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factor one alpha signaling

Kelsey G. DeFratesa, Daniela Francoa, Ellen Heber-Katzb, Phillip B. Messersmitha,c,*

aDepartment of Bioengineering and Materials Science and Engineering, University of California, 
Berkeley, CA, USA

bLaboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, 
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cMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract

Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use 

of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, 

however, translation and commercialization of these techniques has been limited. To enable 

mammalian regeneration, a more practical approach may instead be to develop therapies that 

evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, 

investigations into tadpole tail regrowth, zebrafish limb restoration, and the super- healing Murphy 

Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible 

target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible 

factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as 

inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α 
signaling is conserved across species, environmental or pharmacological manipulation of oxygen-

dependent pathways may elicit a regenerative response in non-healing mammals. In this review, 

we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as 

attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia 

therapy, and pharmacological targeting. We believe that these therapies could breathe new life into 

the field of regenerative medicine.
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1. Introduction

The ability of non-mammalian vertebrates to regenerate lost tissue has captivated the 

imagination of biomedical researchers for some time [1–3]. In the early 18th century, 

observations on the regrowth of appendages in insects, frogs, and salamanders fueled 

scientific discussions into the competing developmental theories of epigenesis and pre-

formationism [1]. Although modern advancements in molecular biology and genetics have 

solidified our understanding of organismal development, the scientific community’s 

fascination with regenerative species remains. Today, detailed studies into the molecular 

origins of zebrafish heart regeneration, newt tail regrowth, and annelid morphallaxis, are 

motivated by the desire to recapitulate these processes in adult mammals [4–7]. While 

human fetuses can achieve complete restoration of skin of wounds, this capability is lost 

after week 24 of gestation [8,9]. At this stage, regeneration is replaced by a reparative 

healing process, which fails to reproduce healthy tissue and instead achieves wound closure 

through non-specific scarring [10]. Compared to the original tissue, the resulting dense, 

fibrotic matrix lacks elasticity and differs in both composition and organization of 

extracellular matrix (ECM) components and basement membrane proteins [11–13]. As a 

result, the accumulation of scar tissue can lead to impairments in organ function, reduced 

range of motion, and severe physical disfigurement [14–16]. Since the mammalian healing 

cascade is highly conserved across organ systems and occurs regardless of injury stimuli, 

fibrosis plays a significant role in almost every pathology and contributes to all instances of 

organ failure [10]. Thus, the development of therapeutics capable of manipulating healing to 

mimic regeneration rather than repair, will have far-reaching clinical implications.

To achieve this goal, clinicians and bioengineers have primarily focused on the development 

of cell-based therapies and biomaterials interventions [17]. In the former approach, 

autologous or allogenic progenitor cells are delivered to injury sites to promote regrowth. 

Currently, it is unclear whether these cells directly contribute to new tissue formation or 

catalyze resident cell proliferation and recruitment through paracrine signaling activities 

[18,19]. Regardless of the mechanism of action, some tissue damage, such as that which is 

isolated to the eye, responds well to this intervention [20,21]. However, these injuries require 

just a few cells to regenerate and may benefit from tissue-specific advantages, such as those 

associated with ocular immune privilege [22, 23]. In other models representing cardiac 

failure, brain injuries, and tissue ischemia, the long-term efficacy of cell therapies and 

subsequent functional improvements, have been less straightforward [24–29]. Thus, these 

inconsistencies in pre-clinical and clinical data combined with high costs associated with 

scale-up and limited cell availability, have prevented translation of cell-based regenerative 

therapies [22].

Given the challenges associated with progenitor cell delivery, acellular biomaterials have 

also been created to aid in the restoration of lost tissue [30–32]. These constructs are 

engineered to recapitulate the chemical, mechanical, and physical properties of the tissue 

microenvironment they aim to replace. In addition to providing structural support, through 

the delivery of bioactive compounds, tissue engineering scaffolds are also now designed to 

modulate the local immune environment [33–35], facilitate cell infiltration [36–39], and 

direct differentiation of resident progenitor cells [40,41]. While the therapeutic potential of 
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acellular biomaterials may be clear, their clinical translation has faced challenges akin to 

those afflicting cell-based therapies [30,41], and their use may even exacerbate tissue 

damage by evoking a foreign body reaction [42–44].

Given the complications associated with translation of these current strategies in 

regenerative medicine, a more practical approach may instead be to develop therapies that 

evoke endogenous tissue repair, reminiscent of what is seen in innate regenerators [45]. Such 

innate regenerations, like amphibians, are capable of restoring critical injuries through a 

process known as epimorphosis [46–48]. In this response, tissue regrowth is achieved 

through the development and reprogramming of a mass of undifferentiated cells known as a 

blastema [46,47]. Preceding blastemal development, the early stages of epimorphosis mirror 

those seen in mammalian healing (hemostasis, immune cell infiltration, and re-

epithelization) [10,46]. Why the two processes diverge at later stages, is not fully understood 

although it has been postulated that fibrosis emerged as a mechanism to prevent infection 

and contain tissue damage [10,49]. Given the similarities in molecular machinery between 

amphibians and mammals, however, it is not unreasonable to believe that mammalian 

regeneration may be reawakened.

Recently, the discovery of a new model for mammalian regeneration has provided evidence 

for this claim, and identified ancient, cellular oxygen-sensing pathways as possible targets to 

achieve regeneration in non-healers. This model known as the Murphy Roths Large (MRL) 

mouse is an inbred strain originally developed for the study of the autoimmune disease 

systemic lupus erythematosus [50]. In 1996, however, a serendipitous observation revealed 

that the MRL mouse was capable of healing critical size defects in ear tissue through a 

process reminiscent of salamander limb regrowth [51,52]. Seminal work performed by Dr. 

Ellen Heber-Katz, later identified the transcription factor hypoxia-inducible factor 1 alpha 

(HIF-1α) as a central mediator of this regenerative response [52]. Although constitutively 

expressed in normal mammalian cells, HIF-1α is broken down under normoxic conditions 

and only stabilized in hypoxia [52–55]. In the MRL mouse, however, abnormally high basal 

expression of HIF-1α is further upregulated after injury and likely allows for the retention of 

a fetal-like metabolism, and possibly a progenitor cell population that contribute to non-

fibrotic healing [52,54,55].

As described by Heber-Katz [56], it is not surprising that the molecular pathways governing 

oxygen-sensing and regeneration are coupled. Naturally regenerating organisms including 

sea cucumbers, starfish, and hydra live in shallow water with fluctuating oxygen 

concentrations. Here, turbulent conditions lead to acute injuries requiring immediate 

attention and robust regeneration [56]. In other organisms found on both land and sea, loss 

of the epithelial barrier during wounding results in a sudden influx of oxygen and burst of 

reactive oxygen species (ROS) [57]. These factors have been shown to contribute to local 

tissue hypoxia and serve as signaling molecules in blastemal development and tissue 

regrowth [58–63]. Since these oxygen-sensing pathways have been evolutionarily conserved 

from lower organisms, it is possible that their manipulation in mammals may be utilized to 

unlock a lost regenerative phenotype.
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To develop new therapeutics capable of manipulating oxygen- sensing pathways for 

regeneration, we must first understand oxygen’s natural role in healing. This review will 

explore this idea, by presenting an overview of the HIF-1α signaling pathway and its role in 

normal and pathogenic mammalian wounding healing, as well as regeneration. Inspired by 

these ideas, current strategies aimed at eliciting regeneration through environmental and 

pharmacological manipulation of these oxygen-dependent pathways in non-healing 

organisms will then be discussed.

2. Overview of the oxygen sensing pathway in cells

The ability to respond to local changes in oxygen concentration became an essential 

characteristic of life when early eukaryotes evolved to use oxygen as a substrate for energy 

production 2.5 billion years ago [64]. Through a process known as oxidative 

phosphorylation, the reduction of molecular oxygen to water generates free energy to be 

used in the production ATP. This is in contrast to glycolysis, an oxygen-independent 

pathway, which instead generates free energy through the degradation of glucose. Compared 

to glycolysis, oxidative phosphorylation affords an 18-fold increase in energy production 

[64, 65]. This gain, however, is not without risk. Premature reduction of O2 can generate 

superoxide anions, resulting in the production of destructive reactive oxygen species (ROS). 

Therefore, to maintain oxygen hemostasis, primitive multicellular organisms such as C. 
elegans as well as complex mammalian cells, possess specialized oxygen-sensing pathways 

to regulate cell behavior. A central factor in these pathways is the ubiquitously expressed 

transcription factor hypoxia inducible factor one (HIF-1).

Seminal work in the field of oxygen regulation first identified HIF-1 in hepatocytes, where 

the protein serves as a key regulator of erythropoietin production in hypoxic conditions 

[66,67]. Since this discovery, however, the function of HIF-1 has been found to be far more 

diverse. As an essential factor in all cell types, HIF-1 is now known to orchestrate a variety 

of processes such as angiogenesis [68–71], cell proliferation [72–74], energy metabolism 

[75–77], stem cell maintenance [78–82], early development [83–86], cancer aggression [87–

89], wound healing [90,91], and tissue regeneration [51,55,60]. In each of these instances, 

HIF-1 activity is coupled to local oxygen concentrations, through regulation of two Per-

Arnt-Sim (PAS), basic helix-loop-helix (bHLH) family subunits referred to as HIF-1α and 

HIF-1β [92]. Although both of these subunits are constitutively expressed, in normoxia the 

HIF-1α subunit is rapidly degraded and exhibits a half-life on the order of minutes [53]. 

Only in hypoxia, where this degradation is impeded, is the alpha subunit able to accumulate 

and translocate to the nucleus, where it dimerizes with the oxygen-insensitive HIF-1β 
subunit (also referred to as aryl hydrocarbon receptor nuclear translocator or Arnt). This 

heterodimer then binds to hypoxia response elements (HREs) containing conserved RCGTG 

sequences. For transcription of target genes to occur, coactivators such as p300/CBP [93,94], 

SWI/SNF [95,96], Pontin [97], CDK8 [98], or SRC-1 [99] are recruited. Thus, through this 

process, the activation of HRE-linked genes such as those essential for vascular endothelial 

growth factor (VEGF) and glucose transporter (GLUTs) production is only achieved under 

hypoxic conditions.
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Local oxygen concentration is tied to HIF-1α regulation through the action of enzymes 

known as prolyl hydroxylase domain-containing enzymes (PHDs). Currently, three PHD 

isoforms, PHD1, PHD2, and PHD3 have been identified and are thought to exhibit 

variability in their expression and target affinity [100–103]. All forms, however, contain a 

non-heme iron(II) capable of interacting with molecular oxygen and α-ketoglutarate (2-

oxoglutaric acid, 2OG). As seen in Fig. 1, when oxygen is in high abundance (normoxia), 

PHDs bind HIF-1α and split molecular oxygen. One atom is reacted with α-ketoglutarate to 

form succinate, while the other is transferred to the substrate, resulting in hydroxylation of 

HIF-1α [104]. Hydroxylation of two proline residues in the oxygen dependent degradation 

domain (ODDD) of the subunit allows it to interact with the von Hippel–Lindau tumor 

suppressor protein (pVHL). As a member of the multi-component ubiquitin ligase (pVHL–

elonginB–elonginC–Cul2–Rbx), recognition by pVHL will direct the ubiquitination and 

subsequent proteasomal degradation of HIF-1α [105–110]. In the absence of oxygen, PHDs 

are unable to hydroxylate HIF-1α, allowing it to escape pVHL association [111]. A second 

enzyme known as factor inhibiting HIF-1 (FIH) has also been shown to regulate HIF-1α and 

may retain activity at lower oxygen levels than PHDs [112]. Like PHDs, FIH is an iron(II)-

dependent enzyme that uses molecular oxygen to hydroxylate the alpha subunit of HIF-1. 

