UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Cross-Domain Transfer of Planning Strategirs: Alternative Approaches

Permalink
https://escholarship.org/uc/item/6zg751kg
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 12(0)

Authors

Krulwich, Bruce
Collins, Gregg
Birnbaum, Lawrence

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/6zg751ks
https://escholarship.org
http://www.cdlib.org/

Cross-Domain Transfer of Planning
Strategies: Alternative Approaches

Bruce Krulwich, Gregg Collins, and Lawrence Birnbaum

Northwestern University
The Institute for the Learning Sciences and
Department of Electrical Engineering and Computer Science
Evanston, Illinois

ABSTRACT

We discuss the problem of transferring learned knowledge across domains, and charac-
terize two possible approaches. Transfer through reoperationalization involves learn-
ing concepts in a domain-specific form and transferring them to other domains by
recharacterizing them in each domain as necessary. Abstraction-based transfer in-
volves learning concepts at a high level of abstraction to facilitate transferring them to
other domains without recharacterization. We discuss these approaches and present
an example of the abstraction-based transfer of a method of projection, or selective
lookahead, from the game of chess to the game of checkers, as implemented in our
test-bed system for failure-driven learning in planning domains. We then discuss
a continuum of abstraction to characterize learned concepts, and propose a corre-
sponding continuum characterizing the time at which the computation necessary for
cross-domain transfer is accomplished.

1 Introduction

Human beings have the ability to learn a concept in one domain and apply it in a different
domain. Achieving such cross-domain transferis a current goal of machine learning systems
as well. Transferring a concept learned in one domain into a different domain involves both
determining that the concept i1s applicable to the new domain, and casting it in a form that
is appropriate to that domain.

Previous studies of the human ability to transfer knowledge between domains have
investigated the way in which this ability depends on the learning method employed and
on the learner’s prior knowledge [Katona, 1940; Ililgard, Irvine, and Whipple, 1953; Mayer
and Greeno, 1972]. In particular, it has been observed that the ability to transfer learned
concepts between domains depends on the level of abstraction at which the concepts are
represented and indexed [Ililgard, Ergren, and Irvine, 1954; Mayer and Greeno, 1972;
Singley and Anderson, 1989]. Brown has proposed a hypothetical continuum of knowledge
abstraction in the context of transfer that ranges from complete theories, explaining how
a concept relates to the other knowledge of the system, to arbitrary solutions that do not
include any explanation of either correctness or appropriateness, and includes a number of
intermediate levels [Brown, 1989].

A computer system might represent and index concepts that it learns at any of these
levels of knowledge abstraction, and its ability to transfer this learned knowledge to another
domain would depend upon the level employed. If the system formulates a concept in terms
of a general theory, the concept will, as a result, be applicable to any domain in which the

954

theory is applicable. If, on the other hand, the system develops only a partial explanation of
a concept, without tying it to a more general theory, it can nevertheless transfer this concept
to domains in which the explanation is applicable. Concepts for which no explanation is
generated can of course be applied to other domains only on a hit-or-miss basis.

The approach that must be taken to transferring a concept across domains depends
upon the level of abstraction of the vocabulary in which it is expressed. In particular, we
can distinguish two basic approaches, each appropriate to a different end of the abstrac-
tion continuum. Transfer through reoperationalization applies when transferring a concept
that has not been abstracted out of its particular domain, and which therefore must be
recharacterized in terms appropriate to the new domain. Abstraction-based transfer, on
the other hand, is appropriate when transferring a concept expressed in terms of a general
theory that is already applicable to the new domain. In this paper we will discuss these
two approaches, and the trade-off between them, and present a computer implementation
of abstraction-based transfer in competitive planning.

2 Transfer through reoperationalization

In transfer through reoperationalization, a concept is initially learned in a vocabulary specific
to a particular domain, and must therefore be recharacterized, or reoperationalized (see,
e.g., [Mostow, 1983]), when it is needed in another domain. The distinction between
this approach to transfer and others is that no processing is done to facilitate transfer
of a concept before the concept is needed in the new domain. This approach has been
taken by a number of rescarchers, include many in the areas of case-based reasoning (see,
e.g., [Kolodner, 1988; Riesbeck and Schank, 1989]) and analogy (see, e.g., [Gentner, 1983;
Carbonell, 1986]). In this approach, transfer is accomplished in two steps: first, determining
that a particular concept learned in one domain is applicable to another domain, and
second, expressing the concept in the vocabulary of the new domain.

