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ABSTRACT OF THE DISSERTATION

Machine Learning Methods of Protest Detection

by

Anton Sobolev

Master of Science in Statistics

University of California, Los Angeles, 2019

Professor Chad J. Hazlett, Chair

This thesis develops a model that estimates the number of participants in a

protest event. My central assumption suggests that those engaged in the same

collective action should have similar trajectories during the event. Individual

trajectories of those who are away should not express the same patterns in tra-

jectories. I developed a Convolutional Neural Network (CNN) model with two

input layers. The first layer contains data on the trajectories of easily identified

subgroups of protesters and easily identifies subgroups of nonprotesters. The sec-

ond layer indicates if a specific part of each trajectory is not observed directly

but, instead, is imputed. The resulting classifier identifies citizens who share the

same trajectory during the protest with an accuracy of 94 percent.

The proposed algorithm significantly outperforms these alternatives: Logistic

Regression, Random Forest, and Artificial Neural Network. The advantage of

CNN in this setting comes from the fact that this architecture applies feature-

recognition filters to all segments of the trajectory and thus is robust to potential

shifts among various trajectories. These shifts exist because protesters do not ap-

pear at the same time or in the same place. The resulting estimates are validated

using estimates of protest events from the national press.
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to Russia, which will one day be free

iv



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Review of existing methods . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Traditional methods of quantifying protest . . . . . . . . . . . . . 4

2.2 Machine learning methods of measuring protest participation . . . 8

3 Machine learning model of protest detection . . . . . . . . . . . 10

3.1 General approach to protest detection . . . . . . . . . . . . . . . . 10

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Feature engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



LIST OF FIGURES

3.1 Illustration of the general approach to protest detection . . . . . . . . 14

3.2 Example of geohash distrbution . . . . . . . . . . . . . . . . . . . . . 15

3.3 Missing data and linear imputation . . . . . . . . . . . . . . . . . . . 16

3.4 Groups of observations . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Architecture of proposed CNN . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Filters in CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Correlation with protest data from newspapers . . . . . . . . . . . . 25

vi



LIST OF TABLES

4.1 Performance of trained models on test data . . . . . . . . . . . . . . 24

4.2 Validation of models using estimates from newspapers . . . . . . . . . 24

vii



ACKNOWLEDGMENTS

I am grateful to the chair of committee, Chad Hazlett, for his tireless guidance.

I am also grateful to my thesis committee members, Erin Hartman and Jeff Lewis,

for their helpful advice.

I would like to express my special thanks of gratitude to Zachary Steinert-

Threlkeld and Keith Chen. I have benefited enormously from talking to them.

I thank my fellow UCLA students for their help. Specifically, I am grateful

to Maxim Ananyev, Natalia Lamberova, and Aaron Rudkin.

viii



VITA

2014–2019 Teaching Assistant at UCLA

2013–2019 Ph.D. student in the UCLA Political Science Department

2010–2013 Lecturer at Higher School of Economics, Moscow

2008–2013 Research Fellow at Higher School of Economics, Moscow

2009–2011 MA student at Higher School of Economics, Moscow

2005–2009 BA student at Higher School of Economics, Moscow

PUBLICATIONS

Dagaev, Dmitry, Natalia Lamberova, and Anton Sobolev. “Stability of Revolu-

tionary Governments in The Face of Mass Protest.” European Journal of Political

Economy, 2019, 60: pp. 2–20.

Sobolev, Anton, and Alexei Zakharov “Civic and Political Activism in Russia.”

The New Autocracy: Information, Politics, and Policy in Putin’s Russia, edited

by Daniel Treisman, Brookings Institution Press, Washington, D.C., 2018, pp.

249–276.

Lazarev, Egor, Anton Sobolev, Irina Soboleva, and Boris Sokolov. “Trial by Fire:

a Natural Disaster’s Impact on Support for the Authorities in Rural Russia.”

World Politics, 2014, 66(4): pp. 641–668.

ix



Yakovlev, Andrei, Anton Sobolev, and Anton Kazun. “Means of Production

VS Means of Coercion: Can Russian Business Limit the Violence of Predatory

State?,” Post-Soviet Affairs, 2014, 30(1): pp. 171–194.

Remington, Thomas, Anton Sobolev, Irina Soboleva, and Mark Urnov. “Social

and Economic Policy Trade-Offs in the Russian Regions: Evidence from Four

Case Studies,” Europe-Asia Studies, 2013, 65(10): pp. 1855-1876.

