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Abstract

Since the inception of sensor networks, in-network
processing has been touted as the enabling technology
for long-lived deployments. Radio communication is the
overriding consumer of energy in such networks. There-
fore, data reduction before transmission, either by com-
pression or feature extraction, will directly and signifi-
cantly increase network lifetime.

In many cases, it is premature to begin implement-
ing feature extraction techniques. Users do not yet under-
stand in what forms interesting data will appear and con-
sequently can’t risk automatically discarding what they
presume to be uninteresting. Moreover, computer scien-
tists are only beginning to develop algorithms to collect
spatially distributed features in situ.

Even for the many application where all of the data
must be transported out of the network, data may be com-
pressed before transport, so long as the chosen compres-
sion technique can operate under the stringent resource
constraints of low-power nodes and induces only tolerable
errors. This paper evaluates a simple temporal compres-
sion scheme designed specifically to be used bymicamotes
for the compaction of microclimate data. The algorithm
makes use of the observation that over a small enough
window of time, samples of microclimate data are linear.
It finds such windows and generates a series of line seg-
ments that accurately represent the data. It compresses
data up to 20-to-1 while introducing error on the order of
the sensor hardware’s specified margin of error. Further-

more it is simple, consumes little CPU and requires very
little storage when compared to other compression tech-
niques. This paper describes the technique and results us-
ing a dataset from a one-year microclimate deployment.

1. Introduction

Computer scientists are succeeding in produc-
ing massively distributed, cheap, untethered, and ex-
traordinarily resource-constrained sensor networks
that sample the environment at spatial resolutions
never before possible and deliver rich environmen-
tal data to human users[1, 2].

Of the enabling technologies that are under devel-
opment, in-network processing has long been touted as
the key to running long-lived applications on power-
constrained devices. Raw data is compressed or trans-
formed in-network into tighter representations of the
information sampled, and hence, fewer bits are trans-
mitted by the relatively power-hungry radios of sensor
nodes.

When it is known a priori which features in a dataset
will be of interest, in-network processing algorithms
can be tuned to focus on such features and disregard
extraneous information. When it is not known what
will be of interest, data reduction can be achieved us-
ing either lossless compression techniques that reduce
data representations slightly, but preserve all data pre-
cisely, or by lossy compression techniques that repre-



sent data approximately and thus can reduce data ar-
bitrarily.

Scientists, in practice, do not yet know a priori which
features will be interesting because they have never be-
fore sampled their domains so densely. Therefore, they
must collect as much of the original raw dataset with
as little information loss as possible. Initially and pe-
riodically, scientists want, without loss, all of the raw
data that a sensor network can produce.

Sending every bit of data up a routing tree and
through a gateway to a query source is not scalable
as the number of nodes increases, either in terms of
the average or bottleneck energy consumption due to
communication. The depth of such a routing tree is
proportional to the diameter of the network as mea-
sured in communication hops. Thus, for n nodes that
each generate a single packet of sensor data, the av-
erage node transmits

√
n packets; the bottleneck must

receive n packets. Likewise, lossless raw data collection
isn’t scalable because of bandwidth constraints; a net-
work that samples data every t seconds cannot expect
its bottleneck to receive n packets every t seconds un-
less n/t is small.

This paper proposes a new and computationally sim-
ple compression technique developed for the context of
habitat monitoring that obtains up to a 20-to-1 reduc-
tion in the amount of environmental data that needs
to be transmitted on certain data sets. Our technique,
called Lightweight Temporal Compression (LTC), in-
troduces a small amount of error into each reading,
bounded by a control knob. The larger the bound on
this error, the greater the savings from compression.
We have achieved significant savings even when the in-
troduced error is less than the margin of error specified
on a sensor’s data sheet.

LTC has been implemented and integrated into the
query engine component of the Extensible Sensing Sys-
tem (ESS) application being developed for James Re-
serve.

In section 2 we survey other work relevant to our
scheme. LTC was motivated by the lifetime require-
ments of the ESS deployment. We discuss this deploy-
ment scenario and associated hardware and software
infrastructure in section 3. In section 4 we describe our
algorithm. Section 5 presents an analysis of our exper-
imental results. We conclude in section 6.