This approach raises several difficult issues. The first step, determining that a concept
is applicable, leads to the indexing problem, the problem of organizing domain-specific
concepts in memory in a way that facilitates retrieval in appropriate situations in other
domains (see, e.g., [Schank, 1982]). The sccond step, expressing the concept in the new
domain, requires a theory of how to map concepts between the two domains (see, e.g.,
[Gentner, 1983]). While a number of fruitful approaches to these problems have been
developed, the process of applying a concept in a new domain remains computationally
expensive. On the other hand, the benefit of transfer by rcoperationalization is that no
effort is expended when the concept is learned to prepare it for use in domains other than
the one in which the system is currently operating.

3 Abstraction-based transfer

Abstraction-based transfer involves lcarning new concepts in a form that facilitates their
transfer directly to other relevant domains. This processing involves immediately general-
1izing the concept to the highest level of abstraction that is supported by its explanation
(see, e.g., [DeJong and Mooney, 1986; Mitchell, Keller, and Kedar-Cabelli, 1986]). When
the concept is applied in the new domain, it can either be used directly or specialized to
the vocabulary of the new domain.

955

This approach to transfer has the advantage of minimizing the cost of indexing and
mapping, since applicable concepts will already be expressed in terms relevant to the current
domain. On the other hand, it raises the question of how, or even whether, the concept can
be learned in terms that are abstract enough to apply in all domains for which the concept
might be appropriate.

4 An implementation of abstraction-based transfer

Cross-domain transfer of knowledge 1s a central concern of our current research in failure-
driven learning in planning domains (see, e.g., [Birnbaum and Collins, 1988]). To explore
these issues more concretely, we have implemented a game-playing model for two player
turn-taking games, along with specific rules for such games as chess and checkers, within
our test-bed system for exploring failure-driven learning in planning domains (see, e.g.,
[Collins, Birnbaum, and Krulwich, 1989]). This system provides a unified framework for
inference, justification maintenance, expectation monitoring, and explanation of failures.
All of the beliefs, rules, and expectations in the system are tagged with justification struc-
tures indicating the basis for the system’s belief in their correctness. The system learns
from its failures [Sussman, 1975; Schank, 1982; llayes-Roth, 1983; Kolodner, 1987; Ham-
mond, 1989 by monitoring the truth of any predictions it makes about the world in the
course of its decision-making. When any of these expectations fail, the system constructs
an explanation of the failure using the justification for that expectation. Should this expla-
nation reveal a bug in the system’s decision-making mechanism, the system will attempt
to modify its rules to correct the problem, thus avoiding similar failures in the future.

Decision-making in our system is accomplished by a fairly general, albeit rudimentary,
mechanism. First, the decision component computes the opportunities available to the
computer, using game-specific notions of threats and moves. The results of each possible
move are then predicted by the projection component, which uses a general method for all
games. These results are then ranked by the evaluation component, which is again specific
to the game being played. The computer then chooses the highest-ranked such move.

We will focus here on the second of these three components, the projection component.
Because the general method of projection used by our system is game-independent, it is
capable of supporting abstraction-based transfer between games. In general, we would like
our system to project the results of a move as far into the future as possible, because this
will improve its value as an estimator of the quality of that move. However, the further
into the future a projection is carried, the more expensive it will be to compute, and a
system will have no basis for making an a priori decision about this tradeoff upon entering
a new domain. Our approach to this problem is to have the system start out with a
very simple projection mechanism that it will augment as nccessary [Krulwich, Collins,
and Birnbaum, 1989]. In particular, our system will initially project the results of a move
by assuming that on the following turn the opponent will make the best move that is
currently available to it. The rule that implements this projection method, which is shown
in figure 1, says roughly that the situation resulting from making a move is the situation
after making the move and after the opponent makes the move which is the best move at
the current time. This unsophisticated procedure considerably simplifies the projection
problem, because it obviates the need to repeatedly recompute the opponent’s response
for each move contemplated by the planner. However, its validity, and hence the validity
of the predictions that it generates concerning the opponent’s moves, depends upon an

