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Abstract
This study aims to analyze the spatial patterns of urban growth in

South Korea between 2000 and 2010. Fourteen suspected causative

independent variables were selected and latent class regression (LCR)

was used to analyze the relationship between dependent (urban

growth) and independent (causative) variables. The goodness-of-fit

was assessed by comparison to logistic regression (LR) analysis. The

LR analysis produced consistent coefficients for each independent

variable across the study area. In contrast, an LCR analysis, with a

three-class assumption, resulted in a different magnitude and direc-

tional effects of the coefficients for each class. The LCR analysis

enabled the identification of both spatially homogeneous and hetero-

geneous areas. In addition, the LCR analysis performed better than

the LR analysis with a lower Akaike information criterion and Bayes-

ian information criterion value, and a higher receiver operating

characteristic value. We conclude that LCR analysis should be used to

establish causative “driving” factors for efficient urban growth plan-

ning and urban spatial policy.

1 | INTRODUCTION

Urban areas are good examples of complex systems: they include a multitude of interdependent measures that embed

nonlinear feedbacks reflecting numerous interrelated demographic, social, economic, land-use, transportation, and

behavioral subsystems. The big data era now assures us that for many of the world’s cities, data about these measures

are available in a timely fashion, are reasonably accurate, and are spatially disaggregated to detailed spatial resolutions.

Yet what are these interrelations among the factors that contribute to urban change, and which of the causative rela-

tionships are predictable in time and space? Spatial analytic methods are now increasingly able to answer these

questions.

For the past 20 years, the method of logistic regression (LR) analysis has been among the approaches most often

used to identify the drivers of land-use change (Allen & Lu, 2003; Dendoncker, Rounsevell, & Bogaert, 2007; Hu & Lo,

2007; Millington, Perry, & Romero–Calcerrada, 2007; Wu, Huang, & Fung, 2009; Long, Gu, & Han, 2012). LR analysis

is easily adapted for studying predictor variables in land-change applications because it is more appropriate for use

with categorical variables (e.g. land-cover classes) than is ordinary least-square regression (Lambin, 1997; Overmars &
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Verburg, 2005; Wang, Brown, An, Yang, & Ligmann–Zielinska, 2013). What LR analysis adds is the ability to explore

qualitatively how urban growth and its causative factors interrelate. This has made it possible to understand which are

the most influential variables and how to distinguish among them.

A disadvantage of LR analysis is its inability to reflect spatial non-stationarity. The assumption underlying LR

between independent and dependent variables can change, so that the global relationships generated in fact show

only an average condition, and relationships specific to a locality may be hidden (Scott & Janikas, 2010; Su, Xiao, &

Zhang, 2012).

Geographically weighted regression (GWR) is a more recently developed spatial analysis technique that provides

an alternative way of examining relationships in greater detail (Fotheringham, Brunsdon, & Charlton, 2003). Maps of

coefficients specific to a locality can be output by GWR analysis, making it possible to visualize geographical interac-

tions and thus facilitating descriptions and predictions that more accurately and appropriately reflect the true situation

(Foody, 2003; Wheeler & P�aez, 2010; Su et al., 2012). Due to this advantage, GWR has become widely used in land-

change science (Luo, Yu, & Xin, 2008; Partridge, Rickman, Ali, & Olfert, 2008; Shafizadeh-Moghadam & Helbich, 2015).

Since the GWR parameters are estimated from the closest samples (based on the first law of geography), GWR

captures the spatial homogeneity between samples using the boundary distance to estimate local parameters and the

spatial heterogeneity with geographically different parameters. Therefore, GWR analysis suffers from a lack of inde-

pendence among local estimates, the presence of outliers, and the ineffectiveness of the estimated local coefficient

due to the low sampling numbers (LeSage, 2001). Moreover, just one or two boundary distances are not able to cap-

ture all of the similarities between samples in terms of the probability of land-use changes.

Another method that captures spatial homogeneity and heterogeneity is latent class regression (LCR). LCR pro-

vides the functionality to identify spatially homogeneous areas (within each latent class) and heterogeneous areas

(between latent classes), as well as the same parameters for the former, and different parameters for the latter, with

respect to the probability distribution of the dependent variable, but without the low sampling and outlier problems of

GWR. Improving the understanding of spatial patterns and of the factors underpinning urban growth is the aim of this

study. The LCR model was used to analyze the relationship between dependent and independent variables that were

factors in determining urban land-use change. The results were compared to the LR model using various statistical indi-

cators. The following questions were addressed: (1) How is the LCR model best applied to land-change science? (2)

How are the coefficients spatially different when using the LCR model? (3) Does the LCR model outperform the LR

model?

