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ABSTRACT OF THE DISSERTATION

Linear acoustic sensitivity kernels and their applications in shallow
water environments

by

Bikramjit Sarkar

Doctor of Philosophy in Oceanography

University of California, San Diego, 2011

William A. Kuperman, Chair
Bruce D. Cornuelle, Co-Chair

Time of arrival information from acoustic transmissions is the primary

means through which ocean sound-speed structure is estimated. While initially

limited to large scale coarse observations using ray theory to model the propa-

gation of sound through the environment, ocean acoustic tomography evolved to

incorporate a normal-mode representation of observed peak-arrivals. This wave-

theoretic approach was enhanced, using the first Born approximation to perturba-

tions in the wave equation, producing the travel-time sensitivity kernel (TSK): a

linear relationship between sound-speed variations and observed changes in arrival

times.

xv



This dissertation extends sensitivity kernel analysis to both the amplitude

and phase of complex- demodulated broadband acoustic transmissions, producing

both a qualitative and quantitative picture of how ocean sound-speed variability

affects acoustic observations, and complementing prior work on travel-time sensi-

tivity. The linearity and information content of these kernels is explored in simu-

lation for a 3–4 kHz broadband pulse transmission through a 1 km shallow-water

Pekeris waveguide, and in simulated inversions with a more realistic summer-type

sound-speed profile, the results from which demonstrate the additional information

amplitude contains over phase data alone.

Differences in phase measurements were assumed to be directly relatable

to travel-time changes, and thus the phase sensitivity kernel was expected to rep-

resent the same details as the travel-time sensitivity kernel. However, even a

cursory visual inspection of the two kernel types shows that they have different

spatial structures and hence different sensitivities to changes in the environment.

A numerical survey was conducted comparing the performance of these sensitiv-

ity kernels (along with amplitude) to observations from perturbed simulations -

including a synthetic time-evolving ocean - and the results suggest that phase

and peak travel-time do indeed diverge in the presence of more complicated ocean

sound-speed structure, with phase being the more linear observable. Additionally,

the phase-derived sensitivity kernel is shown to be a better estimator of travel-time

than the TSK, for which a possible explanation is suggested.

The Born approximation has also been used to derive the acoustic sensitiv-

ity to perturbations at the boundary of an environment, in contrast to the volume

perturbations discussed before. A sensitivity kernel for surface scattering is pre-

sented here, along with a numerical and experimental investigation of the acoustic

response to surface displacements in an ultrasonic scale waveguide. The results

are presented in both point-to-point and beam-to-beam formats, and suggest the

potential use of sensitivity analysis in inverting for sea-surface structure.

xvi



Chapter 1

Introduction

The use of acoustic signals to probe the interior structure of the oceans

was first proposed by Munk and Wunsch[1], laying the foundations of the field

of ocean acoustic tomography. Their scheme used the differences in travel-time

measurements from repeated acoustic transmissions to invert for the sound-speed

changes in the intervening ocean volume by relating the observations to geometric

ray paths. While adequate for inferring coarse large-scale features, ray theory is

a high-frequency asymptotic approximation that may not be applicable to low-

frequency limited bandwidth acoustic signals. To this end, the ray view of acous-

tic propagation was supplemented with normal-mode representations[2, 3], which

helped identify observed arrivals not easily associated with an expected ray path.

Eventually, a wave-theoretic approach to acoustic tomography was explored that

did not require observed peaks to be identified as either rays or modes[4, 5], lead-

ing to the development of the travel-time sensitivity kernel (TSK)[6]: a linearized

representation of the effect sound-speed fluctuations have on observed peak arrival

times, given by the first Born approximation to a perturbation in the full wave

equation.

“Travel time” has been the key phrase repeated while discussing the his-

tory of ocean acoustic tomography. The amplitude of an observed peak is rarely

mentioned in long-range tomographic applications, because its sensitivity to sound

speed is considered too non-linear to be of use. However, data collected during a

short-range acoustic experiment in the Mediterranean Sea, the Focused Acoustic

1



2

Fields experiment of 2005 (FAF05), showed amplitude observations stable enough

to potentially be useful for tomographic inversions. This provides the motivation

for the work presented in Chapter 2 of this dissertation, where the sensitivity anal-

ysis previously performed for travel time is extended to the amplitude and phase

of a broadband acoustic signal. The sensitivity kernels are derived relative to the

complex demodulated representation of the signal, from which the amplitude and

phase quantities are obtained, and shown to be more linear than working with raw

pressure directly. The information content of these kernels is explored in simula-

tion for a 3–4 kHz broadband pulse transmission through a 1 km shallow-water

Pekeris waveguide, employing a split-step Padé parabolic equation (PE)[7] numer-

ical model for the acoustic propagation. The kernels are also used in simulated

inversions with a more realistic summer-type sound-speed profile. The results of

these investigations indicate that amplitude data contains information about the

environment that is supplementary to what phase data can provide alone.

Phase itself is presumed to be a linear function of travel time, determined

through the inclusion of a frequency factor, ω. Yet the equation for phase sen-

sitivity, derived in Chapter 2, is not directly relatable to the equation for travel-

time sensitivity, as presented by Skarsoulis and Cornuelle[6]. Chapter 3 explores

the differences between these two kernels by investigating their performance as

linear estimators (along with the amplitude sensitivity kernel), comparing the

results to the output of perturbed numerical simulations. These tests progress

from a uniform sound-speed increase across the whole environment, to an artificial

range-dependent displacement, and finally a synthetically generated time-evolving

ocean sound-speed state, based on experimentally observed buoyancy parameters

(FAF05). The results show that, despite the differences in formulation and spatial

appearance, the phase and travel-time sensitivity kernels provide nearly identi-

cal estimates of the change in observed acoustic response, but only with respect

to large-scale perturbations. As the complexity of the sound-speed structure in-

creases, the two measures begin to diverge – a trend seen in both the kernel es-

timates and the synthetic observations from the perturbed simulations. Further

investigation of their differences in structure indicate that much of the extra sen-



3

sitivity apparent in the TSK is not representative of finite-perturbation-amplitude

travel-time variability, and that the phase-derived sensitivity kernel is a better

measure of travel-time changes over a range of realistic perturbation sizes.

The acoustic sensitivities discussed thus far have been focused on sound-

speed changes – volumetric perturbations within the environment. The Born ap-

proximation can also be applied to changes in the boundaries of an environment,

and Chapter 4 derives one such linearized sensitivity kernel for the relationship

between point displacements along the surface of a waveguide and the acoustics

propagating within. This surface scattering kernel is investigated for an ultrasonic-

scale waveguide in a laboratory tank experiment where the the surface is directly

perturbed on a point-by-point basis and the effect on acoustic propagation ob-

served. The results are compared with theoretical calculations for the surface sen-

sitivity, determined with a PE numerical model, showing substantial agreement.

This suggests that the surface sensitivity kernel may be used to efficiently incorpo-

rate surface effects in forward numerical models of acoustic propagation and could

also be used in inverting for sea-surface structure.
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Chapter 2

Information and linearity of

time-domain, complex-demodulated,

amplitude and phase data in shallow

water

Abstract

Wave-theoretic ocean acoustic propagation modeling is used to derive the

sensitivity of pressure, and complex demodulated amplitude and phase, at a re-

ceiver to the sound speed of the medium using the Born-Fréchet derivative. Al-

though the procedure can be applied for pressure as a function of frequency instead

of time, the time domain has advantages in practical problems, since linearity and

signal-to-noise are more easily assigned in the time domain. The linearity and

information content of these sensitivity kernels is explored for an example of a

3-4 kHz broadband pulse transmission in a 1 km shallow water Pekeris waveguide.

Full-wave observations (pressure as a function of time) are seen to be too nonlin-

ear for use in most practical cases, while envelope and phase data have a wider

range of validity and provide complementary information. These results are used

in simulated inversions with a more realistic sound speed profile, comparing the

5
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performance of amplitude and phase observations.

2.1 Introduction

Both pulsed and pure tone acoustic transmissions have been used in a va-

riety of ways to estimate ocean and bottom structure. An example of pulsed

signals is ocean acoustic tomography, suggested by Munk and Wunsch[1, 2] to

monitor the time-evolving large-scale ocean structure using travel times measured

by transmitting pulsed sound in the 50-300 Hz range to distant receivers. In spite

of the low frequencies used in experiments, the high-frequency ray approximation

was employed in analysis so that arrival times were assumed to sample the ocean

along idealized ray paths through the water column. Given enough diverse paths

traversing the medium, the ocean sound speed structure can then be reconstructed.

As an alternative to ray-theoretic modeling of travel times, wave-theoretic

approaches have been employed, such as the modal-arrival[3, 4] and the peak ar-

rival approach[5, 6]. This led to the development of the Travel time Sensitivity

Kernel (TSK)[7], a first-order linearization of the influence sound speed variations

have on acoustic propagation via the wave equation. TSK analysis, and previous

seismological literature[8, 9], moved away from the high-frequency assumption to

provide a wave-theoretic relation between a time of arrival and the parts of the

medium that affect it. These kernels have also been extended to include array

processing techniques to produce beamformed analogs of the TSK[10]. However,

the drawback to sensitivity kernel analysis is its linearity, which limits the size of

the perturbations for which the kernels are valid.

Acousticians have also transmitted pure tones and used the amplitude and

phase of the received signal for geoacoustic inversion[11, 12]. In this procedure, for-

ward models are combined with linear and nonlinear optimization methods[13, 14,

15] to search for the global extremum representing the estimated geoacoustic prop-

erties in a multidimensional parameter landscape. In contrast to sensitivity kernel

analysis, this global optimization procedure does not generally provide a physical

picture of the dependence of the observations on perturbations to the medium.
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More closely related to the sensitivity analysis is the adjoint method[16, 17] which

gives the gradients for an iterative linear descent algorithm to fit the observations

by perturbing the medium. The gradient for a single observation is equivalent

to the sensitivity kernel, but to date, authors have generally focused on esti-

mating the medium, and considered all observations together, limiting physical

interpretation of the results though still requiring linearity to be valid. The ad-

joint method has been previously explored in a ‘broadband’ sense using multiple

independent frequencies[18, 19], and has also been theoretically investigated in

the time-domain[20]. Amplitude data in broadband tomographic work has been

avoided this far, because its sensitivity to sound-speed becomes strongly nonlinear

over long ranges; however, recent short-range acoustic experiments[21] have ex-

hibited recorded amplitudes stable enough over multiple measurements for use in

tomographic inversions. In the previous work discussed above, there has been no

discussion of the structure of the amplitude and phase sensitivity kernels or their

information content, which is explored here.

The present work applies wave-theoretic modeling to obtain the

two-dimensional (2D) sensitivity kernel to sound speed for pressure, and pulse enve-

lope amplitude and phase, as a function of time for finite-frequency transmissions.

We use the Born-Fréchet kernel of the linear (first-order) integral representation of

pressure variations in terms of the spatial distribution of sound speed variation[8].

Such kernels have already been applied to investigate the performance of time-

reversal acoustics[22], but are presented here with an eye towards tomographic

inversions; investigating the range of linearity, as well as the spatial resolution pro-

vided by the kernels. In this paper we apply the sensitivity kernel analysis to the

full acoustic wave field to show that pressure amplitude data contain information

that supplements the standard time of arrival tomographic procedures.

Travel times have been used as the observable in relatively long-range prop-

agation, where only the stationary phase arrivals are linear enough to be used for

inversion. In this paper, we show that the amplitude of the pressure field con-

tains useful information as well, at least for small perturbation sizes. Care has

been taken to explore the range of linearity, and some types of arrivals are found
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to have larger linearity ranges than others. Even though the observed range of

linearity for these sensitivity kernels is limited in some examples, it still provides

a framework with which to investigate the structure of influence the environment

has on acoustic propagation.

We begin Sec. 2.2 by reviewing the Green’s function for ocean acoustic

propagation and its perturbations in the Born approximation, along with how this

translates to sensitivity kernels of pressure in the time-domain, as well as corre-

sponding magnitude and phase kernels for the demodulated signals. Further, the

Appendix relates the sensitivity kernel analysis to the adjoint method. Section 2.3

describes the simulations performed to calculate these kernels and discusses some

of the example sensitivity maps shown. Section 2.3.1 investigates the range of

linearity for these kernels through the use of perturbed forward model runs to test

them against and in Sec. 2.3.2 we explore the additional information provided by

full-wave data over travel-time measurements alone. In Sec. 2.4 the problem of

inverting pressure records is addressed, with a discussion of the spatial resolution

afforded by the kernels. This is followed by some sample inversions performed on

simulated data in Sec. 2.4.1. Finally, Sec. 2.5 contains a discussion of results and

main conclusions from this work.