Unlike PHDs, FIH-mediated hydroxylation occurs at asparagine residues within the C-

terminal transactivation domain (C-TAD) and prevents HIF-1/p300 binding in the nucleus 

[113]. Due to the implication of HIF-1 in the expression of over 100 target genes [114,115], 

both PHDs and FIH have been explored as pharmacological targets for a wide range of 

applications [104,116].

In addition to HIF-1, there exists two alternative isoforms of the alpha subunit, known as 

HIF-2α and HIF-3α. Of the two, HIF-2α is the most well-characterized, and can be found in 

select cell types including hepatocytes [117,118], astrocytes [119–121], cardiomyocytes 

[122, 123], adipocytes [124], pneumocytes [125,126], and renal interstitial fibroblast-like 

cells [127], as well as several carcinomas [128–132], tumor-associated cell types [133,134], 

and all transformed cell lines [135]. Despite sharing 48% sequence identity with the HIF-1α 
isoform, HIF-2α regulation and function shows several key differences [136]. For example, 

the accumulation of HIF-2α is known to occur at higher oxygen concentrations than 

HIF-1α, perhaps due to variations in affinity for PHD1–3 [137]. Notably, silencing of PHD2 

alone is sufficient to stabilize HIF-1α in human cells during normoxia, while silencing of 

PHD1 or PHD3 shows negligible effects on protein expression [138]. In contrast, siRNA 

knockdown of PHD2 does not increase HIF-2α stability in MCF7 cells, and significant 

accumulation is only achieved through silencing of PHD1 and/or PHD3. These differential 

responses likely stem from sequence variations at the N-terminal ODDD of HIF-1α and 

HIF-2α [100]. Apart from this domain, however, HIF-2α and HIF-1α exhibit substantial 

similarities in sequence identity within their bHLH (85%), PAS-A (68%), and PAS-B (73%) 

regions [139]. Therefore, it is not surprising that like HIF-1α, HIF-2α is also able to 

dimerize with HIF-1β, at HREs of shared target genes [140]. Due to differences in the N-

terminal transactivation domain (N-TAD) of HIF-2α, HIF-2α/β complexes may also interact 

with different transcriptional cofactors than HIF-1α/β dimers, resulting in unique 

transcriptional targets as well [141]. Overall, like HIF-1α, HIF-2α is a master regulator of 

the hypoxic response and a critical factor in pathologies such as cancer [140]. Given its 
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differences from HIF-1α, HIF-2α-specific inhibitors hold much clinical promise, but 

development of such pharmacological agents has proved a significant challenge [104,116].

Unlike HIF-1α and HIF-2α, the role of HIF-3α in the hypoxic response is poorly 

understood. As the least homologous of the three factors, the N- terminal bHLH-PAS 

domain of HIF-3α shares only 57% and 53% sequence identity to HIF-1α and HIF-2α, 

respectively. Even greater differences are seen at the C-terminus of the protein which 

contains a leucine zipper domain in place of the C-TAD and only one hydroxylatable proline 

in the ODDD [142]. As a result, HIF-3α is still susceptible to oxygen-dependent regulation 

by PHDs and proteasomal degradation by the pVHL-E3 ubiquitin ligase complex [143]. 

However, this regulation may be attenuated by the presence of the single proline residue 

within the ODDD, resulting in higher levels of cytoplasmic and nuclear HIF-3α during 

normoxia in some cell types [144]. Numerous studies have shown that HIF-3α is capable of 

interacting with Arnt, yet the function of this heterodimer remains unclear. While it was 

speculated that HIF-3α/Arnt was able to bind HREs and promote the transcription of 

HIF-1α-controlled genes [142], recent work suggests that HIF-3α/Arnt is incapable of 

binding DNA. In these instances, it is presumed that HIF-3α serves as a negative regulator 

of the hypoxic response by blocking binding of HIF-1α and HIF-2α to Arnt. This 

hypothesis is supported by the observation that HIF-3α silencing results in increased VEGF 

production in HEK293A cells [145]. This disagreement in the literature concerning the role 

of HIF-3α likely arises from the large number of existing variants. To date, up to 10 variants 

have been predicted, and likely exhibit tissue-specific expression patterns and differing 

functions [146,147]. Due to its ambiguity, the pathological consequences of HIF-3α 
dysregulation are poorly understood, yet thought to play a role in obesity and gestational 

diabetes [148–150]. Considering the importance of the other HIF factors in cell homeostasis 

and disease, the function and regulation of HIF-3α necessitates further research.

The ability to respond to local changes in oxygen is one of life’s most essential processes. 

Elucidating the molecular mechanisms that enable this capability represented a monumental 

achievement worthy of the 2019 Nobel Prize in Physiology and Medicine. With the function 

and regulation of HIFs, now largely understood, their involvement in homeostasis, 

development, and disease is beginning to be elucidated [83, 124,131,151]. In all organisms, 

injury is known to drive fluctuations in oxygen concentration within the wound bed 

[60,152,153]. Therefore, it is not surprising that these hypoxic signaling pathways play an 

important role in healing and repair.

3. Oxygen regulation in regenerating animals and mammalian wound 

healing

3.1. The role of oxygen in mammalian wound healing

The normal mammalian wound healing process (acute wounding) can be divided into three 

overlapping phases: inflammation, new tissue formation, and remodeling summarized in Fig. 

2 [10]. In each of these phases, oxygen plays an important role in cell proliferation, collagen 

production, tissue reorganization, and infection prevention. In the early stages of injury, 

however, disruptions in blood flow due to vessel damage and vasoconstriction, 
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synergistically decrease the transport of oxygen to the wound bed [152,153]. Although 

initial loss of the epidermal barrier can result in a sudden influx of extracellular oxygen [60], 

it is quickly consumed by metabolically active cells [154] or converted to ROS [60]. 

Therefore, immediately after injury, the wound bed can be considered a hypoxic 

environment. As a result, HIF-1α is stabilized in various cell types and activates the 

transcription of proinflammatory cytokines [91,155,156]. In addition to mediating the 

inflammatory phase of healing, some of these cytokines also contribute to further HIF-1α 
stabilization [157–160].

In the first stage of wound healing, the release of proinflammatory cytokines drives the 

migration of circulating neutrophils, and later monocytes to the site of injury [10]. Once 

there, these phagocytes engulf dying cells and foreign pathogens within phagosomes. To 

destroy the contents of these phagosomes, large amounts of molecular oxygen are consumed 

and converted to ROS [161]. These molecules, which include hydrogen peroxide (H2O2), 

superoxide free radicals ( O⋅ 2−) and hydroxyl radicals ( OH⋅ ), can disrupt metabolic pathways 

through protein oxidation and cause lethal damage to DNA [162]. Since H2O2 can freely 

diffuse through lipid bilayers, a high concentration of ROS is also released into the 

extracellular space, in an event known as a “respiratory burst” [161,163]. In addition to 

preventing the growth of invading microbes, these species serve as an another 

chemoattractant and activator for inflammatory cells, and can facilitate the proliferation of 

fibroblasts and vascular progenitor cells in the next stage of healing [161,164,165].

The tissue regrowth phase of healing commences 2–10 days post- injury, and is marked by 

the migration of keratinocytes to the wound margins. Numerous reports have shown that the 

motility of these cells is increased in hypoxia through induction of urokinase plasminogen 

activator and mTORC1 signaling [166–169]. However, their proliferation and maturation 

require a sufficient supply of oxygen to allow for ATP production. To meet this demand, 

release of the HIF-1α-target, VEGF, mediates the recruitment of endothelial cells to initiate 

the growth of new vasculature [170]. To ensure proper tube formation, developing vessels 

require a collagen-rich matrix [171,172]. In a process reminiscent of HIF-1α regulation, the 

production of this collagen relies on molecular oxygen to enable hydroxylation of proline 

and lysine residues within precursor procollagen polypeptides. Only after hydroxylation and 

processing can tropocollagen molecules be assembled into mature collagen fibrils by lysyl 

oxidase [173]. This oxygen-dependent process also becomes important in later stages of the 

proliferative phase, which are initiated after the arrival of myofibroblasts and fibroblasts. To 

achieve closure, myofibroblasts generate force to contract the wound margins, while 

simultaneously producing collagen [10,174]. During the final stage of healing, this acellular 

matrix will be remodeled through the release of matrix metalloproteins (MMPs) by ROS-

stimulated macrophages, keratinocytes, endothelial cells and fibroblasts to produce the 

mature scar [175]. Although this begins just 2–3 weeks after injury, the remodeling process 

can persist for several years [10]. The timely progression of the wound healing cascade 

through each of these phases, is required to control damage and is heavily influenced by 

changing oxygen concentrations.
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Throughout the normal mammalian wound healing cascade, HIF-1α signaling allows cells 

to adapt to local fluctuations in oxygen. Therefore, dysregulation of this pathway, as well as 

abnormal microenvironments can greatly impede healing. For example, although local 

hypoxia is required to initiate the early stages of healing, its persistence can result in the 

formation of a chronic wound [90]. A chronic wound is defined as a wound that does not 

follow the normal timeline of healing, and is often considered to be trapped in the 

inflammatory phase [176]. Common causes of chronic wounds include venous insufficiency, 

diabetes mellitus, and hypertension, which all result in alterations to vasculature that 

contribute to tissue hypoxia [90]. Fibroblasts, keratinocytes, and endothelial progenitor cells 

from aged patients are especially susceptible to these low oxygen conditions and show 

reduced migration and proliferation compared to cells derived from young adults [177–180]. 

