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Comparing Theories that Posit a Role for Task Features in Strategy Selection 

Xinyu Xie (xx86@msstate.edu) 
Jarrod Moss (jarrod.moss@msstate.edu) 

Department of Psychology, Mississippi State University 

Mississippi State, MS 39762 USA 

 

Abstract 

Salient features of a task play an important role in how people 
create task representations which then influence strategy 
selection for accomplishing the task. We examined two 
theories, Represent-Construct-Choose-Learn (RCCL) and 
Rational Metareasoning (RM), both of which incorporate task 
features into their models of strategy selection. RCCL theory 
posits that when a strategy’s success rate is low, it indicates that 
the task representation is not useful and those represented 
features are irrelevant in this case so people tend to drop these 
features from the task representation. Conversely, RM theory 
posits that strategy selection is based on consideration of all 
available features, with no discrete changes in the features 
incorporated into the task representation. A study was 
conducted to examine how participants changed their strategy 
choices based on the success rate of using a specific task 
feature. The results showed that neither theory aligned closely 
with empirical data. 

Keywords: feature; task representation; strategy selection 

 

A strategy is a set of steps to solve a problem. Making choices 

about which strategy will succeed is not simple. Take driving 

as an example, there can be several routes from the starting 

point to the destination. How many traffic lights and stop 

signs are there on each route? What is the distance of each 

route? Will some routes include highways? All these factors 

can affect the choice of a certain route. How do we determine 

the optimal route if the goal is to reach the destination as 

quickly as possible? In other words, how do we choose the 

best strategy based on the information we have? 

Some strategy selection theories focus on analysis of the 

costs and benefits of a strategy (Beach & Mitchell, 1978; 

Christensen-Szalanski, 1978; Payne et al., 1988, 1993). Some 

propose learning-based accounts of strategy selection (Erev 

& Barron, 2005; Rieskamp & Otto, 2006; Shrager & Siegler, 

1998). However, these theories emphasize learning from 

feedback or association and focus on which strategy performs 

better on average overall. They neglect the influence of 

problem features used in the task representation. These 

problem features may serve as a basis for selecting strategies. 

The features used to represent a problem can influence 

strategy selection according to two existing theories: the 

Represent-Construct-Choose-Learn (RCCL; Lovett & 

Schunn, 1999) and Rational Metareasoning (RM; Lieder & 

Griffiths, 2017). Critically, the predictions of the two theories 

are different, which were tested in this study. 

Represent-Construct-Choose-Learn Theory 

The RCCL theory specifies how task representations can 

influence strategy choices and has four main stages: (1) 

Represent the task, (2) Construct a set of strategies based on 

features in the task representation, (3) Choose from among 

those strategies based on rates of success, and (4) Learn or 

update success rates based on performance (Lovett & 

Schunn, 1999).  

The role of features in shaping task representations and 

their subsequent influence on strategy choices is central to the 

RCCL theory. A feature refers to a distinct characteristic or 

attribute of a task that can be used to represent and 

differentiate it from other tasks. Features can encompass 

various aspects, such as visual properties, object properties, 

spatial arrangements, or relational information. For example, 

when dealing with a puzzle-solving task, the shape, color, and 

position of puzzle pieces can all be considered features. A 

task representation refers to using a set of features to encode 

the task environment. Importantly, the salience of different 

features in a task impacts the initial task representation, by 

determining what features might be initially selected for the 

task representation. 

In the next stage of the RCCL theory, the selected features 

of the task representation will be used to generate different 

strategies for use. Strategies are not merely a result of feature 

selection but are constructed utilizing the interplay of 

identified features, thereby tailoring problem-solving 

approaches to the task's unique attributes. For example, if 

someone selects the salient feature of position of puzzle 

pieces as input for initial task representation, someone may 

generate strategies such as finding all corner and edge pieces. 