Smyth, Regina, Anton Sobolev, and Irina Soboleva. “Well-Organized Play: Sym-

bolic Politics and the Effect of the Pro-Putin Rallies,” Europe-Asia Studies, 2013,

60(2): pp. 24-39.

x



CHAPTER 1

Introduction

Contentious collective action is one of the key objects of study across social

sciences. The size of the protest crowd is an essential factor in the theoretical

models of many fields of study. They include democratization (Acemoglu and

Robinson, 2005; Gandhi and Przeworski, 2006), social movement (Koopmans

and Rucht, 2002; Olzak, 2004), resource mobilization (Jenkins and Eckert, 1986),

revolution (Tilly, Tilly and Tilly, 1975), informational cascades (Kuran, 1989;

Lohmann, 1994; Weyland, 2010), and many others.

To test these theoretical models, researchers need credible estimates of the

number of participants in the collective action. The primary source of these

estimates has been traditional media; in particular, newspapers. However, these

estimates often lack credibility for three main reasons. First, media outlets can

choose which events to cover. Second, newspapers publish secondary estimates-

numbers reported either by the organizers or the police. All of them can have

incentives to misrepresent the number of protesters. Third, both organizers and

the police usually lack the accurate technology to count the participants.

The progress in communication technologies helps newspapers address issues

of selection bias. The adoption of social media helps protest organizers promote

their events, while newspapers actively use online content to monitor essential

developments. At the same time, the issue of technology that accurately estimates

the size of crowds remains unaddressed.

Recently, some scholars developed alternatives to newspaper-based approaches

for generating protest event data (see Steinert-Threlkeld, 2019, for a review).
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They try to make use of the increased availability of data generated by Internet

users. That data often includes social media posts and photos of the protest. In

contrast to traditional approaches, the new approaches provide an explicit and

clear methodology behind the estimates.

This thesis attempts to develop a model that estimates the number of partic-

ipants at a protest. It assumes that individuals engaged in the same collective

action should have similar trajectories during the protest event. Trajectories of

those who are far away should not share similar trajectories. I have developed

a Convolutional Neural Network model with two input layers. The first input

layer contains data on the trajectories of easily identified subgroups of protesters

and easily identifies subgroups of nonprotesters. The second input layer indicates

if specific parts of each trajectory are not observed directly but rather imputed.

Together, these two input layers can identify those who share the same trajectory

during the protest with 94 percent accuracy and 95 percent precision. The pro-

posed algorithm significantly outperforms these alternatives: Logistic Regression,

Random Forest, and simple Neural Network.

CNN outperforms others, I argue, because this architecture applies feature-

recognition filters to all segments of the trajectory and is thus robust to potential

shifts among various trajectories. These shifts can be temporal or spatial. Tem-

poral variations occur since citizens can join the protest event at different times;

spatial shifts are caused by citizens who join the protesting crowd further down

the route. The CNN feature extraction step aids the model in recognizing that

two individuals had similar trajectories in the presence of such shifts. The algo-

rithm is able to perform classification (protesters or nonprotesters) by looking for

low level features of the trajectories such as edges and curves. It then builds up

to more complex features through a series of convolutional layers (e.g., a zig-zag

sequence). The model to identifies the presence of the class feature disregarding

its distance from the starting point of the trajectory.

The resulting estimates are validated using estimates of the protest events
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from the national press.

The remainder is organized as follows. The next section reviews traditional as

well as recently introduced methods of quantifying protests. Section 3 develops

a general approach to protest detection, its assumptions and implementation.

Section 4 introduces the results, and Section 5 is a conclusion.
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CHAPTER 2

Review of existing methods

2.1 Traditional methods of quantifying protest

Newspapers. Most of the time, scholars rely on newspapers to collect records

of collective protests. Typically, a social scientist uses libraries and archives to

check the files of newspapers for a specific period and place. The first systematic

collection of such data was introduced in (Tilly, Tilly and Tilly, 1975). The

authors produced a dataset of violent collective actions in Italy, Germany, and

France by using local presses from 1830 to 1930. Tarrow (1989) combined data

on contentious collective action events in Italy’s national news from the second

part of the 20th century. In the United States, The New York Times is the most

cited source of protest data. For instance, Olzak (2004) used its records to collect

data on collective actions related to ethnic politics at the end of the 19th century.

Newspapers are also used in cross-country studies. For example, Hutter and

Kriesi (1995) conducted a comparison of protest activities in European countries

from 1975 through 1990 by using records in their national newspapers. The New

York Times Index was the first research project to introduce large-scale, cross-

national, time-series data on protests around the globe (Walton and Ragin, 1990).

To improve the credibility of the protest numbers, some scholars suggested using

multiple sources to determine the facts of the events (Myers and Caniglia, 2004).