2.2 The Perturbed Green’s Function

The results of introducing a perturbation into the Helmholtz equation have

already been described in earlier TSK work[7], but are summarized here for com-

pleteness.

In the following inhomogeneous Helmholtz equation, the Green’s function

G(r|rs) represents the acoustic pressure field response at a position r, due to a

point source located at rs:[
∇2 +

ω2

c2(r)

]
G(r|rs) = −δ(r − rs). (2.1)

Here, ω is the circular frequency of the source, c(r) describes the sound-speed

distribution, and δ is the Dirac delta-function. The necessary boundary conditions
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require that G is identically 0 at the surface, while pressure and normal-velocity

are continuous across the interfaces. The radiation condition demands that the

field decay with range away from the source, describing an outgoing wave[23].

Perturbing the sound-speed distribution in Eq. (2.1), by an amount, ∆c,

induces a perturbation in the Green’s function, ∆G, that must satisfy the same

boundary conditions as the original unperturbed Green’s function:[
∇2 +

ω2

[c(r) + ∆c(r)]2

]
[G(r|rs) + ∆G(r|rs)] = −δ(r − rs). (2.2)

Equation (2.2) can be rearranged into a form that resembles the induced pressure-

field due to an arbitrary source distribution, interpreted as a ‘new’ set of sources

produced at each point, r, by scattering from the original propagating wave

through the perturbed environment. This integral expression is then linearized

(retaining only first-order terms) to obtain the Born approximation[24] for the

perturbation of the Green’s function:

∆G(rr|rs) = −2ω2

ˆ
V

G(r′|rs)G(rr|r′)
∆c(r′)

c3(r′)
dV (r′), (2.3)

where the volume integral for V is conducted over all positions in the medium, r′,

and for a given receiver position, rr. The steps leading from Eq. (2.2) to Eq. (2.3)

have been omitted here, as they are described in detail by Skarsoulis et al.[7]

The sensitivity (Fréchet derivative[20]) of the Green’s function at this fre-

quency to a change in sound-speed at an individual point, r′, is then:

∂G(rr|rs)
∂c(r′)

= −2ω2G(r′|rs)G(rr|r′)
1

c3(r′)
, (2.4)

which is comparable to the adjoint of the PE model[16] for the selected frequency

(ω) and source-receiver pair (see Appendix). The sensitivity for all points in the

region is referred to as the “sensitivity kernel", since the integral of the kernel

multiplied by a sound-speed perturbation is the change in the green’s function.

2.2.1 Time domain perturbations

Given the frequency-domain Green’s function for propagation to a distant

receiver, rr, and a source-signal spectrum, Ps(ω), the acoustic field recorded at the
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receiver can be expressed through the inverse Fourier transform,

pr(t) =
1

2π

ˆ ∞
−∞

G(rr|rs;ω; c)Ps(ω)eiωt dω, (2.5)

where we have explicitly included the frequency dependance of G.

Introducing a sound-speed perturbation, ∆c, at a point, r′, will cause a

change, ∆G, in the Green’s function (given by Eq. (2.3)), and in turn induce a

variation, ∆pr, in the acoustic pressure at the receiver in the time domain:

∆pr(t) =
1

2π

ˆ ∞
−∞

∆G(rr|rs;ω; c; ∆c)Ps(ω)eiωt dω. (2.6)

Dividing Eq. (2.6) by the perturbation, ∆c, yields an integrand that can be sub-

stituted with the expression for ∂G
∂c

given in Eq. (2.4), producing an equation for

the sensitivity of pressure (in time) to changes in the sound-speed field:

∂pr(t)

∂c(r′)
=

1

2π

ˆ ∞
−∞

(
−2ω2G(r′|rs)G(rr|r′)

Ps(ω)

c3(r′)

)
eiωt dω. (2.7)

The formula in Eq. (2.7) constitutes the primary kernel calculated in the

work presented below - which we refer to as the Pressure Sensitivity Kernel (or

PSK) - and also appears implicitly as an ingredient of the TSK analysis performed

by Skarsoulis and Cornuelle[7], but is never explored directly in that work.

2.2.2 Pressure-kernel derivatives for magnitude and phase

The recorded broadband pressure-signal, p(t), can be demodulated with the

central/carrier frequency, ωc, yielding the complex base-banded signal (appropri-

ately filtered):

P (t) = p(t)e−iωct.

The sensitivity kernel for pressure, ∂p
∂c
, may be similarly demodulated:

∂P

∂c
=
∂p

∂c
e−iωct,

where the upper-case P is used to represent the complex demodulated quantities.

The envelope of the signal is then obtained from the magnitude of P by

|P | =
√
P 2
r + P 2

i .
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Here, Pr and Pi represent the real and imaginary components of P , respectively.

To determine the sensitivity of the envelope to sound-speed perturbations, the

derivative is taken with respect to c:

∂ |P |
∂c

=
1

2

(
P 2
r + P 2

i

)−1/2 (
2Pr

∂Pr

∂c
+ 2Pi

∂Pi

∂c

)
yielding a formula for magnitude/envelope sensitivity that is a function of the base

unperturbed complex pressure, and the associated kernels:

∂ |P (t)|
∂c(r′)

=
Pr(t)

(
∂P (t)
∂c(r′)

)
r

+ Pi(t)
(
∂P (t)
∂c(r′)

)
i

|P (t)|
. (2.8)

Similarly, the phase of the complex broadband pressure-signal is given by

θ = tan−1
(
Pi
Pr

)
,

where Pr and Pi are as defined above, and θ is the phase in radians. Differentiating

this expression with respect to c, as before,

∂θ

∂c
=
Pr

∂Pi

∂c
− Pi ∂Pr

∂c

P 2
r + P 2

i

,

then produces the sensitivity kernel for phase with respect to sound-speed pertur-

bations:

∂θ(t)

∂c(r′)
=
Pr(t)

(
∂P (t)
∂c(r′)

)
i
− Pi(t)

(
∂P (t)
∂c(r′)

)
r

|P (t)|2
. (2.9)

This is not identical to the expression for the TSK[7], even though the two observ-

ables can be closely related

2.3 Sensitivity Kernels

To investigate the information content in a realistic environment, pres-

sure kernels were calculated for a range-independent environment using a Padé

parabolic equation (PE) numerical model[25] for the acoustic propagation. A

normal-mode based model could have been employed instead, but the choice of

a PE solution allows for easy treatment of range-dependent environments.
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The simulated environment is 100 m deep, with a flat bottom, and 1km

wide. The sound speed profile (SSP) used is 1500 m/s in the water column and

1600 m/s in the bottom - i.e. a Pekeris waveguide. The simulated transmission

signal is a broadband linear frequency modulated (LFM) chirp, 3-4 kHz. The

depth, range, bottom sound speed, but not the SSP, were chosen to be similar to

those encountered at sea during the Focused Acoustic Fields (FAF) experiments

conducted in the Mediterranean between 2004 and 2006 in collaboration with the

NATO Undersea Research Center (NURC), in anticipation of working with those

data sets. The grid density used for the numerical model was set at ∆x = 5 m and

∆z = 0.05 m, but the results only retained every 0.5 m in depth. Smaller steps in

range were tested, but did not augment the kernels substantially.

The PE model is used to determine the Green’s functions at each frequency

required in Eq. (2.5) for calculation of point sensitivities (at r′) in the environ-

ment. These frequency kernels are combined through Fourier synthesis to provide

the broadband, time-domain pressure sensitivity kernels (PSKs) as per Eq. (2.7).

An assumption made in this work to simplify calculations is one of reciprocity:

that G(r|r′) = G(r′|r). With this in mind, only two forward model runs are re-

quired to calculate the kernel: G(r′|rs) - representing propagation of energy away

from the source, and G(r′|rr) - propagation away from the receiver. Without this

assumption separate model runs would have to be calculated for propagation to

the receiver from every point within the intervening medium.

Figure 2.1a shows the arrival structure produced from modeling a broad-

band source at a depth of 50 m within the above described environment. The

horizontal line through the plot represents the depth of a receiver (at 50 m) for

which sensitivity kernels will be shown. Figure 2.1b shows the pressure-time record

for this receiver, along with markings to label the peak arrivals. Though kernels

can be calculated for any point within the given time-series, they are only of use

for inversion where there is significant received energy.

Figure 2.2a shows a PSK for the peak of arrival #1 in the pressure-time

series for this receiver. The kernel map describes what regions in the medium can

influence the value of the pressure received at the peak arrival time. In the color
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Figure 2.1: PE model calculations for the pressure field at 1 km from a broadband
(3-4 kHz) source at depth 50 m, in a 100 m deep Pekeris waveguide.
(a): Depth-Time arrival structure from the numerical results, with a color scale
that shows transmission loss in dB.
(b): Pressure vs. Time for a receiver at 50 m depth in the arrival structure given
above. Amplitude units here are arbitrary with respect to the PE model, where
the source pulse had a peak magnitude of 1.
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Figure 2.2: Pressure sensitivity kernels (PSK) for arrivals 1, 2 and 3, as marked
in Fig. 2.1b, evaluated only in the source-receiver plane. Color scale represents
change in received pressure, per unit change in sound speed. Each pixel is the
integrated contribution over a unit volume element (∆x = 5 m, ∆z = 0.05 m),
hence no m−2. The units for pressure are arbitrary with respect to the PE model.
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scale, red indicates that an increase in sound speed at that point will increase

the received pressure, whereas blue indicates that an increase in sound speed will

decrease the pressure. Due to the high-frequency and broadband nature of the sig-

nal simulated, the picture presented appears somewhat ray-like. This impression

continues through the rest of the time-series as well: figures 2.2b and 2.2c present

the kernel maps for arrivals 2 and 3 respectively, and the paths of the surface-

reflected and bottom-reflected rays can be discerned. Areas of the pressure-time

series with no received signal still have associated kernel maps with some struc-

ture, but they cannot be intuitively described as rays/modes as in the other cases

presented. However it does indicate that given changes in the environment at the

significant areas within the kernel map, the observed energy at this point in time

can be expected to increase from zero.

2.3.1 Linearity

To investigate the range of linearity of these kernels, a sample sound speed

perturbation is introduced to cause a change in the received pressure field. An

estimate of this change, ∆p̂, is calculated using the PSK by

∆p̂(t) =

ˆ
V

∂p(t)

∂c(r′)
∆c(r′) dV. (2.10)

When the kernel and perturbation quantities are expressed as vectors numerically,

this operation becomes an inner (dot) product of the two. To calculate the ac-

tual change in received pressure, a second PE model run is performed through a

modified environment, with the perturbation applied to the background SSP. The

change in received pressure is then

∆p(t) = p(t)− p0(t),

where p is the perturbed PE solution, and p0 is the base, unperturbed result.

The perturbation used in these tests is a Gaussian function of both range

(x) and depth(z) with a scale of 50 m in both dimensions, and positioned in the

center of the domain (x = 500 m z = 50 m). The linear sensitivity as a function

of position of this perturbation has also been studied, and found to be maximal
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at the center. The peak magnitude of the sound-speed perturbation is scaled from

1 m/s to 20 m/s, and for each case the difference between ∆p̂ and ∆p is observed.

The plots in Fig. 2.3 are magnified around the region of arrival #1 so that

differences within the wave-packet are visible. The kernel predicts a linear increase

in amplitude with increasing magnitude of the sound-speed perturbation, shown

by the increasing scale of the blue curve in Fig. 2.3, but this is not how the actual

wavelet behaves for large deviations, as evidenced by the red curve. A root mean

square (RMS) error between the estimated pressure change (∆p̂) and the actual

difference (∆p) has been calculated over the entire time series, the results of which

are summarized in Fig. 2.4. The values plotted are given by√〈
(∆p̂(t)−∆p(t))2

〉√〈
(∆p(t))2

〉
where the mean, denoted by 〈〉, is taken across all time and the resulting fraction

expressed as a percentage. The blue line in the figure, for the direct pressure

differences, seems to indicate the rapid breakdown of linearity with increasing

perturbation magnitude. A sound speed change of just 10 m/s causes an apparent

100% error in the estimate produced by the kernel, which would severely limit

the usability of this approximation. However, given the similarity of the curves

in the 10 m/s example in Fig. 2.3, it is reasonable to believe that some linearity

remains, despite the calculated 100% error. The primary difference between the

two time-series is a slight time-lag/phase-offset, which from a strict pressure-time

analysis results in the large error seen in Fig. 2.4, while the envelopes of the signals

still appear to be quite similar.