Some studies have suggested that this sensitivity in part arises from a functional loss of 

HIF-1α, which prevents the expression of key cytokines needed to mobilize proangiogenic 

cells [181]. Aging has also been associated with increased PHD activity, resulting in the 

rapid degradation of HIF-1α and impairments to the hypoxic response [182]. If cells are able 

to adapt to hypoxia within chronic wounds, they will undergo a metabolic switch to 

glycolysis, resulting in reduced production of ATP. In addition to there now being an 

insufficient amount of energy to fuel the proliferative phase of healing, ATP-dependent 

processes necessary to maintain viability such as ion transport may also be impeded. This 

dysregulation, combined with the robust accumulation of intracellular lactic acid, can result 

in tissue necrosis independent from that caused by injury [172,183]. In conjunction with the 

cytokines released during normal healing, inflammatory initiators now freed from 

intracellular compartments will recruit excess neutrophils and macrophages to the wound 

site [90,184,185]. Homing of these cells into the afflicted tissue is enabled by endothelial 

adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion 

molecule-1, both of which have been shown to be increased in hypoxia [186]. Although 

inflammation plays an important role in acute healing, in chronic wounds its persistence and 

overstimulation accelerate tissue damage. Due to the lack of molecular oxygen needed for 

collagen synthesis, new ECM cannot be produced to replace this loss tissue [187]. As wound 

margins grow, the chronic inflammatory state contributes to more tissue necrosis that is 

further aggregated by the continuing hypoxia.

While the development of many chronic wounds is exacerbated by the inability of cells to 

adapt to hypoxia, excessive upregulation of HIF- 1α can also impede normal healing. This 

effect is seen in keloid and hypertrophic scars which are characterized by excessive ECM 

accumulation and fibroblast proliferation. Unlike normal scars, keloids can grow to extend 

beyond the original wound margins, creating a dense fibrotic environment that is hypoxic in 

nature [188]. As a result, HIF-1α is highly expressed in keloid tissue and recent studies have 

suggested that the transcription factor may drive fibrogenesis by inducing epithelial-to-

mesenchymal transition in keratinocytes and fibroblasts [189,190]. Hypoxia is also likely to 

contribute to the abnormal abundance of growth factors found within the keloid 

environment. Of these cytokines, the HIF-1α-target, VEGF has been shown to be directly 

involved in the upregulation of plasminogen activator inhibitor-1 (PAI-1) [191–193]. In 

keloid fibroblasts, high levels of PAI-1 prevent fibrin degradation, resulting in increased 

ECM density within the scar.
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Since the mammalian wound healing cascade is highly conserved, to eliminate the clinical 

burden of fibrosis successful therapeutics must be easily adapted to address injuries 

afflicting different tissues. Such non-specific treatments will likely be required to 

simultaneously alter immune response, progenitor cell populations, and structural 

components. Universal oxygen signaling pathways, already utilized in mammalian repair, 

represent a promising target since they exist in all mammalian cell types. To inspire the 

development of such therapies, however, it is necessary to first understand their role in 

natural regeneration.

3.2. Oxygen signaling pathways in regenerating organisms

Although regeneration is generally considered to be reserved for amphibians and lower 

vertebrates, select mammals including deer [194], African spiny mice [195], and rabbits 

[196] exhibit some regenerative capacity in adulthood. In these models, tissue regrowth is 

often preceded by the development of what is described as a “blastema-like” structure [197]. 

For example, in cervid antler regeneration, this structure is thought to be composed of 

progenitor mesenchymal cells. In contrast to blastemal cells mediating urodele limb 

regrowth, it is unlikely that these cells arise from dedifferentiation. Rather, they originate 

from a normally quiescent population residing in the periosteum of the distal pedicle. Unlike 

the amphibian blastema, the cervid analog is also vascularized, and develops independent of 

nerve stimulation or epidermal signaling [194]. A true example of mammalian epimorphosis 

is thus lacking.

In 1998, however, Clark, et al. [51]. discovered that an inbred mouse strain known as the 

Murphy Roths Large (MRL) mouse was capable of regenerating critical size wounds. 

Originally selected for its large size, the MRL mouse had become a standard model of 

autoimmunity due to a mutation in the structural gene encoding the Fas antigen. Since this 

cell surface protein mediates apoptosis of developing T cells in the thymus, mice possessing 

the lymphoproliferation (lpr) mutation exhibited clinical symptoms reminiscent of those 

seen in human systemic lupus erythematosus [198,199]. When numbering mice using the 

conventional ear-hole punch method for this use, Clark, et al. [51]. discovered that MRL 

mice were closing the wounds after several weeks. Compared to the C57Bl/6 strain which 

achieved only 30% reduction in wound size after two weeks, MRL mice exhibited a 

remarkable 85% closure. This regenerative response was preceded by the rapid breakdown 

of the basement membrane layer and re-epithelialization of the wound site, as well as the 

generation of a blastema-like structure resembling that present during salamander limb 

regrowth. In the MRL, new tissue closely resembled pre-injury architecture including the 

presence of hair follicles and sebaceous glands. By day 81, cartilage ingrowth into the 

wound area not seen in C57Bl/6 mice was also observed. Later work demonstrated that the 

MRL regenerative response was not limited to ear tissue. Since publication of Clark et al. 

MRL have been shown to completely regenerate or substantially heal amputated digits 

[200], full thickness articular cartilage wounds [201,202], intraarticular fractures [203], 

cardiac cryoinjuries [204], peripheral nerve damage [205], and alkali-burned corneas [206].

Given the genetic similarities between mice and humans, considerable interest emerged to 

establish the MRL mouse as the standard model for mammalian regeneration and elucidate 
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the mechanism of this response. A potentional cause of this peculiar regenerative ability can 

likely be tied to the altered metabolic function of the MRL mouse. Compared to the non-

healing C57Bl/6 strain, MRL mice rely more heavily on glycolysis than oxidative 

phosphorylation for ATP synthesis. This is evident by a 2-fold increase in lactate production 

by MRL fibroblasts in culture compared to C57Bl/6-derived cells [54]. Differences in 

oxygen consumption were not observed between the two cell types, demonstrating a 

phenomenon reminiscent of the Warburg effect often seen in cancer, development, and 

wound healing [207,208]. Unlike cancer cells, however, MRL fibroblasts exhibit reduced 

mitochondrial transmembrane potentials and ROS, making them more analogous to 

pluripotent [209] and hematopoietic stem cells [210]. In fact, stem cell markers Nanog, 

Islet-1, and Sox2 were observed in adult MRL hearts both pre- and post-injury, suggesting 

that the retention of a fetal-like metabolism may allow for the existence of undifferentiated 

cells in adult tissue [54]. Other regenerative organisms including newts, axolotls, and 

zebrafish may also display a similar reliance upon glycolysis over oxidative phosphorylation 

[54,211].

It has been postulated that the autoimmune phenotype of the MRL mouse may also 

contribute to tissue regeneration. However, genetic mapping of MRL/lpr-derived F2 and 

backcross progeny did not identify any link between healing capabilities and the fas gene or 

any other gene associated with autoimmunity [52]. Additionally, MRL/+ mice demonstrate 

the same regenerative response seen in MRL/lpr strains and no correlation is observed 

between lymph node cell number and wound closure [51,52]. While adaptive immune 

responses are unlikely to contribute to regeneration, numerous reports have identified 

differences in innate immunity which may mediate MRL healing. Following cornea alkali 

burning, MRL mice achieve rapid re-epithelialization which ultimately contributes to 

improved healing and reduced corneal opacity compared to C57Bl/6 mice. It is possible that 

differences in re-epithelialization rates arise from disparate neutrophil infiltration into the 

wound area, which appears to be markedly reduced in the MRL along with the transcription 

of several pro-inflammatory genes [206]. In contrast, other injury models including the well-

characterized ear hole wound, demonstrate increased infiltration of inflammatory cells at day 

1 postinjury. Cell populations include neutrophils and macrophages, as well as a unique, 

glycolytic mast cell population expressing both mature and immature cell markers [212]. 

Migratory immune cells including monocytes and neutrophils are also likely to secrete 

increased levels of MMPs and tissue inhibitors of matrix metalloproteinases (TIMPs) which 

contribute to the rapid breakdown of the basement membrane in wound areas [213,214]. 

This pro-inflammatory phenotype likely contributes to the generation of a microenvironment 

that supports cell dedifferentiation and blastema formation. This claim is supported by 

findings that show that treatment with the anti-inflammatory agent, meloxicam, attenuates 

MRL healing [212].

Key differences between MRL and C57Bl/6 mice concerning metabolism and inflammation 

may both be mediated by HIF-1α and the classical cellular oxygen-sensing pathway. 

Evidence for this claim was first established following genetic mapping studies of MRL and 

non- regenerating mice which identified differential expression of HIF-1α regulators Rnf7, 

Psmd8, and Psmb9 [212]. All of these proteins are involved in the ubiquitination and/or 

degradation of HIF-1α and are downregulated in the MRL, with Rnf7, a ROS scavenger and 
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E3 ubiquitin ligase component [215], demonstrating the most significant change. As a result, 

these mice exhibit incredibly high basal expression of HIF-1α and HIF-1α-target genes 

Ldha, Vegfc, Hmox1, Met, Nt5e, Pkm2, and Gadph [55,212]. Following injury, HIF-1α 
levels follow a biphasic pattern characterized by a transient increase (Fig. 3A–C), then 

decrease in expression [55]. Inhibition of HIF-1α completely inhibits regeneration of ear 

hole wounds (Fig. 3D) and reduces expression of the stem cell marker, Nanog, in MRL 

fibroblasts in vitro. HIF-1α has long been known to govern the transcriptional activation of 

glucose transporters and glycolytic enzymes HK, GLUT1, PFKL, ALDOC, GAPDH, PGK2, 

ENO1, LDH, and PDK1, making it a master regulator of glycolysis [56,77]. Thus, the fetal-

like, glycolytic characteristics of MRL cells are likely mediated by enhanced HIF-1α 
stabilization. As previously discussed, this metabolic state is essential for MRL regeneration 

with treatment of the PDK1-inhibitor and pro-oxidative phosphorylation drug, 

dichloroacetate, inhibiting ear hole closure [56]. HIF-1α stabilization is also likely to 

contribute to the glycolytic metabolism of MRL-specific mast cells as well as the curious 

upregulation of PKM2, LDHA, VEGF, and HMOX1 genes in this population [212].

The same oxygen-sensing pathways that govern MRL healing, have also been implemented 

in non-mammalian regeneration occurring in zebrafish [58,59], tadpoles [60,61], and geckos 

[62,63]. Although these events seem to be species and injury dependent, in all cases, a 

sudden increase in ROS production at the site of injury appears to be essential in 

orchestrating the early stages of regeneration by catalyzing growth factor production 

[59,216], initiating immune cell recruitment [58], and increasing cell proliferation [63,217]. 

In addition to the direct signaling activity of ROS, their production is also known to deplete 

oxygen from the wound bed, creating a highly hypoxic environment, which may also affect 

tissue regeneration. By inhibiting HIF-1α, the master regulator of the hypoxic response, 

Ferreira, et al. [57]. demonstrated that this low oxygen environment was essential for 

regeneration in tadpoles during the first 3 h after tail amputation. The pro-regenerative 

effects of HIF-1α during this time period stem from its ability to upregulate HSP90, a stress 

responsive chaperone protein known to mediate wound healing in other organisms [218]. In 

the regenerating tadpole tail, HSP90 as well as its secreted, extracellular form eHSP90α, are 

likely to contribute to wound re-epithelialization and regenerating bud development by 

promoting cell migration. Additional work has shown that HIF-1α in conjunction with 

hydrogen peroxide, can also influence cell migration by orchestrating changes to 

transepithelial potential and electric current densities during regeneration [60,61]. Similar 

effects may also be seen in the house gecko, where high expression of HIF-1α and HIF-2α 
characterize the early stages of tissue regeneration [62].