2 | STUDY AREA

The Republic of Korea (hereafter “Korea”) is located on the Southern Korean Peninsula between latitudes 332398N

and longitudes 12421308E. Its total area is 100,284 km2. Korea’s terrain is mostly mountainous, accounting for

approximately 64% of the total land area (http://kosis.kr). Most of the low land, with an elevation averaging about

254 m, lies in the west and south-east (Figure 1a).

Korea’s urban growth since the 1960s has been accelerated by industrialization and economic growth. Most Kore-

ans live in urban areas, because Korea experienced rapid rural–urban migration during its period of rapid economic

growth. As of 2010, the total population of Korea was 49,410,000 and the gross domestic product (GDP) was $1,094

billion (http://kosis.kr). Along with rapid socioeconomic development, the urban population as a total count and as a

percentage of the national population has increased by 32,754,000 and 54%, respectively, since 1960 (United Nations,

Department of Economic and Social Affairs, Population Division, 2014). The years since 1995 have seen a pause in the

trend for urban population increasing and rural population falling. The populations of megacities and metropolitan

areas have decreased, and the urban population has begun to move to the outer peripheral areas of the megacities

(Figure 1b).
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Since the mid-1990s, Korea has been experiencing structural change in terms of its urban growth. Population

growth began to be higher in nearby cities than in major metropolitan cities. Under the establishment of the local gov-

ernment system, urban society was decentralized and the societal structural qualitative changes that accompany

urbanization began (Park, Kim, Ko, Kim, & Park, 2010). Given these representative conditions, the use of Korea as a

study area enables an investigation of sustainable urban development planning against a background of persistent

urban growth. In addition, by selecting 2000–2010 as the study period, the relationship between urbanization and its

causative factors can be assessed.

3 | DATA AND METHODOLOGY

3.1 | Data preparation

There have been a number of approaches to find and interrogate the factors that drive urban expansion (Li, Zhou, &

Ouyang, 2013). A literature review permitted identification of five categories into which driving factors for change of

land use may be divided: biophysical factors, socioeconomic factors, spatial factors, neighborhood factors, and land-use

policy factors (Table 1).

Fifteen variables reflecting these factors were selected, considering the difficulty in obtaining both spatial and

aggregated data. The 15 variables were converted to continuous grid raster files with a 30      m resolution using ArcGIS

10.1 software (Esri, Redlands, CA, USA) (Table 2, Figure 2).

3.1.1 | Biophysical factors

Human comfort and the possibility of establishing urban amenities can be seriously restricted by lack of water, lack of

vegetation, extreme temperature fluctuations, and high humidity (Portnov & Hare, 2012). In addition, high altitudes

and steep slopes increase the cost of constructing buildings and set constraints on building infrastructure, because flat-

ter areas are generally more conducive to urban development.

Four variables were selected to represent biophysical factors. A 30         m resolution digital elevation model produced

by Korea’s Ministry of the Environment permitted modeling of the elevation and slope, the slope itself being calculated

FIGURE 1 Location and status of the study area: (a) the location of the study area and themajor administrative
districts—eight provinces, one special self-governing province, six metropolitan cities, and one special city; and           (b) the status
of the urban and rural populations, and the proportion of the total population classified as urban according to the United
Nations
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as a percentage. Both temperature and precipitation were obtained from 73 weather stations operated by Korea’s

Meteorological Administration, calculated as the annual mean value between 1981 and 2010. The point temperature

measurements were interpolated to a grid using universal kriging in ArcGIS 10.1.

TABLE 2 Variables used for statistical analysis

Variables Types Description Source

Dependent variables

Change Dummy Land-use change from non-urban to urban

Independent variables

Ele Continuous Elevation KMEa

Slo Continuous Slope —
Temp Continuous Temperature KMAb

Rain Continuous Precipitation KMAb

Pop Continuous Population density KNSOc

Mig Continuous Net migration KNSOc

Grdp Continuous Gross regional domestic product KNSOc

DistRoad Continuous Distance to main road KMLITd

DistUrban Continuous Distance to built-up area KMEa

DistWater Continuous Distance to water body KMEa

DenFarm Continuous Density of agriculture land KMEa

DenFore Continuous Density of forest land KMEa

Environ Dummy Environmental conservation zone KMEa

Law Dummy Legal protection zone KMEa

aKorea’s Ministry of Environment.
bKorea’s Meteorological Administration.
cKorea’s National Statistical Office.
dKorea’s Ministry of Land, Infrastructure and Transport.

