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Introduction
It is evident from the robust body of  preclinical animal model and observational human studies that the 
intrauterine environment is an important contributor to offspring obesity and metabolic disease. Infants 
exposed to maternal obesity in utero have greater adiposity at birth (1, 2) and childhood (3, 4). However, 
maternal obesity is an imprecise predictor for offspring adiposity and the specific exposures contributing to 
future disease risk and the pathways by which this occurs are not well understood in humans.

To address these gaps, we have employed a human infant umbilical cord–derived mesenchymal stem 
cell (MSC) model to investigate multiple metabolic features of  the offspring, including adipogenic pro-
pensity, lipid content and metabolism, and metabolic flexibility in association with intrauterine exposures 
(5, 6). In utero, fetal MSCs are progenitors for mesodermal tissues, including adipose and skeletal mus-
cle, and MSC progenitors are retained in these developed tissues for postnatal growth and repair across 
the lifespan (e.g., adipose-derived stem cells, satellite cells). MSCs can be readily isolated and cultured 
from umbilical cord tissue (i.e., Wharton’s jelly), supporting their use as an ethical and feasible tool in 
studies of  human infants. Although our prior data investigating differences between MSCs from infants 
of  mothers with normal weight (NW-MSCs) or obesity (Ob-MSCs) demonstrate remarkable consistency 
with animal models of  maternal obesity (7, 8), we highlight 2 general conclusions from this work. First, 
MSC metabolic activity does not explicitly correspond to maternal obesity. Rather, maternal metabolic 
health may be more important in transmitting poor metabolic phenotype to offspring than maternal 
weight status per se (6, 9, 10). In fact, although Ob-MSCs generally store more lipid than NW-MSCs (6), 

Our objective was to interrogate mesenchymal stem cell (MSC) lipid metabolism and gestational 
exposures beyond maternal body mass that may contribute to child obesity risk. MSCs were 
cultured from term infants of mothers with obesity (n = 16) or normal weight (n = 15). In MSCs 
undergoing myogenesis in vitro, we used lipidomics to distinguish phenotypes by unbiased cluster 
analysis and lipid challenge (24-hour excess fatty acid [24hFA]). We measured MSC AMP-activated 
protein kinase (AMPK) activity and fatty acid oxidation (FAO), and a composite index of maternal 
glucose, insulin, triglycerides, free fatty acids, TNF-α, and high-density lipoprotein and total 
cholesterol in fasting blood from mid and late gestation (~17 and ~27 weeks, respectively). We 
measured child adiposity at birth (n = 29), 4–6 months (n = 29), and 4–6 years (n = 13). Three MSC 
clusters were distinguished by triacylglycerol (TAG) stores, with greatest TAGs in Cluster 2. All 
clusters increased acylcarnitines and TAGs with 24hFA, although Cluster 2 was more pronounced 
and corresponded to AMPK activation and FAO. Maternal metabolic markers predicted MSC clusters 
and child adiposity at 4–6 years (both highest in Cluster 3). Our data support the notion that MSC 
phenotypes are predicted by comprehensive maternal metabolic milieu exposures, independent of 
maternal BMI, and suggest utility as an at-birth predictor for child adiposity, although validation 
with larger longitudinal samples is warranted.

https://insight.jci.org
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we have identified divergence among Ob-MSCs for fatty acid oxidation (FAO) (6) and AMP-activated 
protein kinase (AMPK) activation in response to excess lipid exposure (6, 9), which appears to track with 
differences in maternal metabolic markers, such as free fatty acids (FFAs). Second, we note that metabo-
lism and storage of  lipids are repeatedly identified as important metabolic features intrinsic to the MSCs 
(5, 6, 9, 10); however, higher lipid storage in MSC-derived myocytes and adipocytes does not necessar-
ily associate with metabolic derangement in these cells. For example, we recently showed that greater 
lipid stores in MSC-derived myocytes is correlated with greater MSC insulin sensitivity (10). Increasing 
evidence suggests that the type and pattern of  accumulated lipid species may be more consequential to 
metabolic health than simpler measurements of  total lipids (11–14).

The goal of  this study was to deeply interrogate MSC lipid metabolism phenotypes, which may 
help to more precisely define gestational exposures contributing to subsequent child obesity risk, inde-
pendent of  maternal BMI. We harnessed comprehensive MSC lipid phenotyping using quantitative 
lipidomics, assessed after 21 days of  myogenesis, as a cumulative index of  the lipid processing and 
handling across this time period. We used machine learning–based clustering analysis of  stored glycer-
olipids (triacylglycerols [TAGs] and diacylglycerols [DAGs]) to distinguish MSC lipid phenotypes. We 
hypothesized that these MSC lipid clusters would associate with MSCs’ ability to mobilize lipids and 
tested this through changes in lipid species, AMPK activation, and FAO measurement in the context of  
24-hour lipid challenge studies. We next hypothesized these MSC clusters would be associated with cir-
culating maternal metabolic health measures and longitudinal measures of  child adiposity, independent 
of  maternal prepregnancy BMI (ppBMI).

Results
K-means clustering of  TAG and DAG species reveals distinct MSC phenotypes. Our a priori hypothesis for this 
study was that MSC lipid metabolism phenotype is defined by the type and pattern of  glycerolipids (TAG, 
DAG) over the course of  myogenesis, and by the ability to respond to a lipid challenge. To test the first part 
of  this hypothesis, we first differentiated MSCs into myotubes and used quantitative lipidomics to measure 
glycerolipid species (Figure 1A). We performed K-means cluster analysis on TAG and DAG species of  all 
MSC samples, regardless of  maternal BMI category. Clustering revealed 3 groups (Cluster 1 [n = 9], Cluster 
2 [n = 9], and Cluster 3 [n = 13]), each containing a mix of  NW- and Ob-MSCs (Figure 1B). Partial least-
squares discriminant analysis (PLS-DA) revealed that component 1 explained nearly 80% of  the variance 
of  MSC lipid phenotype (Figure 1C) and was largely driven by TAG species (Figure 1D). Component 2 
was largely driven by 1,3-DAGs but explained only approximately 5% of  the variance (Figure 1D). We 
confirmed stark differences in the sum of  TAG species between the clusters (Figure 1E).