When a set of strategies are successfully formulated, 

individuals are tasked with choosing an optimal approach 

among them, guided by anticipated success rates of each 

strategy. In the example of puzzle-solving, the initially 

optimal strategy may be finding all pieces around corners 

under the task representation of position because the 

estimated success rate of this strategy is high. The reason is 

that it is likely to be easier to find all pieces around corners 

since those pieces have two straight edges that can be used to 

orient the pieces. So far, the success rate of find-corner-piece 

is relatively high, but the number of those pieces is limited. 

After utilizing this strategy to find all corner pieces, the 

success rate becomes low (near zero). So, the next step is to 

find a strategy that can continue solving the task. Under the 

given task representation, the alternative can be finding all 

pieces around the edges. However, due to the limited number 

of pieces, the success rate would eventually also become low, 

which means that individuals would seek for other strategies. 

Each strategy's success rate is learned with experience in the 

task. This learning mechanism leads to gradual changes of 

estimated success, and these changes in turn lead to strategy 

selection changes.  
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Here, it is pivotal to note that success rates are intricately 

linked to the features embedded in the task representation. 

This connection between features and strategies' success rates 

underscores the theory's core principle. Central to the RCCL 

theory is the notion that success rates are only learned for 

strategies which are in turn based on the features incorporated 

into the task representation at the time the strategies are 

created. But what if the success rates of all strategies under 

the current task representation are low? 

In instances where strategies yield suboptimal outcomes, 

the theory predicts a representation change. Low success 

rates with all available strategies prompt individuals to 

explore alternative features for their task representation. This 

adaptive process involves either adding or removing features 

from the task representation. For example, after finding all 

puzzle pieces around corner and edges, other strategies using 

position are relatively less successful, which drives 

individuals to seek other features to re-present the task. It can 

be the color of pieces in this example, where people can 

group pieces by different color. New strategies would be 

generated from this revised representation and their success 

rates learned by how well they perform. The key idea is that 

the representation of a task is not fixed but dynamic, with 

individuals actively modifying their feature selection based 

on their experiences and task performance. Critically, once a 

feature is dropped, it will not be used in the future task 

representation and strategy selection if successful strategies 

can be discovered that do not use that feature. 

Rational Metareasoning Theory 

A second theory that also uses features of the problem to 

guide strategy selection is the RM theory (Lieder & Griffiths, 

2017). In the RM theory, there are a set of predefined 

strategies for a type of problem that the system must learn to 

select from based on the features of each problem. The 

process of strategy selection entails the estimation of each 

strategy’s expected rewards (i.e., probability of successful 

problem resolution) and expected costs (i.e., execution time). 

The expected rewards and costs combine into an estimated 

value of computation (VOC) for each strategy with a person 

then opting for the strategy with the highest estimated value 

for a given problem (Lieder & Griffiths, 2017). The reward 

and cost of a particular strategy are estimated based on the 

entire set of problem features, and then these reward and cost 

estimates are combined into the VOC. 

Sticking with the puzzle example, almost every puzzle has 

the same feature set including shape, color, and images. 

There could be a set of strategies based on the feature set. But 

the VOC of each strategy varies among the puzzle problems. 

If one puzzle has several distinctive colors in different 

locations, then sorting the pieces by color is likely to be most 

helpful (has the highest estimated VOC). But if in another 

puzzle which is about a picture of a forest, there is not a good 

mapping between color and location such that sorting the 

pieces by images or shape can be helpful instead of by color. 

In this manner, each problem of a specific type has a set of 

values for each feature that affects the estimated reward and 

cost of each strategy for that problem type. Strategy selection 

under RM is sensitive to how these rewards and costs change 

with different feature values. 

In line with reinforcement learning principles (Sutton & 

Barto, 1998), the mapping from features to strategies is 

learned from experience via a set of weights between the 

features and the expected cost and reward. This learning 

mechanism can transfer the learned weights from prior 

problem solving to pick effective strategies for novel 

problems that have similar feature values. Thus, the RM 

theory posits that people select strategy based on the features 

of the problems. This model illustrates how people are 

capable of learning to predict each strategy’s expected value 

with reward and cost from features of individual problems. In 

essence, the feature set of a problem is not changing, and only 

the weights between features and values are updated. 