TABLE 1 Major driving factors affecting urban growth as identified from a literature review

Types of factors Driving factors

Biophysical factors Elevation (Dendoncker et al., 2007; Li et al., 2013)
Slope (Dendoncker et al., 2007; Hu & Lo, 2007; Wu & Fung, 2009; Poelmans &
Van Rompaey, 2010; Li et al., 2013)
Temperature (Dendoncker et al., 2007; Millington et al., 2007)
Precipitation (Dendoncker et al., 2007; Millington et al., 2007)

Socioeconomic factors Population density (Allen & Lu, 2003; Liu & Zhou, 2005; Hu & Lo, 2007; Millington et al.,
2007; Wu & Fung, 2009)
Gross domestic product (Liu & Zhou, 2005)
Migration (Millington et al., 2007)

Spatial factors Distance to socioeconomic center (Cheng & Masser, 2003; Hu & Lo, 2007; Luo & Wei,
2009; Poelmans & Van Rompaey, 2009)
Distance to roads (Allen & Lu, 2003; Cheng & Masser, 2003; Liu & Zhou, 2005; Hu & Lo,
2007; Millington et al., 2007; Luo & Wei, 2009; Wu & Fung, 2009; Poelmans &
Van Rompaey, 2010; Li et al., 2013)
Distance to built-up land (Allen & Lu, 2003; Cheng & Masser, 2003; Millington et al.,
2007; Poelmans & Van Rompaey, 2010)
Distance to water (Allen & Lu, 2003; Cheng & Masser, 2003; Dendoncker et al., 2007;
Millington et al., 2007; Luo & Wei, 2009)

Neighborhood factors Density of built-up land (Cheng & Masser, 2003; Liu & Zhou, 2005; Dendoncker et al.,
2007; Hu & Lo, 2007; Luo & Wei, 2009; Wu & Fung, 2009)
Density of undeveloped land (Cheng & Masser, 2003; Luo & Wei, 2009)

Land-use policy factors Conservation area (Allen & Lu, 2003; Hu & Lo, 2007)
Master plan (Cheng & Masser, 2003)
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FIGURE 2 Driving factors of urban land expansion classified by natural breaks: (a) elevation; (b) slope; (c) temperature;
(d) precipitation; (e) population density; (f) net migration; (g) gross regional domestic product; (h) distance tomain road; (i)
distance to built-up area; (j) distance towater body; (k) density of agriculture land; (l) density of forest land; (m)
environmental conservation zone; and (n) legal protection zone
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3.1.2 | Socioeconomic factors

Census-based socioeconomic factors, such as population, migration, employment rate, and GDP, are significant deter-

minants in the rates and spatiotemporal patterns of urban growth (Wu & Zhang, 2012).

Six variables (three census-based and three accessibility variables) were selected to represent the socioeconomic

factors. The census-based variables were based on city and county data, such as population, net migration, and gross

regional domestic product (GRDP), and were collected using the statistical yearbook of Korea’s National Statistical

Office. The distances to main roads, existing urban areas, and water bodies were selected as accessibility variables.

Here, urban areas are defined as built-up areas including residential, industrial, and commercial areas, structures related

to transportation, and roads. Main roads including highways, national-level roads, and province-level roads were

extracted from road maps produced by Korea’s Ministry of Land, Infrastructure and Transport in 2000. The existing

urban area and water bodies were obtained using a land-cover map produced by Korea’s Ministry of Environment. The

accessibility variables were calculated as the Euclidean nearest distance using Spatial Analyst in ArcGIS 10.1.

3.1.3 | Neighborhood factors

Forces, both centrifugal and centripetal, focused on the city’s downtown are responsible for spatial autocorrelation in

patterns of land use. Cities can be regarded as self-organizing systems (Batty & Longley, 1994; Verburg, van Eck, de

FIGURE 2 (Continued)
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Nijs, Dijst, & Schot, 2004; Poelmans & Van Rompaey, 2010). It follows that the development of land use will depend

largely on conditions of neighborhood land use, while the orientation of neighborhood variables is usually toward den-

sity (White & Engelen, 1997; Wu & Yeh, 1997; Cheng & Masser, 2003). The neighborhood variables can indicate the

availability of land for development, or possible constraints to new development (Luo & Wei, 2009).