Participant characteristics based on cluster and maternal BMI are shown in Table 1 and Supplemental 
Table 1, respectively (supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.180016DS1). Clusters did not differ based on maternal age, gestational age at delivery, gestational 
weight gain, or infant sex. ppBMI tended to be lower in Cluster 1 compared with Clusters 2 and 3 (P = 0.07 
and P = 0.13 in Cluster 1 versus Clusters 2 and 3, respectively), and clusters varied by parity, where Clusters 
1 and 3 had more primiparous pregnancies than Cluster 2 (P = 0.02). Markers of  myogenic differentiation 
and characteristics did not differ by cluster (Supplemental Table 3).

Maternal metabolic milieu predicts MSC cluster, which in turn, predicts offspring adiposity. Using repeat-
ed-measure modeling, we next tested whether maternal metabolic characteristics in mid and late gesta-
tion predicted MSC cluster (Figure 2A). Given the cluster differences noted in Table 1, we adjusted for 
ppBMI and parity in addition to our a priori covariates (maternal age, gestational age at blood draw, and 
infant sex). Maternal triglycerides (throughout the paper we refer to maternal circulating triglycerides as 
“triglycerides,” while we refer to the MSC triacylglycerols as “TAGs” to avoid confusion with the cir-
culating lipids), high-density lipoprotein (HDL) cholesterol, total cholesterol, FFAs, and tumor necrosis 
factor α (TNF-α) varied by cluster (P < 0.05; Figure 2, B–F), which was consistent across gestation (no 
interaction with time of  gestation). Maternal insulin or glucose did not differ between clusters (Figure 
2, G and H). Concordance among these metabolic components underscores the concept that multiple 
gestational milieu factors may impact offspring outcomes. Therefore, we calculated a composite index of  
maternal metabolic milieu (additive z score of  all traits) to broadly assess these exposures. This metabolic 
milieu score was lower in Clusters 1 and 2 compared with Cluster 3 (P < 0.0001; Figure 2I), supporting a 
combined and additive effect of  the maternal milieu on offspring MSC phenotype.

https://doi.org/10.1172/jci.insight.180016
https://insight.jci.org/articles/view/180016#sd
https://insight.jci.org/articles/view/180016#sd
https://doi.org/10.1172/jci.insight.180016DS1
https://doi.org/10.1172/jci.insight.180016DS1
https://insight.jci.org/articles/view/180016#sd
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We then tested whether child MSC cluster predicted child adiposity (percentage fat mass [%FM]) from 
birth to 4–6 years of  age. Adiposity trended higher in Cluster 3 compared with Cluster 1 at birth (P = 0.09), 
but by 4–6 years, children from Cluster 3 exhibited higher %FM relative to children from Clusters 1 and 2 
(P < 0.001, Pinteraction < 0.001, n = 13; Figure 2J).

Acylcarnitines, TAGs, and 1,2-DAGs robustly change in response to lipid challenge in all MSC clusters. To 
test the second part of  our hypothesis that MSC lipid metabolism phenotype is defined by the ability 
to respond to a lipid challenge, we exposed cells to 24 hours of  excess oleate/palmitate lipid mix 
(24hFA) and 24hFA followed by a return to regular 5 mM glucose media refeeding (FARF) (Figure 
3A). Among all MSC cell lines, we quantified lipid species for glycerolipids, acylcarnitines (ACs), 
and bioactive sphingolipids to comprehensively assess response to metabolic challenge. In all partic-
ipants, 40 species changed in response to lipid challenge, mainly TAGs, DAGs, and ACs (Figure 3B; 
ANOVA results in Supplemental Table 4). PLS-DA shows lipid species shifted with 24hFA relative to 
BSA, and partially shifted back toward BSA with the FARF condition (Figure 3C), where component 
1 accounted for 17.5% of  the variance, mainly driven by changes in ACs and TAGs (Figure 3D). The 
heatmap reveals consistent patterns within lipid species, with AC, TAG, and 1,2-DAG (Figure 3E), 
as well as several sphingomyelins (SMs) (23:4, 14:0, 24:2, and 20:1; Supplemental Table 4) being the 
most robustly changed across all MSCs.

Figure 1. K-means clustering of TAG and DAG species reveals distinct MSC phenotypes. We performed K-means 3-group cluster analysis with all myogen-
esis-differentiated MSC samples for TAG and DAG species. (A) Experimental design is shown. (B) Sankey plot shows distribution of NW- and Ob-MSCs to 
the 3 MSC clusters (Cluster 1, n = 9; Cluster 2, n = 9; Cluster 3, n = 13). (C) Principal component analysis shows that component 1 (PC1) accounts for nearly 
80% of the variance of the TAG and DAG phenotype and loading plots (D) show this is driven by differences in TAG species. (E) The sum of all TAG species 
is shown for the 3 clusters (data are mean ± SEM). #P < 0.05, indicates significant difference from Clusters 1 and 3; *P < 0.05, indicates significant differ-
ence from Clusters 1 and 2; both by 1-way ANOVA with Kruskal-Wallis post hoc analysis. TAG, triacylglycerols; DAG, diacylglycerols.

https://doi.org/10.1172/jci.insight.180016
https://insight.jci.org/articles/view/180016#sd
https://insight.jci.org/articles/view/180016#sd


4

R E S E A R C H  A R T I C L E

JCI Insight 2024;9(19):e180016  https://doi.org/10.1172/jci.insight.180016

MSC Cluster 2 has the most robust response to lipid challenge. We then examined each cluster by PLS-DA to 
explore differences in response to lipid challenge by cluster (Supplemental Tables 5–7 and Supplemental 
Figure 2; lipid species by maternal BMI in Supplemental Table 8). Cluster 2 appears to have the most robust 
change overall, with minimal overlap of  the 95% confidence band in the shift from BSA to 24hFA (Sup-
plemental Figure 2). Of  note, the BSA condition normalized differences in the sum of  TAG species from 
untreated myogenesis (Figure 1E and Supplemental Figure 3), with the most robust change in Cluster 2. By 
repeated-measures ANOVA, all clusters exhibited a change in the sum of  total lipids in response to 24hFA 
(PCondition < 0.001; Supplemental Figure 4).