Given the role of HIF-1α in both MRL and non-mammalian regeneration, cellular oxygen-

sensing pathways have emerged as possible therapeutic target for mammalian regeneration. 

Compared to other targets, these pathways represent promising therapeutic targets because 

they are ubiquitously expressed, and can be easily modulated by altering exposure to 

environmental oxygen or through the use of small molecules. Thus, a solution to mammalian 

fibrosis may be close to clinical translation.
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4. Clinical implications

4.1. Hyperbaric oxygen treatment for chronic wound healing

Given the pathologies associated with chronic hypoxia, hyperbaric oxygen therapy (HBOT) 

may be used to decrease instances of infection and facilitate healing in chronic or severe 

wounds [219,220]. The foundation of HBOT is built on the belief that intermittent exposure 

to oxygen will initiate wound repair by increasing cell proliferation, collagen deposition, 

angiogenesis, and host defense [219,220]. Currently, two methods are used to expose 

patients to 100% oxygen for this treatment. The first is known as “topical oxygen therapy” 

(TOT). The objective of TOT is to apply oxygen directly to the wound surface by 

surrounding the injury with a plastic bag or chamber which is then filled with 100% oxygen 

[221–223]. Despite its simplicity and low cost, this technique has not been shown to improve 

healing in a clinical setting likely due to shallow penetration of O2 into the wound bed 

[224,225]. Therefore, to facilitate robust tissue oxygenation, systemic exposure can be 

achieved by placing a patient in a pressurized chamber and administering 100% oxygen via 

a mask, head hood, or endotracheal tube. Alternatively, a patient can also be placed in a 

pressurized chamber filled with 100% oxygen [220]. For most wound healing applications, it 

is recommended to perform HBOT for 90–120 min at 2–2.5 atm twice daily for 30–40 days. 

In other applications of HBOT including its use for the treatment of acute thermal burns, 

compromised grafts, radiation injuries, and tissue infections, however, treatment duration 

may vary (see review [226]).

Some of the effects of HBOT may be orchestrated by induction of HIF-1α. Surprisingly, 

Sunkari, et al. [227]. found that HIF-1α expression was upregulated in human dermal 

fibroblasts derived from diabetic foot ulcers (DFUs) at later time points following HBOT. 

Initially, HIF-1α levels were undetectable due to the abundance of molecular oxygen. Four 

hours after treatment, however, HIF-1α levels begin to increase relative to normoxia 

controls. HIF-1α target genes such as VEGF and SDF-1α were also upregulated. This 

facilitated the migration of endothelial progenitor cells to the wound bed and subsequent 

neovascularization. Additional cytokines including transforming growth factor-β1 [228], 

angiopoietin-2 [229], and platelet-derived growth factor receptor [230], as well as the 

remodeling enzyme, MMP-9 [231], have also been shown to increase following HBOT in 

distinct cell populations. Together, these factors further increase angiogenesis, as well as cell 

proliferation and growth factor signaling.

While it seems contradictory that hyperoxia would be able to stabilize HIF-1α, this 

phenomenon likely occurs through a pVHL-independent manner. One possible pathway 

involves HIF-1α complexation with the chaperone protein, HSP90. This has been shown to 

prevent HIF-1α ubiquitination and degradation in both normoxia and hypoxia [232, 233]. 

Hyperbaric and hyperoxic conditions can lead to slight increases in HSP90 expression, as 

well as its association with other factors such as the NOS3 protein [234–236]. An alternative 

explanation for hyperoxia stabilization of HIF-1α is through ROS production, which is 

increased by HBOT due to the abundance of molecular oxygen within the wound bed [237]. 

In addition to fighting infection, ROS may inactive PHDs and FIH by oxidizing their iron 

active sites to stabilize HIF-1α [238–240]. However, the direct relationship between ROS 
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and HIF-1α remains controversial. Other reports have suggested that ROS accumulation 

indirectly influences HIF-1α stabilization by regulating cellular oxygen availability and can 

actually promote its degradation [241–244]. The effects of HBOT treatment and the 

following role of HIF-1α in these responses are summarized in Fig. 4A.

Although HBOT has demonstrated unquestionable, pro-healing benefits in preclinical 

studies, its clinical utility is less clear. Compared to conventional wound care alone, 

adjunctive HBOT is time- consuming and comes at a substantial cost, with treatments 

ranging from $50,000 to $200,000 in the US [245]. As a result, many physicians have been 

reluctant to accept the therapy without definitive proof of its efficacy. Currently, there is little 

consensus on such efficacy despite the completion of many clinical trials designed to explore 

the use of HBOT for chronic wounds such as DFUs. Advocates of HBOT claim that the 

treatment can expediate healing and re-epithelialization of the wound bed, reducing a 

patient’s risk of amputation and improving their overall quality of life [246–254]. While the 

treatment is expensive, some reports have suggested that HBOT can actually decrease 

overall wound care-related costs by reducing the number of hospital visits in the long-term 

[247,255]. Many of these claims, however, are supported by open-label or observational 

studies, which have been heavily criticized due to biases related to poor patient compliance, 

lack of blinding, selective reporting, improper patient allocation, and insufficient patient 

numbers [254,256].

To elucidate the true effects of HBOT, randomized, double-blinded studies have been 

attempted. One such trial completed by Londhal et al. [250]. in 2010, showed that after 1 

year, 61% of patients that underwent >35 90-min sessions of HBOT achieved complete DFU 

closure. This was compared to only 27% of placebo-control patients, and was accompanied 

by improvements in health-related quality of life (HRQoL) [249]. Similar benefits were also 

seen by Abidia et al. [247]. who reported that HBOT led to a median decrease in wound area 

of 100% versus only 52% in the control-arm. Although significant improvements were 

observed, it has been suggested that healing rates in control groups may have been 

inadvertently influenced by the employed sham therapy. In both reports, this sham therapy 

involved subjecting placebo-arm patients to high pressures used in HBOT (2–3 ATA) while 

receiving air through a mask. Many argue that such high pressures can have detrimental 

effects on vascular function and inflammation, leading to compromised healing [257]. Thus, 

it is likely that abnormal healing in control groups bolstered the apparent significance of 

HBOT, making the results of these studies unclear.

Due to concerns surrounding pressurized treatments, more recent double-blind, controlled 

HBOT trials now conduct sham therapies at reduced pressures. At approximately half the 

pressure used in HBOT, the patient is still able to experience the sensation of compression 

and decompression, without alterations to vascular function. Fedorko et al. [257]. subjected 

54 patients with DFU to this sham therapy at these conditions, and then compared their risk 

of amputation to 49 patients receiving 30 daily sessions of 90 min HBOT. In the treatment 

group, 22.9% of patients who received at least 27 HBOT treatments met the criteria for 

major amputation as assessed by a vascular surgeon. This was not significantly different 

from rates seen in the placebo-arm, where 20.5% of patients met the amputation criteria. 

Significant reductions in wound surface area and width were also not observed following 
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HBOT. As a result, HBOT lead to minimal improvements in health-related quality of life 

[258]. Compared to other adjunctive therapies such as extracorporeal shock wave therapy, 

HBOT appears to offer no advantages in the treatment of DFUs [259].

While many trials have demonstrated the ineffectiveness of HBOT, few have also suggested 

that its use can actually have negative effects. In a longitudinal, observational cohort study, 

Margolis, et al. [260]. found that patients undergoing HBOT were actually 1.5 to 3 times 

more likely to require amputation and 1.2 to 3 times less likely to heal DFUs. Additional 

studies have also reported instances of adverse events including oxygen-induced seizures 

[261], barotraumatic injuries [257, 261], and changes in vision [257].

Given the inconsistencies in clinical data (summarized in Table 1), a 2012 Cochrane review 

[256] concluded that larger, more rigorous, randomized-controlled trials were required to 

assess the true efficacy of HBOT. Within the past 8 years, however, few of these trials have 

been completed and the therapeutic potentional of HBOT still remains largely unknown. 

Given the importance of oxygen in regulating the normal mammalian wound healing 

cascade, as well as its role in orchestrating natural regeneration, it is likely that HBOT could 

provide some benefits in the management of chronic wounds.

4.2. Hypoxia treatment

While HBOT aims to oxygenate damaged tissue, some injuries have been shown to respond 

more favorably to low doses of intermittent hypoxia, as shown in Fig. 4B. This is especially 

true in the case of neuronal injuries, where intermittent hypoxia (IH) has been shown to 

improve motor neuron plasticity and function following chronic spinal injury, as well as 

axonal outgrowth and regeneration after sensory nerve damage [262–264]. In these 

instances, it is likely that IH invokes a cellular stress response, that leads to chromatin 

remodeling and the transcription of pro-regenerative genes [262]. A similar process naturally 

occurs following injury to the peripheral axon branch of sensory neurons, which exhibit 

innate regenerative abilities [262,265]. Remarkably, initial injuries to this region also have 

the potential to enhance axon regrowth in centrally projecting axons, which normally display 

minimal regenerative potential. Comparative studies between regenerating and non-

regenerating neurons, have identified HIF-1α as a possible mediator of this effect [266]. In 

vitro studies [262] have shown that injury induces a 1.2-fold increase in HIF-1α protein 

levels in regenerating sensory neurons, accompanied by 2 or more-fold increase in 

expression of 63.7% of known HIF-1α-target genes. Knockdown of HIF-1α both in vivo 

and in vitro, attenuates axonal regrowth and abolishes the preconditioning effect of initial 

injuries. Thus, to enhance the pro-regenerative potential of HIF-1α, adult mice with sciatic 

nerve damage were subjected to IH, which was found to stimulate long-range axon 

regeneration and reinnervation in motor neurons, as well as increased axonal growth. It has 

long been known that the HIF-1α-target, VEGFA, can promote neuronal signaling and axon 

guidance. Direct administration of the growth factor to HIF-1α knock out mice, however, 

was insufficient in restoring regeneration to levels seen in controls. This suggests that 

VEGFA is only one of many targets involved in the pro-regenerative function of HIF-1α 
signaling.
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Other potential mechanisms of IH-induced neuronal plasticity involve upregulation of brain-

derived neurotrophic factor (BDNF) [263, 267]. As a member of the neurotrophin family, 

BDNF has been shown to facilitate axonal growth and neurogenesis upon binding to the 

tyrosine kinase receptor, trkB. Subsequent phosphorylation of trkB triggers three possible 

signaling cascades involving activation of phospholipase C gamma (PLCɤ), phosphotidyl-

inositol-3 kinase (PI3K), or mitogen activated protein kinase/extracellular receptor kinase 

(MAPK/ERK) pathways which all eventually converge to regulate the transcription of pro-

regenerative genes (see review [268]). One such target includes the transcription of β-actin, 

which is then transported down the axon to the growth cone to facilitate its enlargement, 

branching, and extension [269]. Other targets include the production of cyclic AMP (cAMP) 

and regulation of mTOR which serve as important mediators of cell growth and survival 

[268,270,271]. Although normally produced by motoneurons and Schwann cells in response 

to peripheral nerve injury, IH treatments have been shown to further increase BDNF 

production and trkB phosphorylation [263,267]. This likely occurs as a result of local tissue 

hypoxia in addition to subsequent serotonin receptor activation, which drives the production 

of BDNF [267]. In animal models of chronic spinal cord injuries, IH-induced BDNF 

signaling strengthens synaptic input and motor output of respiratory and somatic motor 

nuclei, facilitating improvements to forelimb and respiratory motor function [263].