The amount of agricultural and forest land was used as a proxy of land-use conditions. A 7 3 7 pixel window with

a radius of about 100 m was used to define the neighborhood. Distance–decay functions and practices that had been

used in other studies underpinned this choice (Cheng & Masser, 2003; Verburg et al., 2004; Luo & Wei, 2009). The

neighborhood factors were generated using the neighborhood statistic operation in ArcGIS 10.1.

3.1.4 | Land-use policy factors

Urban growth has often been controlled and restrained by land-use policies that designate specified areas as protected

(e.g. water source protection areas, natural parks, wildlife protection areas, greenbelt zones, agricultural development

regions, etc.) at the national or regional level. Therefore, land-use policy factors were evaluated and used as land-use

determinants.

Environmental conservation and legal protection zones were selected to represent land-use policy factors. These

variables were obtained using an environmental conservation value assessment map produced by Korea’s Ministry of

the Environment. This map was used to evaluate the physical and environmental value of land using 8 items related to

environmental regulation and 57 items related to legal regulation. In addition, this map highlighted environmental con-

servation and legal protection zones on a grade of 1 to 5. The first priority areas, which were assigned to the first and

second classes on the map, were coded as 1 and other grades were coded as 0.

3.2 | Data sampling

Fourteen variables were used as explanatory variables in the later statistical analysis. Urban expansion spatial patterns

between 2000 and 2010, as shown in a binary map, formed the dependent variable. Land-cover maps obtained from

the Korea Ministry of Environment were used and reclassified using values of 0 and 1. A value of 1 indicated that in a

non-urban cell, the land use had changed to urban between 2000 and 2010, whereas cells that had already been open

in 2000, or that did not change use to urban from non-urban between 2000 and 2010, were assigned a value of 0.

It was not possible to handle and analyze such a large dataset using standard statistical software. Also, there was

spatial autocorrelation among variables, both dependent and explanatory (Li et al., 2013). A combined systematic and

random sampling was conducted to minimize the influence of spatial autocorrelation. The points were extracted regu-

larly, with an interval of 10 pixels (300 m). From this result, we selected 39,126 points coded as 1, and then randomly

selected the same number of points coded as 0. This was necessary so that estimates of the model coefficient bj are

not affected by unequal sampling rates, but the intercept a is (Allison, 1999). Consequently, there was a total of

78,252 sample points. Spatial overlay was used for observations at each point of the explanatory variables, and also in

the statistical analysis.

3.3 | LR model

The LR statistical modeling technique is in widespread use as a way of finding empirical relationships between inde-

pendent continuous and categorical variables and a binary dependent variable (McCullagh & Nelder, 1989). The

assumption underlying the technique is that there is a logistic curve that indicates how likely a dependent variable is to

have a value of 1 (positive response), and that the curve’s value can be ascertained by use of the following formulae

(Mahiny & Turner, 2003; Arsanjani, Helbich, Kainz, & Boloorani, 2013):

P Y51 j x1; x2; . . . ; xmð Þ5exp b01
X

bixi
� �

= 11exp b01
X

bixi
� ��

(1)
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logit P Y51 j x1; x2; . . . ; xmð Þ5ln p= 12pð Þð Þ5b01b1x11 � � �1bmxm (2)

where P is the probability of the dependent variable; xi i51; 2; . . . ; mð Þ are the independent variables, b0 is a constant,

and bi i51; 2; . . . ; mð Þ is a vector of the coefficients of the estimated parameter.

The model in Equation (1) was linearized using Equation (2) (the standard model for linear regression) and the logit

transformation was the means of removing 0/1 boundaries for the original dependent variable. Transforming binary

data through a logit transformation allows certainty of a continuous dependent variable; the dependent variable newly

created by the logit transformation of the probability is boundless. This approach also ensures a continuous probability

surface in the range 0 to 1 (Arsanjani et al., 2013).

The coefficients of the estimated parameters are usually determined using a maximum likelihood (ML) estimation

as a convergence criterion. After standardizing the variables, a bi value so created may show how each independent

variable relatively influences the dependent variable. The impact on logit P will increase in line with the absolute value

of bi (Menard, 2004; Shu, Zhang, Li, Qu, & Chen, 2014).

All of the operations for the LR analysis were executed using SPSS® Statistics software version 21.0 (IBM-SPSS,

Chicago, IL, USA), and the probability for all of the pixels in the research area was then calculated within a GIS.