Repeated-measures modeling confirmed robust lipidomic shifts in response to 24hFA (PCondition < 
0.001; Figure 4, A–C), with Cluster 2 demonstrating the greatest change in major lipid classes AC and 
TAG compared with Clusters 1 and 3 (PCluster < 0.05, PInteraction < 0.001; Figure 4, A and B). We inter-
rogated saturated lipids separately and observed similar pattens for saturated AC and TAG (PInteraction 
< 0.01; Figure 4, E and F). Although 1,3-DAG did not change in response to lipid challenge (Figure 
4D), saturated 1,3-DAG decreased with 24hFA (PCondition < 0.05; Figure 4H), and Cluster 2 exhibited 
elevated saturated 1,2-DAG and 1,3-DAG across all conditions (PCluster < 0.01; Figure 4, G and H). 
Given that total lipids were also elevated in Cluster 2 relative to other groups, we adjusted for total lipid 
content and only TAG remained higher in Cluster 2 compared with Clusters 1 and 3 (PCluster < 0.05; 
Supplemental Figure 5). Repeated-measures models for the sum of  sphingolipid species are shown in 
Figure 5. SMs were highest in Clusters 1 and 2 relative to Cluster 3 across all experiments (PCluster < 0.05; 
Figure 5A). Although ceramides (Cer) and lactosyl ceramides (LacCer) did not differ between groups 
or experiments (Figure 5, B and E), glucosyl ceramides (GluCer) were highest in Cluster 2 and dihy-
droceramide (dhCer) was highest in Cluster 3, relative to the other clusters (PCluster < 0.05; Figure 5, C 
and D). Although Cluster 2 responded differently to the lipid stressors with respect to deoxysphingosine 
(deoxySPB) 18:1 (PInteraction < 0.05; Figure 5F), the patterns are less clear.

Overall, Cluster 2 demonstrated the most robust shifts in lipid species with lipid challenge, mainly 
in ACs and TAGs. There were more subtle differences in other species, including lower SMs in Cluster 
3 relative to Clusters 1 and 2. However, these lipidomic measurements represent a snapshot of  the cell, 

Table 1. Participant characteristics

Cluster 1 (n = 9) Cluster 2 (n = 9) Cluster 3 (n = 13) P (ADJ P)
Maternal characteristics

Age (y) 26.7 ± 2.1 30 ± 2.7 27.2 ± 1.5 0.50
Prepregnancy BMI (kg/m2) 24 ± 2.1 30.9 ± 2.4 28.4 ± 1.7 0.15
Prepregnancy obesity, n (%) 2 (22%) 6 (67%) 8 (62%) 0.14
Primiparous, n (%) 5 (56%) 2 (22%) 8 (62%) 0.02A

Gestational weight gain (kg) 14 ± 1.3 10.7 ± 3 10.2 ± 2.1 0.44
Gestational age at delivery (wk) 39.5 ± 0.3 39.6 ± 0.4 40 ± 0.3 0.49
Cesarean delivery, n (%) 0 (0%) 2 (22%) 2 (15%) 0.30

Neonatal characteristics
Sex, n (F/M) 3/6 4/5 6/7 0.82
Ever breastfed, n (%) 7 (78%) 9 (100%) 12 (92%) 0.10
Exclusively breastfed 6 mo, n (%) 5 (56%) 3 (33%) 5 (38%) 0.07
Birth weight (g) 3114 ± 93A 3219 ± 115 3485 ± 109 0.05A (0.11)
Birth fat mass (g) 0.22 ± 0.04 0.31 ± 0.04 0.35 ± 0.03 0.07 (0.14)
Birth fat mass (%) 7.5 ± 1.2 10.1 ± 1.1 10.4 ± 0.9 0.14 (0.21)
Birth fat-free mass (g) 2.7 ± 0.1 2.7 ± 0.1 3.0 ± 0.1 0.09 (0.18)
Birth fat-free mass (%) 92.5 ± 1.2 89.9 ± 1.1 89.6 ± 0.9 0.14 (0.21)
Cord blood glucose (mg/dL) 70.1 ± 6.0 77.4 ± 8.5 81.3 ± 7.1 0.57 (0.95)
Cord blood insulin (mg/dL) 5.0 ± 1.1 7.7 ± 1.2 9.5 ± 1.4 0.09 (0.08)
Cord blood triglycerides (mmol/L) 34.4 ± 6.8 45.3 ± 10.2 51.7 ± 8.1 0.37 (0.54)
MSC time to confluence (d) 26.3 ± 2.1 25.9 ± 1.9 27.7 ± 1.7 0.57

Data are mean ± SEM, unless otherwise stated. AP < 0.05 by ANOVA, χ2, or Fisher’s exact test where appropriate. BDifferent from Cluster 3. ANCOVA was 
used to adjust for offspring sex and child age at measure (including gestational age at birth for neonatal time points).