Using a newspaper as a source for records raises several concerns. First, edi-

tors can choose which events to cover, which introduces selection bias. There are

two points of view concerning the direction of this bias. One group of authors
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suggests that the vast majority of protests are, in fact, small events that never

make the news (Maney and Oliver, 2001; Myers and Caniglia, 2004). Thus, the

frequency and average size of protests could be systematically underestimated

or overestimated. This approach should underestimate the degree of variation.

According to the other view, newspapers cover both small and large protests

(Koopmans and Rucht, 2002). The issue, however, arises from the fact that

scholars often aggregate protest events by month or by year. Small protests

mostly contribute to the frequency of collective actions, while large protests con-

tribute to the number of participants. Most of the quantities of interest (e.g., the

average size of the protest) appear to be misleading.

Another bias refers to the fact that editors of traditional media favor new

events (Koopmans and Rucht, 2002; Steinert-Threlkeld, 2019). Repetitive, col-

lective actions such as strikes are likely to be underreported as well.

Although both biases described above are important, the essential issue of

using press records concerns the validity of protest size estimates. Usually, news-

papers report secondary numbers produced either by the organizers or by the

police. Both the former and the latter can have incentives to misrepresent the

number of protesters. The Million Man March, a demonstration held in Washing-

ton, D.C., on October 16, 1995, is the most well-known example of a disparity in

estimates. While civic activists estimated the crowd size at 2 million people, the

local police reported 400,000. The latter provoked a wave of resentment and led

to the introduction of a bill that explicitly forbids police from calculating crowd

size (Watkins, 2001).

Hutter (2014) introduces a large-scale project of cross-national protest event

data collection. The coding protocol has a set of strict requirements. For ex-

ample, to be included in the collection, a protest episode should appear in at

least three media outlets. Coders are also required to cover the primary source

of the record. That approach allows the use of a wide range of characteristics

of the event, including the type of mass action, the civil society organizations
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involved, the targets, the claims, the number of arrests, and, most importantly,

the total number of participants. At the same time, this approach has several

essential disadvantages. It is highly expensive when it comes to time, labor, and

the requirement to carefully read back issues of newspapers. As a result, data

collection is restricted to specific periods and countries.

Supposedly, the progress in communication technologies helps newspapers

address issues of selection bias. With the adoption of social media, protest orga-

nizers have been promoting their events online, while both national newspapers

and local ones actively use online content to monitor events. At the same time,

the issue of valid estimates of the protest size remains unaddressed.

Crowd counting. To count each person in a crowd is the most straightfor-

ward method of estimating the size of a protest. However, it is almost impossible

to implement it in most cases. Contentious collective actions usually take place

in open spaces such as streets and town squares. Citizens can freely join, leave, or

rejoin the crowd, thus making a direct count infeasible. In some cases, organizers

or the police install turnstiles to precisely count the number of people entering

an event. These cases, however, are rare.

To deal with the task of estimating protest size, scholars usually use indirect

methods of crowd-counting. An interesting approach is considered in Budros

(2011) in which the author studied the effects of collective events on the abolition

of slavery in the U.S. North. He hypothesizes that emancipation was affected

by anti-bondage protests organized by Quakers. To measure the scale of protest

activity, the author makes use of the Quakers’ custom to petition at their political

gatherings. Signatures on a petition thus effectively revealed the size of the

meeting.

Another way to estimate the size of a protest suggests obtaining dimensions of

the gathering place and the physical density of demonstrators. McPhail and Mc-

Carthy (2004) introduce three requirements to calculate proper estimates. First,
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these calculations require information on the carrying capacity of the spaces in

which people assemble. They point out that most of the urban areas have places

where people typically gather. Estimates of the carrying capacity of a specific

location can usually be obtained from local police, scientists, or journalists. Sec-

ond, correct estimates of a protest size require knowing the density of occupation.

The researcher can get it either by sending observers to the event or from the

available photos of the crowd. The authors also suggest that one person per 2

square feet is the maximum occupation density. Finally, valid estimates of the

number of participants require observations from several vantage points. That

requirement comes from the fact that mass protests are usually more densely

packed at the center and the front than at the back or sides. Thus, scholars need

to approximate the geographic distribution of occupation density.