2. Related Work

Three general techniques can be applied to reduce
datasets in-network: extraction of features and statis-
tics by in-network aggregation, compression by spatial
correlation, and compression by temporal correlation.

Our algorithm falls into the last category. The other
two categories are complementary to our work.

2.1. Aggregation

Perhaps the first major work in sensor network data
processing is Directed Diffusion [3]. Diffusion sought to
provide a framework for in-network processing. The de-
ployment for which we implemented our scheme uses a
variant of Diffusion for routing.

TinyDB [4, 5, 6] is an in-network database that
streams data and statistics on that data from sources
to sink. For example, the average temperature may be
computed hop-by-hop in a routing tree by recursively
maintaining a sum and count for each subtree. TinyDB
provides an elegant and simple to use SQL-like inter-
face, supports a range of queries, and has been rigor-
ously tested over a wide range of deployment condi-
tions.

2.2. Spatial Correlation

Wavelet compression has been proposed for use in
sensor networks by Ganesan et al. in Dimensions [7,
8, 9]. Wavelet compression is a good match for sensor
networks. One may use wavelets to view data at multi-
ple spatial scales and extract important features such
as abrupt changes.

When data can be modeled, many statistical tech-
niques may be applied to reduce the data transmitted.
In a technique based on kernel linear regression, nodes
communicate constraints on model parameters, dras-
tically reducing the communication required [10]. The
model takes the form of a weighted sum of local basis
functions. Another technique uses model-based com-
pression for shortest paths routing tables [11].

Likewise, DISCUS [12, 13] uses distributed source
coding (compression of multiple correlated sensor out-
puts that do not communicate with each other) and
joint decoding at a base station. It considers lossless
(Slepian-Wolf) and lossy (Wyner-Ziv) source coding.
DISCUS suffers the same drawback as all model-based
techniques; it is hard to come up with a joint proba-
bility density function in sensor networks, particularly
when there is little room for training about the deploy-
ment environment.

2.3. Temporal Compression

Two popular and successful lossless text compres-
sion schemes, namely BZIP2 based on Burrow Wheel-
ers Transform (BWT) [14] and GZIP based on Lempel-
Ziv (LZ) [15] family were designed to be used by PC-
grade devices for the compression of data files. These
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techniques can be directly applied to time-series data.
We compare our scheme to LZW to show its perfor-
mance relative to these schemes.

Wavelet compression is a high performance, lossy
compression scheme that may be used in the tempo-
ral domain. Since our compression scheme is inherently
lossy we also compare it to wavelet compression.

Other sensor network schemes include PINCO [16]
for data compression, compression for time de-
lay estimation[17], and energy-efficient communication
via compression [18].

3. Target Deployment Scenario

The Extensible Sensing System (ESS) is under de-
velopment for a deployment at James Reserve [19]
in the San Jacinto Mountains. This is a long-term
project designed to provide spatially dense environ-
mental, physiological and ecological information to sci-
entists. It has also given computer scientists experi-
ence designing and densely deploying long-lived, wire-
less sensor networks. ESS focuses on monitoring micro-
climate and other physical characteristics of the plant
and animal habitats, encompassing below ground root
observation and sensing, water movement through soils
near roots, hydration status of mosses and lichens, and
growth phenology of herbaceous, shrub and canopy
species.

The ESS architecture consists of motes connected
to weather sensing boards that communicate via low-
power ChipCon radios with Stargate [20] microservers
that in turn are connected to an Oracle back-end via
802.11. Since power and bandwidth are limited on
motes, but not on the microserver/database backchan-
nel, motes dynamically select the closest microserver
when forwarding data. Doing so reduces the aggregate
communication of the network, and, hence, prolongs
network lifetime.

The software architecture consists of three compo-
nents: a sampler, a routing and in-network processing
framework, and a query processor.

3.1. Sampler

The sampler coordinates the sampling requests from
the query engine and tasks the appropriate sensor
drivers to collect data. It is designed for microclimate
deployments, and consequently may be used to sam-
ple external temperature (air, soil, water), humidity,
soil moisture, leaf wetness, wind speed and direction,
pressure, radiation (including photosynthetically reac-
tive band sampling or PAR), and to detect motion.