https://doi.org/10.1172/jci.insight.180016
https://insight.jci.org/articles/view/180016#sd
https://insight.jci.org/articles/view/180016#sd
https://insight.jci.org/articles/view/180016#sd
https://insight.jci.org/articles/view/180016#sd
https://insight.jci.org/articles/view/180016#sd
https://insight.jci.org/articles/view/180016#sd
https://insight.jci.org/articles/view/180016#sd
https://insight.jci.org/articles/view/180016#sd
https://insight.jci.org/articles/view/180016#sd
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Figure 2. MSC clusters track with maternal and offspring metabolic characteristics. (A) We assessed maternal serum at mid and late gestation (~17 and 
~27 weeks of gestation) and report the GEE-modeled mean ± SEM across gestation for fasting triglycerides (B), free fatty acids (C), TNF-α (D), HDL-choles-
terol (E), total cholesterol (F), glucose (G), and insulin (H). Cluster 1, n = 9; Cluster 2, n = 9; Cluster 3, n = 13. (I) We then calculated a composite metabolic 

https://doi.org/10.1172/jci.insight.180016
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albeit under various metabolic conditions, and do not quantify metabolic rate or lipid flux. Therefore, we 
took steps to quantify nutrient sensing and metabolic flux through AMPK phosphorylation and direct 
measurement of  FAO.

AMPK activity and FAO begin to distinguish lipid metabolism phenotype of  Clusters 1 and 3. We examined nutri-
ent sensing in response to lipid challenge through AMPK phosphorylation (AMPKThr172) and acetyl-CoA 
carboxylase (ACC) phosphorylation. The ratio of  phosphorylated/total AMPK (AMPKThr172/AMPK) did 
not differ by cluster or in response to the lipid challenge (Figure 6A). However, AMPK activity, estimated by 
phosphorylation of  its substrate ACC (ACCSer79/ACC), robustly increased with 24hFA in Cluster 2, but not in 
Cluster 1 or 3 (P = 0.027; Figure 6B). Across all conditions, Cluster 2 exhibited higher ACCSer79/ACC relative 
to Cluster 3 (P = 0.008), and ACCSer79/ACC trended higher in Cluster 1 relative to Cluster 3 (P = 0.10). In 
FARF, Cluster 1 tended to maintain higher ACCSer79/ACC compared with Cluster 3 (P = 0.068).

To examine whether this translated to differences in FAO, we designed an experiment to assess FAO 
under 24hFA lipid stress in “resting” cells, and cells with increased metabolic demand using the chemical 
uncoupler carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP, [24hFA+FCCP]) to account for 
intrinsic differences in metabolic rate among the MSC cell lines (Figure 6C). BSA and FARF condi-
tions were not included in this experiment because the FAO assessment itself  exposes the cells to fatty 
acids, prohibiting a fatty acid–free measurement comparable to the lipidomic measurements. Complete 
oxidation of  fatty acids to CO2 was lowest in Cluster 3 in both 24hFA and maximally stimulated FAO 
(24hFA+FCCP) conditions, relative to Clusters 1 and 2 (PCluster < 0.01; Figure 6D). Incomplete FAO 
(acid-soluble metabolites, ASM) and total FAO did not differ by cluster (Figure 6, E and F). However, 
mitochondrial efficiency for FAO (CO2/ASM) was highest in Clusters 1 and 2, relative to Cluster 3 under 
both 24hFA and 24hFA+FCCP conditions (PCluster < 0.05; Figure 6G).

Discussion
This study was designed to comprehensively characterize MSC lipid metabolism phenotypes in obesity- 
and non–obesity-exposed infants to more finely distinguish potential maternal effectors affecting offspring 
obesity risk. Accordingly, we performed machine learning techniques to cluster MSCs based on storage of  
glycerolipid species, which represents cumulative lipid handling over the course of  myogenesis, revealing 3 
distinct lipid-derived MSC clusters. We then assessed how these phenotypes responded to metabolic chal-
lenge, a key index of  cellular metabolic health, with respect to glycerolipids, ACs, and bioactive sphingo-
lipids. Lastly, we observed that these MSC clusters strongly associate with the maternal metabolic milieu, 
independent of  maternal ppBMI, and prospectively associate with child adiposity through 4–6 years. Spe-
cifically, the composite maternal milieu score was nearly 60% higher in Cluster 3 relative to Clusters 1 and 
2, and children from Cluster 3 had 10% higher adiposity than children in Clusters 1 and 2 at 4–6 years.

All experiments were performed in MSC-derived myotubes, and therefore are a model of  metabolically 
active skeletal muscle tissue. As such, the ability to respond to prevailing metabolic demands, particularly 
varied loads of  nutrient substrates, is requisite for these cells/tissues. In these data, we utilized quantitative 
lipidomic measurements to observe complementary measurements of  cellular lipid handling and response to 
metabolic demand. First, we measured the cumulative lipid stores over the course of  21 days of  myogenesis, 
and then we measured changes in lipid species in response to 24FA lipid challenge studies. During myogen-
esis and in the 24FA experiments, lipid uptake may outpace the capacity for lipid oxidation, spilling over 
into longer-term lipid storage. Thus, the higher TAG content in Cluster 2 in the initial clustering analysis 
may be indicative of  more favorable lipid storage, as opposed to bioactive lipid intermediates such as DAG 
or Cer (15). This may explain why TAGs were the most important features in the initial clustering. Although 
there appears to be an increase in 1,2-DAG in all MSC clusters, when total lipids are accounted for there is 
a proportional decrease in DAGs in response to the 24hFA lipid challenge. Therefore, even though Cluster 