Comparison of RM and RCCL 

The RCCL theory and the RM theory both emphasize the 

importance of task features for strategy selection. But they 

hold different views of how to use features to select 

strategies. In the RCCL theory, if the success rate of all 

strategies for a given task representation is too low, it 

indicates that the task representation is not useful, and the 

represented features are modified by adding or dropping 

features. So, people will tend to use other features in the task 
representation over time with some irrelevant features being 

dropped from the problem representation. However, the RM 

theory posits that strategy selection is based on all available 

features and those features will not change throughout the 

problem-solving process. In other words, the set of available 

features will change under the RCCL theory in some 

conditions possibly leading to a change in the set of strategies 

that can be considered, but under the RM theory the available 

features never change. In the case of RM, the weights 

between features could change, but the set of features are not 

changed in a discrete manner as in RCCL. Our experiment 

aims to examine whether the features of a problem impact 

strategy selection in a manner more consistent with the RM 

theory or the RCCL theory. 

Current Study 

The Building Sticks Task (BST) has been used in prior 

strategy selection work to examine support for some of the 

predictions of the RCCL theory (Lovett & Schunn, 1999). As 

shown in Figure 1, there are three building sticks (black) and 

a target stick (green) for one problem. The goal of the task is 

to add and subtract the lengths of the three sticks to match the 

target length. A participant's strategy can be categorized as 

either undershoot or overshoot based on the first click. The 

undershoot strategy starts with the longest stick that is shorter 

than the target (i.e., stick B) and then adds additional sticks 

to reach the target length. In contrast, the overshoot strategy 

starts with the longest stick (i.e., stick C) and then subtracts 

other sticks to reach the target length.  
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Figure 1: BST examples. Participants click the button next 

to the stick to add or subtract the stick. The two BST 

problems shown give an example of building a stick starting 

with B or C respectively. If the stick being built is shorter 

than the target stick, its color will be red (left). If the stick 

being built is longer than the target stick, its color will be blue 

(right). When the stick participants are building equals the 

target stick length, participants will be told that the problem 

is done, and the next problem is presented. While solving a 

problem, if participants want to restart the problem from the 

beginning, they can click the reset button. 

 

In BST problems, there is usually one stick closest to the 

target length, which is a salient feature of the task for 

participants and they will select this stick in accordance with 

a hill-climbing heuristic (Lovett & Anderson, 1996). 

However, this relative length cue may or may not be the 

correct strategy for a given BST problem. Using the relative 

length cue, we designed problems with a strong relative 

length cue or neutral problems where there is no relative 

length cue. Figure 2 shows three types of problems: (a) a 

problem with a strong relative length cue to choose 

undershoot; (b) a neutral problem; (c) a problem with strong 

relative length cue to choose overshoot. By manipulating the 

rates of success of the overshoot and undershoot strategies in 

different types of problems over time, our study attempts to 

determine if unhelpful features are dropped from the problem 

representation as explained by RCCL or will continue to be 

used to select strategies as explained by RM. 

 

 
 

Figure 2: Examples of three types of problems. In the strong-

toward-undershoot problem, stick B is much closer to the 

target stick than stick C. In the neutral problem, stick B and 

stick C are equally distant to the target stick. In the strong-

toward-overshoot problem, stick C is much closer to the 

target stick than stick B. 

Method 

Design and Procedure 

This study used a 2 (correct strategy during the experimental 

phase: undershoot vs. overshoot) * 4 (problem-group: cue-

inconsistent, no-cue, cue-consistent, mixed) between-

participant design. Participants were randomly assigned to 

each condition. The problem-group factor differed in the set 

of problems in the experimental phase (see a detailed 

description later).The correct strategy factor was primarily 

intended as a counterbalancing factor, and collapsing across 

the levels of this factor yielded the four primary conditions. 

