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Abstract: Recessive Stargardt disease (STGD1) is an inherited retinopathy caused by mutations in
the ABCA4 gene. The ABCA4 protein is a phospholipid-retinoid flippase in the outer segments
of photoreceptors and the internal membranes of retinal pigment epithelial (RPE) cells. Here, we
show that RPE cells derived via induced pluripotent stem-cell from a molecularly and clinically
diagnosed STGD1 patient exhibited reduced ABCA4 protein and diminished activity compared
to a normal subject. Consequently, STGD1 RPE cells accumulated intracellular autofluorescence-
lipofuscin and displayed increased complement C3 activity. The level of C3 inversely correlated with
the level of CD46, an early negative regulator of the complement cascade. Persistent complement
dysregulation led to deposition of the membrane attack complex on the surface of RPE cells, decrease
in transepithelial resistance, and subsequent cell death. These findings are strong evidence of
complement-mediated RPE cell damage in STGD1, in the absence of photoreceptors, caused by
reduced CD46 regulatory protein.

Keywords: recessive Stargardt disease (STGD1); retinal pigment epithelium (RPE); complement
system; bisretinoid-lipofuscin; “disease-in-a-dish”; retinoids; macular degeneration; ABCA4

1. Introduction

Accumulation of toxic bisretinoid-lipofuscin material in the cells of the retinal pigment
epithelium (RPE) is an age-dependent process, accelerated by loss or dysfunction of the
ATP binding cassette subfamily A member 4 (ABCA4) protein. Mutations in the ABCA4
gene are responsible for recessive Stargardt disease (STGD1), a juvenile maculopathy that
shares many clinical and pathologic features with dry-form of age-related macular degener-
ation (AMD) [1,2]. Other mutations in ABCA4 cause cone-rod dystrophy in approximately
one-third of cases and serve as rare susceptibility loci for AMD [3,4]. None of these ABCA4-
mediated blinding diseases are currently treatable. ABCA4 is a flippase for retinaldehyde
conjugated to phosphatidylethanolamine (N-retinylidene-phosphatidylethanolamine, or
N-ret-PE) to promote clearance of retinaldehyde and prevent the formation of retinalde-
hyde dimers (bisretinoids) [5,6]. Recently, the ABCA4 was shown to be expressed in RPE
cells, in addition to photoreceptors [7,8]. ABCA4 in RPE endo-lysosomal membranes is
responsible for retinaldehyde recycling during proteolysis of visual pigments following the
daily phagocytosis of photoreceptor outer segments (OS). The hypothesized function of
ABCA4 in RPE cells was evaluated in vivo using a transgenic mouse line on the Abca4−/−
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background that expresses ABCA4 in RPE cells but not in photoreceptors [7]. These trans-
genic mice exhibited partial rescue of the photoreceptor degeneration and bisretinoid
accumulation seen in non-transgenic Abca4−/− mice, suggesting that ABCA4 in RPE cells
reduces the toxicity of retinaldehyde released during proteolysis of rhodopsin following
phagocytosis [7]. More recently, we generated RPE cells from molecularly and clinically
diagnosed STGD1 patients with altered levels of ABCA4 transcript and protein as a new
“disease-in-a-dish” biological model [9].

Bisretinoids and their oxidative products trigger strong complement reactivity in
cultured RPE cells [10]. Further, accumulation of bisretinoids in the RPE of Abca4−/− mice
was shown to activate complement, increase inflammatory markers, and cause oxidative
stress [11]. Degeneration of photoreceptors in Abca4−/− mice and STGD1 patients is thought
to result from chronic bisretinoid-mediated complement dysregulation and intracellular
buildup of autofluorescent material in the RPE cells [11,12]. Notably, a much greater
deposition of the membrane attack complex (MAC) on the basolateral membranes of RPE
cells was also found in cadaveric donor eyes from STGD1 patients versus unaffected
age-matched human controls [13,14]. In the current study, we used our newly developed
“disease-in-a-dish” RPE model from a confirmed STGD1 patient to test the hypothesis that
ABCA4 deficiency and complement dysregulation in RPE cells are coupled. We observed
a strong correlation between time-dependent deposition of the MAC and RPE cell loss,
which mirrored the RPE phenotype detected in Abca4−/− mice. These findings are the
first indication of complement dysregulation and MAC-mediated damage in RPE cells of
STGD1 in the absence of the photoreceptor cells.