3.4 | LCR model

LCR analysis tests in a single analysis the differential relationships across a number of latent classes between predictor

and output, thereby combining the strengths of regression models and cluster analysis (Wedel & DeSarbo, 1994). In

concept, by combining a number of independent variables to predict the dependent variable, LCR resembles multiple

regression (Garver, Williams, & Taylor, 2008).

An LCR model of this sort used repetitively resembles other models which deal with the dependent observation

problem by including random effects: multilevel (two-level), mixed, and random-coefficient models. In fact, LCR is a

random effects model that is not parametrically governed (Aitkin, 1999; Vermunt & Van Dijk, 2001; Agresti, 2002;

Skrondal & Rabe-Hesketh, 2004). ML is the usual method for estimating LCR, and the following equation illustrates

the likelihood contribution of a level-two unit j:

f YjjXj; Wj

� �
5

Xk

k51

pkfk YjjXj; Wj

� �
5

Xk

k51

pk
Y
i

fk yijjXj; Wj

� �
(3)

where k is the number of latent classes and fk yijjXj; Wj

� �
is a class-specific density. Any exponential function can con-

stitute this density (Vermunt & van Dijk, 2001). The expectation maximization (EM) algorithm is used more often than

any other to solve the ML estimation problem.

Among the various software packages, latent GOLD 5.0 software (Statistical Innovation, Belmont, MA, USA) was

used to estimate the LCR models in this study. Latent GOLD 5.0 begins with a series of EM iterations; a small relative

change in parameters will cause it to transfer to the Newton–Raphson method. Multiple sets of random starting values

allow the avoidance of local optima.

4 | RESULTS AND DISCUSSION

4.1 | LR analysis

A multicollinearity test was performed to avoid a failure to converge, using a tolerance (TOL) and a variance inflation

factor (VIF), as is standard for multicollinearity diagnosis. After a multicollinearity test, values of TOL<0.1 and VIF>10

were considered to indicate serious multicollinearity between independent variables, and these variables are excluded

from the LR analysis (Ozdemir, 2011). The result of the multicollinearity analysis confirmed that for all variables the

TOL was larger than 0.1, and the VIF was smaller than 10. These results indicated that there was no significant colli-

nearity among the independent variables used in the analysis; thus, LR analysis could be performed, with the inclusion

of all the independent variables (TableT3 3).
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The fit of a logistic model with a dataset can be evaluated using pseudo R2 measures. The pseudo R2 value, which

indicates logit model/dataset fit, ranges from 0 (no relationship) to 1 (perfect fit). A value greater than 0.2 for the

pseudo R2 shows a relatively good fit (Clark & Hosking, 1986; Menard, 2002). The value of the pseudo R2 in this study

was 0.385. The regression function’s coefficients permit an assessment of the independent variables’ relative

importance.

That independent variables can explain dependent variables was shown by the value of the Cox and Snell R2

(0.414) and the Nagelkerke R2 (0.385); dependent variables in these instances explained, respectively, 41.4% and

38.5% of the variance. In addition, the predicted accuracy was 87.3% for urban growth and 73.1% for non-urban

growth. The overall predicted accuracy was 80.5% (Table 4).

All independent variables except the elevation (Ele), GRDP (Grdp), and distance to a water body (DistWater) were

significant at the 0.05 level. The factors of Ele, precipitation (Rain), net migration (Mig), Grdp, distance to a main road

(DistRoad), and DistWater had a positive effect on urban growth. Rain made the highest contribution. Thus, these

results indicated that urban growth in Korea was largely dependent on Mig and reflect the characteristics of urban

growth during the period from 2000 to 2010, a period of development of satellite towns and planned city-based new

towns. DistRoad was significantly related to the probability of change. This is presumably because there are two types

of urban development in Korea: (1) expansion of existing urban areas and (2) new city developments planned by central

or local governments in rural areas. In addition, although it was not significant at the 0.05 level, a positive value of Ele

still reflects policy change in South Korea. In the late 2000s, the regulations regarding the height of developments in

mountainous areas were relaxed by land-use deregulation (Table 5).