The magnitude and phase differences can be separated through demodu-

lation of the pressure-time series (complex basebanding with e−iωct, where ωc is

the center/carrier frequency). Repeating the error analysis with these demodu-

lated quantities yields a far more appealing picture, the green line in Fig. 2.4, with

the RMS error in magnitude staying below 50% even as the perturbation scale

approaches 20 m/s, at which point the error in the direct pressure signal is over

400%. With this observation it appears prudent to transform the PSK into equiva-

lent phase and magnitude counterparts as well, as described in Sec. 2.2.2, that can
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Figure 2.3: These 3 graphs plot ∆p̂(t) (blue) and ∆p(t) (red) on the same time-
base, for increasing values of max(∆c). The time window encompasses the pulse-
width of arrival #1 in Fig. 2.1b to show the linear increase in the kernel estimate
(∆p̂(t)) vs the actual. Note the change in scale for the amplitude (vertical) axis,
moving from the first (top) panel down.
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taken across the whole signal. This provides a quantitative view of the divergence
seen in Fig. 2.3, but across the entire time series, and also shows the benefit of
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then be treated independently. Further tests were conducted to explore the range

of linearity for these phase and magnitude sensitivity kernels (PhSK, MSK), and

the results for one particular isolated peak (arrival #3) are presented in Fig. 2.5.

Here, the linear increases predicted by the sensitivity kernels can be clearly seen,

but quickly deviate from the truth for the raw pressure example, where only the

first point (at 1m/s) matches the perturbed PE output

2.3.2 Information content

In the previous section, it was shown that perturbations to a received broad-

band pressure signal have a larger linear range when demodulated into separate

magnitude and phase components. The broadband PSK can be correspondingly

transformed into magnitude and phase analogues as well, but is not simply the

complex demodulation of the real pressure kernel. The formulations for sensitivity

of magnitude and phase are given by Eq. (2.8) and Eq. (2.9), respectively. Both

of these kernels are easily calculated given the existence of the base sensitivity

computation from Eq. (2.7), as shown in Sec. 2.2.2.

Figures 2.6a and 2.6b present the magnitude and phase kernels, respectively,
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Figure 2.5: The evolution of peak arrival #3 (in Fig. 2.1) as the scale of a
gaussian perturbation in the center of the environment is increased. The green
lines, with circular markers, plot the perturbed PE results while the blue lines, with
cross markers, indicate the linear kernel estimated changes. Panel (a) presents the
changes in the raw pressure value at arrival #3, and its associated kernel. Panels
(b) and (c) show the equivalent results for the demodulated (envelope) magnitude
and phase quantities, respectively. Note, in panel (a) the perturbed PE output
oscillates around the 0-line as the wave-packet within the peak shifts, but this is
obscured by how much the raw pressure kernel overestimates the changes.
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Figure 2.7: Panels (a) and (b) show the 2D spatial Fourier transforms of the
magnitude and phase kernels, respectively, given in Fig. 2.6 for arrival #1. Panels
(c) and (d) are the equivalent spectrums for arrival #3 in Fig. 2.1b. The color
values describe a logarithmic scale (20 log10) for the magnitude of the FFT output,
to compress the dynamic range of the visible features, and do not represent a
power-spectral density (PSD).

for arrival #1 in Fig. 2.1b. The phase kernel is analogous to the TSK[7] for small

perturbations, since travel-time and phase are linearly related, so the important

question is whether the magnitude provides any further information about the

environment over travel-time/phase alone. At first glance it is difficult to discern

any significant differences between the two maps, aside from the width of the

central lobe. Closer inspection of the phase kernel reveals fading in the main lobe

towards the central axis, i.e. the eigenray path for this arrival. In contrast, the

magnitude kernel has a solid main-lobe, indicating non-zero sensitivity along the

ray- path. This behavior was observed in three dimensions for amplitude kernels

calculated on seismic body waves by Dahlen.[26]

Given these differences between the magnitude and phase kernels, it is nat-
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ural to examine them out in the higher Fresnel zones. Calculating the 2D spatial

Fourier transform of each kernel provides a measure of their sensitivities to differ-

ent scales of variability within the environment, as shown in Fig. 2.7. The most

prominent feature of these spectra is that the phase appears maximally sensitive to

the (0,0) wavenumber, whereas the magnitude has no sensitivity at all there. This

meshes well with our intuition of the problem: the (0,0) wavenumber corresponds

to a uniform increase (or decrease) in sound speed over the whole environment,

and such a change would serve to only accelerate (or retard) the existing arrival

structure and have no effect on the amplitude of the peaks. Examining the rest

of the spectrum, it is apparent that both amplitude and phase are only sensitive

to low horizontal wavenumbers because of the horizontally stratified character of

the spatial sensitivity maps for this particular (direct) path - any higher frequency

variability is integrated out during propagation.

Following the vertical structure of both spectra, an interesting feature stands

out: the maximal and minimal sensitivities of the two kernels appear to be inter-

leaved. Besides the already discussed (0,0) difference between the two, the phase

spectrum has local maxima at 0.1 m−1 and 0.2 m−1 in the vertical, where as the

amplitude kernel has local minima at those points. This relationship is even more

apparent for the later (high angle) arrivals, where the spatial spectrum is more

separated. Figures 2.7c and 2.7d show the Fourier transforms of the magnitude

and phase kernels associated with arrival #3 in Fig. 2.1b, and one can clearly dis-

cern the alternating minima/maxima between the two spectra. The corresponding

spatial maps in amplitude and phase have not been provided, but are similar in

appearance to Fig. 2.2c, the main differences lying in the fine structure. Other than

the argument given above for the lowest (flat) wavenumber, the physical reason

behind this apparent interleaving has not been determined.

2.4 Inverting for sound speed changes

In this section, a standard least-squares method is used to simultaneously

invert magnitude and phase/time information for sound-speed perturbations using
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the sensitivity kernels discussed above.

The Pekeris waveguide used earlier is now replaced by a range-independent

summer profile derived from CTD measurements (Fig. 2.8) taken during the Fo-

cused Acoustic Fields experiments of 2005 (FAF05) through which the reference

data model is constructed, along with the related sensitivity kernels. To increase

coverage over the medium, we allow for multiple sources and receivers (10x10)

spanning the water column (now 120 m deep), an idealization of the at-sea exper-

imental setups, which had 29 sources and 32 receivers.

To generate realistic perturbations, an internal-wave model is constructed

using the same CTD measurements. The vertical basis functions of the internal-

wave field are estimated from the buoyancy profile derived from the FAF05 en-

vironmental data, while the horizontal basis functions are sines and cosines[27].
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The spectrum employed in weighting these components is the Garret-Munk (GM)

spectrum[28], but rescaled to produce the desired range of variability (±1.0 m/s

at the thermocline, which is ∼35 m deep).

In vector notation, the forward problem is described by

∆p =
∂p

∂c
∆c,

where ∆c is the sound speed perturbation expressed as a column vector, of length

NxNz - where Nx and Nz are the number of grid points in the horizontal, and

vertical spatial dimensions, respectively. ∂p
∂c

is a Jacobian matrix or sensitivity

kernel expressed as a row vector of the same size, and ∆p is the resulting change in

pressure (or magnitude and phase) at the peak arrival. This relationship provides

two data points when considering the demodulated quantities for magnitude and

phase (each with their own kernel), and every peak in the arrival structure provides

a pair of such values. The data vector is expanded with each source-receiver pair,

and the entire system can now be expressed concisely by

d = H∆c,

where ∆c is as before; d is the perturbed data vector (length Nd) - the differences

between our measurements - combining all amplitude and phase points for each

peak-arrival in every source-receiver pair; and H is a matrix whose rows consist of

sensitivity kernels for all the peaks under consideration (size Nd ×NxNz). In the

simulations presented here, the average number of peaks for each time-series is 6,

so that the number of data points, Nd, is ∼1200 (10× 10× 6× 2). An estimate of

the sound speed perturbation is now given by

∆̂c = H+d,

where H+ is the Gauss-Markov inverse, as detailed in the appendix. The number

of unknowns in this system is governed by the grid size employed during the PE

calculations (Nx = 201, Nz = 2801); resulting in over 500,000 variables to be

determined from just 1200 equations - a severely under-determined situation. The

specification of the prior covariance can be diagonalized by projecting onto the
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physical basis functions used by the internal-wave model mentioned above. The

set of sensitivity kernels are transformed into this basis function space producing

a new matrix,

H ′ = HM ,

where each column of the matrix M is an orthonormal product of basis functions

from the internal-wave model, and may be restricted to as few (or as many) func-

tions as needed, depending upon desired spatial resolution. The inversion process

now produces an estimate of the coefficients of these basis functions that constitute

the sound speed perturbation:

∆̂m = H ′+d.

The spatial answer can then be reconstructed by

∆̂c = M∆̂m.

The actual inversion step incorporates the statistics of the internal-wave

model, as well as an assumption about the statistics of the expected misfit between

the model and the observations. This is called “noise”, and is used to tune the

performance of the estimate:

H ′+ = CH ′T (H ′CH ′T + R)−1. (2.11)

C is a diagonal covariance matrix for the internal wave parameters that conditions

the estimate based on expected energies of the internal wave modes; and the di-

agonal matrix R is the variance of the expected misfit between the model and the

observations. The uncertainty in the estimated sound-speed can be calculated by

Ĉ =
〈

(∆̂c−∆c)(∆̂c−∆c)T
〉

= C −CHT (HCHT + R)−1HC.

2.4.1 Numerical example

The perturbation map shown in Fig. 2.9a is a randomly generated instance

of the internal-wave field described earlier, using 10 vertical and 80 horizontal com-

ponents. The PE simulation is calculated through this perturbed environment (as
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in Sec. 2.3.1), and a peak finding algorithm applied to the resulting pressure-time

series to identify arrivals and associate them with counterparts in the unperturbed

model. The differences in amplitude and phase provide the elements of the data

vector d. As part of the peak identification process an eigenray search is performed

to assist in match-making. In some cases, like arrivals 2 and 3 in Fig. 2.2, a peak

can be associated with more than one ray-path. Such data points are discarded

because the resulting constructive/destructive interference reduces the range of lin-

earity of the amplitude and phases kernels to that of the full wave pressure kernel.

Another source of non-linearity is propagation paths with turning points close to

the thermocline: these rays are easily deviated from their original travel paths,

with even small changes in sound speed. A substantial path change equates to

a new kernel structure as well, and hence the original sensitivity calculation will

no longer be valid. However, this behavior tends to be highly dependent on the

actual structure of the perturbation, making identification of individual problem-

paths difficult a priori. In these numerical examples all the 1st (direct) arrivals

have been removed, as these shallow rays appear to be particularly prone to small

ranges of linearity.

These two filtering steps result in about 50% of the initial data points being

discarded.

Figure 2.9c shows the results of the estimation using all acceptable data

points (amplitude and phase) with an assumed signal-to-noise ratio (SNR) of

35 dB, but only allowing for the first 20 most significant horizontal components

while keeping all 10 vertical modes. The resulting map of sound speed deviations

should be compared to the original input, Fig. 2.9a. The estimate appears to

be a smoother, filtered version of the original - expected, due to the exclusion

(truncation) of high wavenumbers - but with most of the main structures intact.

When compared directly to a truncated version (Fig. 2.9b) of the input pertur-

bation field , the amount of agreement is even more pronounced. The differences

between the estimated and true perturbations were consistent with the diagonal

of the a posteriori uncertainty covariance matrix of the estimate. This is expected

for a simulation with inputs consistent with the a priori assumptions and so the
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expected uncertainty map has been omitted.

This inversion can be performed with phase and amplitude data separately

or combined, and the quality of the estimate varies accordingly. Figure 2.10a,

shows the error in the estimate for all 3 cases vs. varying values of assumed SNR,

which increases the diagonal loading applied through the matrix R (Eq. 2.11). The

performance of the estimator decreases at high SNR due to non-linearity, as the

assumed noise level is now less than the actual. Here we can see that even though

phase alone fares substantially better than amplitude inversions, combined the

resulting estimate provides even more information. Figure 2.10b shows a similar

plot of error vs. the number of horizontal components inverted for - keeping the

SNR constant at 35 dB. This graphically shows the motivation for limiting the

estimation to the 200 most significant basis functions (out of the original 800):

searching for any higher-order structure yields little-to-no improvement in the final

answer, which is also supported by the observations from Fig. 2.7. The dashed lines

represent the ideal cases (with respect to the sensitivity kernels), i.e. if the data

vectors had been generated with the kernels themselves through Eq. (2.10). These

curves represent the best possible cases when every data-point used falls within

the linear regime.