2. Materials and Methods
2.1. Human-Derived RPE Cell Cultures

Intrinsically pluripotent stem cell lines (iPSC) from a clinically and molecularly char-
acterized STGD1 patient (sample “H1” and “H3” in Matynia et al [9]) and an unaffected
human donor (control and NDHF sample in Matynia et al. and Lowry et al. studies, re-
spectively [9,15]) were differentiated into RPE cells following published methods [9,16–18].
Briefly, undifferentiated iPSCs colonies were passaged using ReLeSR (Stemcell Technolo-
gies, Kent, WA, USA) onto a matrigel (1:3 to 1:6, Corning Incorporated, Glenddale, AZ,
USA) coated dish with a basal medium containing the DMEM/F12 with Glutamax, NEAA
(Millipore Sigma, Burlington, MA, USA), B27, and N2 (Thermo Fisher Scientific, Waltham,
MA, USA). The following growth factors were added to the basal medium for the first
48 h: Noggin (50 ng/mL, R & D Systems, Minneapolis, MN, USA), DKK1 (10 ng/mL, R
& D Systems) and IGF1 (10 ng/mL, R & D Systems). For the next 48 h, the cells were
grown in fresh medium with the above ingredients with the addition of bFGF (5 ng/mL,
Thermo Fisher). Days five to six, the cells were grown in the basal medium with DKK1
and IGF1 (10 ng/mL, R & D Systems) and maintained in the basal medium with Activin
(100 ng/mL, R & D Systems) and SU5402 (10 µm, Millipore Sigma) for days 7 to 14. At
the end of day 14, the cells were switched to Miller medium [19] until the formation of
pigmented RPE colonies. The pigmented RPE colonies were picked mechanically and
dissociated with 0.25% Trypsin/EDTA (Thermo Fisher Scientific), and then placed onto
laminin coated plates until they became confluent in the Miller medium [19]. At passage
2–5, about 2 × 105 total RPE cells (~600,000 cells/cm2) were seeded on mouse laminin
coated transwell inserts (Millicell-HA) with a pore size of 0.4 µm (Millipore Sigma), al-
lowed to form a monolayer with developed junctional complexes which was assessed
by measurement of the transepithelial resistance with an EVOM2 voltohmmeter (World
Precision Instruments, Sarasota, FL, USA).

Experimental cultured human RPE cells originated from fibroblasts were collected
from a clinically and molecularly characterized STGD1 patient (male) and an unaffected hu-
man donor (male). The iPSC lines were validated for viability and karyotype by the UCLA
Broad Stem Cell Core using Cell Line Genetics as previously described in Lowry et al [15].
The RPE cells were authenticated using RNASeq to identify the loss of ABCA4 expression
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in patient cells and presence in Control cells, with key RPE genes comparable between
the two cell lines [9]. Control and STGD1 RPE cells were genotyped for single nucleotide
polymorphisms (SNPs) associated with AMD and neither of them contained the AMD risk
haplotype (Table S1).