956

(def-brule proj-factor-2 <...variable declarations...>
(project-factor proj-factor-1.6 world move player result 1)
<=
(and (= world (world-at-time time))
(decide (player-opponent player)
(possible-moves-at-time (player-opponent player) time)
world simple-dec-factors opp-move)
(= result (world-after-move opp-move (world-after-move move world)))))

Figure 1: Initial Projection Method

assumption that nothing will occur to enable the opponent to make a higher-priority move
than those currently available to it. This is an instance of what is sometimes referred to as
a persistence assumplion, namely, an assumption that things will stay as they are as much
as possible. This assumption is itself justified by a conjunction that says, roughly, Nothing
will happen to give him a belter move because, (1) he can’t do anything to give himself
one, (2) no outside forces will give him one, and (3) I won’t do anything to give him one.
These assumptions make up the justification for the projection method in figure 1. These
assumptions are clearly not always true; the problem for our system is to determine the
situations in which they are not true, and hence in which a more sophisticated projection
method is necessary.

Consider how our system would behave in the situation shown on the partial chess
board in figure 2a. Taking the opponent’s knight with the rook looks like the best move,
because the computer expects that the opponent will take its knight in the following turn,
and it believes that trades are to its benefit. llowever, the opponent will not make this
move, as we can see in figure 2¢, because the computer’s move gives him the opportunity
to take the computer’s rook, which is a more valuable piece than the knight. When the
opponent makes his move to take the computer’s rook, the system’s expectation about the
opponent’s move—that he will take the knight—will fail.

In response to this expectation failure, the system will analyze the justification for the
faulty expectation in order to explain the error. Traversing this justification will lead it to
test the assumption that the computer won’t do anything to give the opponent a better move,
and the system will find that this belief is to blame for the expectation failure. In particular,
the computer’s own move enabled the better move that the opponent made. The system
responds to this by patching its projection rule to take into account the possibility that

++ -- 0P -- ++ ++ == 0P -- ++ ++ == ++ -- ++

-- ON -- CN -- -- CR -- CN -- -- 0P -- CN --

++ == ++ -- ++ ++ -= ++ - ++ ++ - ++ - ++

- 4+ ==+ == - 4+ -= 4+ -- —— 4+ ==+t --

++ CR ++ -- ++ ++ —= ## -+ ++ -- ++ -- ++
(a) RxN ... (b) ... BxR (c)

Figure 2: Faulty Projection in Chess: Computer to Move at Start

957

(def-brule proj-factor-3 <...variable declarations...>
(project-factor proj-factor-1.5-mod world move player result 1)
<=
(and (= world (world-at-time time))
(decide (player-opponent player)
(possible-moves-at-time (player-opponent player) time)
world simple-dec-factors opp-move)
= result (world-after-move opp-move (world-after-move move world)))
(no (and (move-enables-move move better-move)
(move-possible better-move (current-time))
(move-legal better-move)
(evaluate result eval-factors (player-opponent player) orig—value)
(evaluate (world-after-move better-move (world-after-move move world))
eval-factors (player-opponent player) better-value)
(> better-value orig-value)))))

Figure 3: The Modified Projection Method

the computer’s move enables a better move for the opponent, and to ignore the persistance
assumption in such cases. This improved projection method, shown in figure 3, is the old
method with the added condition that the computer’s move not enable a better move for
the opponent. This modification to the projection method will prevent the computer from
making the same mistake in the future. When placed in the same situation as before, it
will instead move its threatened knight to safety (as shown in figure 4).

Transferring to another domain

While many aspects of the process of projection are specific to the game of chess, the sys-
tem’s description of the improved projection process is as general as the original projection
method was, and is thus expressed in vocabulary that is applicable to all turn-taking games.
This should enable the system to use abstraction-based transfer to apply the more sophis-
ticated method to similar games. To test this, we disabled the learning component of the
system, and put the system in an analogous situation in the game of checkers. Using the
original projection method described above, the system played as shown in figure 5. The
computer predicts that the opponent’s move will be to jump the computer’s piece in the
upper right-hand corner. As a result, the computer decides that its own best move would