Recently, human studies have suggested that the benefits of IH may be translated to the 

clinic. In a study by Trumbower et al. a single IH exposure was shown to increase ankle 

strength in patients with SCI, enabling an 82 ± 33% increase in plantar flexion torque [264]. 

However, these results were only recorded up to 4 h after treatment. To achieve long-term 

benefits, repetitive, daily sessions of IH are likely required. When patients with chronic 

incomplete SCI were subjected to this treatment, walking speeds during 10 m walk tests 

significantly increased compared to patients receiving normoxic, sham therapy. While daily 

IH alone was capable of soliciting improvements to walking endurance as well, these 

benefits only became statistically significant when IH treatment was combined with 

overground walking. After 5 days of this combination therapy, walking distance increased 

over 30% and continued to surpass baseline levels at 2-weeks follow-up [272]. IH-induced 

improvements to respiratory function observed in mice and rat models, have also been 

shown to occur in human patients. Tester et al. reported that SCI patients exposed to eight 2-

min intervals of 8% oxygen for 10 days demonstrated improvements in minute ventilation. 

Repeated exposure did not result in cumulative increases; however, improvements were 

maintained over the 10-day period [273]. IH-induced improvements in ventilatory load 

compensation have also been reported in cervical SCI patients [274].

In addition to neuronal injuries, IH may be beneficial in the treatment of bone injuries and 

defects. As seen in many other tissue injuries, the early stages of bone fracturing are marked 

by a disruption in oxygen and nutrient supply, which initiates HIF-1α signaling [275]. 

Recent studies have shown that the accumulation of HIF-1α in bone and endothelial 

progenitor cells serves as a key mediator of angiogenesis and osteogenesis [151,276–278]. 

This is primarily orchestrated through VEGF signaling which in addition to promoting the 

vascularization of developing endochondral bone [276], drives mesenchymal stem cell 

differentiation towards osteogenic linages [279,280]. Recruitment of these progenitor cell is 

itself mediated by HIF-1α which stimulates stem cell chemotaxis through release of stromal 
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cell-derived factor-1 (SDF-1) from periosteal cells [281]. Hypoxia has also been shown to 

increase the generation and resorption activity of osteoclast cells stimulated by M-CSF and 

RANKL in vitro [282]. Importantly, re-oxygenation following exposure to 2% oxygen was 

required to achieve this effect, as constant hypoxia was later shown to decrease osteoclast 

activity [283]. In vivo, hypoxia is likely to further increase resorption by stimulating the 

release of pro-osteoclastogenic cytokines including RANKL, VEGF, insulin-like growth 

factor, and growth differentiation factor 15 [277].

Given the importance of HIF-1α in normal bone development and growth, IH therapy has 

the potential to significantly enhance remodeling following injury. Improvements to bone 

mineral density have been observed in rats exposed to long-term, chronic IH treatments. 

This regimen consisted of 5 h daily sessions of hypobaric hypoxia performed 5 days per 

week for 5 weeks. Throughout the treatment, high levels of pro-inflammatory cytokines 

including IL-1 B, IL-6, and TNF-a were observed, in conjunction with increased production 

of nitric oxide. Surprisingly, these two effects appeared to work in opposition of each other. 

While IL-1 B, IL-6, and TNF-α are known to contribute to RANKL production and bone 

loss, NO accumulation appeared to have an inhibitory effect on osteoclast activity, possibly 

through inactivation of the protease, cathepsin K. As a result, bone turnover was 

significantly decreased in IH-treated rats, leading to an average increase in bone mineral 

density of 30% [284]. A similar mechanism may also explain why patients with obstructive 

sleep apnea, a condition characterized by episodes of recurrent intermittent hypoxia, are less 

likely to experience age-related bone loss and are at a decreased risk of osteoporosis [285].

The potential benefits of IH, however, are not without risk. In extreme cases, repetitive 

hypoxia-reoxygenation cycles can lead to oxidative stress and systemic inflammation, 

mimicking damage often seen in ischemia-reperfusion injuries [286]. This effect is likely 

due to increased accumulation of ROS, which promotes NF-κB activation and the 

subsequent production of pro-inflammatory cytokines such as TNF-α and IL-6 [287,288]. 

Therefore, to avoid these effects, the extent of IH treatment must be closely monitored. In a 

recent review, Navarrete-Opazo and Mitchell [289] identified six characteristics which 

generally differentiate IH protocols. These include 1) the severity of hypoxia, 2) the duration 

of exposure, 3) the number of hypoxic episodes, 4) the schedule of treatment, 5) the duration 

of total treatment, and 6) the regulation of secondary parameters, such as arterial carbon 

dioxide. While all of these parameters varied greatly throughout published reports, the 

severity of hypoxia and number of cycles per day, appeared to be the most indicative of 

treatment success. In many studies, it was found that low dose hypoxia (9–16% inspired 

oxygen) and moderate cycle numbers (3–15 episodes/day) resulted in beneficial effects, 

without serious damage. When dose or duration were increased, deleterious side effects such 

as increased blood pressure [290,291], inflammation [292,293], and cognitive impairment 

[294–296] were observed.

4.3. Pharmacological inhibition

While modulation of the oxygen-sensing pathway has been shown to affect healing in a 

variety of injuries, clinical translation of HBOT and hypoxia treatment has been hindered by 

their associated infrastructure challenges, high costs, and inconsistencies in efficacy. An 
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alternative approach to simulating these effects in patients is to utilize small molecule drugs 

capable of manipulating oxygen-sensing pathways. To achieve “pseudohypoxia,” two 

classes of small molecules can be used to inhibit PHD enzymes and increase HIF-1α levels. 

Notable compounds are shown in Fig. 5. Given that many of these compounds have been 

granted or are in the process of gaining clinical approval for other disorders, such as the 

treatment of anemia, they may easily be translated to regenerative medicine applications in 

the near future.

4.3.1. Active site inhibitors—The activity of PHD enzymes is reliant upon binding of 

the co- activator, α-ketoglutarate or 2-OG. When bound to the iron active site, 2-OG forms a 

remarkably stable complex with each of the PHD isoforms. This allows the enzymes to have 

higher oxygen Km values than other members of the 2OG oxygenase family, increasing their 

sensitivity to hypoxia [297,298]. The oxidative decarboxylation of 2OG to yield a ferryl 

intermediate is also required to drive substrate oxidation [104]. Thus, inhibition of 2OG 

binding can greatly impede PHD activity and subsequent HIF-1α degradation. Other 

pharmacological agents have also been developed to compete with the ODDD of HIF-1α to 

block substrate binding to the PHD active site [299]. Although this activity has been 

supported by crystallographic analysis, NMR studies have suggested alternative binding 

modes in the solution state [300].

Interest in developing 2OG competitive inhibitors first arose for the treatment of renal 

anemia associated with chronic kidney disease (CKD). This complication results from an 

erythropoietin (EPO) deficiency, caused by disease-associated damage to the peritubular 

cells of the kidney [301]. While recombinant EPO therapies have been shown to stabilize 

hemoglobin levels and reduce the need for red blood cell transfusion in these patients 

[302,303], high doses of EPO can raise plasma concentrations to supra-physiological levels, 

resulting in increased risk of stroke and myocardial infarction [116,304,305].

As natural mediators of cellular EPO production, manipulation of HIF-1α and HIF-2α 
signaling through PHD inhibition has emerged as a safer alternative to recombinant EPO 

therapy. Often, binding of these molecules to the 2OG pocket is achieved through a 

glycinamide side chain, as seen in Fibrogen’s FG-4592 (Roxadustat). This drug is perhaps 

the most well-studied PHD inhibitor and is currently undergoing Phase III clinical trials. In 

Phase II trials, when administered at 1.1–1.75 mg/kg, FG-4592 was shown to raise 

hemoglobin levels ≥1 g/dL from baseline in 80.0% of patients with CKD. Increasing the 

dose of FG-4592 to 1.50–2.25 mg/kg led to increases in 87.1% of patients, without the 

occurrence of adverse events [306]. Similar improvements have been noted in Phase III 

trials, which have demonstrated that FG-4592 is just as effective as recombinant EPO 

treatment [307]. Other PHD inhibitors with glycinamide side chains include GSK’s, 

GSK1278863 (Daprodustat) and GSK360A. While the latter has yet to enter clinical trials, 

Phase II studies of Daprodustat have demonstrated its effectiveness in managing anemia and 

improving iron metabolism in dialysis-dependent and non-dialysis-dependent CKD patients 

[308]. Triazole-based drugs such as IOX4 and Bayer’s BAY 85–3924 (Molidustat), are also 

capable of inactivating PHD enzymes by binding to their iron-active site via the nitrogen 

atoms of their pyridine and pyrazolone rings [299,309]. Pre-clinical studies on these 

compounds have shown their potential to upregulate HIF-1α and plasma EPO in mice, rats, 
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and non-human primates [300,310]. Ongoing clinical studies with Molidustat suggest that it 

is effective at restoring hemoglobin levels in CKD patients for up to 36 months, 

demonstrating the first long-term analysis of PHD inhibition efficacy and saftey [311–313]. 

Recently, Roxadustat was approved for CKD treatment in China, and with ongoing trials 

nearing completion in the US, FDA approval of novel PHD inhibitors is likely to occur in 

the near future.

4.3.2. Iron chelators and transition metal ions—The active site of PHD enzymes 

contains a relatively labile, Fe2+ bound to the two-histidine, one-carboxylate motif that is 

required to bind substrates, oxygen, and cofactors [111]. Treatments with iron chelators such 

as Deferoxamine (DFO), can thus impede PHD activity and permit HIF-1α accumulation. 

For years, DFO has been used as a treatment for acute iron poisoning, which may occur as a 

result of multiple blood transfusions. Its role in HIF-1α stabilization was not realized until 

the mid-1990s when Wang et al. and Gleadle et al. demonstrated that iron-chelating agents 

such as DFO and hydroxypyr-idinones could be used to increase the production of EPO and 

angiogenic growth factors in Hep3B cells [314,315]. Despite these benefits, however, the use 

of DFO and iron chelators has been marked by adverse effects including hypotension during 

infusion, ophthalmic and auditory toxicity, infections, allergic and skin reactions, and 

pulmonary, renal, and neurological effects [316].