Cell phone data. Pierskalla and Hollenbach (2013) study the impact of cell

phone technology on the mass political violence in Africa. They hypothesize that

the availability of cell phone coverage substantially increases the chance of violent

collective actions. They use cell phone data to calculate cell phone coverage as

well as to estimate the number of participants of these actions. To do this, they

match GSM data with the geographic locations of recorded episodes of collective

violence. For each event, they approximate the number of participants by sum-

ming up unique cell phone identifiers in the area. While this approach has distinct

advantages, several concerns about the validity of the estimates remain. First,

the number of protest participants can be systematically overestimated. Indeed,

the authors assume that at the location, every owner of a cell phone joins the

collective action. Second, the number of protesters could also be underestimated

since the number of citizens without mobile phones is not observable. Although,

systematic overestimation is more plausible as approximately 91 percent of South

African adults owned mobile phones in 2016 (Asongu and Asongu, 2019).

The next section provides a review of approaches that use machine learning

techniques to measure the size of the protest.
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2.2 Machine learning methods of measuring protest par-

ticipation

Several recent studies use alternatives to newspaper-based approaches to generate

protest events data (see Steinert-Threlkeld, 2019, for a review). These studies try

to make use of the increased availability of data generated on the Internet. That

data often include social media posts and photos of the protest. It is reasonable to

expect that these new methods will deliver more accurate estimates of the size of

the protest and its collective actions. In many cases, the producers of that content

are representative of the population of protesters (e.g., users of digital platforms

such as Facebook and Twitter). In contrast to newspaper-based approaches, the

new ones provide explicit and clear methodology behind the estimates. They also

try to take into account potential biases in the data. Next, I’ll discuss in detail

two of the recent papers.

Won, Steinert-Threlkeld and Joo (2017) develop an automated system that

analyzes images shared during contentious collective actions. They use a vi-

sual segment recognition approach to automatically assess the attributes of mass

events. They start the project by generating these three types of labels for each

image in the dataset: event status (protest or nonprotest); the size of the crowd;

and the level of perceived violence. This task is implemented by workers hired

at Mechanical Turk (AMT). The authors assign two workers to each image to

improve the reliability of the results. Then the authors use 50-layer ResNet ar-

chitecture to build Convolutional Neural Network that uses labeled images for

training. The trained classifier can distinguish a protest crowd from other gath-

erings (e.g., sporting events and concerts). Most importantly, the model analyzes

segments on images to identify and count the total number of participants in the

event in the photo.

Zhang and Pan (2019) introduce a system that generates protest data by us-

ing texts and images from social media as inputs. To identify mass protests, they
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develop a two-stage classifier comprised of several convolutional neural networks

and recurrent neural networks with long, short-term memory. As in the previous

study, the authors obtain initial data from social media posts. Recall that reports

or posts that cover collective action events are rare compared to the total num-

ber of documents in the corpus. Indeed, less than 0.01 percent of sampled posts

from the Chinese digital platform Weibo contain information about actual offline

collective action. To address this problem, the authors replace random samples

of posts with a collection of posts obtained by using a dictionary prepared by

experts. The authors’ final dataset consists of almost 10 million posts with cor-

responding texts, images, and metadata (e.g., geolocation, number of reposts,

time of posting, etc.). In the next step, two classifiers are trained separately.

The Convolutional Neural Network is used for image classification. A mixture

of the Recurrent Neural Network with Long Short-Term Memory and the Con-

volutional Neural Network is used to analyze textual components. Finally, the

authors augment trained classifiers by another neural network to jointly model

data representation and perform the task of classification. This sophisticated

machine learning architecture allows distinguishing social media posts that de-

scribe offline protests from posts that discuss the same topics without references

to collective action.

9



CHAPTER 3

Machine learning model of protest detection

3.1 General approach to protest detection

Most of the existing machine-learning studies of protests rely on images or texts

as the primary source of data. In contrast, my research builds on the ideas

of Pierskalla and Hollenbach (2013) and develops a classification algorithm to

estimate the size of a protest from the GSM data. To the best of my knowledge,

that is the first study that applies statistical learning to GSM data in order to

detect a protest event and estimate the number of participants.

In this section, I discuss the general idea of the algorithm. The next section

describes its actual implementation. Here, I consistently refer to Figure 3.1 to

guide the reader. The model described below attempts to guess the number of

participants conditional on the fact that the protest event, indeed, occurred.

Step 0: Setup. Consider citizens of town X. A group of them collectively

protest at time Y. While citizens can protest for a long time, Figure 3.1a rep-

resents a snapshot of the start of the political rally. Assume that a researcher

knows the location of each citizen and how that location changes two hours after

the start of the protest.

Step 1: Location-based classification of citizens. First of all, the re-

search needs to identify locations with the highest density of citizens. This lo-

cations are the candidates for the place of the protest event. I start by dividing

the map of the location into squares of the same size (Figure 3.1b). This size can

be almost arbitrary and is required to initiate the detection algorithm. I then
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calculate the number of citizens in each square. One of the squares contains more

citizens than the average number of citizens per square. I suggest that all the cit-

izens in that square in fact participate in the protest. I call them core protesters.