TABLE 3 Multicollinearity diagnosis indexes for the independent variables used in the analysis

Collinearity statistics Collinearity statistics

Variables TOLa VIFb Variables TOLa VIFb

Ele 0.341 2.934 DistRoad 0.902 1.108

Slo 0.408 2.451 DistUrban 0.476 2.103

Temp 0.734 1.362 DistWater 0.637 1.570

Rain 0.848 1.179 DenFarm 0.430 2.323

Pop 0.445 2.246 DenFore 0.237 4.221

Mig 0.918 1.089 Environ 0.452 2.212

Grdp 0.486 2.059 Law 0.628 1.592

aTolerance.
bVariance inflation factor.

TABLE 4 Model summary statistics

Statistics Value

22 Log(likelihood) of initial 108,480.306

22 Log(likelihood) of final 66,721.726a

Cox and Snell R2 0.414

Nagelkerke R2 0.551

Pseudo R2 0.385

Percentage correctly predicted (PCP)b 80.500

aEstimation terminated at iteration number 6 because parameter estimates changed by less than 0.001.
bThe cutoff value is 0.5.
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However, the variables of slope (Slo), temperature (Temp), population density (Pop), distance to built-up area

(DistUrban), density of agriculture land (DenFarm), density of forest land (Denfore), environmental conservation zone

(Environ), and legal protection zone (Law) had negative effects on urban growth. Temp made the least contribution to

urban growth. The results for Slo and DistUrban were not surprising, because urban growth is more easily facilitated in

areas with a gradual slope and/or that are close to existing built-up areas. The fact that Pop had a positive effect

reflects urban growth at the fringe of existing built-up areas. The results for DenFarm, DenFore, Environ, and Law indi-

cate that Korea is protective of areas with a high conservation value, as well as major agricultural and forest land areas.

This explains why development policies have aimed to implement eco-friendly urban development (Table 5).

4.2 | LCR model

Latent class models were also used to identify the optimal regression model describing the dataset of this research.

This methodology starts with one class and increases the number of classes until the optimal model is found. Compar-

ing the models’ relative fit allows the optimal number of latent classes to be selected. The likelihood ratio chi-squared

statistic (L2), Akaike information criterion (AIC), and Bayesian information criterion (BIC) are most commonly used to

measure goodness-of-fit. Being relative measures, these indices have no threshold value. The lower the value, the bet-

ter the fit; lower values also indicate a more parsimonious model (McLachlan & Peel, 2000; Guerrero, Egea, &

TABLE 5 Logistic regression model results

95% C.I. for Exp
(B)g

Ba S.E.b Waldc Dfd Sig.e Exp(B)f Lower Upper

Constant 2.891 0.143 406.367 1.000 0.000 18.017 　 　

Ele 0.000 0.000 1.204 1.000 0.272 1.000 1.000 1.000

Slo 20.002 0.001 4.099 1.000 0.043 0.998 0.996 1.000

Temp 20.144 0.010 218.289 1.000 0.000 0.866 0.849 0.882

Rain 0.001 0.000 114.532 1.000 0.000 1.001 1.001 1.001

Pop 20.001 0.001 4.703 1.000 0.030 0.999 0.997 1.000

Mig 0.000 0.000 439.776 1.000 0.000 1.000 1.000 1.000

Grdp 0.000 0.000 0.075 1.000 0.784 1.000 1.000 1.000

DistRoad 0.000 0.000 241.928 1.000 0.000 1.000 1.000 1.000

DistUrban 20.001 0.000 1,289.414 1.000 0.000 0.999 0.999 0.999

DistWater 0.000 0.000 0.191 1.000 0.662 1.000 1.000 1.000

DenFarm 20.019 0.001 455.077 1.000 0.000 0.981 0.980 0.983

DenFore 20.069 0.001 4,497.367 1.000 0.000 0.934 0.932 0.935

Environ 20.645 0.026 612.137 1.000 0.000 0.525 0.498 0.552

Law 20.493 0.023 459.633 1.000 0.000 0.611 0.584 0.639

aLogistic coefficient.
bStandard error of estimate.
cWald chi-square values.
dDegree of freedom.
eSignificance.
fExponential and coefficient.
g95% confidence interval for Exp(B).
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Gonz�alez, 2007). Sparse data indicates a greater suitability for AIC and BIC measures of goodness-of-fit; their use is

indicated for comparisons and evaluations of models having different numbers of segments (Garver et al., 2008).

No explanatory variables were added in this step, and four models were identified (Table 6). The model fit gradually

improved as the number of classes increased. Among the four models, although the four-class model had the lowest

values of goodness-of-fit indices, the magnitudes of improvement were dramatically decreased after the three-class

model, eventually reaching an asymptote. The three-class model was shown to provide the optimal representation of

the data, and was the most parsimonious. Therefore, the LCR model was estimated with the three-class assumption.