3.2. Routing and In-Network Processing

ESS uses Diffusion’s one-phase-pull [21] protocol for
transport across motes to and from microservers. Mi-
croservers disseminate information such as queries and
control beacons in Diffusion interests which are flooded.
Data is returned to the roots of a forest of routing trees
via Diffusion gradient forwarding.

3.3. Query Processing

The query processor was designed to provide ecol-
ogists with a means of acquiring the data that they
are interested in. It is tailored specifically to the needs
of scientists at James Reserve. Five query types have
been identified by scientists and these are currently
supported by the query processor. As new query types
are developed, the query processor will be extended to
support them.

• A single shot query requests data from a specified
set of sensors be returned once.

• A periodic query requests periodic sampling from
a set of samplers. One period is associated with
the set.

• A conditional periodic query threshold tests the
value of one sensing modality, and samples a
named set of modalities when the test passes.

• Some sensors report when events occur. For ex-
ample a digital sensor connected to a rain bucket
that tips over when full signals when it has done
so; likewise a wind gauge signals an event each
time its wind blades rotate. A triggered query sam-
ples a number of sensing modalities when such an
event is received. E.g., scientists find it useful to
know the temperature and humidity when the rain
bucket tips.

• Finally, when an event occurs, a triggered aggregate
query takes a time window of values from each of a
desired set of sensing modalities and return statis-
tics, such as the maximum or average value, on
those windows.

Since the ESS deployment will cover a large area,
nodes must be untethered and largely unmanned. It
simply isn’t feasible to continuously replace mote bat-
teries. In order to increase node lifetimes, we have
added lightweight temporal compression to the query
processor.
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3.4. Compression Alleviates Constraints of

Scale

The state of the art for data collection in sensor net-
works is to form a multi-hop routing tree rooted at a
network gateway. Routing trees are simple to construct
and require little state.

It is necessary to employ a compression scheme when
the aggregate data of the network is produced at a rate
in excess of the bandwidth near the root of the tree.
Otherwise, all data cannot be transmitted out of the
network. Compression does not fix the lack of scala-
bility of routing trees in this regard, but by reduc-
ing aggregate traffic by a constant factor, can allevi-
ate the problem significantly. Likewise, when applica-
tions store data locally, compression can be used to re-
duce the data representation, so that more data can be
stored.

Moreover, compression increases network lifetime.
Since the radio is the dominant consumer of energy
in a sensor node [22, 23], savings due to compres-
sion directly translate into lifetime extension for net-
work nodes. I.e., a network that employs a codec that
achieves 20-to-1 compression will live approximately
twenty times longer than one that transmits raw data.

4. Algorithm

In this section we first provide a characterization of
sensor noise and environmental data which motivates
the design of LTC. We then go onto to show why exist-
ing compression techniques are not feasible for motes,
and how LTC is both feasible for motes (in terms of re-
source requirements) and performs well.

4.1. Sensor Data is Noisy

Even when a sensor is sampling an unchanging phe-
nomenon the sensor will produce a range of readings
due to noise. Consequently, sensor manufacturers tend
not only to specify a sensor’s operating range but also
specify a sensor’s accuracy.

The data sheets for most environmental sensors
characterize the hardware as producing accurate val-
ues within a defined margin of error. For some exam-
ples, the temperature sensor used in the ESS deploy-
ment is listed as having a 0.5oC margin and the rel-
ative humidity sensor is listed as having a 2% mar-
gin. It is unusual for datasheets to include a probabil-
ity distribution that further characterizes this error. In
other words, when a sensor value is taken, it is known
with great certainty that the actual value of the phe-
nomenon sampled is within the margin specified on the

data sheet, but it is unknown with what probability
that value is some distance k from the real value.

Lightweight temporal compression (LTC) is de-
signed to compress data when sensor accuracy is
expressed as a margin, and when the probability dis-
tribution of error is either uniform or unknown.

The key to LTC is to represent a sample by the
value within the margin that maximizes compression.
We simply move each sample up or down by some small
amount (less than or equal to some maximum distance)
to maximize compression.

The drawback to LTC is that it may convolute the
original error distribution when that distribution is not
uniform. However, this does not typically result in a
loss of information because it is unusual for this origi-
nal distribution to be known.