2.5 Discussion and Conclusions

Application of the Born approximation to the wave equation provides a

linear relationship between sound speed fluctuations and changes in received pres-

sure. This association is a function of frequency, but can be converted into a

time-dependent pressure sensitivity kernel via the Fourier transform. These spa-

tial sensitivity kernels map out the areas of the environment that affect the acoustic

signal, and at high frequencies approach the assumed ray/beam paths normally

associated with propagation. Numerically, they quantify the effect environmental

changes have on the received pressure, but only to the extent that the assumption

of linearity permits.

We explored the extent of this linear limit, noting that the raw pressure
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signal becomes non-linear very quickly, while the demodulated pulse envelope phase

and magnitude stay in the linear regime far longer. With this in mind we transform

the PSK into equivalent linear magnitude and phase kernels, and note that phase

sensitivity should be similar to earlier work done on travel-time perturbations. The

character of the additional information provided by the inclusion of magnitude data

is explicitly shown by the spatial Fourier transforms of the kernel maps. We see

that phase and magnitude data are not only complementary, but may also be

mutually exclusive (at least in the spectral sense).

Using these kernels for inversions requires prior estimates for the statistics

of the sound speed perturbations. Limiting the degrees of environmental variability

to known physical modes, via an internal-wave model, leads to a convenient and

diagonal prior uncertainty covariance.

A numerical example of inverting for sound speed changes with these sen-

sitivity kernels was performed using simulated data created by propagating sound

through a sound speed field produced by an internal-wave model. The resulting

estimate shows good agreement when compared to the input perturbation map.

The inversion was performed with phase and magnitude data separately, as well

as combined, and shows the benefit of including full-wave data (when possible) for

inversions.

2.A Adjoints, kernels, and inverse techniques

This discussion assumes linearity in order to focus on the linear algebra of

the adjoint, kernel, and inverse problems. Using the notation from Sec. 2.4, the

linearized forward problem is written in matrix notation as

d = H∆c + r,

where ∆c is the sound speed perturbation expressed as a vector (length NxNz), d

is a data vector (length Nd) combining all amplitude and phase observations, r is

a vector of misfit between observations and model with an expected covariance R,

and H is the Nd×NxNz jacobian matrix that converts sound speed-perturbations
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to data-perturbations. Each row ofH is the sensitivity kernel for the corresponding

datum.

Kernels can be estimated using the Born approximation or by the adjoint

of the forward model, although the latter has typically been used for iterative in-

version without explicitly evaluating the kernels. To use the adjoint for inversions,

the cost function for the differences between observation and model,

J = (d−H∆c)TR−1(d−H∆c),

is differentiated with respect to the unknown, ∆c to get

∂J

∂c
= −2HTR−1(d−H∆c).

HT is the adjoint of the forward model, and the gradient ∂J
∂c

can be used in an

iterative descent method (e.g. conjugate gradients) to minimize J . The adjoint-

based ocean estimation has been done this way ,[16, 18, 19] where the adjoint

model is forced by the weighted data misfit, R−1(d−H∆c).

If the model is instead forced by a single datum, the gradient is HTei,

where ei is the vector basis function with the i-th element equal to 1 and all other

elements zero. This selects one column of HT , which is one row of H , the same as

the kernel derived above. This matrix is frequently too large to compute, and so

the iterative gradient descent is used in order to work with only one set of vectors

( ∆c, ∂J
∂c

and (d−H∆c) ) at a time.

In systems where the number of data or model parameters are small enough,

sound speed can be estimated without iteration by inverting a matrix. To deal with

the possibility that H is poorly conditioned, and/or to satisfy prior constraints in

Bayesian estimation, the cost function is expanded to include a penalty on the size

and/or roughness of ∆c:

J = (d−H∆c)TR−1(d−H∆c) + ∆cTC−1c ∆c,

where Cc is a matrix defining the penalty for structure in ∆c, which Bayesians

interpret as the expected covariance of the uncertainty in the initial sound speed

guess (for which ∆c is a correction). The transformation to internal wave param-

eters is not used here to simplify the discussion.
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Now the cost function gradient has an extra term:

∂J

∂c
= −2HTR−1(d−H∆c) + 2C−1∆c

. The solution minimizes the cost function, so the gradient is zero, so

HTR−1(d−H∆c) = C−1c ∆c

or

HTR−1d = (HTR−1H + C−1c )∆c.

This matrix problem can be inverted iteratively, using the cost function gradient,

but it can also be formally inverted:

∆̂c = (HTR−1H + C−1c )−1HTR−1d.

The matrix to be inverted is called the “Hessian” and is NxNz×NxNz. Frequently,

as in this paper, this matrix is far too large to even compute, let alone invert,

but if the number of data are small, the matrix inversion lemma (for example, see

Wunsch[29]) gives an equivalent form which can be inverted in data space:

∆̂c = CcH
T (HCcH

T + R)−1d.

This is the Gauss-Markov estimator used in Sec. 2.4, and is numerically feasible

if Nd is small enough. So the adjoint can be used for gradient descent in large

problems, or to generate kernels for individual observations.
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Chapter 3

The phase sensitivity kernel and its

performance as a linear travel-time

estimator

Abstract

Linear acoustic sensitivity kernels have been derived for the pressure, arrival-

time, complex amplitude and phase of broadband acoustic transmissions. While

the additional information provided by amplitude data has been previously inves-

tigated, it was assumed that phase could be directly related to travel-time mea-

surements, and hence yielded no new details. Further investigation shows that this

is not always the case, and that the kernel framework suggests certain situations

where phase and time diverge, which is also supported by perturbed forward sim-

ulations. This paper presents several such examples from short-range numerical

models, along with a statistical analysis investigating the performance of ampli-

tude, phase and travel-time sensitivity kernels as linear acoustic estimators. The

results suggest phase may be a preferable observable to travel-time, and even when

considering travel-time measurements alone, the phase-derived time sensitivity is

a better performing estimator.

36
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3.1 Introduction

In ocean acoustic tomography, travel-time has been the observable of choice

since being first suggested by Munk and Wunsch[1, 2] to monitor basin-scale

changes. This was a ray-centric approach to relating measured acoustic perturba-

tions to changes in ocean sound-speed, but rays are an infinite bandwidth approxi-

mation to the actual propagation of sound in the ocean, one that while adequate for

coarse observations, is inaccurate for resolving finer scales of ocean structure, espe-

cially at low frequencies. As an alternative, wave-theoretic approaches have been

employed, such as the modal-arrival[3, 4] and the peak arrival approach[5, 6], which

led to the development of the Travel-time Sensitivity Kernel (TSK)[7], an appli-

cation of first-order perturbation theory to the effects of sound-speed fluctuations

in the wave equation. TSK analysis, and previous seismological literature[8, 9],

moved away from the high-frequency assumption to provide a wave-theoretic rela-

tion between a time-of-arrival and the parts of the medium that affect it.

This sensitivity analysis has been extended to include both the amplitude

and phase of a peak-arrival, and not just its observed travel-time. It was presumed

that the instantaneous phase could be directly related to travel-time measurements,

and hence provided no additional information, while amplitude was shown to carry

additional data about the medium over that indicated in the phase sensitivity

kernels alone.

In the current work, all three kernel types - amplitude, phase and time - are

explored further via extensive linearity tests against perturbed numerical forward

models. These tests are performed in detail, to probe the behavior of the acoustics

in specific examples, and in aggregate, to describe how well the sensitivity kernels

perform as general linear estimators. The phase and time sensitivity kernels in

particular are compared in an attempt to reconcile the two related quantities.

Section 3.2 begins by summarizing the math for the three sensitivity kernels

noted above. In Sec. 3.2, the testing methods used to probe the linearity and

performance of each kernel are described, followed by a discussion of a few specific

example results for a summer-type profile in Sec. 3.3. The differences between

phase and travel-time estimates are explored in more detail within Sec. 3.3.3,
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and the performance of the sensitivity kernels are summarized statistically during

Sec. 3.3.4. Finally, Sec. 3.4 contains a discussion of the results and main conclusions

from this work.

3.2 The sensitivity kernel equations

The detailed derivations for each of the sensitivity kernels are provided in

earlier work[7], and are only presented in summary here.

In the following inhomogeneous Helmholtz equation, the Green’s function

G(r|rs) represents the acoustic pressure field response at a position r, due to a

point source located at rs:[
∇2 +

ω2

c2(r)

]
G(r|rs) = −δ(r − rs). (3.1)

Here, ω is the circular frequency of the source, c(r) describes the sound-speed

distribution, and δ is the Dirac delta-function. Introducing a sound-speed pertur-

bation of ∆c will induce a corresponding change in the Green’s function of ∆G.

Expanding this expression and linearizing (keeping only first-order terms) produces

the the first Born approximation[10]:

∂G(rr|rs)
∂c(r′)

= −2ω2G(r′|rs)G(rr|r′)
1

c3(r′)
, (3.2)

where rr is the location of the receiver, and r′ is an arbitrary point within the

medium. The sensitivity for all such points in the region is referred to as the

“sensitivity kernel", since the volume integral of the kernel multiplied by a sound-

speed perturbation provides the change in the Green’s function.

Given the frequency-domain Green’s function for propagation to a distant

receiver, rr, and a source-signal spectrum, Ps(ω), the acoustic field recorded at the

receiver can be expressed through the inverse Fourier transform,

pr(t) =
1

2π

ˆ ∞
−∞

G(rr|rs;ω; c)Ps(ω)eiωt dω. (3.3)

Introducing a perturbation, ∆c, as before and simplifying the expression

using Eq. 3.2, gives the time-domain expression for sound-speed sensitivity
∂pr(t)

∂c(r′)
=

1

2π

ˆ ∞
−∞

(
−2ω2G(r′|rs)G(rr|r′)

Ps(ω)

c3(r′)

)
eiωt dω. (3.4)
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The formula in Eq. (3.4) constitutes the primary kernel calculation, which we refer

to as the Pressure Sensitivity Kernel (or PSK), and is a necessary component for

all the derivative kernels below.

The recorded broadband pressure-signal, p(t), can be demodulated with the

central/carrier frequency, ωc, yielding the complex base-banded signal (appropri-

ately filtered):

P (t) = p(t)e−iωct = v(t) + iw(t).

The sensitivity kernel for pressure, ∂p
∂c
, may be similarly demodulated:

∂P

∂c
=
∂p

∂c
e−iωct =

∂v

∂c
+ i

∂w

∂c
,

where the upper-case P is used to represent the complex demodulated quantities;

v and w are thus the real and imaginary components respectively. The envelope

of the signal is then obtained from the magnitude of P by

|P | =
√
v2 + w2.

We can now state the definition for the amplitude sensitivity kernel:

∂ |P (t)|
∂c(r′)

=
v ∂v
∂c

+ w ∂w
∂c√

v2 + w2
. (3.5)

Similarly, the phase of the complex broadband pressure-signal is given by

θ = tan−1
(w
v

)
,

where v and w are as defined above, and θ is the phase in radians. The phase

sensitivity is then
∂θ(t)

∂c(r′)
=
v ∂w
∂c
− w ∂v

∂c

v2 + w2
. (3.6)

Using the same notation, the travel-time sensitivity kernel can be defined

as

∂τ(t)

∂c(r′)
= <

v − iw2πb

+∞ˆ

−∞

−iω∂G
∂c
eiwtdω

+
v̇ − iẇ

2πb

+∞ˆ

−∞

−∂G
∂c
eiwtdω

 , (3.7)
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where τ is the unperturbed arrival time of a peak originally identified at time t;

and b is a quantity set as

b = v̇2 + vv̈ + ẇ2 + wẅ,

where the overdots denote differentiation with respect to time (double-dot is the

2nd derivative).

At this stage it is interesting to observe that phase changes are assumed to

be related to travel-time differences by

∆θ = ωc∆τ, (3.8)

but given the definitions of phase and time sensitivity in Eqs. 3.6 and 3.7, respec-

tively, the transformation of one equation to the other does not appear to be so

straightforward, and certainly not just a frequency factor of ωc inserted somewhere.

Note, that in the sensitivity kernel definitions above (Eqs. 3.5, 3.6 and 3.7),

the parameters rr, rs, r′ and t have been omitted for brevity.