There were four phases presented in this order: relative-

length-cue training, pretest, experimental, and posttest 

phases. All phases were identical for all participants except 

the experimental phase. In the relative-length-cue training 

phase, each participant was given 36 BST problems including 

18 strong-toward-overshoot problems and 18 strong-toward-

undershoot problems, where the relative length cue was 

100% predictive of the correct strategy.  

In the pre/posttest, six sets of three types of problems were 

used, 6 strong-toward-overshoot problems, 6 strong-toward-

undershoot, and 6 neutral problems. All the problems in the 

pre- and posttest could be solved by either strategy, ensuring 

that there was no reason why one strategy would be selected 

over the other. Participants only selected the first stick in the 

pre- and posttest. The purpose of the pretest was to test if 

participants learned the relative length cue, while the posttest 

was compared to pretest to examine if the manipulations in 

the experimental phase affected strategy selection.  

In the experimental phase, there were another 36 problems 

of the problem type for that problem-group condition. The 

number of BST problems for the relative-length-cue training 

phase and the experimental phase were determined in a pilot 

experiment. In these two phases, each BST problem could be 

solved only by one of the two strategies, and participants had 

to solve every problem to move on. 

After consenting, participants began with instructions and 

practice trials to help participants understand how to use the 

undershoot strategy and the overshoot strategy to solve BST 

problems in the interface (refer to the interface description in 

Figure 1). Participants were guided through solving one BST 

problem for each strategy before having to practice solving 

one BST problem on their own before proceeding to the 

relative-length-cue training phase. 

Participants 

A sample of 259 participants were recruited from Prolific for 

compensation in exchange for participation. Since we had 

different conditions in this study, resulting in different 

hypothesized effect sizes, we estimated the sample size based 

on the smallest effect size that was anticipated to occur from 

pretest to posttest. Based on a linear mixed effects model 

examining the pretest to posttest change in proportion of one 

strategy being selected in a prior study using the BST, we 

used Monte Carlo simulation to conduct a power analysis 

showing that a sample size of 65 per problem-group condition 

would result in a power of .9. 

Experimental Phase Conditions and Predictions 

The manipulation in the experimental phase was to 

manipulate the type of problems participants experience after 

they had learned that the relative length cue was predictive of 

the correct strategy. Before the experimental phase and after 

the relative-length-cue training phase, participants’ strategy 
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choices on the pretest were expected to look like those in 

Figure 3 where they are relying on the relative length cue.  

  
Figure 3: Expected strategy selection for pretest. For these 

figures, the dependent measure is the proportion of time 

participants selected the strategy (overshoot/undershoot) that 

was the strategy that solved all problems in the experimental 

phase. The assignment of overshoot/undershoot was 

counterbalanced across participants. There were three types 

of problems on the pretest: strong-toward-undershoot, 

neutral, and strong-toward-overshoot. These problem types 

were recoded based on the learned strategy as designated by 

the counterbalancing condition the participant was assigned 

to. For example, when assigned to overshoot learning in the 

experimental phase, strong-toward-undershoot problems 

were classified as against problems because the assigned 

successful strategy for that condition was overshoot but the 

relative length cue suggested the undershoot strategy would 

be successful. Thus, recoded problem types were against, 

neutral, and toward problems. 

 

In the cue-inconsistent condition, participants experienced 

problems solved by one specific strategy (undershoot or 

overshoot counterbalanced across participants) but in which 

the correct strategy was the opposite of what the relative 

length cue indicated. For example, participants would only 

see problems for which the relative length cue strongly 

indicated overshoot, but the correct strategy was undershoot. 

In these problems, participants now had learned to use the 

relative length cue feature with a very high success rate and 

now this feature was no longer useful. In this condition, 

RCCL predicts that people would learn to ignore the relative 

length feature because the strategy that uses it is not 

successful. If that feature was dropped, then participants 

should not show sensitivity to the relative length cue during 

the posttest. RM predicts that people would use the strategy 

learned in recent trials only for similar problems because the 

relative length cue was not dropped from the representation. 