milieu score (additive z score of all individual measures). (J) We measured child adiposity at birth (Cluster 1, n = 8; Cluster 2, n = 8; Cluster 3, n = 13), 4–6 
months (Cluster 1, n = 8; Cluster 2, n = 8; Cluster 3, n = 13), and 4–6 years (Cluster 1, n = 4; Cluster 2, n = 4; Cluster 3, n = 5) in children from the 3 clusters. 
We analyzed data using a population-averaged GEE and adjusted all models for maternal age, parity, ppBMI, and infant sex. We additionally adjusted 
maternal trait models for gestational age at blood draw and child adiposity model for child age at scan. Data are mean ± SEM. ^Cluster 3 different from 
Clusters 1 and 2, +Cluster 3 different from Cluster 1, ‡Cluster 1 different from Clusters 2 and 3, #Cluster 3 tends higher than Cluster 1 at birth (P = 0.09), 
*Cluster 3 higher than Clusters 1 and 2 at 4–6 years. P values listed in the figure are for main effects of the analysis (e.g., effect of cluster, interaction), P 
values listed in the legend, indicated by symbols in the panels, refer to the post hoc tests (least-squares means). Data are mean ± SEM.

https://doi.org/10.1172/jci.insight.180016
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2 exhibits the highest amount of  total lipids and TAG, the ability to shift excess lipids toward β-oxidation 
and biologically neutral TAG storage likely contributes to the favorable metabolic profile exhibited in our 
complementary measurements of  AMPK activation and FAO. This is consistent with myocyte studies from 
healthy insulin-sensitive adults, where lipids are appropriately mobilized and lipid oxidation is higher during 
24-hour (16) or 3-day (17) lipid challenge relative to adults with established obesity. Moreover, our prior 
report demonstrated that MSCs with the greatest TAG content had the highest insulin action (10). Similar to 
the “athletes’ paradox” (11), it appears that total lipids alone do not define MSC phenotypes, but rather the 
types of  lipids and response to metabolic challenge.

Although all MSC cell lines demonstrate shifts in ACs, TAGs, and DAGs in response to lipid chal-
lenge, the most robust changes were observed in ACs and TAGs in MSC Cluster 2. While medium- and 
short-chain fatty acids can freely enter the mitochondria, AC formation is necessary for movement of  long-
chain fatty acids (such as oleate and palmitate used here) into mitochondria for β-oxidation (18). Thus, AC 
increases may indicate oxidation of  the excess lipids (i.e., metabolic flexibility; ref. 19). This is corroborated 
by the robust Cluster 2 increase in AMPK activity (ACC phosphorylation) with 24hFA. AMPK responds 
to the cellular energetic state (ADP, ATP) and stimulates FAO via ACC inhibition (20). However, given 
that Clusters 1 and 3 exhibit increases in AC with 24hFA in the absence of  increased ACC phosphoryla-
tion, other factors likely also regulate lipid metabolism. It is possible that lipid availability, basal cellular 
metabolic rate, or energetic demand for lipids may impact these results. For example, energetic activa-
tion of  AMPK could increase AMPK substrate phosphorylation (ACC), even without substantial changes 
in AMPK phosphorylation at Thr172. Given expected differences in lipid content among MSC clusters, 
which appear to be linked to different responses to the lipid challenge, comparison of  endogenous versus 
exogenous substrate oxidation under similar conditions may further delineate MSC metabolic phenotypes 
linked to childhood adiposity.

To address potential limitations in metabolism due to lipid availability or energetic demand, we 
directly measured FAO in the 24hFA condition and with the chemical uncoupler FCCP added, which 
increases metabolic rate and FAO. In these experiments, we did not observe differences in total FAO, 
but Clusters 1 and 2 show greater oxidation of  fatty acids to CO2 (complete FAO) compared with Clus-
ter 3, which translates to greater mitochondrial efficiency and supports the metabolic health of  both 
Clusters 1 and 2 over Cluster 3 through factors beyond large shifts in AC. We suspect Cluster 3 may 
have persistent limitations in metabolic activity, given that Cluster 3 demonstrated the lowest AMPK 
activity across all metabolic conditions and exhibited intrinsic deficits in complete FAO in response to 
24-hour lipid challenge, even when we stimulated maximal flux through the electron transport chain 
(via FCCP) to rule out energetic demand as a contributor. Persistent limitations in Cluster 3 are further 
supported by the dhCer and SM measurements, where Cluster 3 exhibits the highest levels of  dhCer, but 
the lowest levels of  SM, compared with Clusters 1 and 2. dhCer are bioactive lipids and a risk marker 
for type 2 diabetes (21), while SMs are important for membrane structure and transport. Although SMs 
are also the pool of  lipids from which Cer are formed, if  more are shunted to membrane structure, high-
er SM in Clusters 1 and 2 may be protective against accumulation of  bioactive ceramides (22), which 
would support cellular metabolic health and decrease risk for insulin resistance and type 2 diabetes 
(reviewed in ref. 15). We note that, even though Cluster 2 had higher levels of  most lipid species relative 
to Clusters 1 and 3, Cer levels were not elevated, which may indicate a buffering effect. Our lipidomic 
measurement did not include all forms of  membrane lipids, which are of  interest in metabolic activity 
(23), and these bear inclusion in future studies.

