName == null) {
ccName = 11 com. sun. cldc. i18n. uclc. Def aul tCaseConverter 11

;

}
Class clazz = Class.forName(ccName);
cc = (DefaultCaseConverter) clazz. newlnstance ();

Figure 3: Example for dynamic class loading in the J2ME runtime library

As discussed in the Section 2, previously many implementors of Java so­
lutions for small embedded systems decided to rewrite the runtime libraries
and application code to not use dynamic class loading. This approach has two
significant shortcomings. First of all, forking the J2ME runtime library requires
the implementor to track all future changes by Sun Microsystems to the library

6

as they have to be applied manually to the internal version. Unfortunately,
Sun Microsystems is notoriously known for frequent and incompatible changes
to Java's standard APis. Secondly, the resulting new library and application
code becomes suboptimal if it is used on a more powerful VM setting which
actually does offer dynamic class loading. In such environments, dynamic class
loading can be actually very beneficial as it reduces startup delays aiid overall
memory consumption as only classes really in use are instantiated. Thus, the
programmer is effectively forced to maintain two separate versions of the system,
one with dynamic class loading and one without. Such parallel code maintenance
is not only error prone but also not well supported by Java paradigms and tools.
For instance, the common c I c++ approach of using configurable preprocessors
directives is not available in standard Java.

To overcome this problem, we propose to use a very lightweight class-loading
approach which acknowledges the specific requirements of embedded systems
but still preserves the original Java class-loading semantics.

The major source for the overhead of dynamic class loading in terms of
resource consumption is the inherent support for unanticipated code evolution.
In a Java environment geared towards a desktop PC it is not unusual to in­
dependently evolve parts of deployed software by exchanging certain specific
system parts. This is also often refered to as component-oriented programming
(COP) [Szy98J. For a Java implementation for embedded systems it would
cause little limitation to drop support for dynamic evolution of system parts
after deployment. Instead, our approach requires all class files to be known at
compile time in their final version. Updating single class files after deployment
is not supported, but this is in practice no limitation for the vast majority of
embedded applications.

By having all class files available at compile-time, we are able to compile all
Java code to native machine code for the target device. Similar to J avaCode­
Compact (JCC) for KVM [Mic99] we discover the minimal subset of classes
needed for execution of the final Java application using Rapid Type Analysis
(RTA) [Bac98]. However, simply starting with the entry point of the Application
does not guarantee that all required classes will be available at runtime. As
shown in Figure 3, the application can use the class loader to refer to Java
classes by the textual representation of their name. Such relations would not
be discovered by the basic Rapid Type Analysis.

Instead, our approach requires the programmer to supply a list of classes
which the application could potentially request through the class loader. The
compiler merges this list with the classes the Java library is known to create and
performs a RTA on these classes as well to ensure complete full code coverage
for all potential execution paths.

Thus, in contrast to the traditional class-loading approach, in our archi­
tecture the compiler anticipates the loading of certain classes based on user­
supplied and discovered information and performs the actual class loading al­
ready at compile-time. All Java code of classes potentially subject to class
loading is compiled ahead-of-time just as the code of classes directly referenced
by the Java application.

7

To allow the runtime system to resolve classes .by name, the compiler gener­
ates a table containing information about all classes which might become subject
to class loading. The layout of this class descriptor table (CDT) is shown in
Figure 4. We chose to store this information in a dedicated table instead of
building our approach on top of the Java reflection mechanism, because the
minimal Java standard J2ME in which we are most interested does not offer
any reflective capabilities due to its high runtime cost.

javo.long.String object

"edu.uci.ics.j.unloodedCloss"

CDT

' --c-lo-ss-no-me--1 } CDT entry
~ s!Jltic initiolizer

default constructor

instance size

Figure 4: Class Descriptor Table (CDT) to allow runtime resolution of classes
by name

For each Class. getByName (...) request, the runtime system scans the
CDT for matching entries and then initializes the static class members by
calling the class initializer from the CDT entry. If a matching class is found, an
appropriate Class object is returned.

The Class object can be used to create new instances of that type us­
ing new Instance (...) . As the object size in allocation units is unknown at
compile-time for new Instance (...) invocations, and actually can even vary at
runtime depending on what particular class name is given, the CDT contains
a field providing this information. After allocating memory for the new object,
the runtime system invokes the default constructor provided by the CDT entry
to initialize the object.

The application (and the Java libraries) observe the same behavior as they
would see in case of a virtual machine with true runtime class loading. The only
limitation is that the compiler has to be able to anticipate classes which could
be requested at runtime. Requesting unanticipated classes returns a null Class
object to the caller of Class. getByName (...). As explained previously, we do
not consider this to be a significant limitation for the majority of embedded
applications.

4 Implementation and Benchmarks

In this section we report on our implementation of a Static Class Loader as part
of the byte-code compiler in our ProxyVM framework [VWG+03]. The main

8

emphasis here is on the size of the resulting class descriptor table and the code
needed to load it into the run time system.

The size of the class descriptor table is determined by the data structures
used to store information on classes, methods and fields. Figure 5 gives the
respective sizes for the K Virtual Machine (KVM), the Sun Microsystems CVM,
the GNU Java Compiler (GCJ), as well as for our Static Class-Loading approach
(SCL).