Citizens A, B, and C are far away from the core protesters. They do not present

physically at the place of protest. One can thus suggest with confidence that A,

B, and C do not participate in the protest.

I refer to A, B, and C as nonprotesters. Apart from core protesters and

nonprotesters, there are two other citizens in the town (labeled #1 and #2).

Both of them are relatively close to the core protesters. Thus, one cannot say

for sure that #1 and #2 are nonprotesters since they physically present near the

center of the protest event. To correctly estimate the total number of protesters,

one needs to decide if #1 and #2 are, in fact, part of the protest.

What evidence can a researcher use to infer whether #1 and #2 participate

in the collective action? A naive approach would suggest training classifiers using

the geographic coordinates of core protesters and nonprotesters and applying the

resulting model to observations with unobserved labels (#1 and #2). Effectively,

the trained model would establish a border around the core protesters. It then

would classify any citizens within this border as protesters and otherwise as non-

protesters. By construction, anyone who happens to be around during the protest

would be counted in the total number of the collective action participants. Does

it sound reasonable? Consider the following. Most of the protest events take

place in the centers of urban areas. For instance, from 20,000 to 100,000 tourists

visit the National Mall in Washington, D.C., daily (Benton-Short, 2007). At the

same time, many political rallies also take place in that same area. The naive

machine learning classifier would treat these tourists as protesters. The resulting

estimates would thus be systematically biased upward. An alternative strategy

is described below.

Step 2: From locations to trajectories. Recall that the researcher knows

how the location of each citizen changes. In other words, he knows the path each

11



citizen made during the first two hours of the protest event. This is known for

everyone disregarding his or her actual type (protester or non-protester). For

each citizen, it is possible to depict his or her trajectory. I define a trajectory as

a path made by a citizen during the first two hours of the protest event in the

absence of information about his actual location. While the path made by the

citizen has specific coordinates on the map, his or her trajectory is the same path

with initial coordinates moved to the point (0,0). Formally, I define a trajectory

as a spatial sequence that is ordered in time but not location-specific.

Figure 3.1c depicts hypothetical trajectories of core protesters and nonprotesters.

Here, I introduce a vital assumption: because protesters participate in the same

collective action, their paths should look alike. Indeed, consider the Women’s

March, a large-scale protest in Washington, D.C., in January 2017. Event or-

ganizers proposed to start the march on Independence Avenue at the southwest

corner of the Capitol and continue along the National Mall. Existing photos and

videos suggest that protesters indeed followed that route (Weber, Dejmanee and

Rhode, 2018).

In contrast, nonprotesters do not engage in the same activity. They can be

located in places remote from each other; their trajectories should not system-

atically correlate. Combined, they should look like white noise. Figures 3.1d

and 3.1f illustrate the idea of the differences in trajectories of protesters and

nonprotesters.

Step 3: Trajectory-based classification of citizens. A trajectory-based

classifier can have precisely the same architecture as one that uses locations as its

primary input. Although one nuance is essential here, the first classifier knows

the geographic coordinates of the observations, and the second one does not.

Indeed, in the latter case, all trajectories start from the same point (0,0). Thus,

the only informative feature that this model can exploit is the similarities in the

trajectories of core protesters.
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Step 4: Making inferencing about citizens in “grey zone”. In the last

step, a researcher applies the trained model to the trajectories of citizens whose

status is unknown. In my example, the trajectory of citizen #1 looks similar to

the average trajectory of the core protesters. But the trajectory of the second

one does not overlap the latter. Thus, the classifier assigns the former to the

group of protesters and the latter to the nonprotesters.

Remarks. One objection to the above approach comes from the group of

protesters; the trajectories can vary a lot. For instance, citizen #1 could be

further from the core group of protesters at the start of the protest. In this case,

her trajectory will deviate from the average path of the core group. Figure 3.6

illustrates that example. Such deviations can significantly reduce the predictive

capacity of the classifier. To deal with this issue, I suggest using CNN as a

classifier of choice in order to solve this task. That network trains visual filters

and applies them to each segment of the picture. Such a model should thus not

consider complete paths. Instead, it should look for overlaps in trajectories of

protesters. I provide further details in Section 3.4.

3.2 Data

I implement and test the performance of the algorithm developed in Section 3.1

using the Women’s March in Washington, D.C., on January 21, 2017. The cam-

paign was organized the day after the inauguration of President Donald Trump.