RPE cells were grown in culture using optimal media without retinoids for the initial
characterization at two-, three-, and five-months. For longitudinal experiments, media was
supplemented with bovine retinal extract, as a source of retinoid (~1.5 pmoles per feeding)
for the RPE cells. Supplementation was initiated at two-months under our standard feeding
protocol (twice a week) and RPE cells were maintained in culture up to 12-months. Bovine
retinal extract was prepared following established protocols [20]. Briefly, retinas were iso-
lated from fresh bovine eyes, sonicated in Ringer’s buffer without calcium and magnesium,
agitated overnight at 4 ◦C, and centrifuged for 20 min at 17,300× g. Supernatant was
collected and stored at −80 ◦C. Retinoid content in retinal extract was quantified by normal
phase high performance liquid chromatography (HPLC) as described previously [21] and
detailed in methods Section 2.8 below.

2.2. Animals

Animals were housed under normal cyclic 12-h light/12-h dark conditions and fed
ad libitum. Six-months old albino wild-type (BALB/c) and Abca4−/− on a BALB/c back-
ground mice (backcrossed at least eight times) were used for immunostaining and im-
munoblotting experiments. Equal numbers of male and female per genotype were used for
all mouse studies.

2.3. Quantitative Real-Time PCR

Total RNA was extracted from RPE cell cultures using Qiagen RNeasy kit (Qiagen
Inc., Hilden, Germany) according to the manufacturer’s instructions. NanoDrop (Thermo
Fisher) was used to determine total RNA concentration. cDNA was synthesized from one
microgram of RNA using the superscript III first-strand synthesis system (Thermo Fisher
Scientific). qRT-PCR was performed with SYBR Green (BIO-RAD, Hercules, CA, USA).
Primer specificity for stem cell markers (OCT4, NANOG, PAX6, and OTX2), for melanogen-
esis markers (Tyrosinase, PMEL17 and pigment epithelium derived factor (PEDF)) were
used along with housekeeping genes (glyceraldehyde phosphate dehydrogenase (GAPDH),
peptidylprolyl isomerase A (PPIA), hydroxymethylbilane synthase (HMBS), and glucose
phosphate isomerase 3’ (GPI)). Primer specificity was confirmed with melting temperature
analysis and gel electrophoresis. Expression levels were normalized to the geometric mean
of all four housekeeping genes: GAPDH, PPIA, HMBS, and GPI. Forward (F) and reverse
(R) primer sequences are listed in Table S2.

2.4. In Situ Hybridization Assay

RPE cells were used for in situ hybridization assay with the RNAscope 2.5 HD Chro-
mogenic Detection Kit (Advanced Cell Diagnostics, Hayward, CA, USA) according to the
manufacturer’s protocol. Cells were hybridized with human ABCA4 specific oligo probes
(Advanced Cell Diagnostics), human RNA polymerase II subunit A probe (Polr2A) as a
positive control probe, or bacterial dihydrodipicolinate reductase as a negative control
probe, followed by amplification steps and chromogenic detection with Fast Red as pre-
viously described [7]. Briefly, Images were captured using a Zeiss Axiophot microscope
equipped with a 40× oil-immersion objective lens and a CoolSNAP digital camera (Media
Cybernetics, Silver Spring, MD, USA).

2.5. Western Electrophoresis System (WES)

For detection and quantification of ABCA4 protein in RPE cells, capillary electrophore-
sis was performed on the fully automated Western system (ProteinSimple, Minneapolis,
MN, USA) following the manufacturer’s recommendations. Briefly, 20 µg protein lysate
were mixed with one µL of the 5× master mix containing sample buffer and DTT. The
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samples and protein ladder were heat denatured at 95 ◦C for five minutes. Three µL of
the sample were added to the assay plate containing blocking buffer, primary and HRP-
conjugated secondary anti-goat or anti-rabbit antibodies (Table S3), and wash buffer in
independent wells, respectively for sequential processing. The plate was briefly centrifuged
and loaded into the instrument for electrophoretic separation of proteins in capillary tubes
containing a 66- to 440-kDa separation matrix. Protein levels were quantified using the
automated Compass software according to the manufacturer’s guidelines (ProteinSimple).