All sizes are calculated assuming 32-bit pointers as some of the technologies
we use for comparison are not available for 16-bit processors. Figure 5 shows
the advantage of ahead-of-time compilation, namely the ability to completely
remove information on fields and methods at compile time. We only store
information for virtual methods, that is the address, in the virtual method
table. Thus, the overall size of the complete class descriptor table can be
minimized. During the execution of HelloWorld, the KVM loads 125 classes
and the standard Java2SE virtual machine ioads 278 classes. Even for small
applications the memory savings can thus be tremendous. To shrink the needed
run time support further, we ensure that each entry in the class descriptor
table corresponds to the layout of j ava. lang. Class. A call to method for Name
simply scans the class descriptor table and returns a pointer to the entry instead
of creating a new object.

I data structure KVM CVM GCJ SCL

class 80 88 112 20
field 16 8 16 0
method 32 16 20 4

Figure 5: Data structure sizes in bytes for classes, methods, and fields on a 32
bit architecture

As pointed out in Section 2, another important number is the size of the
code that locates, loads, and verifies the actual class. Since in our compiler this
is done at compile time, we can optimize all parts beside the class descriptor
table and the code for finding a class. E.g., for HelloWorld, the size of the
actual class descriptor table as generated by our compiler together with the
code needed to search it is 3KB. The table itself contains 41 classes and 351
method references.

5 Conclusions

Current approaches to deal with dynamic class loading in embedded systems are
either to include a complete virtual machine into the target device or to abstain
from using class loading altogether. The virtual machine approach generates a
very significant runtime overhead, abstaining from class loading causes a number
of engineering and code-maintenance problems. We have presented Static Class
Loading as an alternative approach which preserves the class-loading semantics

9

of the Java Virtual Machine at a fraction of the runtime cost of traditional
approaches. At the same time Static Class Loading guarantees that the compiler
sees all classes which ever get instantiated at runtime and thus whole-program
compilation and optimization can be performed on the entire application.

Sun Microsystems is currently developing the Micro Edition of the Java 2
Platform in the opposite direction we advocate in this paper. Their approach to
overcome the performance problems of the KVM [Mic99] implementation is to
introduce a JIT compiler into the smallest Java standard J2ME/CLDC. Even
being much smaller than equivalent technologies for desktop PC, the CLDC
HotSpot Virtual Machine still requires well over 196kB RAM to execute minimal
applications. We believe that this overhead is not acceptable for a large subset
of embedded applications. We believe that the approach presented in this paper
is a viable alternative for small embedded systems, which still by far dominate
the embedded systems market.

6 Future Work

So far we have looked at class loading only in static settings where no new
classes are introduc~d after deployment. However, the presented approach does
not dictate this limitation. We are currently investigating the feasibility of
downloading native code chunks and additional CDT entries at runtime. This
will allow us to add additional Java classes to an already running system. We are
also currently exploring the feasibility of adding SCL to the JavaCard standard.
This endeavour is hampered by the limited availability of modifiable JavaCard­
compatible Virtual Machines for academic research purposes.

References

[Bac98] David Francis Bacon. Fast and Effective Optimization of Statically
Typed Object-Oriented Languages. Technical Report CSD-98-1017,
University of California, Berkeley, October 5, 1998.

[BBM+Ql] Danilo Beuche, Lars Buttner, Daniel Mahrenholz, Wolfgang
Schroder-Preikschat, and Friedrich Schon. JPure - Purified Java
Execution Environment for Controller Networks. In Proceedings of
the International IFIP WG 10.3/WG 10.5 Workshop on Distributed
and Parallel Embedded Systems (DIPES'2000). Kluwer Academic
Press, October 2001.

[Fre03] Free Software Foundation. The Gnu Compiler for the Java
Programming Language, 2003. http://gcc.gnu.org/java.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language
Specification. Addison-Wesley, 1996.

10

(LY96J

[Mic99J

(Mic03J

[So103a]

[Sol03b]

[Sun03]

Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1996.

Sun Microsystems. KVM - Kilobyte Virtual Machine White Paper.
http: II java. sun. com/productslkvmlwpl. Palo Alto, CA,
1999.

Sun Microsystems. CDC: An Application Framework for Personal
Mobile Devices. Palo Alto, CA, 2003. White Paper.

Jose Solorzano. leJOS, 2003. http://lejos.sourceforge.net/.

Jose Solorzano. TinyVM, 2003. http://tinyvm.sourceforge.net/.

Sun Microsystems, Inc. Java Card
Specification, Public Review Draft,
http://java.sun.com/products/javacard/JavaCard221.html.

2.2.1
2003.

[Szy98] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley / ACM, 1998.

[TenOO] David Tennenhouse. Embedding the Internet: Proactive Comput­
ing. Communications of the ACM, 43(5):43-43, May 2000.

[VWG+03] Vasanth Venkatachalam, Lei Wang, Andreas Gal, Christian W.
Probst, and Michael Franz. ProxyVM: A Network-based Compi­
lation Infrastructure for Resource-Constrained Devices. Technical
Report 03-13, University of California, Irvine, School oflnformation
and Computer Science, 2003.

11