The labile Fe2+ within the PHD active site can also be substituted with other divalent 

transition metals such as Co2+, Cu2+, Zn2+ and Mn2+ [111]. In these instances, loss of Fe2+ 

abolishes the catalytic activity of these enzymes, although other mechanisms of inhibition 

have been proposed. For example, it is possible that transition metals can facilitate the 

degradation of ascorbate/redox-sensitive PHD cofactors, induce oxidative damage to the 

enzymes, or interact with other metal binding sites away from the active site [317]. Cobalt 

compounds in particular, have been shown to bind directly to HIF-1α at the ODDD, 

inhibiting its ability to interact with pVHL even after hydroxylation [318]. This behavior 

explains why cobalt-based compounds were some of the first medications used for treatment 

of anemia in the early 1950s, although the mechanism of action was yet to be understood 

[319,320].

Unlike most of the small molecule active site inhibitors described above, iron chelators and 

transition metal compounds are not specific to PHD enzymes. Their ability to interact with 

other 2OG oxygenases, as well as iron-containing proteins, results in many off-target effects. 

Some studies have shown that their use in regenerative medicine applications can result in 

progenitor cell death and antiproliferative effects [321–323]. The lack of specificity of these 

compounds counteracts the benefits of HIF-1α stabilization. Therefore, recent research has 

mainly focused on the use of PHD-specific small molecule inhibitors for regenerative 

medicine. In the following sections, notable studies illustrating how systemic and local 

delivery of these drugs can be used to catalyze endogenous healing and regeneration will be 

discussed. The role of PHD inhibitors in cell-based therapies will also highlighted.
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4.4. In vivo delivery of PHD inhibitors for tissue regeneration

The role of HIF-1α and the oxygen sensing pathway in regeneration, suggests that these 

small molecule PHD inhibitors may have additional uses in wound care. For this application, 

possible advantages associated with pharmacological inhibition of HIF-1α are summarized 

in Fig. 6. Inspired by these effects as well as the robust accumulation of HIF-1α following 

injury in the MRL mouse, our group has attempted to use the PHD inhibitor, 1,4-

dihydrophenonthrolin-4-one-3-Carboxylic acid (DPCA), to recapitulate the characteristic, 

biphasic expression pattern and induce regeneration in non-healing strains. Like many PHD 

inhibitors, DPCA was first developed for the treatment of anemia and exerts its inhibitory 

effects on PHDs and FIH by displacing 2OG from their iron active site [324]. We developed 

an injectable, PEG-based hydrogel that physically encapsulated polymer-stabilized DPCA 

microcrystals [55] as a consequence of rapid chemical cross-linking under physiological 

conditions [55,325]. Multiple doses given to non-regenerative Swiss Webster (SW) mice 

caused HIF-1α upregulation and tissue regeneration. Compared to control mice receiving 

drug-free PEG hydrogels, SW mice receiving DPCA demonstrated accelerated and 

increased closure of critical size ear hole wounds. Within the treatment group, even 

instances of complete closure were observed. This regenerative response was also 

accompanied by increased MMP expression and upregulation of a diverse panel of stem cell 

markers including NANOG, SOX2, OCT3/4, CD34, CD133, NESTIN, PAX7, and PREF1, 

closely mimicking the naturally regenerative phenotype of the MRL mouse [55]. Given 

these positive results, the DPCA-loaded hydrogel was then used to treat bone and ligament 

damage brought on by a ligature-induced model of periodontitis. Again, the gel was 

delivered at sites peripheral to the injury, but resulted in robust expression of HIF-1α in 

gingival tissue. After just 5 days, DPCA-treated groups showed alveolar bone regrowth to 

levels comparable to unligated controls, as well as periodontal ligament reattachment [326].

More recently, we developed a second-generation delivery platform that consisted of DPCA 

conjugated to a polymer via a multivalent hydrolyzable ester [327]. In our design, three 

molecules of DPCA were conjugated at one (P7D3) or both (P80D6) ends of a linear PEG 

using a trivalent linker (Fig. 7). Spontaneous self-assembly of P7D3 into well-defined 

nanofibers was observed in the presence of water, and the rheological properties of the 

prodrug solution was adjustable through P7D3:P80D6 ratio. Treatment of earhole wounds in 

SW mice with the polymer prodrug facilitated wound closure that was reminiscent of that 

seen in the MRL mouse [327]. Given the ability of the MRL mouse to regenerate defects in 

cardiac tissue, cartilage, and peripheral nerves, it is likely that the DPCA-based carriers 

outlined here can be used to treat a variety of injuries.

Although the exact mechanism of DPCA-induced tissue regeneration is not understood, it is 

hypothesized that the transient upregulation of HIF-1α at wound sites causes cells to adopt a 

progenitor phenotype, enabling blastemal-like regeneration to occur. Similar effects have 

been observed after exposing cells from human exfoliated deciduous teeth to cobalt chloride. 

Robust induction of stem cell markers OCT4, NANOG, SOX2, and c-Myc was observed, as 

well as increases in cell migratory behavior [328]. Pharmacological inhibition of PHD may 

activate other pro-regenerative pathways such as the expression of remodeling enzymes, 

lysyl oxidase and lysyl hydroxylases which are normally upregulated during hypoxia [55]. 
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Given the role of HIF-1α in the induction of glycolysis, it’s also possible that treatment with 

DPCA induces a metabolic switch in cells. This would closely mirror the fetal-like 

metabolism observed in the MRL mouse, as well as other natural epimorphic regenerators 

such as zebrafish and planarias [54,329,330]. While the effects of DPCA on cell metabolism 

have yet to be investigated, treatment with other small molecules such as Roxadustat and 

DMOG, have verified metabolic reprogramming as a result of pharmacological stabilization 

of HIF-1α [331].

In addition to DPCA’s role in progenitor cell recruitment and/or development, it has also 

been shown to modulate the local immune environment at the site of injury. Specifically, 

treatment with DPCA was accompanied by an increase in mast cell migration to mouse ear 

wounds [55]. As previously mentioned, this event is also seen in the MRL mouse, and thus 

may prime the region for regeneration [212]. It is likely that mast cell recruitment is directly 

linked to HIF-1α stabilization, since the protein is known to regulate a metabolic switch, 

essential for myeloid survival and function [332]. In addition to regulating immune cell 

metabolism, HIF-1α stabilization can also modulate cell homing through production of the 

C-X-C motif chemokine receptor 4 (CXCR4). In a murine model of periodontitis, this effect 

was observed following treatment with DPCA, and resulted in an increase in T regulatory 

(Treg) cell numbers in gingival tissue. Blocking of CXCR4 using a small molecule 

antagonist attenuated Treg recruitment, as well as bone regrowth, suggesting that the 

immunomodulatory activity of DPCA plays a direct role in regeneration [326]. Similar 

augmentations to cell homing have been observed in macrophages and neutrophils as a result 

of HIF-1α stabilization [332,333]. Therefore, it is likely that treatment with DPCA results in 

substantial changes in inflammation that need to be further elucidated.

Alternative approaches to HIF-1α upregulation following injury have also been attempted 

using FG-4592. As a pro-regenerative agent, FG- 4592 may contribute to cutaneous wound 

healing by inducing epidermal stem cell proliferation and motility. This effect was seen in 

BALB/c mice receiving daily intraperitoneal injections of FG-4592 solution at 10 mg/kg. 

Compared to controls, FG-4592-treated mice exhibited higher expression of cell 

proliferation marker, PCNA, and thicker neoepidermis. Full wound closure was also 

accelerated, occurring on day 8.13 for treatment groups and day 9.88 for control animals. In 

vitro assays demonstrated that blocking of HIF-1α abolished improvements to epidermal 

stem cell proliferation and motility following FG-4592 treatment, verifying that HIF-1α 
likely orchestrates these effects [334]. Although the exact signaling pathway that elicited this 

response was not identified, other reports have shown that the HIF-1α/SCAP/SREBP1 

pathway can influence stem cell migration and proliferation via upregulation of FASN and 

subsequent mTORC1 activation [335].

The use of FG-4592 has not been limited to cutaneous wound healing, and may also be 

beneficial for the treatment of SCI. Given the regenerative response of SCI to IH therapy, it 

is not surprising that improvements to neural survival following FG-4592 treatment are 

primarily mediated by HIF-1α stabilization. While the exact neuroprotective mechanism is 

largely unknown, studies have postulated that HIF-1α upregulation can decrease apoptosis, 

hence containing lesion damage. Recovery is then augmented by VEGF production and the 

induction of autophagy through BNIP3 signaling, both of which prime axonal regrowth 
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[336–338]. However, other studies have shown that the neuroprotective effects of PHD 

inhibition occur through HIF-1α-independent pathways [339,340]. In one model, it was 

suggested that inhibition of PHD1 induces regeneration through stabilization of Rbp1, a 

subunit of RNA polymerase II complex. Like HIF-1α, Rbp1 can be hydroxylated by PHDs, 

and this step may be important in regulating Rbp1-DNA binding. Therefore, inhibition of 

PHD1 and subsequent hydroxylation, may prevent the synthesis of pro-apoptotic mRNA 

during neuronal injuries or oxidative stress [340]. Regardless of the mechanism of action, 

PHD inhibition using active site inhibitors can lead to robust improvements in regrowth and 

functional recovery following neuronal injuries.

VEGF, perhaps the most well-characterized HIF-1α target, plays a crucial role in 

regenerative medicine since the viability of new tissue is dependent upon revascularization. 

By incorporating FG-4592 into tissue engineering scaffolds, the development and maturation 

of such neovasculature can be encouraged at the host-material interface [341]. Similar 

effects can also be achieved through delivery of dimethyl-oxalylglycine (DMOG), a N-

oxalylglycine (NOG) derivative that serves as an analog for 2OG [342,343]. As a proof of 

concept study, the effects of systemic DMOG delivery on vascularization from an 

Arteriovenous Loop (AV Loop) model was recently investigated [344]. In tissue engineering, 

the AV Loop has served as an important strategy for facilitating microcirculatory 

development and is created by connecting a vein and artery via a vein graft. This loop is then 

embedded into an implantation chamber in vivo, to promote vascularization of newly grown 

tissue [345,346]. Intraperitoneal delivery of DMOG at low doses one week after AV loop 

generation increased vessel density, as well as proliferation of infiltrating cells within the 

chamber microenvironment. These effects correspond to increases in HIF-1α nuclear 

localization, as well as the production of angiogenic cytokines including VEGF and vWF 

[344].