The march was comprised of more than 300 street demonstrations. Participants

of the events took to the streets to express opposition to the administration and

its policies (Fisher, Dow and Ray, 2017). To train the algorithm, I match propri-

etary GSM data (cell phone location data) and metadata of protest events from

the Crowd Counting Consortium (Chenoweth and Pressman, 2017). The latter

is an open-source project established to collect data on political crowds reported

in the United States. Specifically, I use this open-source data to determine the
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(a) Observations in the sample

A

B C

1 2

(b) Mapping geohashes

1 2

(c) Individual paths (d) Combined trajectory of core-protesters

(e) Combined trajectory of non-protesters

1

2

(f) Trajectory-based classification of observa-

tions with with unknown type

Figure 3.1: Illustration of the general approach to protest detection

14



Figure 3.2: Example of geohash distrbution

time and location of protest events across the country. I focus on a sample of 341

protest events organized on the same day.

I start by identifying the geographic location of each area that experienced a

protest event on January 21, 2017. For each location, I then determine the unique

GSM identifiers to approximate the population of interest. It is noteworthy that,

each GSM identifier reports its location each 15 minute periods regardless of the

actual activity. Following step #2 of the previous section, I divide the map of

the location into cells with sides of 38 meters by using eight-digit geohashes (i.e.,

alphanumeric codes that correspond to a rectangle with sides of 38 meters) (see

An et al., 2013, for details). Next, I calculate the density of observations for

each geohash at the start time of the protest event. Finally, I select geohashes

in the top one percentile with respect to the density (a similar method is used

in Sobolev et al., 2019). An example of the geohash distribution is provided in

Figure 3.2.

Following the theoretical model, I assign the observations within selected geo-
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Figure 3.3: Missing data and linear imputation

hashes to the core protesters group. I consider geohashes located at least 1.5 miles

away from the center of the core protesters group as those with nonprotesters.

3.3 Feature engineering

To construct the trajectories, I consider 15-minute intervals to code an average

location of the GSM identifier. I then transform locations into paths by subtract-

ing the initial position of each observation from its location in every 15-minute

interval. Thus, the eight points represent the trajectory of each observation. It

is noteworthy that not all of the observations reported their coordinates for each

15-minute interval. To address this issue, I conduct linear interpolation (i.e., if an

observation is missing in one of the intervals, I impute its location by calculating

the mean of locations of the previous interval and the following one).

This solution is not ideal and might be a pitfall at the training step of the

algorithm. Indeed, Figure 3.2 shows that 20 percent of observations at the interval

levels are missing. Supposedly, the classifier can identify interpolated parts of the

trajectories as overlapping features of one of the group. Thus, the classification

task could be corrupt. I have two considerations concerning this issue. First, as

one can see, the number of missing goes down at the start of the protest event.
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Figure 3.4: Groups of observations

The drop in missing observations coincides with the time the maximum number

of people appear in the open area. I also check that most of the missing data come

from the nonprotesters group. Finally, I suggest using auxiliary data, a binary-

coded table that indicates if an observation is missing in a given interval of time.

This auxiliary input helps the classifier distinguish between observed and imputed

parts of trajectories and puts lower weights on the latter. In other words, this

auxiliary input works as a regulator that induces a penalty if a classifier attempts

to use imputed data.

Are the resulting features consistent with the theoretical model from Section

3.1? Figure 3.4 shows the aggregated trajectories from a randomly sampled

protest event. Indeed, the paths of those in the core protest geohashes share a

significant overlap. Trajectories of nonprotesters look like white noise. Finally,

the group of observations in the “grey zone” resembles a mixture of the first two

groups. Further, I use processed data as input for the training and test steps of

the classification.
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3.4 Implementation

CNN Architecture. Typically, Artificial Neural Network (ANN) is made up of

many highly interconnected nodes, which process information by their dynamic

state response to external inputs (Appeltant et al., 2011). Nodes are organized in

layers of three types. The first type, the input layer, contains the raw data and

communicates to layers of the second type (also called hidden layers). The latter

processes data via a system of weighted connections and activation functions.

The last hidden layer links to the output layer. This layer contains scores for

each label in the data.

When ANN is initially presented with a pattern, it makes a random guess

about the class it belongs to (e.g., protesters or nonprotesters). Next, ANN

calculates the difference between the prediction and the actual class of the obser-

vation, adjusts its connection weights. This process repeats itself each time the

network is presented with a new input pattern and is called statistical learning

via the backward error propagation of weight adjustment.

In contrast to ANN, Convolutional Neural Network performs pixel-wise fea-

ture extraction. The idea of neural networks with convolutional layers is intro-

duced in LeCun et al. (1998). The authors develop a classifier to implement

computer vision task (e.g., image recognition). They argue that in order to suc-

cessfully perform the task of computer vision, the model should process elements

of the images independently from the location of these elements on the image.