In this case, participants who saw strong-toward-overshoot 

problems but for which the correct strategy was undershoot 

would select undershoot on future problems that are strong-

toward-overshoot. However, their preferences for problems 

with other features such as strong-toward-undershoot 

problems should not be altered by their experiences with 

strong-toward-overshoot problems in the experimental phase. 

This pattern of predictions can be seen in the first row of 

Figure 4.  

In the no-cue condition, people only encountered neutral 

problems with no relative length cue during the experimental 

phase. RCCL’s prediction was the same as before because the 

relative length cue strategy was not relevant. RM predicts that 

people would use the strategy learned in recent trials for 

neutral problems, and also use the original relative length cue 

feature for other problems not encountered in the 

experimental phase (second row of Figure 4). 

In the mixed condition, participants experienced strong-

toward-overshoot, neutral, and strong-toward-undershoot 

problems that are all solved by one strategy. For RCCL, the 

relative length cue again became unpredictive for most 

problems and was dropped from the representation. For RM 

theory, the prediction is that the slope is reduced as people 

experience problems with all values of the relative length cue 

being predictive of only one strategy being successful. But 

the weights between features and strategy success estimates 

should be a weighted combination of experiences such that 

the slope is not 0. 

 

 
 

Figure 4: Illustration of predictions for posttest of the two 

conditions. The rows correspond to conditions. Then RCCL 

and RM’s different predictions for how the pattern of strategy 

selection changes after the experimental phase are in the 

columns. Pretest data from all conditions are predicted to start 

out looking like the hypothetical pretest results shown in 

Figure 3. The figure also shows that the line can be 

decomposed into the slope from Against to Neutral (slope 1) 

and the slope from Neutral to Toward (slope 2). These slopes 

were compared in the analyses. 

 

In the cue-consistent condition, participants experienced 

problems solved by the strategy predicted by the relative 

length cue (problems solved by overshoot when the relative 

length cue indicated overshoot). According to both theories, 

nothing had changed so pretest and posttest strategy selection 

would be the same. This condition served as a control that 

encountering a block of trials all solved by the same strategy 

did not result in participants only selecting the most recently 

successful strategy. 

Analysis Approach 

All analyses were conducted with generalized linear mixed 

effects (LME) models to analyze data. Random intercepts for 

both participants and problems were included. Random 

slopes for all within-participant and within-item 
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manipulations were also included. If the model did not 

converge or reported a singular fit, then the random effects 

structure was simplified by removing random slopes that 

accounted for little to no variance (Matuschek et al., 2017). 

Results 

First of all, we need to determine that if participants learned 

to use the relative length cue during the initial training phase. 

A logistic generalized linear mixed effects model was used to 

detect the effect of the relative length cue on the proportion 

of one certain strategy being selected. Since the strategy 

choice was categorized as either the overshoot strategy or the 

undershoot strategy based on the first click, the dependent 

measure chosen for this analysis was just the proportion of 

time that overshoot was selected. The relative length cue was 

coded from -1 = strong-toward-undershoot to 1 = strong-

toward-overshoot. With the proportion of overshoot strategy 

as the dependent variable, the relative length cue was found 

to predict participants’ strategy selection (b = 3.12, SE = .22, 

z = 14.25, p < .001). As can be seen by the pretest lines for 

each condition in Figure 5, the overshoot strategy proportion 

was nearly a linear function of the relative length cue, and the 

relative length cue had a positive effect on the proportion of 

one strategy being selected. The relative-length-cue training 

phase therefore served its purpose. 

The main hypotheses concerned how the experimental 

phase altered strategy preference from pretest to posttest. We 

used a logistic linear mixed effects model to compare data, 

with the dependent measure as whether the the learned 

strategy was selected and the predictors of test problem type 

and test time. A separate model was used for each of the four 

conditions. 