3.3 Linearity and performance tests

In exploring the performance of these kernels as linear estimators for acous-

tic response to sound-speed perturbations, a parabolic equation (PE) numerical

model was employed to compute base range-independent broadband fields - which

are used to calculate the sensitivity kernels themselves. PE simulations were also

performed through perturbed environments with varying magnitudes of sound-

speed displacement, while also estimating the expected changes using the sensitiv-

ity kernels, i.e. ∆d̃ = ∆c∂d
∂c
, where d is one of the three quantities for which kernels

have been calculated.

The base environment is a 1 km wide, 120 m deep channel with no bathymetry

(flat bottom). The transmission signal modeled is a broadband pulse ranging from

3 kHz to 4 kHz in frequency, and the resulting acoustic field is sampled at four

receiver depths: 15 m, 45 m, 75 m and 105 m. These tests were repeated for the

source set at these same depth levels as well.
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The sound-speed profile employed as part of this investigation is a smooth

summer profile derived from average CTD casts (Fig. 3.2) during the Focused

Acoustic Fields Experiment of 2005 (FAF05). Figure 3.1 displays the end-field

acoustic results for this summer example. The individual pressure-time series

(envelope) for each receiver depth has been included with all significant peak-

arrivals identified and marked. Each of these peaks will serve as an observable

quantity that is tracked in the tests described below, and the three sensitivity

kernels are calculated between the source and each receiver for every peak.

Using this prescribed environment, three different perturbation types are

explored for the kernel performance review. Firstly, a uniform sound-speed change

over the whole environment is applied. Second, a Gaussian displacement is set

in the middle of the water-column, midway between the source and receivers in

range. Lastly, a realistic ocean state is generated using measured buoyancy pa-

rameters and random weightings. These parameters were taken from the FAF05

observations, generating a set of supported vertical displacement modes about the

thermocline (∼35 m deep), while the horizontal components are merely sine and

cosine functions. Examples of these sound-speed perturbation maps are provided

in Fig. 3.3, with the exception of the flat/uniform type, which is trivial. For all

three types, the magnitude of the sound-speed change is varied from 0 to 5 m/s

in 0.25 m/s increments, and the linearity tests repeated. In the realistic case this

implies a variability of up to ±5 m/s — representing patches of both positive and

negative sound speed displacements.

3.3.1 Test results presentation format

The 4x4 (#sources × #receivers) array choice results in ∼100 individual

peak-arrivals to observe as the sound-speed profile is perturbed. The discussion

here will be limited to the results from just the 45 m source and only a few selected

peaks, one from each receiver. Results from all source depths, and all peaks, will

be considered in summary for the statistical discussion in Sec. 3.3.4

The figures here aggregate a large amount of information for each peak

into individual panels - this was done to keep relevant details together for the
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Figure 3.1: Numerical results from a Parabolic Equation (PE) simulation of a
1 km wide, 120 m deep waveguide, using a summer sound-speed profile derived
from the FAF05 experiment CTD observations (Fig. 3.2). The top panel shows
the arrival structure associated with a source placed 45 m below the surface. The
subsequent plots show the individual pressure-time series (complex envelope) from
four receiver elements at depths of 15 m, 45 m, 75 m, and 105 m - with significant
peaks identified and marked, so that they can be referred to later.
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Figure 3.3: Sound-speed perturbations used to probe the performance and linear-
ity of the three sensitivity kernel types. (a): Symmetrical Gaussian sound-speed
displacement, with spatial scales of 100m in range and 50m in depth, located in the
center of the waveguide. (b): Internal-wave induced sound-speed perturbation for
the FAF05 summer profile (Fig. 3.2). Vertical modes are derived from buoyancy
parameters measured at sea. Horizontal components are sine and cosine functions.
The red star marks the source position (at 45 m depth) used in the numerical
simulations presented. The color scale indicates the sound-speed shift in m/s.
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readers benefit, but requires a detailed description before proceeding. Each figure is

associated with a single peak identified from Fig. 3.1 . The upper, wide panels show

the three sensitivity kernels for this peak-arrival (amplitude, phase, and time) with

source and receiver positions superposed as red stars and blue circles, respectively.

The sensitivity maps are shown in intensities of red and blue color - red indicates

that an increase in sound-speed at that location will result in a positive change in

the observed quantity (e.g. amplitude), while blue indicates a negative relationship.

Eigen-ray paths for this geometry are overlaid as grey lines and the particular

rays matched in time with this peak are emphasized in black. The lower subplots

aggregate the linearity test results for this peak in a table of plots. The left column

shows the amplitude variations as a function of increasing perturbation magnitude;

the middle column is phase, and the third column is travel-time (relative to the

unperturbed peak value). The first row shows the results using a flat sound-

speed change; the second row is for the Gaussian perturbation (Fig. 3.3a); and the

third row is for the randomly generated internal-wave sound-speed displacement

map (Fig. 3.3b). The perturbed simulation values are plotted with “◦” markers,

and the kernel estimates added as “×” symbols. For the time and phase plots

there is an additional quantity plotted with “+” markers. This represents the

secondary estimate calculated from the alternative kernel (Eq. 3.8) - i.e. phase

changes determined from the time-kernel and vice versa. The units for amplitude

are arbitrary with respect to the numerical model, phase is presented in radians,

and time is shown as the change in milliseconds from the unperturbed value.

3.3.2 Linearity figures and discussion

Glancing over all the provided figures, the first feature that stands out as

common to all the examples, is that phase and time – observations and estimates

– correlate very well for the simple case of the flat sound-speed increase. This

lends credence to the assumption that phase and time are directly correlated (via

Eq. 3.8), despite the different derivations for their respective sensitivity kernels.

For amplitude, common sense would suggest that a uniform sound-speed increase

in the environment should have no effect, only accelerating the existing arrival
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structure, however we do see a slight change in the amplitude of the observed

peaks (perturbed PE) that the amplitude kernel seems unable to predict correctly

- however note the small scale on the ordinate for amplitude in most cases. Despite

this initial performance concern in the simplest of cases, the amplitude responses

for the range-dependent tests (Gaussian, internal-wave) appear mostly linear, and

well matched by the kernel estimates.

Figure 3.4 is a peak composed of a single path, reflected off the bottom

and subsequently the surface. Both the amplitude and phase kernels show sharp

distinct pictures for sensitivity here, while the TSK is more diffuse, with off axis

structure that would be unexpected even from a wave-theoretic viewpoint. Despite

this odd look, the TSK performs well for all 3 test examples, indicating that this

is unlikely to be just an artifact from calculation, and is at least consistent with

the PE numerical model from which it was constructed.

Figure 3.5 shows a single path reflected off the bottom. Time and phase

diverge for the Gaussian test case, but given the small scales along the vertical

axes, and the weak interaction this path would have with that perturbation (the

lump would mostly reside above the sensitive areas) the divergence seen may not

be that substantial. Even so, this shows that the fine-scale, off-axis structure

seen in the TSK is valid as it is the only part of the kernel that should interact

with the elevated gaussian perturbation. Note, however, that the observed phase

response does not vary at all, as predicted by the phase sensitivity kernel, which

would match the ray-centric view of this interaction - that there shouldn’t be any

change.

Figure 3.7 is similar to Fig. 3.4, in that it exhibits a single ray path with two

reflections. As before, we see that the TSK has a more diffuse structure extending

off axis than the other two sensitivity kernels. Additionally, there now appear to

be patches of sensitivity in the TSK in regions of the environment quite separate

from the expected ray path, yet the linearity shown by the TSK for all three test

cases is quite good.

Figure 3.7 shows a peak composed of a single high-angle path, the last and

weakest arrival seen in this time series. The sensitivity kernels contain some odd
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Figure 3.4: For peak #3 (marked red) in the 15 m time series from Fig. 3.1.
This arrival time corresponds to a single ray path, with one bottom-reflection and
another surface reflection adjacent to the receiver.
Please refer to the end of Sec. 3.3.1 for a detailed description of these plots.
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Figure 3.5: For peak #2 (marked green) in the 45 m time series from Fig. 3.1.
This arrival time corresponds to a single bottom-reflected symmetric path.
Please refer to the end of Sec. 3.3.1 for a detailed description of these plots.
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Figure 3.6: For peak #4 (marked teal) in the 75 m time series from Fig. 3.1.
This arrival time corresponds to a doubly-reflected single ray path through the
environment.
Please refer to the end of Sec. 3.3.1 for a detailed description of these plots.
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artifacts, most notably in the TSK, and least prominent in the phase kernel. In

fact, the phase kernel does a better job of estimating the time variations than the

TSK does in the realistic case, and one has to wonder if these “UFOs” are the

culprit.

In all of the above examples, the flat tests show favorable correlation be-

tween phase and time and their respective sensitivity kernels, but this is likely

because all the high-order structure seen in the TSK averages to zero. In the pres-

ence of a more structured sound-speed profile, the phase and travel-time estimates

do diverge.

3.3.3 Phase and travel-time sensitivity differences

To further investigate the apparent differences in sensitivity shown between

phase and travel-time, a few more linearity tests are presented here. Instead of

the arbitrary or internal-wave induced perturbations, the direct subtraction of the

phase sensitivity kernel from the (frequency-weighted) travel-time kernel is now

used to dictate the spatial shading of the applied sound-speed displacement maps,

through which the PE numerical models are run.

If both sensitivity kernels are good estimators of their respective quanti-

ties, this difference map should produce a perturbed environment that results in a

travel-time change but with no corresponding phase change - which would invali-

date the assumption given in Eq. 3.8.

Figure 3.8 shows one such difference map produced for the 2nd peak ob-

served on the receiver at 45 m depth, and one can clearly see that the subtraction

has resulted in all sensitivity along the ray-path being removed, leaving just the

high-order fringe structure that is only present in the TSK. These maps were pro-

duced for all the peaks marked in Fig. 3.1, including the four examples shown

above in Sec. 3.3.2, and the same ray/beam masking effect is observed throughout.

These difference maps were used to test the validity of this fine-structure

in the TSK for each corresponding peak, scaling the sound-speed displacement

from 0 to 2 m/s, in 0.1 m/s increments, and the results for the four examples

presented above are summarized in Fig. 3.9. Right away, the plots show that there
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Figure 3.7: For peak #7 (marked black) in the 105 m time series from Fig. 3.1.
This arrival time corresponds to the last, and weakest high-angle path.
Please refer to the end of Sec. 3.3.1 for a detailed description of these plots.
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is no substantial change in phase of the observed peaks, which is matched by the

phase kernel estimates. Travel-time also does not change substantially, yet the

TSK expects there to be a large shift in the temporal position of the peak. Closer

inspection of the first few points, around 0.1–0.2 m/s, show’s a small change in

observed travel-time that does line up with the TSK estimate, but this does not

extend any further, as the observed time change levels out - or even returns to the

original value in one example.

Most of the induced variability actually occurs in the amplitude of the

peak, which is adequately described by the amplitude kernel, until the end of the

series when the observed response becomes more non-linear. Figure 3.10 shows the

envelope of peak #2 for the 45 m receiver, and how it evolves as the environment

is modulated by the difference map given in Fig. 3.8. This clearly shows how the

peak remains essentially stationary in time, only changing in amplitude and pulse

shape, while the TSK predicts a substantial shift in time.

This discrepancy may be explained by looking back at the derivation of the

TSK given by Skarsoulis et al [7]. A peak arrival is identified as the top of a pulse,

where the gradient of the curve is zero, and defined by

ȧ(τi; c) = 0,

where a is the envelope of the arrival structure, and the overdot represents differ-

entiation with respect to time - as before; and τi is the arrival time of the i-th peak

with respect to a base sound-speed profile, c. For a sound-speed perturbation, ∆c,

that induces a time-shift in the peak of ∆τi, the modified peak still satisfies the

same requirement,

ȧ(τi + ∆τi; c+ ∆c) = 0.

At this point, the authors used a first-order Taylor expansion to produce a linear

expression for ∆τi,

ȧ(τi; c+ ∆c) + ä(τi; c+ ∆c)∆τi = 0. (3.9)
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Figure 3.10: Envelope for peak #2 (marked green) in the 45 m time series from
Fig. 3.1. The solid black curve represents the unperturbed peak pulse shape,
marked in time by the broken black vertical line. The solid red curve shows the
pulse shape after the environment has been perturbed by the difference map shown
in Fig. 3.8, at a magnitude of 2 m/s. The broken red vertical line marks the shift
in time of the peak as expected from the TSK estimate.