++ -- 0P -- ++ ++ -- 0P -- ++

-- ON -- CN -- -= ON == ++ --

++ -= ++ -- ++ ++ -= 4+ == ++

= 4+ -= ++ -- -- ++ -- ++ CN

++ CR ++ -- ++ ++ CR ++ -- ++
(a) (b)

Figure 4: Repaired Projection in Chess: Computer to Move at Start

958

++ - ++ -- ++ CP ++ ++ == ++ CK ++ CP ++ ++ -- ++ CK ++ CP ++

OP ++ 0K ++ QP ++ -- OP ++ -- ++ 0P ++ -- OP ++ == ++ -- ++ --

++ CK ++ == ++ == ++ +t == 44 == ++ ~-= ++ 4 == 4+ == ++ == ++

CP ¥+ == 44+ == 4+ == CP ++ -- ++ == 4+ -~ CP ++ —= ++ -=- ++ -~
(a) (b) (c)

Figure 5: Faulty Projection in Checkers: Computer to Move at Start

be to take the opponent’s king with its king. As we can see in figure 5b, the computer’s
prediction fails for the same reason that the chess prediction failed in the previous example
namely that the computer’s move enabled a better move for its opponent.

Next, we re-enabled the learning component of the system, and ran it through the chess
situation described previously, allowing it to learn the improved projection rule described
in figure 3. When we subsequently reran the checkers situation, the computer applied what
it learned, and improved its behavior, as shown in figure 6.

5 Conclusion

Both approaches to transfer that we have discussed have their advantages and disadvan-
tages. Transfer by reoperalionalization requires realizing that the concept to be transferred
is appropriate to the new domain, which involves computationally expensive processing at
the time of problem solving in order to retrieve and apply the concept appropriately. On
the other hand, abstraction-based transfer requires expressing the concept at a high enough
level of abstraction to allow its utilization in all appropriate domains, which again involves
computationally expensive processing, in this case at the time the concept is learned. It
seems clear that the optimal approach will lie somewhere in between these two extremes.

Our research has, in part, been an exploration of this trade-off. One intermediate ap-
proach we have been pursuing is ezxplanatory transfer, in which a concept is learned in re-
sponse to a failure, and is generalized as much as is necessary to explain that failure. When
similar failures occur in other domains, the concept may be retrieved and applied in the

= 4+ == 4+ -= ++ - = 4+ == ++ == ++ ==

++ == ++ == ++ CP ++ ++ == ++ == ++ == ++

OP ++ 0K ++ QP ++ -- OP ++ QK #++ == ++ ==

++ CK ++ == 4+ -= ++ ++ CK ++ CP ++ -- ++

CP ++ -- ++ == ++ -- CP ++ == ++ == ++ --
(a) (b)

Figure 6: Repaired Projection in Checkers: Computer to Move at Start

959

course of constructing an explanation for the current failure [Collins and Birnbaum, 1988;
Kass, 1989].

This approach combines several of the advantages of each of the previous two ap-
proaches. As in abstraction-based transfer, the concepls are generalized when they are
learned, which reduces the computational effort necessary in retrieving and applying them
in new domains. llowever, as in transfer through reoperationalization, the applicability of
concepts to other domains need not be determined at the time the concept is learned. Fur-
thermore, determining the applicability of the concepts to be transferred is more focussed—
by the need to explain a particular failure in the new domain—than it is in the other
approaches. Future research is necessary to develop other approaches to transfer that are
between the two extremes, and to determine the areas in which the different approaches
are applicable.

Acknowledgments: We would like to thank Matt Brand, Ann lolum Faillettaz, Mike
Freed, Eric Jones, and Dick Osgood for many uscful discussions. This work was supported
in part by the Oflice of Naval Research under contract N00014-89-J-3217, and by the
Defense Advanced Research Projects Agency, monitored by the Air Force Office of Scientific
Research under contract [°19620-88-C-0058.. The Institute for the Learning Sciences was
established in 1989 with the support of Andersen Consulting, part of The Arthur Andersen
Worldwide Organization.

6 References

Birnbaum, L., and Collins, G. 1988. The transfer of experience across planning domains through
the acquisition of abstract strategies. [Kolodner, 1988], pp. 61-79.

Brown, A. L. 1989. Analogical learning and transfer: What develops? [Vosniadou and
Ortony, 1989], chapter 11, pp. 369-412.