To determine how fetal exposures may broadly contribute to the observed MSC phenotypes, we 
calculated a cumulative index of  maternal metabolic milieu across pregnancy, which corresponded to 
MSC cluster. In fact, the maternal stress score was nearly 60% higher in Cluster 3 relative to Clusters 
1 and 2. Among the individual components of  the maternal stress score, we note that maternal lipids 
(i.e., triglycerides and FFAs) and TNF-α most strongly predict MSC cluster, supporting the importance 

Figure 3. Acylcarnitines, triacylglycerols, and 1,2-diacylglycerols robustly change in response to lipid challenge in all infants. (A) Following myogenic 
induction, we treated cells with either BSA control, 24hFA, or FARF. Cluster 1, n = 9; Cluster 2, n = 9; Cluster 3, n = 13. (B) Manhattan plot shows results from 
1-way ANOVA with Fisher’s correction for multiple testing. (C) Partial least-squares discriminant analysis (PLS-DA) shows that 24hFA shifts metabolism, 
with partial return to BSA levels following the FARF condition. (D) PLS-DA loadings plots shows component 1 accounts for 17% of the variance and is driven 
by changes in acylcarnitines, triacylglycerols, and 1,2-diacylglycerols. (E) A heatmap generated in Metaboanalyst shows conditions for all lipid species.
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of  studying maternal factors beyond glucose and insulin in the context of  the developmental origins of  
obesity (24). Consistent with our findings, multiple maternal fuels during pregnancy have been related 
to child health outcomes (i.e., neonatal %FM) in the larger Healthy Start parent cohort (25). Most 
recently, we demonstrated in nearly 600 infants that cord blood DNA methylation of  lipid metabo-
lism and immune function genes was most robustly associated with maternal triglycerides rather than 
glucose, insulin, or BMI. Moreover, DNA methylation of  these genes predicted childhood adiposity 
and mediated the relationship between maternal triglycerides and child adiposity (26). Work from 
other groups has also highlighted maternal lipids (27–29) and markers of  inflammation (30) as key 
predictors of  child body composition. Importantly, the MSC clusters also prospectively associate with 
child adiposity whereby small neonatal differences emerged into larger early childhood differences, 
such that children from Cluster 3 had 10% higher adiposity than children in Clusters 1 and 2 at 4–6 
years. However, these child findings are limited by the smaller sample size at 4–6 years (n = 13), and 
bear repeating in a larger sample. This pattern of  increasing impact of  fetal exposure over age has been 
shown in previous studies (31, 32), where the association between maternal BMI and child obesity risk 
is greater as children grow older and is independent of  birthweight. This highlights the promise of  the 
MSC model for identifying cellular biomarkers that predict offspring at risk for obesity development, 
even among children with normal birthweight and birth adiposity measurements, and moreover, from 
children born to normal-weight pregnancies. Importantly, these associations between MSC pheno-
types and maternal and child features were independent of  maternal ppBMI, which supports a causal 
role of  maternal milieu over maternal body size, informing potential targets for pregnancy interven-
tion studies. We note that our sample was enriched for maternal obesity; as blood lipids and other 

Figure 4. MSC Cluster 2 has the most robust response to lipid challenge for AC, TAG, and DAG species. We calculated the sum of each lipid class in the 
lipid challenge conditions (BSA, 24hFA, FARF) for all 3 clusters (Cluster 1, n = 9; Cluster 2, n = 9; Cluster 3, n = 13). Data are the changes in the sum of all 
acylcarnitines (ACs) (A), sum of all triacylglycerols (TAGs) (B), sum of all 1,2-diacylglycerols (DAGs) (C), sum of all 1,3-DAGs (D), and the saturated subspe-
cies of these lipids (E–H). We analyzed data using the GEE. *P < 0.05, Cluster 2 different from Clusters 1 and 3 in the designated condition. +P < 0.05, Clus-
ter 2 different from Clusters 1 and 3 across conditions. P values listed in the figure are for main effects of the analysis (e.g., effect of cluster, interaction), 
P values listed in the legend, indicated by symbols in the panels, refer to the post hoc tests (least-squares means). Data are mean ± SEM. Cond., effect of 
condition; Int., effect of interaction.
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metabolic and proinflammatory factors are more likely to be elevated in this population, this enriched 
sampling design increases the variance of  our predictor variables, thus increasing efficiency and power 
to detect linear effects in our smaller experimental studies (33, 34).

In summary, this work defines what we believe is a novel MSC lipid phenotype, largely character-
ized by TAG stores in MSC-derived myocytes, suggesting the initial lipid storage and ability to mobilize 
lipids may play a protective role by maintaining cellular metabolic health. SMs are another potentially 
important lipid species highlighted in this work, with lower SMs distinguishing the cluster associated 
with highest maternal stress exposure and highest offspring adiposity compared with the other 2 clusters. 
Our data provide further evidence that MSC metabolic phenotypes may distinguish children at risk for 
excess adiposity, although further work is needed to confirm this in larger longitudinal samples. Moreover, 
these phenotypes are predicated by key fetal determinants, the maternal metabolic milieu, independent 
of  maternal BMI. New model systems, such as MSCs, are needed for improved precision outcomes to 
evaluate the effectiveness of  early-life intervention efforts.

Methods

Sex as a biological variable
This study uses cells and samples from human participants. Pregnant participants were all female, with 
both male and female infants meeting inclusion/exclusion criteria included in the offspring measurements.

Figure 5. MSC clusters differ in sphingolipid response to lipid challenge. We calculated the sum of each ceramide or 
sphingomyelin class in the lipid challenge conditions (BSA, 24hFA, FARF) for all 3 clusters (Cluster 1, n = 9; Cluster 2, n 
= 9; Cluster 3, n = 13). Data are the change in sum of sphingomyelins (SM) (A), sum of ceramides (Cer) (B), sum of gluco-
sylceramides (GluCer) (C), sum of dihydroceramides (dhCer) (D), sum of lactosyl ceramides (LacCer) (E), and deoxysphin-
gosine (DeoxySPB) 18:1 (F). We analyzed data using the GEE. ^P < 0.05, Cluster 3 different from Clusters 1 and 2 across 
conditions. +P < 0.05, Cluster 2 different from Clusters 1 and 3 across conditions. #P < 0.05, Cluster 3 different from 
Cluster 2 across conditions. *P < 0.05, Cluster 2 different from Clusters 1 and 3 in the designated condition. P values 
listed in the figure are for main effects of the analysis (e.g., effect of cluster, interaction), P values listed in the legend, 
indicated by symbols in the panels, refer to the post hoc tests (least-squares means). Data are mean ± SEM. Cond., 
effect of condition; Int., effect of interaction.
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Participants
Maternal measurements. The Healthy Start cohort study enrolled 1,410 pregnant women at 16 years of  age or 
older and at less than 23 weeks of  gestation, from obstetrics clinics at the University of  Colorado Hospital 
from 2009 to 2014. We excluded women with prior diabetes, premature birth, serious psychiatric illness, or 
a current multiple pregnancy. We cultured umbilical cord MSCs from convenience samples of  165 infants. 