In order to better assess the extent to which our data aligned 

with the predictions of the RCCL and RM theories, we 

employed an approach focusing on the direction comparison 

of slopes (positive, zero, or negative). This approach enabled 

us to evaluate the change in strategy selection across different 

problem types. Specifically, we examined whether the 

changes in strategy selection from against problems to neutral 

problems (i.e., Slope 1 shown in Figures 4 and 5) and from 

neutral problems to toward problems (i.e., Slope 2) in the 

posttest align with the predictions. By focusing on the slope 

direction of these changes, we aimed to identify whether the 

data supported the theoretical predictions of both theories. 

Figure 5 shows observed data for all conditions. It 

demonstrates that the posttest data did not exactly match 

either of the predictions displayed in Figure 4 for the cue-

inconsistent condition. The results for the cue-inconsistent 

condition showed that there was a significant difference in 

strategy selection from pretest to posttest for against 

problems (b = -2.89, SE = .29, z = -9.9, p < .001) and neutral 

problems (b = -2.46, SE = .28, z = -8.68, p < .001), but no 

significant difference in strategy selection from pretest to 

posttest for toward problems (b = -1.06, SE = .38, z = -2.8, p 

= .06), and a significant difference in strategy selection for 

the posttest data between against problems and neutral 

problems (b = -1.91, SE = .21, z = -9.02, p < .001) and 

between against problems and toward problems (b = -3.21, 

SE = .28, z = -11.46, p < .001). By comparing the directions 

of slope 1 and slope 2 between Figure 5 and Figure 4, it shows 

that our data did not support any of the predictions in the cue-

inconsistent condition though the direction of slope 2 was 

consistent with the RM prediction. 

In the no-cue condition, Figure 5 shows that the posttest 

data did not follow either of the predictions as shown in 

Figure 4. The results showed that there was a significant 

difference in strategy selection from pretest to posttest for 

against problems (b = -1.35, SE = .22, z = -6.10, p < .001) and 

neutral problems (b = -1.11, SE = .18, z = -6.29, p < .001), no 

significant difference in strategy selection from pretest to 

posttest for toward problems (b = -0.14, SE = .26, z = -0.55, 

p = .99), and a significant difference in strategy selection for 

the posttest data between against problems and neutral 

problems (b = -1.96, SE = .18, z = -10.95, p < .001) and 

between neutral problems and toward problems (b = -1.25, 

SE = .21, z = -5.99, p < .001). By comparing the directions of 

slope 1 and slope 2 between Figure 5 and Figure 4, it shows 

that our data did not support any of the predictions in the no-

cue condition though the direction of slope 1 was consistent 

with the RM prediction. 

In the mixed condition, RCCL’s predictions were still same 

as before. However, for RM’s prediction, we expected to see 

a decrease of both slopes. If the slope changed significantly 

but not equaled to zero, it was consistent with RM theory. 

 

 
Figure 5: Proportion of choosing learned strategy in pretest and posttest under four conditions. 
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As shown in Figure 5, there was a significant difference in 

strategy selection from pretest to posttest for against 

problems (b = -2.35, SE = .22, z = -10.72, p < .001) and 

neutral problems (b = -1.28, SE = .17, z = -7.69, p < .001), 

and no significant difference in strategy selection from 

pretest to posttest for toward problems (b = -0.21, SE = .26, z 

= -0.81, p = .97). Critically, there was a significant difference 

in strategy selection between against problems and neutral 

problems at posttest (b = -1.60, SE = .17, z = -9.54, p < .001) 

and between neutral problems and toward problems (b = -

1.37, SE = .23, z = -5.93, p < .001). There was indeed a slope 

change from pretest to posttest, indicating that the data in the 

mixed condition supported RM theory. 

In the cue-consistent condition, both theories predict there 

should be no significant differences in all problems from 

pretest to posttest. However, as shown in Figure 5, our results 

showed that there was a significant main effect of test time (b 

= 0.43, SE = .13, z = 3.45, p < .001). Pairwise comparisons 

revealed a significant difference in strategy selection from 

pretest to posttest for neutral problems, b = -0.54, SE = .16, z 

= -3.46, p = .007, contradicting the theoretical expectations 

though the directions of slope 1 and slope 2 were identical to 

both theories’ predictions. 