Carbonell, J. 1986. Derivational analogy: A thicory of reconstructive problem solving and exper-
tise acquisition. Machine Learning: An Artificial Intelligence Approach, Vol. 2, Morgan
Kaufmann, Los Altas, CA, pp. 371-392.

Collins, G., and Birnbaum, L. 1988. Learning strategic concepts in competitive planning: An
explanation-based approach to the transfer of knowledge across domains. Research report
no. UITUCDCS-R-88-1143, University of Illinois, Dept. of Computer Science, Urbana, IL,
1988.

Collins, G., Birnbaum, L., and Krulwich, B. 1989. An adaptive model of decision-making in plan-
ning. Proceedings of the Eleventh IJCAI Detroit, MI, pp. 511-516.

DelJong, G., and Mooney, R. 1986. Explanation-based learning: An alternative view. Machine
Learning, vol. 1, pp. 145-176

Gentner, D. 1983. Structure-mapping: A theoretical framework for analogy. Cognitive Science,
vol. 7, pp. 155-170.

Hammond, K. 1989. Case-Based Planning: Viewing Planning as a Memory Task. Academic
Press, San Diego, CA.

Ilayes-Roth, F. 1983. Using prools and refutations to learn from experience. In R. Michalski, J.
Carbonell, and T. Mitchell, eds., Machine Learning: An Artificial Intelligence Approach,
Vol. 1, Tioga, Palo Alto, CA, pp. 221-240.

960

Hilgard, E., Ergren, R., and Irvine, R. 1954, Errors in transfer following learning by understand-
ing: Further studies with Katona's card trick experiments. Journal of Ezperimental Psy-
chology, vol. 47, pp. 457-464.

Hilgard, E., Irvine, R., and Whipple, J. 1953. Rote memorization, understanding, and transfer:
An extension of Katona's card trick experiment. Journal of Erperimental Psychology,
vol. 46, pp. 288-292.

Kass, A. 1989. Adaptation-based explanation: Extending script/frame theory to handle novel
input. Proceedings of the Eleventh IJCAI Detroit, MI, pp. 141-147.

Katona, G. 1940. Organizing and memorizing. Columbia University Press, New York.

Kolodner, J. 1987. Capitalizing on failure through case-based inference. Proceedings of the Nonth
Cognitive Science Conference, Seattle, WA, pp. 715-726.

Kolodner, J. 1988. Proceedings of the 1988 Workshop on Case-Based Reasoning, Morgan Kauf-
mann, San Mateo, CA.

Krulwich, B., Collins, G., and Birnbaum, L. 1989. Improving decision-making on the basis of ex-
perience. Proceedings of the Sizth International Workshop on Machine Learning, Ithaca,
NY, pp. 55-57.

Mayer, R., and Greeno, J. 1972. Structural differences between learning outcomes produced by
different instructional methods. Journal of Educational Psychology, vol. 63, pp. 165-173.

Mitchell, T., Keller, R., and Kedar-Cabelli, S. 1986. Explanation-based generalization: A unify-
ing view. Machine Learning, vol. 1, pp. 47-80

Mostow, D. 1983. Machine transformation of advice into a heuristic search procedure. In
R. Michalski, J. Carbouell, and T. Mitchell, eds., Machine Learning: An Artificial In-
telligence Approach, Vol. I, Tioga, Palo Alto, CA, pp. 367-403.

Riesbeck, C., and Schank, R. 1989. Inside Case-Based Reasoning. Lawrence Erlbaum Associates,
Hillsdale, NJ.

Schank, R. 1982. Dynamic Memory: A Theory of Reminding and Learning in Compulers and
People. Cambridge University Press, Cambridge, England.

Simmons, R. 1988. A theory of debugging plans and interpretations. Proceedings of the 1988
AAAI Conference, St. Paul, MN, pp. 94-99.

Singley, K., and Anderson, J. 1989. The Transfer of Cognitive Skill. larvard University Press,
Cambridge, MA.

Sussman, G. 1975. A Computer Model of Skill Acquisilion. American Elsevier, New York.

Vosniadou, S., and Ortony, A. 1989. Similarily and Analogical Reasoning. Cambridge University
Press, Cambridge, England.

961

	cogsci_1990_954-961