4.2. The Temporally Continuous Nature of

Environmental Data

When one can characterize data with a model, the
best compression technique is simply to return the pa-
rameters to that model that best fit the dataset. If no
model is available, a general purpose technique must
suffice.

Environmental data such as temperature, and hu-
midity have the nice property that they are usually con-
tinuous in the temporal dimension and at small enough
time windows are approximately linear. Since models
for spatially dense environmental data do not exist, we
use this linear approximation to compress our data.

The linearity at a small timescale suggests that
whenever a window of data has more than two data
points, representing this data as a line uses fewer bits
than a list of all discrete points. Furthermore, recon-
structing the original data from such a line induces no
additional error. Applying an arbitrary model-based
compression scheme might result in a loss of impor-
tant features in the dataset.

4.3. Environmental Data Modeling As-

sumptions

Environmental phenomena are inherently very com-
plex and difficult to model accurately. Because we lack
an accurate model for the various types of environmen-
tal data that we are interested in, applying an arbitrary
model-based compression scheme might result in a loss
of important features in the dataset. For example, lin-
ear least squares regression fits data to a line irrespec-
tive of whether the phenomenon is linear.

We don’t assume a model for environmental data.
Important environmental features come in a variety of
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Figure 1. The algorithm explained. (a) LTC is initialized with two points. The first is fixed; the second is
transformed into a vertical line segment and determines the set of all possible lines. (b) For each additional
point, the set of all lines is reduced. (c) When a point does not fall within the set of all possible lines, the
previous dataset is capped off and the procedure starts over.

forms including outliers, and changes in slope. Rather
than guarantee that the reconstructed dataset matches
the sample set in an aggregate statistical sense, we in-
stead guarantee a match on a point-by-point basis, en-
suring that any reconstructed data point is no more
than some error margin from its corresponding sample
point. This has the advantage of capturing outliers.
Linear least squares, which uses the residual squared
(R2) as a quality metric, does not preserve outliers.
Furthermore, LTC performs well even when the mar-
gin is set to be much less than the manufacturer’s spec-
ified error margin.

4.4. The Compression Algorithm

LTC, described below, leverages temporal linearity
to compress data. Our technique is analogous to run-
length encoding, in the sense that we attempt to repre-
sent a long sequence of similar data with a single sym-
bol. Where run length encoding searches for strings of
a repeated symbol, we search for linear trends.

Let ri = (ti, vi) be a sample point with a tolera-
ble margin of error e. A raw dataset R = r0, r1, ..., rj

is translated into a stream of processed points, S =
s0, s1, ..., sk where k ≤ j (typically k ≤≤ j). Let
L = l0, l1, ..., lk−1 be the set of line segments such that
li is the line segment connecting the two points si and
si+1. The piecewise continuous function defined by the
segments of L approximates R such that no point in
R is more than a vertical distance of e from the clos-
est line segment in L.

To start this algorithm, we consider the first two
points from the input data stream, r1 and r2. The first
point (which we will call z) we leave unchanged. The
second we transform into a vertical line segment (which

we will call m) with x-coordinate of t2, length 2e, and
centered at r2. Thus, the y-coordinate of each point
that makes up m, lies within the range [v2 − e, v2 + e].
Any line that passes through z and one of the points
that make up m must come within a vertical distance
of e from both r1 and r2. We can characterize the set of
all possible lines (which we will call A) that go through
z and one of the points of m by keeping track of z and
the extremes of m (which we will call the upper limit
UL and the lower limit LL).

The algorithm continues by considering the next
point from the input data stream and transforming
it into a vertical line segment (n) as described above.
We calculate that part of A that also intersects n, and
we update our UL and LL to reflect how our set has
changed. This process continues until a vertical line
segment (q) corresponding to a point in the data stream
R does not intersect with any line in A. At his point
A is capped off : all data from z up until the previ-
ous point is represented by z and the midpoint between
UL and LL, which we will call MP . MP is then cho-
sen as our new starting point z, and the extremes of q
are chosen as the new UL and LL. The process con-
tinues in this fashion. This process is pictographically
described in figure 1. The algorithm is as follows.