Figure 6. AMPK activity and FAO begin to distinguish lipid 
metabolism phenotype of Clusters 1 and 3. (A and B) We 
measured protein phosphorylation of AMPK and its substrate 
ACC, an index of AMPK activity, in response to the lipid 
challenge conditions (BSA, 24hFA, FARF) for all 3 clusters. 
Data are changes in phosphorylated/total AMPK (AMPKThr172/
AMPK) (A) and ACC (ACCSer79/ACC) (B). Cluster 1, n = 9; Cluster 
2, n = 8; Cluster 3, n = 11. (C) To support interpretation of 
the shift in lipid species during lipid challenge, fatty acid 
oxidation (FAO) was measured in response to the lipid chal-
lenge condition (24hFA) and additionally in the context of a 
mitochondrial uncoupler to allow for maximal lipid oxidation 
(24hFA+FCCP) for all 3 clusters. Cluster 1, n = 9; Cluster 2, n 
= 7; Cluster 3, n = 11. Data are complete FAO (D), acid soluble 
metabolites (ASM), an index of incomplete FAO (E), total FAO 
(F), and mitochondrial FAO efficiency (G; ratio of complete 
FAO/incomplete FAO, with higher values indicating greater 
efficiency). We analyzed data using the GEE. ^Cluster 3 differ-
ent from Clusters 1 and 2 across conditions (P < 0.05), +Cluster 
2 different from Clusters 1 and 3 across conditions (P < 0.05), 
‡Cluster 1 trended different from Clusters 3 across conditions 
(P = 0.10), *Cluster 2 different from Clusters 1 and 3 in the 
24hFA condition (P < 0.05), #Cluster 1 trended different from 
Cluster 3 in the FARF condition (P = 0.07). P values listed in 
the figure are for main effects of the analysis (e.g., effect of 
cluster, interaction), P values listed in the legend, indicated 
by symbols in the panels, refer to the post hoc tests (least-
squares means). Data are mean ± SEM.
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For this study, additional inclusion criteria included full-term infant (>37 weeks gestation), mother more 
than 17 years of  age, and no gestational diabetes or preeclampsia diagnosis. Sixteen mothers with obesity 
met these criteria and were frequency matched with 15 normal-weight women for maternal age, gestational 
age at delivery, infant sex, and MSC culture time to confluence, as described previously (5). We have previ-
ously described MSCs from these same infants (5, 6, 9) and, aside from the selection of  those with maternal 
obesity and matched normal weight, the characteristics of  our sample reflect the larger Healthy Start cohort 
(Supplemental Table 1).

Data collection for Healthy Start was previously described (35). Briefly, we evaluated women at 
mid and late gestation (~17 and ~27 weeks of  gestation) for height, weight, self-reported demographic 
data, and fasted blood samples to measure glucose, insulin, triglycerides, FFAs, TNF-α, cholesterol, 
and HDL-cholesterol. A composite maternal metabolic milieu score of  all metabolic blood measure-
ments was calculated as a sum of  z scores for each visit. All values were positively combined, except 
that HDL was subtracted due to the opposite direction of  biologic impact (i.e., greater HDL is meta-
bolically beneficial). We obtained ppBMI through medical record abstraction (84%) or self-report at 
the first research visit (16%).

Infant and child measurements. At birth, we collected umbilical cord tissue for culture of  infant MSCs. We 
also measured insulin, glucose, and triglycerides from umbilical cord blood. We obtained birth weight from 
medical records and measured weight, length, and body composition (%FM) by whole body air displacement 
plethysmography (PEA POD, COSMED, Inc.) 24–48 hours after birth (n = 29). At 4–6 months (n = 29) and 
4–6 years of  age (n = 13), children returned for additional measurements of  body composition (BOD POD).

MSC isolation and differentiation
We cultured MSCs from fresh umbilical cord tissue explants, as described previously (5). This preparation 
yields a population of  cells that is greater than 98% positive for MSC markers (5). We performed all exper-
iments on cells at passages 3–7. We induced myogenesis as described previously with myogenic induction 
medium containing 5.5 mM glucose (MIM) (5, 6, 36). In our hands, MSCs express appropriate myogenic 
markers with in vitro induction (5). Our previous report showed no difference in the percentage of  myo-
genin-containing cells after 7 days of  myogenesis, as measured by flow cytometry (5). Here, we made mea-
surements in MSCs with myogenic induction for 21 days (Myo-MSC) or in MSCs with myogenic induction 
plus lipid challenge conditions, as indicated.

Lipid challenge experiments
Following 19-day myogenesis, we exposed MSCs to a physiologically relevant lipid challenge to deter-
mine metabolic flexibility (Figure 1A). First, we replaced MIM with MIM plus 200 μM oleate/palmitate 
lipid mix (2:1 ratio, BSA-bound at a molar ratio of  2.5:1) plus 1 mM carnitine for 24 hours (24hFA), as 
described previously (6, 9). This physiological blend of  oleate, palmitate, and carnitine (as opposed to 
palmitate alone) approximates in vivo fuel metabolism and lipid challenge without inducing cytotoxic 
stress (37). The molar lipids/BSA ratio of  2.5:1 approximates that in human serum (38). Vehicle control 
was 24-hour 0.5% BSA in MIM. After 24 hours, we rinsed cells with PBS and returned MSCs to standard 
MIM for an additional 24 hours (FARF). We harvested cells from all conditions on day 21 of  myogenesis. 
We also collected samples after 21 days of  myogenesis with no lipid treatment (Myo Control).