The covariates and predictors had different roles in estimating the LCR model. The covariates affect the definition

of the latent classes, whereas the predictors affect the dependent variable. There is no consensus in the literature to

define exogenous variables for urban growth analysis. However, the spatial factors displayed the greatest variation

among the explanatory variables, which also reflects the distances between samples, because the distance variables for

closer samples had similar values. Therefore, it is possible to capture spatial homogeneity and heterogeneity in two

ways: (1) the similarity between samples based on DistRoad, DistUrban, and DistWater; and (2) the distance between

samples. Therefore, these factors were used as covariates as well as predictors.

Classes 1–3 consisted of 38.36% (n515,009), 31.12% (n512,176), and 30.52% (n511,941), respectively. Each

class accounted for a similar proportion of the total, although the one-class LCR model made the largest contribution.

With regard to the covariates for each class, the two-class LCR model had the largest amount of urban growth, while

the three-class LCR model had the least. The one-class LCR model was similar to the two-class LCR model. The

amount of urban growth for the one-class LCR model was lower than that for the two-class LCR model, except for

DistWater. The value of the DistWater coefficient was higher than in the two-class LCR model (Figure 3).

TABLE 6 Model fitting statistics for latent class models

LL Differencea BIC (LL) Differencea AIC (LL) Differencea

1-class model 233,360.863 — 66,890.741 – 66,751.726 —

2-class model 230,686.287 2,674.576 61,721.872 5,168.869 61,434.574 5,317.152

3-class model 229,970.315 715.972 60,470.211 1,251.661 60,034.629 1,399.945

4-class model 229,771.523 198.792 60,252.910 217.301 59,669.045 365.584

aThe value of difference refers to the difference between the value of each index for a particular model and that of the
preceding model (e.g. 1-class model vs. 2-class model).

FIGURE 3 Mean values of the estimated covariates for three latent class models
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The estimated parameters for the three-class LCR models are shown in Table 7 and Figure 4. From the Wald test

statistics, our results indicated that all of the predictors had different coefficients among the latent groups, except for

Ele, Mig, and DistWater. The coefficients of DistRoad, DistUrban, and DenFarm were markedly different for each class

of LCR model. For example, the smallest unit contribution for DenFarm was found in the two-class model, but the larg-

est was found in the three-class representation. In addition, the directional effects of the coefficients, such as positive

or negative coefficients, were different depending on the class membership.

In the one-class LCR model, all of the predictors except for DistRoad were significant. The R2 was slightly higher

(0.7383). The number of significant predictors was the largest among the three classes of LCR models. The next largest

number of significant predictors was found in the two-class LCR model, with the lowest R2 value (0.5324). The three-

class LCR model was estimated, with an R2 value of 0.8473, which was larger than for the other classes. However,

fewer significant predictors were found with the six predictor variables. This is presumably related to the model having

the smallest sample size among the three classes of LCR models (Table 7). In addition, the spatial variables played

important roles as covariates in this model. Based on Wald statistics, DistUrban was the most important variable for

classifying the latent classes (Table 8). This result can also be verified by the data presented in Figure 3, which shows a

chart of mean covariates.

FIGURE 4 Spatial distribution of probability values for classifying as each cluster: (a) class 1; (b) class 2; and        (c) class 3

TABLE 8 Class-specific coefficients of covariates

Class 1 Class 2 Class 3

Ba z-Stat.b Sig.c Ba z-Stat.b Sig.c Ba z-Stat.b Sig.c Waldd p Value

Constant 21.308* 237.711 0.000 21.499* 240.149 0.000 2.806* 45.884 0.000 2106.966 3.0e2458

DistRoad 0.000 20.941 0.347 0.000 2.795 0.005 0.000 20.825 0.409 8.059 0.018

DistUrban 0.019* 31.559 0.000* 0.019* 31.251 0.00020.037* 231.431 0.000 1001.833 0.000

DistWater 0.000 1.418 0.156 0.000* 24.438 0.000 0.000 1.822 0.069 20.930 0.000

*Significant at the 5% level.
aLatent class regression coefficient.
bz Statistics.
cSignificance.
dWald chi-square values.
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4.3 | Comparison of the results between LR and LCR

LCR offers methodological benefits compared with LR in terms of discrete random effects, the flexibility of dependent

variables, the derivation of unique regression models for each segment, and more accurate results. Garver et al. (2008)

gave a detailed review of the advantages of the LCR model. A brief summary is as follows.