2.6. Western Blot (WB)

Mouse RPE along with Bruch’s membrane and choroid were harvested from six-month-
old albino wild-type and Abca4−/− mice, both on a BALB/c background. Human cultured
RPE were grown on Millicell-HA for three months. Both mouse and cultured human RPE
cells were homogenized in 1× PBS with Halt protease inhibitor mixture (Thermo Fisher
Scientific). Protein samples were treated with benzonase nuclease (Millipore-Sigma) at
room temperature (RT) for one hour and re-homogenized with 1% SDS. Cellular debris
was removed by brief centrifugation, and protein concentration was determined using the
Micro BCA Protein Assay Kit (Thermo Fisher Scientific). 25 µg of total protein of mouse
homogenate or three µg of total protein of RPE homogenate or 40 µg cell concentrated
media, respectively was then separated on 4–12% or 12% SDS/PAGE gels (Novex; Thermo
Fisher Scientific). PVDF membranes were blocked with Odyssey Blocking Buffer (LI-
COR Biosciences, Lincoln, NE, USA), followed by incubation at RT, probed with primary
antibodies and cognate IR dye-labeled secondary antibodies (Table S3) [6,22–24]. Western
blot analysis was done using the Odyssey CLx Infrared Imaging System (LI-COR). Colored
images were converted to grayscale for viewing using Photoshop (Adobe, San Jose, CA,
USA).

2.7. Exogenous Retinoid Uptake and Processing by RPE Cells

RPE cells with TER of >150 Ω/cm2 grown in media without supplementation of bovine
retinal extract for ~three-months were used in functional assays (visual cycle enzymatic
steps and ABCA4-flippase activity). All experiments involving retinoids were conducted in
a dark room under dim red light. To assay visual cycle activities, RPE cells were incubated
overnight at 37 ◦C with 10 µM all-trans-retinol (MilliporeSigma) in DMEM (Thermo Fisher
Scientific) supplemented with 1% BSA (bovine serum albumin, fatty acid–free) on the basal
side. Apo inter-photoreceptor retinoid-binding protein (IRBP, 10 µM) was added to the
apical medium to protect the released 11-cis-retinoids. IRBP was purified from freshly
dissected bovine retinas and apo-IRBP was obtained after retinoids were degraded by
exposure to UV-light [20]. To evaluate the ABCA4-flippase activity, we incubated overnight
the RPE cells with bovine OS applied to the apical side (~75 × 106 OS per transwell;
~1.2 nmoles total retinaldehyde). Cultured cells on filters were washed with 1× PBS buffer
and stored dry at −80 ◦C until further processing. Corresponding media samples were
collected in tubes containing hydroxylamine (final concentration 200 mM) and processed
immediately for retinoid extraction.

2.8. Retinoid Extraction and Normal-Phase Liquid Chromatography Analysis

RPE cells were homogenized in phosphate buffer containing 200 mM hydroxylamine.
Cell homogenates and media samples containing hydroxylamine were mixed by vortex-
ing and incubated at RT for ~20 min. Two mL of methanol was added, and retinoids
were extracted twice with three mL of hexane followed by centrifugation at 3000 × g for
five minutes. The organic phases were collected, dried under a stream of argon gas, and
re-dissolved in 100 µL of hexane. Hexane solutions were analyzed by normal phase HPLC
as previously described [21]. The identity of each retinoid-eluted peak was established
by comparing the spectra and elution times with those of authentic retinoid standards.
Retinoids standards were obtained from Sigma, and retinaldehyde oximes were rederived
in house by hydroxylamine reduction and purified by HPLC [25]. Peak area for retinol and
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retinyl esters were acquired at 325 nm and retinaldehyde oximes at 350 nm, according to
their maximum absorbance spectra. Sample peaks were quantitated by comparing peak
areas to calibration curves established with retinoid standards using the published molar
extinction coefficients [25,26].