Unfortunately, this now implies that the TSK has an explicit dependance on the

form of the peak, since the 1st and 2nd time-derivatives of the envelope within

Eq. 3.9 are representative of the pulse shape. In contrast, the phase sensitivity

kernel given by Eq. 3.6, has no dependance on the peak shape in time, other

than what is introduced via the fourier-transform — i.e. it is only a function of

bandwidth.

This could explain the extraneous fine-structure present in the TSK, that

can be associated with small-scale time shifts in the peak as the amplitude (or

shape) changes, but do not represent any actual aggregate change in travel-time.

This could also provide reason for the lack of structure seen in the TSK for the

weaker late arrivals, such as shown in Fig. 3.7, where the peaks become less defined

— intuitively, travel-time sensitivity should have no dependance on peak strength,

as long as the signal is discernible above the noise.
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3.3.4 Statistics from a time-evolving ocean state

Thus far, the simulation tests indicate that observed acoustic changes to

sound-speed perturbations are generally linear in phase and time and well approx-

imated by the sensitivity kernels; and that the phase kernel may even be a better

estimator of travel-time changes than the TSK. Amplitude appears to be the most

non-linear of the three quantities, and the amplitude sensitivity kernel the lowest

performing of the set as well. But these are still just observations from the few

examples presented above, so a more thorough statistical investigation is required.

To this end, the internal-wave based test case (Fig. 3.3b) from the summer

profile is expanded to encompass all four sources and receivers, and is augmented

with more ocean-state instances, in order to simulate data as would be expected

from the continuous acoustic monitoring of a time-evolving ocean environment.

The spatial modes used to construct these instances are derived from the experi-

mental CTD observations, as before. The spectral weighting of these components

is determined randomly, to produce 20 different independent ocean states. These

weights are then interpolated over 200 time-steps and initialized at zero for time

step #1, to provide a smooth transition from one state to the next, which helps

ease peak/data tracking. So the 20 independent ocean states in fact consist of the

base unperturbed ocean initially, plus 19 additional random instances.

As before, perturbed PE simulations are computed to produce the ’ob-

served’ changes, while simultaneously using the sensitivity kernels to estimate the

expected change. This system produces a time series for each observed quantity,

plotting both observed and estimated values as a function of ocean state ’time’

step. Figure 3.11 shows a few examples of the time series produced for some of

the specific peaks already presented earlier. The window plotted is reduced from

the full 200-point series in order to show some of the variability more clearly.

These extended tests can now be used to directly quantify the performance

of the sensitivity kernels as estimators of acoustic response to sound-speed changes.

The value calculated from each time-series set is the Fraction of Variance Explained

(FVE), also known as the coefficient of determination, which is given by
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Figure 3.11: Example data tracks from the time-evolving ocean-state tests (with
perturbation magnitude ±3 m/s) presented as a table of figures, with a layout
identical to Fig. 3.9. There are 200 total time steps over 20 independent random
ocean states, but just 50 points towards the center of the series are presented
here as an example to show the variability. The subplot titles show the Fraction
of Variance Explained (FVE), or Coefficient of Determination, as a percentage,
for the associated estimate - which is a measure of kernel performance. Amplitude
units are arbitrary with respect to the numerical model, phase is plotted in radians,
and time is shown as the change from the unperturbed value in milliseconds.
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FV E = 1−
∑

[y(t)− f(t)]2∑
[y(t)− y0]2

, (3.10)

where y(t) are the observations (from perturbed PE runs), f(t) are the estimations

(from the kernels), and y0 is a reference or mean value — the base unperturbed

quantity is used here. The FVE numbers for the time series shown in Fig. 3.11 are

provided in the subplot titles as percentages. The time and phase plots include

two values: one for the primary estimate (e.g. phase from phase kernel) and the

other for the secondary estimate (e.g. phase from time kernel).

Repeating this process for increasing sound-speed values, as before, the FVE

statistics can be aggregated to plot performance as a function of perturbation mag-

nitude, and also filtered to exclude peaks that are known to be problematic (e.g.

multipath and/or weak peaks). Figure 3.12 presents a series of histograms that

summarizes the performance of each sensitivity kernel under different conditions.

Here the performance requirement has been set at FV E > 0.9, meaning each bar

represents the percentage of data for which the sensitivity kernel can account for

at least 90% of the observed variability.

As you can see, the amplitude sensitivity kernel performs the worst out of

the three: it’s ability to estimate the changes in peak amplitude dropping sub-

stantially with increasing perturbation magnitude — similar graphs with lower

performance requirements (not shown) indicate that the amplitude kernel can ac-

count for only 60–70% of the observed variability in most peaks. Phase, on the

other hand, continues to surprise: it consistently outperforms travel-time as a lin-

ear observable, and the phase kernel beats the travel-time kernel at it’s own game

as well. As observed earlier, the latter weaker arrivals are problematic for the TSK,

and excluding both weak and multipath peaks evens the charts a little, but these

two filtering steps result in the exclusion of ∼30% of the peaks each, while the his-

tograms indicate that phase is perfectly functional keeping the weak (amplitude)

arrivals.

Putting the sensitivity kernels aside for a moment – the covariance of phase

with time can be directly investigated by treating the observed phase as a linear es-

timator of observed travel-time, and performing the same statistical analysis. The
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Figure 3.12: Summary statistics for the time-evolving ocean-state tests. The
histograms show percentage of data for which each estimator can predict most
of the observed variability (FV E > 0.9), plotted against increasing perturbation
magnitude. In the phase and time diagrams, the blue bars represent the time
kernel performance; the red bars are for the phase kernel metrics. Each row shows
the same statistics recalculated with different data filtering choices. Excluding
multipath keeps only those peaks associated with a single eigenray. Excluding weak
peaks retains only the 1st five significant arrivals, throwing out later high-angle
peaks. The last column of plots, labeled “PE Time-Phase” show how well observed
variations in (peak) travel-time can be explained by observed phase changes.
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last column in Fig. 3.12 shows these results for an FV E > 0.9, which demonstrates

that phase and time only get along 80% of the time at best. This set of histograms

also bares a close resemblance to the red bars shown for the phase sensitivity kernel

in the time column, indicating that when the phase kernel fails to account for some

time variability, it may be because observed phase and travel-time don’t track each

other any how.

3.4 Discussion and Conclusions

Sensitivity analysis has previously been used to derive a linear relation-

ship between travel-time measurements and sound-speed fluctuations, resulting

in the Travel-time Sensitivity Kernel (TSK). Recent work has complimented this

by deriving the first Born approximations for amplitude and phase of a complex

demodulated signal as well. It was shown that amplitude carried additional in-

formation about the medium over phase measurements alone, but it was assumed

that phase could be directly related to travel-time and hence added no further

detail itself.

Inspection of the two sensitivity kernel equations for phase and time re-

veals no obvious relationship connecting them, and even their visual structure can

appear quite different when calculated for broadband signals. Yet, preliminary

tests showed that they produce almost exactly the same quantitative result when

considering uniform increases in sound-speed across the environment. More ex-

haustive linearity tests showed that phase and time estimates do not necessarily

correspond to one another in the presence of range-dependent ocean sound-speed

structure, and this was frequently matched by perturbed numerical models - phase

and time can and do diverge. Investigating the structural differences between the

two kernels directly, showed that the fine-scale features present in the TSK are

not actually representative of travel-time sensitivity, but rather result in ampli-

tude changes alone with no substantial change in associated phase either. This

discrepancy may be traced back to the derivation of the TSK, and it’s dependance

on peak pulse-shape. Further tests through a simulated time-evolving ocean pro-
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vided a statistical analysis of sensitivity kernel performance, that shows phase is

a more linear observable than peak travel-time, with respect to monitoring in a

short-range varying ocean - and that even considering travel-time measurements

alone, the phase sensitivity kernel is a better performing estimator.

As part of this investigation, it was also observed that the amplitude sensi-

tivity kernel was a poor linear estimator in general. While the potential to provide

additional information about the environment exists, and amplitude estimates were

seen to be quite linear in a few specific cases, its poor linear range on average may

limit its use in practical applications.

While the emergence of phase as a good candidate for linear acoustic ob-

servations has been suggested by this paper, a few caveats should be noted: firstly,

the environment described here was very short range (1 km), and further work

needs to be done to see if this phase-time relationship extends to longer ranges

and deeper ocean profiles; also, the issue of wrap and circular ambiguity in phase

observations requires continuous and frequent measurements to avoid - especially

since the work presented here suggests that the use of peak arrival-time to estimate

phase, and vice versa, may not always be valid.
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Chapter 4

Sensitivity kernel for surface

scattering in a waveguide

Abstract

Using the Born approximation, a linearized sensitivity kernel is derived to

describe the relationship between a local change at the boundary of an arbitrary

wave propagation environment. The structure of the surface scattering kernel is

investigated numerically and experimentally for the case of a waveguide at ultra-

sonic scale. To better demonstrate the sensitivity of the multipath propagation to

the introduction of a localized perturbation to the air-water interface, the kernel

is formulated both in terms of point-to-point and beam-to-beam representations.

Agreement between theory and experiment suggests the potential for application

of sensitivity analysis to inversion of sea surface structure.

4.1 Introduction

Surface scattering in a waveguide involves the combination of waveguide

propagation and scattering physics[1, 2, 3], both subjects that have been exten-

sively studied separately. From theory and simulation, a series of studies in the

late 1980’s provided useful descriptors of sea-surface scattering using Kirchhoff

63
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and perturbation approximations[4, 5, 6]. However, most of the above-mentioned

analyses are either frequency-domain methods performed with continuous waves or

time-domain statistical approaches with only one bounce on the ocean surface (e.g.

Dahl[7] and Yang[8]). Other earlier work dealt with the deterministic scattering

of a local change at an interface[9].

The main focus of this paper is the isolation of the waveguide effect from

the deterministic local surface scattering effect in experimental data in which they

are typically merged. Sensitivity kernel analysis[10, 11] provides a methodology to

perform this task. In the framework of the single-scattering Born approximation,

the sensitivity kernel then could be used for subsequent inversion of the surface

structure. The goal of this paper is limited to show with theory and laboratory

data that the sensitivity kernel analysis as applied to the waveguide/surface scat-

tering problem indeed separates the waveguide physics of the waveguide from the

scattering physics at the air-water interface.

The sensitivity kernel is an expression that relates a change in the acoustic

field between a source and a receiver, to a local change in the medium property.

Aside from its straightforward use in the forward problem, the sensitivity ker-

nel can be used to invert for environmental change. For example, in underwater

acoustics, travel-time tomography has been recently developed with the sensitiv-

ity kernel[10] to predict the arrival-time change of the acoustic echoes. Similarly,

a recent paper has experimentally shown that the sensitivity kernel for a local

change in density[12] could be used for the localization of a target in an ultrasonic

waveguide. Both results apply to multipath propagation media (shallow or deep

water ocean) in which the acoustic field is perturbed by a local volume change.

In this paper, the sensitivity kernel formulation is examined, both theoreti-

cally and experimentally, for a local change at the surface of an acoustic waveguide.

In particular, a sensitivity kernel in the Born approximation is derived that deter-

mines the change in the acoustic field as a function of a local perturbation in the

shape of the surface of the waveguide. The derived results are verified by a labo-

ratory experiment at the ultrasonic scale in which the sensitivity kernel is directly

measured by taking the difference between pressure measurements made with and
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without the surface perturbation. It is then shown that the sensitivity kernel anal-

ysis can be applied to a source/receiver beamformer processing method[13] which

isolates the individual eigenrays in the multipath waveguide propagation. The

added value of this Double-BeamForming (DBF) process is to separate the effect

of the local surface change on each eigenray amplitude and phase, providing then

signal to noise ratio and resolution advantages for any subsequent inversion.

In the next section the point-to-point Surface Sensitivity Kernel (SSK) for

a local boundary change is derived and the theory then applied to DBF processing

between two source-receiver arrays. Experimental results are then presented in an

ultrasonic waveguide in section 4.3 and successfully compared with the simulation

indicating the potential efficacy of this procedure.

4.2 The Surface Sensitivity Kernel (SSK)

The propagation from a source at rs to a field point at rr for the unper-

turbed waveguide is given by the Green’s function G0(rr, rs;ω) at frequency ω.