1. Initialization: Get the first data point, store into
z. Get next data point (t2, v2), use it to initialize
limits UL (UL is set to (t2, v2 + e)) and LL (LL
is set to (t2, v2 − e).

2. Calculate the highLine to be the line connecting
z and UL.

3. Calculate the lowLine to be the line connecting z
and LL.
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4. Get next data point. Transform the point to a ver-
tical segment using the margin e. Let ul be the
highest point of the segment. Let ll be the low-
est point of the segment.

5. If highLine is below the ll or if the lowLine is
above the ul then goto 9, else continue onto the
next step

6. If highLine goes above ul then set UL to be ul.

7. If lowLine goes below ll then set LL to be ll.

8. Goto 2.

9. Cap off: output z to the output data stream.

10. Set z to be the point midway between UL and LL.

11. Set UL to be ul.

12. Set LL to be ll.

13. Goto 2

Because the algorithm only needs to keep track of
the starting point z, the upper limit UL, the lower limit
LL, and the new data segment’s limits (ul and ll), then
its memory requirements are constant i.e. θ(1). In ad-
dition, the amount of work needed to process a sin-
gle new point is bounded by some constant number of
steps. Therefore, to examine n points takes θ(n) time.
The storage and computational complexity of LTC is
equivalent to linear least squares.

In the worst case the number of points that are out-
putted is no more than n and occurs when no line can
be fit between more than two successive points. Lastly,
because this algorithm is greedy it does not guaran-
tee that the number of line segments used to represent
a data set is minimal. However, an optimal algorithm
would need to store the entire data set before a mini-
mal set of lines could be calculated.

If the worst case does occur this might suggests that
the error margin specified is either too small or the sam-
pling rate of the data stream is too low. A saw-toothed
data set resulting from sampling temperature every 12
hours, at noon and at midnight, is an example of the
latter.

4.5. Compression vs. Longer Sampling Pe-

riods

When a user wants all of the data from a sensor net-
work, compression and reducing the sampling rate are
two ways of reducing communication over the radio.
Dereasing the sampling rate, however, has the draw-
back of losing information between sampling points.
With our compression it is possible to sample at high
rates (i.e. have a good idea of what’s going on at all
times) while only sending a small amount of data.

If more than a few contiguous sampling points
within a window can be accurately represented by a
line, then the data has been oversampled. In theory,
the sampling rate over that window could have been re-
duced to collect only two samples to achieve the same
accuracy of our compression algorithm. The problem is
that one has no way of predict how large the next time
window (over which the data will appear to be linear)
will be. The temperature, for example, could increase
at a rate of one degree per minute for the next hour.
Sampling temperature twice over the course of that
hour would serve as an equivalently accurate summary
to sampling once per minute. However, this clearly is
not the case when the temperature is subject to seem-
ingly random perturbations.

In terms of power consumption, sampling a sensor
is relatively cheap when compared to the energy con-
sumed during radio transmission. Therefore, LTC, in
effect, makes it possible to sample at a high enough
rate to detect any changes in environmental phenom-
ena, but report at a lower instantaneous rate that is dy-
namically changing in response to the second derivative
of our data stream.

Thus we get the benefit of a slow sampling rate (i.e.
sending less data, less frequently) while maintaining
the accuracy of a high sampling rate.

5. Experimental Results

Over the past year, the Continuous Monitoring Sys-
tem (CMS), an approximately 25-node, mote deploy-
ment has been collecting various types of environmen-
tal data including air temperature, humidity, and wind
speed in a 3.5 hectare area of James Reserve [24]. We
evaluate our lightweight temporal compression algo-
rithm offline using streams of microclimate data col-
lected using CMS. We use CMS data because it is abun-
dant (each of the datasets we use has approximately
70,000 points), real, and collected in our target envi-
ronmental context.

In evaluating LTC, we use three different sets of
data: temperature, humidity, and wind speed. All three
sets span the course of approximately one year with
sampling periods on the order of minutes. These sets
were chosen not only because these are the sensing
modalities with which we intend to use LTC, but also
because they are representative of three broad cate-
gories of environmental data sets. At the timescale
of CMS, temperature is largely continuous, and very
slowly changing. Humidity is not as well behaved as
temperature and hence appears to be a wider-band
phenomenon. Finally, wind speed can be very abrupt
(i.e. discontinuous) as gusts of wind can pick up and

6



die down very quickly. Wind speed is similar in behav-
ior to event detection sensors such as the rain bucket
(used to measure the rate of rain fall).