When coupled with the osteogenic potential of hypoxia, the angiogenic effects of small 

molecule PHD inhibition can be used to facilitate bone regeneration in addition to the 

vascularization of scaffolds. This can be achieved through in vivo delivery of PHD inhibitors 

directly into fracture sites via tissue engineering scaffolds [347–349]. For bone regeneration 

applications, mesoporous bioactive glass (MBG) has emerged as a promising material for 

scaffold generation. Like most bioactive glass materials, a calcium-deficient, carbonated 

phosphate surface layer on MBG enables it to chemically bind to bone, while its mesoporous 

structure affords higher surface area and pore volume, allowing for improved apatite 

mineralization [350,351]. However, the limited pore size prevents the delivery of large 

growth factors and only allows for small molecule transport. Therefore, to increase VEGF 

and osteogenic cytokine expression, DMOG was incorporated into MBG constructs seeded 

with MSCs. Compared to unloaded scaffolds, MSCs exposed to DMOG had higher 

expression of osteogenic markers ALP, OCN and OPN, and VEGF secretion [352]. Similar 

effects were observed when DMOG was loaded into β-tricalcium phosphate-based scaffolds 

used to repair critical-sized calvarial defects in rats. In this study, bone regrowth increased to 

30% with DMOG treatment, compared to just 22% with cell-based therapy alone [353]. 

Scaffold delivery strategies are not always required for PHD inhibitor treatment and 

improved bone regrowth has also been observed following direct injection of DMOG 

solutions into fracture sites [347].
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Many PHD inhibitors designed for the treatment of CKD-associated anemia are taken orally 

and result in HIF-1α stabilization primarily localized to the liver and kidneys 

[306,307,309,331]. For regenerative medicine applications, where a precise timeline of 

HIF-1α stabilization is required at the site of injury, this pharmacokinetic profile will likely 

not be ideal. As an alternative to oral delivery, many of the studies outlined above have 

instead administered PHD inhibitors through intraperitoneal injections [335]. However, we 

note that this approach results in systemic upregulation of HIF-1α, which may contribute to 

unknown off-target effects due to the protein’s vast bioactivity [90,181,189,190, 193]. By 

relying on IP injection, these studies also have limited control over the timescale of HIF-1α 
stabilization, which appears to be essential for proper regeneration [354]. To overcome these 

challenges, biomaterials capable of reversibly storing and releasing small molecule PHD 

inhibitors have the potential to greatly increase the safety and efficacy of HIF-1α-induced 

regeneration. For example, carrier degradation and subsequent drug release could be tuned 

to achieve the biphasic expression pattern of HIF-1α stabilization in the MRL mouse [55]. 

Carriers could also be designed to administer PHD inhibitors, locally at the site of injury, 

likely reducing the required therapeutic dose and potential for deleterious side effects. As 

with all instances involving the in vivo implantation of biomaterials, if local delivery of drug 

carriers is to be investigated, careful engineering of the material will be required to ensure 

that foreign body reactions do not impede tissue regrowth [355]. Any construct implanted at 

the site of injury should replicate the biochemical and biomechanical characteristics of the 

existing tissue to provide an appropriate environment for cell survival and proliferation. 

However, even if local delivery is not desired, we hypothesize that the use of biomaterials to 

achieve systemic upregulation of HIF-1α will also be advantageous, since such systems have 

the potential to limit dose frequency and alter drug biodistribution.

4.5. In vitro preconditioning with PHD inhibitors in cell-based therapies

The activity of PHD inhibitors, beyond their interactions with HIF-specific PHDs, is not 

completely understood. Prolonged use of these inhibitors may result in severe side effects. 

These beliefs are rooted in the fact that hypoxia may result in decreased mitochondrial 

function and cardiomyopathy, while long-term HIF-1α stabilization can potentially improve 

the microenvironment for tumor growth and metastasis [356,357]. Favier et al. [356] 

observed a significant reduction in the heart function of rats who were administered DMOG 

intraperitoneally for one week; this was attributed to HIF-1α dependent cardiac remodeling. 

Therefore, in-vitro preconditioning of cells using PHD inhibitors may be a better, safer, 

alternative to in vivo delivery. This type of preconditioning would also be more practical for 

larger scale cell culture and hence be better suited for clinical applications [358].

Preconditioning has been an attractive strategy for enhancing the viability of stem cells prior 

to transplantation. The average physiological oxygen concentration ranges from 2 to 9%, 

however, cells are standardly incubated in ~21% oxygen. This does not accurately capture 

the hypoxic stem cell niche and therefore hinders cellular characteristics such as 

proliferation ability, developmental potential, and karyotype stability which results in a low 

survival rate of transplanted cells [358]. Pre-treatment is predicted to condition cells to 

survive the harsh micro-environment that immediately follows implantation [359]. Thus far, 

this has mainly been accomplished using hypoxic preconditioning. Liu et al. [359] detected 
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increased cell survival, angiogenesis, and improved functional recovery after transplantation 

of hypoxic preconditioned bone marrow mesenchymal stem cells (BMSCs) in myocardial 

and cerebral ischemia rat models. Deveza et al. has also shown that overexpression of the 

hypoxia-related genes CXCR4 and VEGF within adipose-derived stem cells, can improve 

cell survival, modulate inflammation, and accelerate blood reperfusion upon transplantation 

into a mouse hindlimb ischemia model [360]. In-vitro preconditioning with PHD inhibitors 

can be used to mimic these effects while addressing a major challenge of hypoxic 

preconditioning, the steep decrease in HIF-1α levels upon exposure to ambient air, owing to 

the protein’s short half-life [361].

Several studies have demonstrated the utility of PHD inhibitor preconditioning for cell-based 

therapies. Chu et al. observed a protective effect of PHD inhibitors, credited to the drugs’ 

induction of HIF-1α accumulation and subsequent VEGF upregulation. After exposure to 

hydrogen peroxide, which mimics the oxidative stress related to brain disease, pre-treated 

cells with DFO or ethyl-3,4-dihydroxybenzoate (EDHB) retained practically complete 

viability compared to control groups, whereas non-preconditioned astrocytes had a fifty 

percent reduction in cell count [362]. Similarly, Liu et al. detected a time-dependent 

protective effect of DMOG preconditioning to hydrogen peroxide while control groups 

experienced more than fifty percent cell death.

Myocardial infarction (MI) treatment can be greatly impacted by in-vitro pre-treatment of 

PHD inhibitors. Transplantation of 1 mM DMOG pre-treated BMSCs in MI rat models 

significantly reduced heart infarct size and increased the expression of HIF-1α, VEGF, 

Glut-1, and phospho-Akt. This led to increased vessel formation and better overall recovery 

of the heart in comparison to control groups [359]. Cardiosphere-derived cells (CDCs) 

transplantation can also be used to treat MI and preconditioning with PHD inhibitors would 

greatly enhance the efficiency of this therapy. DMOG treated CDCs were shown to have 

increased mRNA levels of EPO, VEGF, c-Kit and CXCR-4. addition, these CDCs are 

thought to have decreased oxygen consumption and increased glycolytic metabolism, 

improving the therapeutic potential of CDCs [358].

In vitro pre-treatment of human neural stem cells (NSCs) with DFO was accompanied by 

production of neuroprotective and neurogenic factors, VEGF and BDNF, as well as 

expression of CXCR-4 [363]. Usually highly expressed in hematopoietic stem cells, the 

CXCR-4 receptor plays an important role in cell homing by binding to the chemokine 

SDF-1α [364]. Increased expression in NSCs, is therefore likely to improve NSC migration 

and retention within injury sites following in vivo implantation [363]. Similar improvements 

in cell homing and retention have been associated with increased expression of CXCR-4/

CCR-2 and proteolytic enzymes in MSCs induced by exposure to DFO as well [365]. As 

previously discussed, use of these nonspecific PHD inhibitors such as DFO and cobalt 

chloride, can prevent cell proliferation. When these compounds are used synergistically with 

Rho kinase (ROCK) inhibitor, Y-27632, however, changes to cell cycle progression can 

induce MSC differentiation towards dopaminergic neuron-like cells. This response is likely 

mediated through HIF-1α induced upregulation of VEGF and EPO, as well as cyclin-

dependent kinase inhibitor 1as (p21) [323].
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Preconditioning with PDH inhibitors may also be beneficial for cerebral ischemia where 

reduced blood flow to the brain decreases available oxygen levels, greatly impacting 

synaptic transition. Preconditioning of rat hippocampal slices with DMOG resulted in an 

increased recovery rate of field excitatory postsynaptic potentials in the CA1 region 

following acute hypoxic treatments. DMOG was shown to increase HIF-1α levels and 

reduce PO2 concentrations. This was thought to condition the cells by decreasing the 

oxidative stress related with deoxygenation from acute hypoxia and hence allow the neurons 

to return to maximum functions at a faster rate. However, it is possible that this effect was 

independent of HIF-1α expression. Hypoxia can regulate glutamate receptors without the 

need for HIF-1α and therefore have a different process for reducing oxidative stress [366]. 

Further research is needed to elucidate the exact mechanism. Preconditioning of progenitor 

cells with PHD inhibitors can also increase their angiogenic potential, leading to 

improvements in vascularization of ischemic and diabetic limb injuries. The most substantial 

benefits were achieved when DMOG treatment was combined with HIF-1α gene therapy in 

bone marrow-derived angiogenic cells (BMDAC). While gene therapy alone was sufficient 

to induce mobilization of BMDAC and increase homing to ischemic muscle, it did not 

induce significant recovery in older mice, likely due to HIF-1α age-related loss of function 

[181,367]. When combined with DMOG pre-treatment, however, increased HIF-1α and 

HIF-2α activity led to the transcription of pro-angiogenic and glycolytic genes, as well as β2 

integrin expression. β2 integrin allowed cells to strongly adhere to endothelial cells, 

facilitating their retention within ischemic tissues [367].

In addition to direct injection, cells preconditioned with hypoxia-mimicking agents, may 

also be delivered within biomaterial scaffolds. Given the role of HIF-1α target genes in 

vascularization, this approach may overcome one of the major challenges in biomaterials 

interventions – the development of a necrotic core within tissue engineering scaffolds. When 

cells are seeded into a 3D matrix, they are initially retained at the surface, resulting in tissue 

formation around the exterior. This limits the infiltration of cells, as well as diffusion of 

oxygen and nutrients into the center of the implant [368]. For cells to survive within this 

core, scaffolds with high porosity or vascular-like architecture must be developed. Within 

native tissue, almost every cell is within 50–100 μm of a blood vessel [369]. Despite 

advancements in 3D printing and materials fabrication, the intricate network of capillaries 

that is required to meet this demand is difficult to engineer into synthetic scaffolds. 