First, a coefficient b may be assumed to take value b1, probability p1, in the LCR model. A discrete distribution is

thereby indicated for parameter b, yielding a random-effects, nonparametric modeling approach (Garver et al., 2008). It

follows that the LCR model is less intensive, computationally, than parametric models, and that interpreting the results

is simplified thanks to the greater consistency of the LCR model with the multiple regression output (Vermunt & Van

Dijk, 2001).

Second, the LR model usually accommodates dependent variables, with categorical binominal counts. The depend-

ent variable in the LCR model, though, has greater flexibility since it can be continuous or show Poisson or categorical

binomial counts (Vermunt & Magidson, 2005). The resulting flexibility being greater than for multiple regression means

that models can be tested which are more appropriate for the investigators’ data (Garver et al., 2008).

Third, from a conceptual viewpoint, beta coefficients across respondents in the data are averaged by multiple

regression models, but homogeneous segments are identified by the LCR model, which derives regression models that

are unique for each one. For each respondent, probabilities will be provided and a determination made of their likeli-

hood for segment membership (Vermunt & Magidson, 2005; Garver et al., 2008). In this study, the probabilities of the

LR and the LCR model were shown to be different in terms of spatial distribution (Figure 5). Therefore, the 14 variables

affecting urban growth operated in a different way, depending on the underlying spatial structures. This shows the

necessity of using the LCR model, which is able to reflect the heterogeneous nature of the geography.

Finally, the results of the LCR model were more accurate than those of the LR model, as shown by testing using

AIC, BIC, and the receiver operating characteristic (ROC). The values of AIC and BIC for the LCR model were

6,279.515, which were 6,755.606 lower than for the LR model. Also, the ROC values for the LR and LCR models were

FIGURE 5 Spatial distribution of each class through the latent class regressionmodel (a) and differences of probabilities
between the logistic regression and latent class regressionmodels (b)
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0.872 and 0.995, respectively. The interpretability of the model was improved using the LCR model, because the ROC

value was 0.123 higher than that of the LR model (Figure 6).

5 | CONCLUSIONS

The aim of this study was to achieve an analysis of the underlying factors of urban growth in Korea from 2000 to

2010, including their spatial patterns. LCR analysis was used and the results were compared to those using LR analysis.

Fourteen independent variables were selected (through a literature review).

The results of the LR and LCR analysis were represented differently in terms of the magnitude and directional

effects of coefficients. The results indicated that the different segments had different predictor relationships for urban

growth in the study area. These results suggest that spatial non-stationarity has an important role in analyzing urban

growth patterns. Most importantly, the LCR analysis could provide insight into the spatial variations of urban growth

patterns. The LCR analysis can significantly improve the LR through an analysis using statistical indexes. The LCR analy-

sis has a much better goodness-of-fit with lower values of AIC and BIC. Also, the LCR analysis can be seen to have

done a better job of interrogating the relationships between independent variables and urban growth than the LR,

since ROC values were 0.123 higher than for the LR analysis.

There are, however, a number of limitations to this study. First, because the independent variables used were

selected through literature review, they were not optimized to reflect the exact urban growth patterns in the study

area. As a result, although the three-class LCR model had the highest R2 value, only 6 of the 14 independent variables

were significant. Second, the spatial factors were used as covariates in the consideration of variation. The methodology

used to select suitable covariates should be given further consideration. Third, 78,252 data points from a total of

1,116,194 were sampled and used to perform the spatial statistical analysis. Therefore, the results may not be repre-

sentative of the entire study area. In particular, they do not capture the strong nature of spatial autocorrelation in the

data that implies new urbanization is usually at the edge of existing urban areas.

The conceptual similarity between LCR analysis and multiple regression means that there are no great difficulties

in interpreting the results of LCR. Therefore, LCR can be used easily and may become a powerful tool for the analysis

of urban growth patterns. Future work should determine the definite advantages and disadvantages of LCR analysis by

undertaking a comparative study using various statistical methodologies and more data. In addition, the results of this

study could be used as a probability map for further urban growth modeling, and the predicted results should be

compared.

ORCID

Jae Hyun Lee http://orcid.org/0000-0003-4007-7048

FIGURE 6 Comparison of the results between the twomodels using statistical indexes: (a) Akaike information criterion
and Bayesian information criterion; and                        (b) receiver operating characteristic
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