The latter means that features should be identified locally. To do that, the model

analyzes each part of the image with a window of the pre-specified size. The re-

sults of the convolution operation can be passed to the next layer. A sequence of

convolutional layers produces a higher-order feature map. In other words, after

processing the raw data, the model identifies complex patterns of the image (e.g.,

a person’s eye color).

Two other essential elements of CNN include the pooling layer and the fully
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Figure 3.5: Architecture of proposed CNN

connected layer. The former concatenates the output of separated clusters of

the model. The latter connects every component of the previous layer with each

element of the fully connected layer. Fully connected layers allow the model to

learn nonlinear combinations of the features generated by convolutional or regular

hidden layers of the neural network.

The CNN feature extraction step aids the model in recognizing that two in-

dividuals had similar trajectories in the presence of such shifts. The algorithm

is able to perform classification (protesters or nonprotesters) by looking for low

level features of the trajectories such as edges and curves. It then builds up to

more complex features through a series of convolutional layers. CNN outper-

forms others, I argue, because it applies feature-recognition filters to all possible

segments of the fixed-size of the trajectory. Thus the model is able to identify

the presence of the class feature (e.g., a specific zig-zag sequence) disregarding

its distance from the origin (0,0).

Setup. In this section, I develop the Convolutional Neural Network to esti-

mate the size of the protest. I argue that CNN, with two separate input layers,

should have the best performance across the potential alternatives. I include

Logistic Regression, Random Forest, and simple Artificial Neural Network in the

list of other options. I also consider two specifications for each class of classifiers.

The first specification only takes trajectory data as its input, while the second
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(a) Paths of core-protesters (in blue) and

observations in the “grey zone” (in red)

(b) A convolutional filter

Figure 3.6: Filters in CNNs

one also uses an auxiliary input layer with records of missing observations.

Figure 3.6 illustrates the idea discussed above. Recall the example from the

previous section. Consider that both citizens #1 and #2 are, in fact, protesters.

At the same time, they join the protest later than core protesters. It is noteworthy

that the researcher does not observe a person during all the time he or she is

protesting. Instead, the researcher only keeps the trajectories generated in the

first two hours after the official start of the protest. Thus, if #1 and #2 join the

collective action 30 minutes after the start, their trajectories should differ from

the average path of the core protesters in two respects. First, their trajectories

have a tail at the beginning that depicts the route they took to catch up with

the other protesters. Second, if the protest event is a march or a rally, #1 and

#2 will follow other protesters with a delay. Thus, their trajectories will not

have the path that core protesters crossed at the end of the second hour. Now

consider red and blue trajectories from 3.6b. All three models on the list of

alternatives (Logistic Regression, Random Forest, and simple Artificial Neural

Network) should consider red and blue trajectories as very distinct from each

other. At the same time, CNN can tune one of its filters to recognize just that
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part of the trajectory that all observations share.

What CNN developed in this study has the following architecture (see Figure

3.5). The model has two independent input layers. The first layer contains the

trajectory data. Three convolutional layers analyze these data. The auxiliary in-

put provides the records of imputation. The latter is sequentially analyzed with

eight hidden layers (each layer has eight neurons). The pooling layer concate-

nates the outcomes of the convolutional layers with the last hidden layer. The

latter passes the results of concatenation to the fully connected layer to explore

nonlinear combinations from the feature map. Finally, the output layer produces

predictions about the class of the observation. This layer uses one-hot encoded

matrix with two classes and “softmax” activation function for calculating result-

ing scores.

Performance metrics. To assess the performance of the trained models, I

use four conventional metrics: accuracy, precision, recall, and F1 score. I define

them below.

Accuracy - the ratio of correctly predicted observation to the total observa-

tions.

Precision - the ratio of correctly predicted positive observations to the total

predicted positive observations.

Recall - the ratio of correctly predicted positive observations to all observa-

tions in the actual class.

F1 score - the weighted average of precision and recall. Since I would like to

avoid both upward and downward biases in the estimates, it is equally important

to minimize errors in predicting both classes in the data. Thus, accuracy and F1

score are the most critical metrics for the task of this study.

Training. Figure 3.7 shows the training of the model. This figure helps us

make two observations. First, the model has smoothing convergence. Second, the

calculated total loss of the training set becomes lower than the complete loss of
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Figure 3.7: Model training

the validation set after the 100 epochs. The latter indicates potential overfitting.

That is why I stop the training step after the first 100 epochs.