Therefore, a practical alternative may be to instead precondition cells to survive in the 

hypoxic core with PHD inhibitors. Recently, Singh, et al. reported that pre-treating neuron-

like PC12 cells with 100 μM of FG-4592, FG-2216, GSK1278863, or Bay85–3934, made 

the cells significantly less vulnerable to oxygen-glucose deprivation [370]. Although these 

cells were intended to model tissue ischemia, these conditions also mirror a scaffold’s 

nutrient-deficient core. Considering the studies outlined above, the protective action of 

pseudohypoxia, may allow cells to survive the lag between in vivo implantation and 

vascularization. Recently, An, et al. used HIF-1α-mutated muscle-derived stem cells seeded 

within heparin-coated 3D-printed hydrogel scaffolds to accelerate neovascularization of 

damaged corpus cavernosa tissue, suggesting that upregulation of HIF-1α may even be able 

to decrease this lag period [371].
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The development of a necrotic core similar to that seen within scaffolds, can also be found 

within in vitro tissues or organoids. To overcome this challenge, biomanufacturing 

techniques such as 3D printing and stereolithography aim to develop tissue constructs with 

complex vascular networks to allow for nutrient transport [372–376]. Without such 

architecture, engineered tissues are limited to only a few hundred microns in thickness 

[376]. Despite advancements in these fabrication techniques, however, most approaches still 

lack the resolution to create capillaries at the same size and density seen in native tissue 

[375]. Thus, preconditioning of cells through pseudohypoxia may be a useful strategy to 

overcome current technical limitations in the field of organoids as well.

Different PHD inhibitors have varying effects on HIF-1α and HIF-2α expression levels 

which in turn have divergent overall effects on cells. PHD inhibitors may also interact with 

other molecules in the cell to have adverse consequences. The development of tolerance to 

injury may be generated by HIF-1α independent pathways, where HIF-1α up regulation 

may happen indirectly as a secondary event [362]. Therefore, although in-vitro 

preconditioning resolves some concerns with preconditioning using these small molecules, 

further research must be done prior to incorporating this method for clinical applications.

5. Conclusion

There is now growing evidence to suggest that ancient oxygen-sensing pathways may be 

manipulated to unlock regeneration in adult mammals. If true, the universality of molecular 

machinery governing this response, make oxygen-signaling proteins ideal therapeutic target. 

Although oxygen can be converted into ROS, which serve as important signaling molecules 

during both wound repair and regeneration, control over the master regulator of hypoxia, 

HIF-1α, has been the main objective of research. Insights gained from mammalian models 

of regeneration, as well as lower vertebrates have shown that HIF-1α upregulation after 

injury can increase cell migration, initiate angiogenesis, and perhaps contribute to progenitor 

cell maintenance or generation. To recapitulate HIF-1α signaling in non-healing mammals, 

it is possible to tune local oxygen concentrations through hyperbaric oxygen or intermittent 

hypoxia treatment. Clinical acceptance of these therapies, however, has been impeded by 

logistical challenges, as well as questionable efficacy. To precisely control HIF-1α, small 

molecule PHD inhibitors, originally designed for the treatment of anemia, can be utilized. 

By delivering these molecules locally or systemically, “pseudohypoxia” can be achieved to 

promote regeneration. While the exact mechanism of this effect is not known, HIF-1α 
upregulation likely contributes to cell migration and angiogenesis, and may even allow cells 

to adopt a more “stem cell-like” phenotype to guide blastemal regrowth. Hypoxic or 

pseudohypoxia preconditioning of progenitor cells may also be used to recapitulate the stem 

cell niche in vitro, resulting in improved cell survival and proliferation. Although little 

clinical success has been seen for cell-based regenerative therapies, implementation of these 

practices may increase cell engraftment and the overall feasibility of the approach.
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Abbreviations and definitions

Extracellular Matrix (ECM)
three-dimensional network of bio- macromolecules, that provides structure and support for 

surrounding cells, and contributes to cell adhesion, migration, differentiation, and signaling

Polyethylene glycol (PEG)
synthetic polymer composed of repeating units of ethylene oxide commonly used in 

biological applications due to its hydrophilicity and low protein binding affinity

Hypoxia-inducible Factor 1 alpha (HIF-1α)
oxygen-sensitive subunit of the HIF-1 transcription factor complex. Although HIF-1α is 

constitutively expressed, hydroxylation of the protein during normoxia results in 

degradation. In hypoxia, however, HIF-1α accumulates and translocates to the nucleus 

where it combines with HIF-1β and transcriptional cofactors, leading to gene expression 

relating to angiogenesis, metabolism, survival, migration, and proliferation. Although 

HIF-1α is the most well-characterized form of the HIF-α subunit, two additional isoforms 

(HIF-2α and HIF-3α) have been discovered

Hypoxia-inducible Factor 1 beta (HIF-1β
) or oxygen-insensitive aryl hydrocarbon receptor nuclear translocator (Arnt)
the oxygen- insensitive subunit of the HIF-1 complex. In the nucleus, Arnt binds HIF-1α as 

well as cofactors such as CBP/p300 at HIF-responsive element promoters. In addition to 

HIF-1α, Arnt has been shown to interact with HIF-2α and HIF-3α, as well as other 

transcription factors unrelated to hypoxia

HIF Prolyl-hydroxylase (PHD)
an enzyme responsible for hydroxylating proline residues within the HIF-α subunit, 

facilitating ubiquitination and subsequent degradation of the protein in normoxia. Three 

PHD isoforms have been identified (PHD1, PHD2, and PHD3) and appear to differ in target 

affinity and expression

Factor Inhibiting HIF (FIH)
an asparaginal hydroxylase shown to hydroxylate HIF-α subunits. This modification blocks 

binding of HIF-α to CBP/p300 transcriptional co-activators and prevents gene expression. 

Because FIH require molecular oxygen, this process serves as an alternative means of 

regulating HIF-α in response to environmental changes

Von Hippel–Lindau tumor suppressor (pVHL)
component of the E3 ubiquitin ligase complex that interacts with hydroxylated HIF-α and 

directs its polyubiquitylation. After this step, HIF-α is targeted for degradation proteasomal 

degradation

Murphy Roths Large Mouse (MRL/MpJ)
an inbred mouse strain originally developed as a model for autoimmunity. Recent work has 

identified the MRL as a new model of mammalian regeneration, since the strain is also able 

DeFrates et al. Page 26

Biomaterials. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to heal critical size defects in a variety of tissues without scar formation. bone, cartilage, 

nerve, and skin tissues through a process emulating salamander limb regrowth

Hyperbaric Oxygen Therapy (HBOT)
potential treatment for common wounds, as well as other pathologies, that involves exposing 

patients to pure oxygen at elevated pressures

Intermittent Hypoxia (IH)
therapy used to treat spinal cord injuries and improve respiratory function, that involves 

exposing patients to short episodes of hypoxia (9–16% oxygen), followed by re- 

oxygenation
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Fig. 1. 
Overview of HIF-1α signaling pathways in cells. Local changes in oxygen availability 

govern the regulation of HIF-1α. During normoxia, PHD enzymes hydroxylate the 

transcription factor at two proline residues found within the ODDD, leading to 

ubiquitination and proteasomal degradation. In low oxygen environments (hypoxia), 

hydroxylation cannot be performed and HIF-1α accumulates and translocates to the nucleus. 

Here, it dimerizes with the HIF-β unit (Arnt) and binds to the HRE of the target gene 

promoter. The HIF-1 complex then recruits transcriptional cofactors, such as CBP, resulting 

in the transcription of target genes such as those governing, EPO, VEGF, and GLUTs 

production. At moderate oxygen levels, the inhibitory enzyme FIH is also able to 

hydroxylate HIF-1α at an Asn residue within the C- TAD. This does not affect HIF-1α 
stability, but prevents the HIF-1 complex from binding to transcriptional coactivators.
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Fig. 2. 
The three phase of the normal mammalian wound healing cascade. In the inflammatory 

phase, hypoxia caused by vasoconstriction and increased cellular oxygen consumption is 

essential for orchestrating early wound healing events such as proinflammatory cytokine 

production and cell migration. In the tissue regrowth phase, oxygen is supplied by new 

vasculature and consumed by proliferating cells to begin to restore the epidermal barrier. 

Oxygen is also used to produce collagen, which serves as a precursor for the mature scar 

developed during the remodeling phase. Compared to the original tissue, this fibrotic matrix 

differs in both mechanical and biochemical properties and can impair normal function and 

motion.
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Fig. 3. 
Abnormalities in HIF-1α expression in the MRL mouse. (A) HIF-1α expression in MRL 

and C57Bl/6 mice backcrossed to HIF-1α peptide-luciferase reporter mice is shown. High 

bioluminescent activity (red) can be seen in MRL mice 7 days after injury to ears (d7). Only 

slight upregulation is seen in non-healing C57Bl/6 mice. (B) Immunofluorescent assay in ear 

hole tissue confirms that HIF-1α is upregulated at the site of injury in MRL mice. (C) 

HIF-1α appears to peak at d7 post- injury and returns to baseline levels by d15 post-injury 

(n = 3 to 7 samples, N = 2 experiments, *P < 0.05 and **P < 0.01) (D) This corresponds to 

ear hole closure, which begins on d7, but fails to occur when HIF-1α is blocked by siRNA 

(**P < 0.001, n = 4 ears per group, N = 2 experiments). Copyright © 2015, Copyright © 

2015, American Association for the Advancement of Science. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the Web version of this 

article.)
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Fig. 4. 
Possible mechanisms of HIF-1α stabilization following (A) HBOT or (B) IH. While HIF-1α 
is stabilization is generally achieved through conventional PHD inhibitor in IH, in HBOT, 

ROS serve to directly or indirectly deactivate the enzyme. In high oxygen settings, 

upregulation of HSP90 may also play a role in HIF-1α stabilization.
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Fig. 5. 
Common PHD inhibitors in preclinical and clinical testing. Most compounds such as 

Roxadustat, Daprodustat, DPCA, GSK60A, and DMOG, serve as 2OG competitive 

inhibitors. IOX4 and Molidustat may also compete with the ODDD of HIF-1α. Iron 

chelators such as DFO can also be used to inhibit PHDs by binging to the iron active site.
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Fig. 6. 
Possible roles of HIF-1α in regeneration. Recent studies into the use of small molecule PHD 

inhibitors have shown that pharmacological stabilization of HIF-1α may be used to unlock 

regeneration and accelerate wound healing in mammals. In many cases, the biological 

mechanism of this effect is not fully understood. However, the expression of various gene 

targets governing tissue remodeling, angiogenesis, inflammation, differentiation, and 

metabolism, likely play a role.
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Fig. 7. 
Novel prodrug vehicle used to facilitate tissue regeneration. To deliver the poorly soluble 

and hydrophobic drug, DPCA, PEG-based prodrugs were developed. Monofunctional, 

amphiphiles containing 3 DPCA molecules self- assembled in aqueous solutions to form 

nanofibers with a DPCA-rich core and PEG corona (P7D3). Fibers could be crossed linked 

with the introduction of a telechelic prodrug made from a higher molecular weight PEG and 

6 DPCA molecules (P80D6). Hydrolysis of the ester linkage (red) facilitates release of free 

drug, bioactive drug (blue). Adapted with permission from (J. Cheng et al. ACS Nano 2019, 

13, 5, 5493–5501). Copyright 2019 American Chemical Society. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the Web version of this 

article.)
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