5.1. Various Sensing Modalities

Figure 2 presents the percent decrease in bytes re-
quired to represent temperature, humidity, and wind
datasets as a function of error. The y-axis shows the
percent savings, calculated by savings = (bytesraw −
bytescompressed)/bytesraw.

The x-axis represents error as a percent of the man-
ufacturer’s claimed margin of error. For example, the
temperature sensor’s data sheet specifies the margin
of error to be ±0.5o C. Looking at the temperature
curve, the point corresponding to 50% on the x-axis
means that LTC achieves approximately 88% savings
even when guaranteeing that all points on a dataset re-
constructed from our compressed stream will be within
±0.25o C of the values of those points on the original
raw stream. In the center of the x-axis is 100%. This is
the point where the margin length used in LTC is set to
margin specified by the manufacturer’s data sheet. The
other sensors margins of error as specified on their re-
spective data sheets are: ±0.25 mph for wind and ±2%
for humidity.

In the limit, one would expect that as the tolera-
ble error margin grows, the savings due to compres-
sion would approach 100%. (When a sensor has an in-
finite margin of error, any set of points can be repre-
sented by a single arbitrary line.) The interesting thing
to note about our results is that all three curves level
off at very low margins of error. In fact, most of the gain
of LTC occurs well within the operating margin of er-
ror specified by the sensor manufacturers.

In all of our curves, the compression achieved when
the tolerable margin of error was equal to the sensor
manufacturer’s margin of error (100% on the x-axis) is
very significant. They are 3-to-1 for humidity, 12-to-1
for wind speed, and 20-to-1 for temperature. Even at
only 10% of the manufacturer’s margin, these figures
are 1.5-to-1, 8-to-1, and 2-to-1 respectively.

The maximum margin of error between a raw data
point and its corresponding post-compression recon-
structed data point can be set arbitrarily for LTC. This
serves as a tuning knob to adjust the tradeoff between
compressed data size and accuracy. As accuracy de-
creases, high resolution components of a dataset may
be lost. However, since temperature is a much lower
frequency phenomenon than is the noise that temper-
ature sensors produce, LTC might be used to cleanly
filter noise, while maintaining a very low margin of er-
ror between the raw and reconstructed datasets. The
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Figure 2. Percent savings resulting from com-
pressionof temperature, humidity, andwinddata
as a function of error. Error is specified as a per-
centage of the error margin listed on each sen-
sor’s data sheet.

pronounced “knee” at around 40% tolerable error in
the temperature plot is evidence of this clean separa-
tion in the frequency domain.

Humidity is a wider-band phenomenon in frequency
space than is temperature. Therefore, as we tune our
error knob, we selectively filter a wider and wider band
of high frequency information, which results in a more
linear effect on savings. Unlike temperature compres-
sion, there is not a clean separation of signal and noise.
Hence, while we achieve savings by filtering noise, the
filtering of high frequency components of this signal
might contribute to this savings as well. However, be-
cause of lack of separation, this signal loss is unavoid-
able in any compression scheme.

LTC behaves much like run length encoding when
applied to wind data. Most of our wind dataset reads
zero, because no wind is detected most of the time.
Once in a while, wind is detected, but the speed of
that wind is erratic. A long period of no wind can be
represented as endpoints of a single line whose y co-
ordinates are both 0. Erratic wind behavior, on the
other hand cannot be compressed well. At points on
the graph where the tolerable margin of error is high,
we see 10% more savings than when the margin is low.
This suggests that almost all of the savings is due to
the fact that there are long periods of no wind and that
such periods compress very well.