When a local perturbation is generated at the air-water interface, the perturbed

Green’s function is changed into G(rr, rs;ω). Manipulating these two Green’s

functions between two points in rs and rr, for a set of volume sources, r′ in V ,

gives:

G(rr, rs;ω) = G0(rs, rr;ω)

+

ˆ
G(rr, r

′;ω)∇2G0(rs, r
′;ω)

−G0(rs, r
′;ω)∇2G(rr, r

′;ω) dV. (4.1)

Applying Green’s identity,
ˆ
V

g∇.fdV = −
ˆ
V

(∇g).fdV +

˛
S

gf · ndS, (4.2)

and the reciprocity of the Green’s functions, produces

G(rr, rs;ω) = G0(rr, rs;ω) +

˛
G(rr, r

′;ω)∇nG0(rs, r
′;ω) dS (4.3)
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where the integration is performed over the unperturbed surface so what would

have been the second surface integral vanishes since G0 vanishes on the flat surface.

∇n is defined as the gradient operator multiplied by an unitary vector perpendicu-

lar to the unperturbed interface. G can then be expanded around the unperturbed

surface using ∆h as the perturbed surface,

G(rr, r
′;ω) + ∆h∇nG0(rr, r

′;ω) = 0 (4.4)

so that Eq. 4.3 becomes

G(rr, rs;ω) = G0(rr, rs;ω)−
˛
∇nG0(rr, r

′;ω)∆h(r′)∇nG0(rs, r
′;ω) dS (4.5)

where only the first term in the ∆h expansion is kept. Now, ∆h represents a surface

whose height is being evaluated at the horizontal surface point corresponding to

the position vector, r′ (with depth component, z = 0).

Therefore, the SSK for a source-receiver pair in (rs, rr) is given by

K(rr, rs, r
′;ω) =

G(rr, rs;ω)−G0(rr, rs;ω)

∆h(r′)

= −∇nG0(rr, r
′;ω)∇nG0(r

′, rs;ω) (4.6)

where it should be noted that the normal derivatives are taken with respect to

the unperturbed surface at the position r′. For a source with spectrum Ps(ω), the

change in the pressure field due to the local perturbation ∆h on an elementary

surface dS is then,

∆p(rr, rs, r
′; t) =

− 1

2π

¨
∇nG0(rr, r

′;ω)∇nG0(r
′, rs;ω)

∆h(r′)Ps(ω)e−iωt dω dS. (4.7)

Here, the important point to note is that Eqs. 4.6 and 4.7 will be used

as the basis for the experimental demonstration discussed in section 4.3. That

is, the sensitivity kernel multiplied by the surface perturbation can be measured,

by taking the difference between the arrivals for the flat and perturbed surface
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waveguide propagation. By showing experimental agreement with the theory, it is

demonstrated that unperturbed propagation can be used to calculate the sensitiv-

ity kernel.

Double beamforming (DBF) transformation

In an acoustic waveguide, the expression of G0(rr, rs;ω) is made compli-

cated by the multipath propagation. Taking advantage of the source and receiver

arrays on each side of the waveguide, it appears useful to beamform the acoustic

field on both ends through the Double Beamforming (DBF) process. DBF consists

of projecting the Green’s function over the eigenrays of the waveguide through

their launch and arrival angles (θs, θr) as:

GDBF
0 (θr, θs;ω) =

1

Ns

1

Nr

∑
S

∑
R

G0 (rr, rs;ω) exp [−iω (τ(θs, zs) + τ(θr, zr))] (4.8)

with:

τ(θs, zs) =
(zs − z0) sinθs

c
(4.9)

where z0 is the center of the Ns-element source array and τ(θr, zr) is calculated

the same way for the Nr-element receiver array. Note that Eq. 4.9 corresponds to

plane-wave beamforming, in the case of a uniform sound speed along the array.

With a depth-dependent sound-speed profile the optimal time-delay, τ(θ, z), is

obtained by the turning-point filter approach[14].

When the data is satisfactorily described by ray approximations, the DBF

process extracts from the recorded data matrix the acoustic contribution of ev-

ery eigenray propagating between the source-receiver arrays, as defined by its

launch/arrival angles:

pDBF (θr, θs; t) =
1

2π

ˆ
GDBF

0 (θr, θs;ω)Ps(ω)e−iωt dω (4.10)

When the DBF process is applied to each point-to-point signal of the source-

receiver arrays, the SSK for a perturbation at r′ is modified in the following way:
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KDBF(θr, θs, r
′;ω) = − 1

Ns

1

Nr

∑
S

∑
R

∇nG0(rr, r
′;ω)∇nG0(r

′, rs;ω)

exp [−iω (τ(θs, zs) + τ(θr, zr))] (4.11)

which can be rewritten as:

KDBF(θr, θs, r
′;ω) =

−∇n

(
1

Ns

∑
S

G0(r
′, rs;ω)exp [−iωτ(θs, zs)]

)

∇n

(
1

Nr

∑
R

G0(rr, r
′;ω)exp [−iωτ(θr, zr)]

)
(4.12)

The first gradient applies to the eigenray issued from the center of the source array

and measured at the surface perturbation at r′, while the second one applies to

the eigenray that connects r′ to the center of the receiver array.

For a given eigenray, the beamformed Green’s functions

GBF
0 (r′, θs;ω) =

1

Ns

∑
S

G0(r
′, rs;ω)exp [−iωτ(θs, zs)]

and

GBF
0 (r′, θr;ω) =

1

Nr

∑
R

G0(rr, r
′;ω)exp [−iωτ(θr, zr)]

locally behave as plane waves in the acoustic waveguide, which leads to the follow-

ing approximation for the gradient calculation:

KDBF(θr, θs, r
′;ω) = GBF

0 (r′, θs;ω)GBF
0 (r′, θr;ω)

ω2

c2
sinθ̃s sinθ̃r (4.13)

where θ̃s (resp. θ̃r) corresponds to the eigenray angle between the source array

center and r′ (resp. the receiver array center and r′). Note that θs = θ̃s and

θr = θ̃r when r′ is located on the eigenray(θs, θr) at the air-water interface. Finally,
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the change in the DBF pressure field due to the local perturbation ∆h over an

elementary surface dS is then:

∆pDBF(θr, θs, r
′; t) =

1

2π

¨
GBF

0 (r′, θs;ω)GBF
0 (r′, θr;ω)

ω2

c2

sinθ̃s sinθ̃r∆h(r′)Ps(ω)e−iωt dω dS (4.14)

From Eqs. 4.14 and 4.13, one derives the expression for both the amplitude

and travel-time SSK of each eigenray path. As shown by Marandet et al.[12],

the DBF-SSK for the normalized amplitude is numerically computed for any r′

between the source and the receiver arrays as:

∆ADBF(θr, θs, r
′) =

∆pDBF(θr, θs, r
′; τ)

pDBF (θr, θs; τ)
(4.15)

for a given eigenray defined by its launch/arrival angles θs, θr and travel time τ .

Similarly, the DBF-SSK for travel time[13] is obtained by:

∆τ DBF(θr, θs, r
′) =

1

πp̈DBF(θr, θs, τ)

¨
iωGBF

0 (r′, θs;ω)GBF
0 (r′, θr;ω)

ω2

c2

sinθ̃s sinθ̃r∆h(r′)Ps(ω)e−iωτ dω dS (4.16)

where p̈DBF(θr, θs, τ) is the second-order time derivative of the DBF field at the

eigenray arrival time τ .

4.3 Experimental measurement of surface sensitiv-

ity

An ultrasonic laboratory experiment was used to verify the SSK formula-

tion. As imposed by the Born approximation, the sensitivity kernel corresponds to
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a small change in the acoustic field with respect to a local change of the environ-

ment. In this experimental demonstration, the acoustic field is measured before

and after a local surface perturbation, the surface being sequentially perturbed at

all ranges between the source and the receiver arrays.

Figure 4.1 illustrates the experimental set-up. Two coplanar ultrasonic ar-

rays, of 64 transducers each, face one another in a 610 mm long, 52 mm deep

waveguide. Each transducer has a central frequency of 3.5 MHz (wavelength

λ ≈ 0.4 mm), with a 1.5 MHz frequency bandwidth. The size of each element

of the linear arrays is 0.75 mm × 12 mm, which makes the sensor arrays relatively

omnidirectional in the plane defined by the source–receiver pair, and also very col-

limated outside this plane, limiting acoustic echoes from the tank sidewalls. The

bottom of the waveguide is made of steel, for which the boundary conditions are

nearly perfectly reflecting at the water–bottom interface.

The data acquisition process consists of recording the impulse response

between each source and each receiver in the time-domain. A fast way to perform

this acquisition is by proceeding through a round-robin sequence, during which

each source successively emits a 0.5 μs broadband pulse at the central frequency

of the transducers[15]. The duration between the emitted pulse from each source

is chosen to be no longer than the maximum dispersion time in the waveguide

(∼100 μs), which optimizes the time required to record the full waveguide transfer

matrix.

The probe used to perturb the surface is a lead sphere of diameter 5 mm

(Fig. 4.1b). It is mounted on a rigid arm suspended above the tank from a remotely-

controlled step-motor that allows for fine-scale linear displacements. The probes

initial position is adjacent to the source array. During the course of the experiment

the sphere is applied to the surface producing a local perturbation on the order of a

millimeter. It is then raised above the waterline before translating horizontally to

the next position along the source-array/receiver-array plane, limiting the creation

of ripples within the tank.

This is repeated in 1 mm increments across the whole horizontal range

between the two arrays, and transmissions are made for the probe in both the up
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Figure 4.1: Schematic diagram showing the dimensions of the laboratory tank
experiment.
(a) - The source/receiver coplanar arrays consist of 64 ultrasonic transducer-
elements, each of size 0.75 mm × 12 mm (vertical × horizontal). The source-
receiver arrays span the whole water column.
(b) - A 5 mm lead sphere serves as a probe to impact the air-water interface [black
arrow in (a)]. The penetration of the sphere inside the waveguide is on the order
of one millimeter. Acquisitions between the source-receiver arrays are performed
in the time domain for probe positions varying sequentially from the source-array
to the receiver-array in 1 mm increments.
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and down position at each location. The primary argument for repeating the ’up’

probe acquisition at each point in range, as opposed to using a single unperturbed

reference field, is to mitigate any other changes that may have occurred in the tank

during the course of the experiment. As a matter of fact, it has been observed that

the (unperturbed) pressure field for the ’up’ probe position slowly varies due to

changes within the environment, which is caused by both the warming of the water

in the tank and a slight evaporation over the 10-hour duration of the experiment.

4.3.1 Tank data vs. synthetic point-to-point SSK

Figure 4.2a shows an impulse response as recorded on the receiver array due

to a transmission from a source element at mid-depth in the water-column. The

arrival structure seen is a basic accordion, characteristic of a simple Pekeris waveg-

uide, exhibiting several acoustic wavefronts that have reflected from the bound-

aries. Figure 4.2b presents the pressure field for one particular receiver element

(#32), showing the arrival peaks associated with the multipath propagation. Vari-

ations in the echo amplitudes and travel times will be observed as the probe is

applied to different ranges r’ across the water surface.

The experimental sensitivity, ∆p(rr, rs, r
′; t), is calculated for a particular

source-receiver pair (rs, rr) as the pressure field difference between the data for

the up and down probe states, and is repeated as a function of the probes position

in range, r′. The difference of these two measurements magnifies the interference

effect between the acoustic paths and the scattering on the local surface perturba-

tion, resulting in the sensitivity for intensity shown in Fig. 4.3a.

The residual asymmetry in magnitude seen in the experimentally-observed

sensitivity is attributed to a slight evolution of the penetration depth ∆h (r′) of the

probe when the probe source scans the waveguide surface from the source array to

the receiver array.

A parabolic equation (PE) model is created to simulate propagation through

the ultrasonic tank environment, and the results used to produce a numerical

sensitivity as defined by Eq. 4.7. The experimental result shows a great deal of

congruence with the numerical one (Fig. 4.3b).
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Figure 4.2: (a) - Envelope of the time-domain impulse response across the
receiver-array as measured in the tank for a pulse transmission from element #32
on the source-array. Color scale represents normalized pressure.
(b) - Normalized pressure-time series as measured on receiver element #32 (broken
line), and equivalent double beamformer output from focusing two source-receiver
subarrays on the eigenray path (with grazing-angle incidence ∼ 5◦) identified as
number 1 in Fig. 4.4 (solid line).
(c) - Magnified plot of the peak-time around the single wave-packet produced in the
double beamformer output (solid line), with the equivalent view of the perturbed
data set (broken line) resulting from the presence of the probe at the surface at
range 300 mm. Note the small amplitude and travel-time change (on the order of
a few %) associated with this low grazing-angle incident eigenray.
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Figure 4.3: (a) - Experimental surface sensitivity (intensity), produced by the
difference between ’up’ and ’down’ field measurements when the probe is raised
and lowered, plotted as a function of probe position in range r’.
(b) - Theoretical surface sensitivity (intensity) calculated by Eq. 4.7 and convolved
with the surface perturbation shape, ∆h (r′), to better approximate the experimen-
tally observed sensitivity. Color scales represent the induced change in measured
pressure in arbitrary linear units, normalized to the maximum of each plot.
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Figure 4.4: Eigenray paths associated with the geometry between source #32 and
receiver #32 show which paths interact with the surface, and at what locations.
Path #s 1 and 2 correspond to one bounce and two bounces at the water-air
interface, respectively. Path #3 is the symmetric equivalent of #2, with two surface
bounces as well, but with opposite launch-arrival angles. Though Paths #s 2 and
3 arrive at the same time, their individual contributions may be separated through
double beamforming.