I train the model separately for each protest event. For each protest event,

core-protesters (observations in the geohashes in the top one percentile with re-

spect to the density) and nonprotesters (observations in geohashes located at

least 1.5 miles away from the geohashes with core-protesters) are divided into a

training and a test set. Observations in the “grey zone” are excluded. The latter

contains 1/3 of the observations. The final scores represent the average of the

corresponding scores weighted according to the number of observations in each

location. All scores are calculated calculated on the test set.
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CHAPTER 4

Results

Table 4.1 reports the main results of the study. First, the convolutional neu-

ral network indeed shows the highest scores on all metrics. A specification of

CNN with additional auxiliary input provides the best performance across all the

trained models with recall, F1 score, and accuracy of 94 percent and precision

of 95 percent. Two of three referent models-Logistic Regression, Random Forest,

and ANN-show very similar performances. CNN outperforms its specifications

with and without auxiliary input by 10 and 15 percentage points, respectively.

Why does the auxiliary input layer only improve the performance of the CNN

model? As I mentioned before, the usefulness of auxiliary data comes from the

ability of the model to distinguish between observed and imputed parts of the

trajectories. However, apart from CNN, models do not treat the path as an

image. In the absence of convolutional filters, none of them can efficiently identify

protest trajectories and consequently make use of auxiliary data. There is also an

additional rationale for the inability of Logistic Regression and Random Forest

to use the auxiliary input. In the ANN and CNN models, the primary and

auxiliary inputs are trained separately in the first layers of the network. They are

concatenated at the stage when both auxiliary and central parts of the network

operate higher-order features. At the same time, Random Forest and Logistic

Regression do not allow for the separate training of inputs. Instead, they pool

both inputs, making it harder for classifiers to figure out the essential features of

the classes.

I use both CNN specifications to predict the classes of observations in the grey
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Model Recall Precision F1-score Accuracy

Logistic Regression 0.68 0.62 0.65 0.63

Logistic Regression (aux. layer) 0.72 0.70 0.72 0.72

Random Forest 0.78 0.83 0.80 0.79

Random Forest (aux. layer) 0.76 0.81 0.79 0.79

ANN 0.77 0.83 0.79 0.80

ANN (aux. layer) 0.78 0.83 0.80 0.80

CNN 0.88 0.84 0.86 0.86

CNN (aux. layer) 0.94 0.95 0.94 0.94

Table 4.1: Performance of trained models on test data

Specification Dependent variable:

Estimates from news

CNN 0.888∗∗∗

(0.055)

CNN with auxiliary input 0.974∗∗∗

(0.050)

Observations 341 341

R2 0.439 0.533

Adjusted R2 0.437 0.531

Residual Std. Error 1.397 1.275

F Statistic 264.895 386.286

Note: ∗∗∗p < 0.01

Table 4.2: Validation of models using estimates from newspapers
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Figure 4.1: Correlation with protest data from newspapers

zone. To calculate the final estimates, I sum up the number of core protesters

with the number of predicted protesters for each location. Finally, I attempt to

conduct an indirect validation of the main results. To do it, I compare result-

ing numbers from both CNN specifications with estimates of protest size from

Crowd Counting Consortium project (Chenoweth and Pressman, 2017). Figure

4.1 and Table 4.2 show the results of the comparison (values are log-transformed).

Estimates from both models are linearly associated with estimates from Crowd

Counting Consortium. Regressing, resulting estimates on numbers from Crowd

Counting Consortium project return the coefficients of almost 1. At the same

time, estimates from CNN with auxiliary input slightly better explain the varia-

tion in numbers from Crowd Counting Consortium project.
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CHAPTER 5

Conclusion

The goal of this thesis is to develop a model that estimates the number of partic-

ipants of the events using the GSM data. The model is based on the assumption

that participants of the same collective action should have similar trajectories

during the event. At the same time, paths of those who are away should not ex-

press the same patterns in trajectories. I develop a Convolutional Neural Network

model with two input layers. The first input layer contains data on the paths of

easily identified subgroups of protesters and easily identified subgroups of non-

protesters. The second input layer indicates if a specific part of each trajectory

is not observed directly but rather imputed.

The resulting model identifies those who share the same path during the

protest with an accuracy of 94 percent and a precision of 95 percent. The pro-

posed algorithm significantly outperforms the alternatives: Logistic Regression,

Random Forest, and Artificial Neural Network. The superior performance of

CNN is explained by its capacity to train and apply filters to various parts of the

trajectories. Thus, in contrast to other models, CNN is robust to potential shifts

in trajectories explained by the fact that protesters do not appear at the same

time and the same place. I validate the results using estimates of the protest

events from the national press.
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