Discussion 

To summarize, in the pretest we found that the relative length 

cue significantly predicted participants’ strategy selection, 

confirming that participants learned to use this cue after 

training. However, when examining the change in strategy 

selection from pretest to posttest in different problem types 

under four conditions, our data did not entirely align with the 

predictions of either the RCCL or RM theories. 

In the cue-consistent condition, the intention of this control 

condition was to investigate whether a block of trials all 

solved by the same strategy would lead participants to 

mechanically select that strategy. Our data indicated that 

there was not such a mental set (Ollinger et al., 2008). 

However, contrary to the predictions made by both theories 

that there are no differences from pretest to posttest, we 

observed a small but significant change in strategy selection 

from pretest to posttest. One possible reason is that the 

difference is caused by a change in base rates. The base rate 

of a specific strategy's success rate increases from the training 

phase (50%) to the experimental phase (100%). 

Consequently, the increase in the proportion of choosing the 

learned strategy from pretest to posttest could be driven by 

the base rate increase. This could be the reason why our data 

do not completely match the prediction though it 

accomplishes the goal of the control condition. 

In the mixed condition, there was a significant slope 

change from pretest to posttest, providing support for the RM 

theory. As mentioned before, RM predicts that the slope is 

expected to be reduced as people experience all types of 

problems. The decreased slope in our data is the evidence that 

people consider both the relative length cue and the most 

successful strategy for recent trials. 

In the no-cue condition, however, our data did not fully 

support any theory. The significant differences among three 

test problem types at posttest contradicted RCCL’s 

prediction. One possibility is that the strategies utilizing the 

relative length cue may not be applicable in the experimental 

phase since there are all neutral problems with no relative 

length cue, so the estimated success rates of using relative 

length cue remain unchanged. In this case, the prediction of 

RCCL should be revised to be identical to the prediction of 

RM that only for neutral problems people would use the 

strategy learned in recent trials. However, the significant 

differences in strategy selection from pretest to posttest for 

the against problems contradicted this prediction again. 

Similarly, in the cue-inconsistent condition, significant 

differences among three test problem types at posttest 

contradicted RCCL’s prediction, and the posttest curve 

showed participants’ sensitivity to the relative length cue 

decreased. It suggests that participants do not drop the feature 

and still incorporate the relative length cue in the task 

representation. However, we also found significant 

differences in strategy selection from pretest to posttest for 

neutral problems, which did not align with RM’s prediction 

that strategy selection only differed for against problems. 

Moreover, the slope direction of changes in strategy selection 

from against problems to neutral problems was positive, 

opposite to RM’s prediction that the slope would be negative. 

It raises the question of why the slope direction of the data 

differs from that predicted by RM. To address this question, 

we revisited the predictions. Notably, when reasoning about 

the predictions for each experimental condition according to 

the RM theory, we regarded the relative length cue pointing 

to the overshoot strategy as a separate feature from the feature 

indicting the length cue pointing to the undershoot strategy, 

which implies that there are two weights for the expected 

value of these features mapped to this strategy. Each time the 

predictability of a feature is changed, only one of these 

weights should theoretically have been changed in this case. 

However, if the relative length feature is viewed as 

continuous, then there will only be one weight. And the 

prediction will be that each time after experiencing a problem 

with the success or failure of the relative length cue, the 

weight will be updated and the feature value tied with 

overshoot/undershoot together will be changed, which is 

different from the earlier prediction that the values tied with 

overshoot and undershoot vary separately. Under the newer 

prediction, the strategy selection will change in a manner 

more closely aligned with the data. But the problem lies in 

the fact that there is no specific reference to how a feature is 

defined in the RM theory. It will be dependent on how the 

researcher thinks the features are represented. 

In conclusion, our data showed evidence against the RCCL 

theory, but it may support the RM theory when different ways 

to define a feature are considered. Given the existing 

questions and complexities within our findings, further 

research is needed to reveal the dynamics of strategy 

selection in the context of the BST and other tasks. 
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