For a better physical understanding of the sensitivities shown in Fig. 4.3,

the eigenray paths are plotted in the waveguide for this particular source-receiver

pair (Fig. 4.4). For each eigenray, the surface sensitivity magnitude is maximal

at ranges where the eigenray interacts with the air-water interface. In the case of

multiple bounces along the surface, several local maxima in the sensitivity picture

are observed. The spatial shape of the surface sensitivity is strongly dependent on

the incident angle of the eigenray at the air-water interface, exhibiting a smaller

footprint for eigenray paths with higher incident grazing-angles.

4.3.2 Double beamforming treatment

When DBF is applied over two source-receiver subarrays centered on a

source-receiver pair, each acoustic echo is isolated according to its launch-arrival

beamforming angles. For example, the plain signal in Fig. 4.2b corresponds to a

surface bounce that is separated from the bottom bounce after DBF on two source-

receiver subarrays when they interfere together for a point-to-point measurement

made for a source-receiver pair at the middle of the water column (dashed signal
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in Fig. 4.2b). As observed in the example displayed in Fig. 4.2c, the DBF signal

for the lowered position of the probe is always delayed in time compared to the

no-probe DBF signal, which is surprising since one would intuitively expect the

surface perturbation to shorten the travel-time.

Actually, when the small lead sphere touches the air-water interface, three

effects are probably in competition. On the one hand, the penetration of the lead

sphere in the waveguide creates a depression of the surface that shortens the travel-

time. On the other hand, capillary action around the lead sphere locally raises the

water level which counterbalances the first effect. Finally, the presence of the lead

sphere also changes the local boundary condition at the water-air interface from

pressure release which may induce a phase shift on the received signals when the

sphere touches the interface. In consequence, the sphere + meniscus footprint at

the surface is more complicated than the simple point perturbation assumed by

the theory. However, the combination of these effects are limited to a few percent

of related amplitude change and travel-time perturbation (Fig. 4.2c). As such,

the Born approximation remains valid and so does the calculation of the surface

sensitivity kernel. While quantifying the actual sensitivity to the sphere/meniscus

perturbation is beyond the scope of this paper, the sphere/meniscus surface per-

turbation is observed to behave as an “effective” positive local point perturbation

of height ∆h (r′) > 0 .

The experimental DBF-SSK is then calculated as the pressure field differ-

ence ∆pDBF(θr, θs, r
′; t) measured for the up and down probe position (Fig. 4.5).

From the DBF signal in Fig. 4.5, the amplitude and travel-time DBF-SSK can be

measured separately as a function of the probe range for each eigenray. The DBF-

SSK for the amplitude is calculated as the relative amplitude change of the DBF

signals between the up and down probe positions, while the DBF-SSK for travel-

time is calculated as the difference between the travel-times of the DBF signals.

Figure 4.5 represents the experimental results for both travel-time and amplitude

DBF-SSK, for different eigenrays in the waveguide. A good agreement is observed

with the theoretical approach derived in the section 4.2 for both ∆ADBF(θr, θs, r
′)

and ∆τ DBF(θr, θs, r
′). In the calculation of the theoretical DBF-SSK, a volume
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fluctuation dV = dS ∆h(r′) ∼ 80mm3 was used to match the experimental DBF-

SSK for both travel time and amplitude, as required in Eqs. 4.14 and 4.16. Note

that this value of dV is similar for all eigenrays in the waveguide. Though dV

should theoretically refer to the volume fluctuation induced by the lead sphere

only, it must also practically account for the 12-mm lateral dimension of each ar-

ray element that was not included, for sake of simplicity, in the sensitivity kernel

formulation in both the point-to-point and DBF approaches (Eqs. 4.7and 4.14).

Given the 5-mm diameter of the lead sphere, a heuristic calculation of dS as-

sumes dS = 12 × 5mm2 to first order, from which ∆h(r′) ∼ 1.3mm is obtained,

which is a realistic value for the effective surface perturbation in the context of

this experiment.

The results for both amplitude and travel-time confirm that the spatial

extent of the DBF-SSK is strongly dependent on the grazing-angle of incidence at

the air-water interface, which was already observed on the point-to-point sensitivity

displayed in Fig. 4.3. Note that the relative amplitude change ∆ADBF(θr, θs, r
′)

varies from 6% to 30% for the same surface perturbation ∆h and grazing angles

of ∼ 5◦ and ∼ 18◦, respectively. The travel-time perturbation varies in the same

proportion from 2% to 10% of the central period. Of course, measurement of such

small travel-time fluctuations is polluted by noise even in the case of strong signal-

to-noise ratio as observed in Figs. 4.5b and 4.5d. Despite the applications of DBF,

a small residual contribution of the symmetric eigenray (Path 3 in Fig. 4.4) is also

observed in the experimental sensitivity (time and amplitude) extracted for Path 2

(Figs. 4.5c and 4.5d). Finally, both experimental and theoretical results show the

range dependence in r′ of the travel-time and amplitude DBF-SSK for the eigenray

that bounces twice at the air-water interface. This magnifies the range dependence

of the DBF-SSK as expected from the product of the beamformed Green’s function

GBF
0 (r′, θs;ω)GBF

0 (r′, θr;ω) in Eqs. 4.14 and 4.16.

It is important to point out that the above DBF-SSK approach is restricted

to a deterministic local perturbation at the interface. Hence the perturbation is of

order ∆h as opposed to stochastic random interfaces for which the leading pertur-

bation is of order 〈∆h2〉. In the literature, many authors dealt with the coherent
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Figure 4.5: Double-beamformed results for both experimental and theoretical
sensitivity kernels
Panels (a) & (b) show the amplitude and time kernels, respectively, for a steering
angle of +5.05° on both arrays. This represents focus on the peak at time 410 μs
in Fig 4.3, corresponding to the eigenray path number 1 in Fig. 4.4.
Panels (c) & (d) present the equivalent results for the peaks along time 438 μs in
Fig 4.3, corresponding to the eigenray path number 2 in Fig. 4.4. The steering
angles in this case are +18.07° on the source array and -18.07° on the receive array.

average of an incident plane wave at the rough air-water interface. As detailed by

Ogilvy[4], they either formulate this problem in terms of the perturbation theory

through an average reflection coefficient for a modified boundary condition or in the

frame of the Kirchhoff approximation[5] where the coherent loss is obtained from

the phase averaging over realizations of the random surface. Here, none of these

approaches apply since the sensitivity kernel approach limits the investigation to a

first order deterministic perturbation ∆h consistent with the Born approximation.



79

4.4 Conclusion

An expression that linearly relates perturbations in the air-water interface,

to changes in the measured acoustic field has been derived in a waveguide. This

Surface Sensitivity Kernel (SSK) provides a picture of how surface structure influ-

ences the multi-reflected acoustic propagation between two point elements, source

and receiver. The SSK formulation has been further extended to a dual array-

processing technique, Double BeamForming (DBF), that employs the diversity

presented by having both source and receiver arrays to refine the acoustic signals

into separate eigenray contributions, effectively transforming the information from

the spatial-domain (array-elements) to the angular-domain (ray-paths).

A laboratory experiment was conducted in an ultrasonic waveguide in a tank

environment, to directly observe the effect of surface displacements on acoustic

transmissions. The data acquired with this setup was used to construct a map

of acoustic sensitivity by perturbing points along the surface individually in a

sequential manner.

The experimental result was then compared to a numerical model used to

calculate the sensitivity for the given ultrasonic waveguide. The two independent

pictures of surface-acoustic sensitivity show a great deal of agreement. Application

of the DBF technique further refines the spatial picture of the surface sensitivity

kernel, while also allowing the contributions of individual eigenrays, that maybe

coincident in time on one element-pair, to be separated as well. With these SSKs

in hand, and assuming independence among the individual surface point contribu-

tions, one could potentially invert for an aggregate surface structure from a given

set of measured perturbations. To this goal, the use of acoustic arrays on both ends

of the environment would provide the spatial diversity needed to increase spatial

resolution along the surface, and the double-beamforming technique provides one

such way to combine the data.
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Chapter 5

Conclusions

The Born approximation to perturbations in the wave equation has been

previously explored with respect to travel-time sensitivity of peak-arrivals in ocean

acoustic propagation models. Chapter 2 extended this analysis to include the am-

plitude and phase of a demodulated broadband signal, and showed that amplitude

does indeed contain more information about the ocean sound-speed structure over

phase measurements alone - which were assumed to be directly relatable to travel-

time changes. This was shown spectrally, via two-dimensional spatial transforms,

which presented amplitude and phase having complimentary sensitivities; and also

directly, through synthetic inversion examples, where the estimates obtained us-

ing both amplitude and phase measurements combined were an improvement over

estimates made using either data type individually.

Chapter 3 continued this investigation into sensitivity analysis by includ-

ing calculations of the travel-time sensitivity kernel (TSK). Variations in observed

phase were assumed to be directly relatable to shifts in travel-time, yet their re-

spective formulations for sensitivity are not apparently reconcilable, and even the

visual appearance of each sensitivity map shows significant differences in spatial

structure. The extra detail present in the TSK was investigated directly through

perturbed numerical models, and shown to not actually be representative of travel-

time variability; on the contrary, it resulted in changes to only the amplitude of

the peak with no corresponding shifts in phase. A possible explanation for this

discrepancy is suggested from the derivation of the TSK.

82
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A numerical survey, conducted through a synthetic time-evolving ocean,

explored the performance of these three sensitivity kernel types statistically, show-

ing that phase was the most linear aspect of the observed acoustic response, and

was estimated well by the phase sensitivity kernel. Additionally, the phase-derived

measure of travel-time variations was shown to be a much better estimator than

the TSK itself for large magnitude perturbations. In these same tests, the ob-

served changes in amplitude often exhibited non-linearity at small magnitudes of

sound-speed perturbations; but even in the apparently linear cases, the amplitude

sensitivity kernel faired poorly as an estimator. However, the good agreement

seen in a few of the examples shown suggests that amplitude information may still

have potential, but might require more work to be useful — perhaps moving to

higher-order terms in the Born approximation.

Chapter 4 applies these same perturbation methods to changes in the bound-

ary conditions of a waveguide, in contrast to the volumetric sound-speed changes

discussed in the earlier chapters. In this case, the Born approximation is used to

estimate the acoustic response to point displacements along the air-water interface

at the surface of the waveguide, and is shown to correspond well with the results of

a laboratory tank experiment conducted at ultrasonic scale, in which the surface

was displaced directly with a point-probe. While care must be taken with regard

to any doppler effects introduced by a moving interface, this work still suggests

the potential use of surface sensitivity analysis in inverting for a snapshot of the

sea-surface shape.

Taken all together, sensitivity analysis of perturbations to the wave equa-

tion — both within the volume of the ocean, and to the interface at the surface —

could theoretically be used to characterize ocean structure using a single combined

linear inversion step, given only base numerical calculations through an appropri-

ate mean picture of the environment. However, care must be taken to quantify

the relative effects of surface vs volume disturbances, and to better understand

if/when amplitude data can be incorporated. There may also be some applica-

tions for sensitivity kernels in work on underwater communications, with regards

to channel equalization methods. Especially with respect to encoding methods us-
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ing phase-shift keying (PSK), as the phase response to environmental variability is

seen to be highly linear and could simplify deconvolution techniques. Finally, sen-

sitivity analysis may be of most use simply as an efficient alternative to perturbed

numerical forward models, for any purpose. During the course of this research, it

was observed that such complex range-dependent simulations could take several

hours, if not days to complete (e.g. for the time-evolving ocean), whereas the es-

timation process using the pre-calculated sensitivity kernels finished in just a few

seconds/minutes.
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