Protein measurements
We harvested MSCs at indicated time points in ice-cold lysis buffer (CelLytic MT, Sigma-Aldrich) supple-
mented with protease and phosphatase inhibitors (Sigma-Aldrich). We determined total protein by bicin-
choninic acid (BCA) assay. We used Simple Western (JESS, ProteinSimple) to measure total protein and 
abundance of  phosphorylated (AMPKThr172) and total AMPK, and its downstream substrate ACC (ACCSer79), 
as described previously (6). Antibody specifics and assay conditions are listed in Supplemental Table 2, and 
chemiluminescent tracings are shown in Supplemental Figure 1.

Lipidomics
We harvested cell pellets at indicated time points and immediately flash froze them in liquid N2. Cells were 
thawed on ice, resuspended in PBS, and then supplemented with internal standards. Lipids were extracted 
and analyzed by the Colorado Nutrition Obesity Research Center Molecular and Cellular Analytic Core, as 

https://doi.org/10.1172/jci.insight.180016
https://insight.jci.org/articles/view/180016#sd
https://insight.jci.org/articles/view/180016#sd
https://insight.jci.org/articles/view/180016#sd


1 3

R E S E A R C H  A R T I C L E

JCI Insight 2024;9(19):e180016  https://doi.org/10.1172/jci.insight.180016

previously described (39). Samples were run on a SCIEX 2000 triple quadrupole mass spectrometer (Applied 
Biosystems). Lipid species concentration was determined by comparing ratios of  unknowns to odd-chain or 
deuterated internal standards and compared to standard curves run with standards of  each lipid species.

FAO measurements
We assessed day 21 myogenic MSC 14C-labeled FAO in 2 conditions: (a) following 24hFA, and (b) follow-
ing 24hFA with FAO measurements in the presence of  8 μM FCCP (24hFA+FCCP). FCCP uncouples oxi-
dative phosphorylation, effectively increasing metabolism to maintain the mitochondrial membrane proton 
gradient. This allowed us to rule out differences in metabolic demand as a potential factor contributing 
to MSC differences in lipid oxidation, as previously described (6, 9). Briefly, on day 21, following 24hFA 
cells were incubated for 2 hours with the same 24hFA lipid and carnitine lipid mix, spiked with 0.25 μCi/
mL [14C]-oleate and 0.25 μCi/mL [14C]-palmitate (PerkinElmer Life Sciences) (6). FAO was determined 
by measuring 14CO2 released from the media after acidification with perchloric acid, in triplicate, and cor-
rected for total protein content. ASMs were measured as an index of  incomplete FAO. We calculated total 
FAO as the sum of  ASM plus CO2, and mitochondrial efficiency for FAO as the ratio of  CO2/ASM (great-
er CO2/ASM indicating greater efficiency).

Statistics
Significance was indicated at an α value of  0.05. We preprocessed the lipidomic data as follows: First, we 
removed features with greater than 25% missingness across samples due to undetectable or below limit of  
quantification (BLOQ) values. Next, for features with undetectable or BLOQ values in less than 25% of  
samples, we replaced missing values with half  the minimum value from the existing feature measurement. 
Last, we removed features more than 3.5 times the upper limit of  quantification in more than 25% of  sam-
ples. In total, we removed 22 features, leaving 124 lipid features analyzed in this study.

We performed initial analyses using Metaboanalyst 5.0 (40) or R Studio 12.0 (https://www.r-project.org). 
We mean-centered and log- or cube-root-transformed data, where necessary. We performed cluster analysis 
using K-means clustering (3 groups) with standard settings in Metaboanalyst. We limited the cluster analysis 
to species of  interest based on our a priori hypothesis that lipid metabolic phenotype of  the cells is dependent 
on type and pattern of  initial lipid stores: TAGs, and DAGs. In all MSC lines, we performed 1-way analysis of  
variance (ANOVA) with Fisher’s post hoc test and PLS-DA to determine effect of  lipid challenge conditions 
and important features changed with lipid exposure (24hFA) and glucose-only refeeding (FARF).

For repeated measures, we modeled cluster comparisons using a population-averaged generalized esti-
mating equation (GEE) in SAS software version 9.4 (https://www.sas.com). GEE modeling accounts 
for intraindividual correlation between repeated measures across time/condition, tests for interaction 
between cluster and experimental time/condition, and allows for inclusion of  participants with missing 
data across time/condition. A significant cluster × condition interaction indicates that the effect of  cluster 
varies by condition, and the magnitude is even stronger in the specified conditions. For significant effects 
of  cluster or significant effect of  cluster × condition, we performed post hoc analysis by least-squares 
means (LS-means). For association models with maternal or child characteristics, we selected a priori 
covariates (maternal age, parity, ppBMI, infant sex, and child age at measure or maternal gestational age 
at measurement). To support interpretation of  the maternal metabolic milieu score, we calculated the 
percentage difference between MSC clusters by log transforming the response variable and applying the 
formula 100(eβc – 1)% to the estimated differences (41). Type 3 analysis using Wald’s test was performed 
when a priori covariates were included in the model.

Study approval
This study used umbilical cord tissue samples and data collected as part of  the Healthy Start study (Clin-
icalTrials.gov NCT02273297). The study was approved by the Colorado Multiple Institutional Review 
Board at the University of  Colorado Hospital. At enrollment, written, informed consent was obtained from 
all participants before participation in the study.

Data availability
All lipidomics data and all underlying data used to generate graphed means for clinical characteristics and 
individual MSC outcomes are available in the supplemental Supporting Data Values file.
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