5.2. Various Compression Schemes

We compare LTC to lossless LZW and lossy wavelet
compression. Results were obtained using two LZ77
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Technique Wind Temperature Humidity
LTC 91.8 93.8 72.6
LZW 12-bit 96.5 57.4 78.1
LZW 14-bit 96.8 64.3 81.4
Wavelet 89.7 91.1 83.5

Figure 3. Percent savings using LTC, LZW, and
wavelet compression for the wind, temperature,
and humidity datasets collected at James Re-
serve.Thequantization threshold for thewavelet
compression was set to produce the same root
mean square error as with LTC. LTC performs
about as well as its heavier-weight counterparts.

variants, one that uses a 12-bit symbol table and an-
other that uses a 14-bit table. They are presented in
figure 3.

The implementation of LZW used in our experi-
ments [25] uses considerably more memory than the
4KB that a mote has available. The 12-bit version
requires approximately 25KB and the 14-bit version
requires almost 90KB. For this reason, without al-
teration, this implementation of LZW cannot run on
motes. The wavelet compression was performed using
Matlab’s built-in functions.

Looking at the wind dataset, LZW achieves 96.8%
compression (roughly 20:1). Although LTC never
achieves this savings, it comes within 10% of it with-
out introducing any error into our dataset (0%
of the manufacturer error). If we induce some er-
ror, e.g., by setting the error tolerance to 200% (±0.5
mph) of the manufacturer’s error, LTC can get very
close to the savings of LZW. LZW works so well on
the wind dataset because it tries to match long sub-
strings. Since the wind speed is most often zero miles
per hour, there are long sequences of 0’s through-
out the data.

For the temperature dataset we achieve compara-
ble savings when setting our tolerance to between 10%
and 20%, well below the manufacturer’s specified er-
ror. For humidity, we see largely the same as temper-
ature. We achieve a savings of 33% without introduc-
ing any error, and achieve slightly greater savings than
LZW when introducing error equivalent to the manu-
facturer’s specified margin.

The manufacturers quoted error for wind, tempera-
ture, and humidity respectively are ±0.25 mph, ±0, 5o

C, and ±2% relative humidity. The root mean square
(rms) errors for the LTC values given in figure 3 re-
spectively are 0.12, 0.29, and 1.20, all considerably be-
low the manufacturers’ quoted error.

LTC stands up pretty well to LZW and is com-
putationally simpler. To further our understanding of
LTC we compared it to a wavelet compression scheme.
The form of wavelet compression used takes the entire
dataset and transforms it into the frequency domain.
Inputting the entire dataset at once maximizes the op-
portunity for compression, but clearly would not be fea-
sible on mica motes. Run-length encoding is then used
to compress the frequency components of the dataset.
Frequencies that do not contribute much to the dataset
are discarded. We adjusted the quantization threshold
so that the rms error for wavelet compression was the
same as for LTC compression when the margin was set
to the manufacturer’s specified error margin.

We then compared compression ratios. Looking at
figure 3 we see that the savings achieved by LTC is
comparable to that of wavelet compression. What is
remarkable about this is that LTC performs compa-
rably even though it uses a fraction of the computa-
tional and storage resources used by wavelet compres-
sion. The savings achieved by wavelet compression is
dependant upon the size of the window over which it
is performed. For our comparison, wavelet compression
was given enough memory to hold the entire dataset.
LTC only use θ(1) memory to perform its computa-
tion. In addition, wavelet compression depends upon
performing the Fourier transform, which takes θ(nlgn)
time to perform. Such complex mathematics may not
be practical for the motes since they have an 8-bit pro-
cessor and no hardware floating point unit.

6. Conclusion and Future Directions

The tunable lightweight temporal compression
(LTC) scheme proposed in this paper is simple. To an-
alyze n points takes θ(n) time and θ(1) space for in-
termediate calculations. It works on motes; it has
already been implemented as part of the query pro-
cessing engine in ESS. Despite its simplicity, it
performs comparably to LZW and wavelet compres-
sion.

LTC has not yet been deployed at James Reserve;
this is first order future work. Once it is part of a de-
ployed system, we will further analyze its output and
characterize its run-time performance. We also plan to
evaluate its applicability to new datasets, and perhaps
augmenting it in the process. In addition, we plan to ex-
plore variations of LTC to address data streams with
a low sampling rate. Longer term, we plan to explore
LTC’s ability to filter noise for the purpose of perform-
ing feature extraction on the motes.
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