2.9. Phagocytosis Assay

Pulse-chase phagocytosis assay was done with RPE cells grown as monolayers on
culture inserts incubated with bovine photoreceptor OS (Invision BioResources, Seattle, WA,
USA) (10 OS/cell; total ~2.5 × 106 OS per transwell) in the apical medium for two hours.
After the initial OS challenge, cells were washed with Dulbecco’s Phosphate Buffered
Saline (DPBS), containing 0.9 mM Calcium Chloride and 0.49 mM Magnesium Chloride
(DPBS-CM), and immediately processed for immunofluorescence (pulse), or incubated
further for two hours and then processed for immunofluorescence (chase) as previously
described [27]. A double immunofluorescence labeling strategy, using a primary antibody
against rhodopsin (Rho), to distinguish between OS bound to the surface versus OS that has
been internalized by the RPE cells. Briefly, cultures were fixed with 4% formaldehyde for
ten minutes at RT and blocked with 1% BSA in DPBS-CM for 15 min. Surface-bound OS was
labeled with the mouse anti-Rho 1D4 [27] conjugated with Alexa Fluor 488-nm goat anti-
mouse secondary antibody (Table S3). After permeabilization with 50% ethanol in DPBS-
CM for five minutes, OS was labeled with the same Rho 1D4 antibody conjugated with
the Alexa Fluor 568-nm goat anti-mouse secondary antibody (Table S3). Finally, cells were
washed with DPBS-CM and the membranes of the culture inserts were excised and mounted
onto microscopy slides. Confocal z-stacks of randomly selected fields were captured
using an Olympus FluoView FV1000 confocal microscope with a 60× NA1.4 oil objective.
Surface-bound OS particles were labeled with both secondary antibodies (green and red),
thereby appearing yellow. Internalized OS particles were labeled only with the Alexa Fluor
568-nm-conjugated secondary antibody (red only). For quantification, OS particle with a
≥0.5 µm diameter were counted from a total of five to ten fields of view using NIH Image J
software (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland,
USA; Available online: https://imagej.nih.gov/ij/, accessed on 4 March 2019). Analysis
of OS degradation (ingested) was estimated after subtracting the OS bound-only from the
total number of OS particles after permeabilization of the cells.

2.10. Mouse Immunohistochemistry

Age-matched six-months albino wild-type and Abca4−/− were euthanized and the
superior part of the eyeballs were marked with a cautery pen. The eyes were enucleated
and fixed in 4% formaldehyde with 0.1 M sodium phosphate buffer (NaPO4, pH 7.4) for
30 min at room temperature (RT) for OD eye and overnight for OS eye. After washing, the
eyes were dissected in 0.1 M NaPO4 and the anterior segment (cornea, lens, vitreous) and
the neural retina were removed to obtain the RPE-choroid-scleral eyecups. The OD eyecup
was flattened by cutting into eight leaflets to obtain an RPE-choroid-scleral flatmount. The
OS eyecups were infiltrated with 10–30% sucrose for cryoprotection, embedded in Optimal
Cutting Temperature embedding medium (OCT; Tissue-Tek, Torrance, CA, USA), and cut
into 10-µm frozen sections. The RPE flatmounts and frozen sections were permeabilized
with 1% Triton X-100 at RT for 1 hour and 10 min, respectively, then blocked with 1%
BSA/5% goat serum/0.5% TritonX-100 at 4 ◦C overnight for flatmounts and one hour
at RT for frozen sections. Primary antibodies were incubated at 4 ◦C for two days and
overnight for RPE flatmounts and frozen sections, respectively. Following three washes
with PBS/ 0.1% TritonX-100, secondary antibodies were applied at RT for two and one
hour to flatmounts and frozen sections, respectively. The RPE cells were delineated by the
phalloidin conjugated with Texas red, staining the actin filaments, with nuclei stained by
DAPI (300 nM, Thermo Fisher Scientific), and then mounted with 5% n-propyl gallate in
100% glycerol. Images from superior temporal region, at similar distance from the optic
nerve, of the RPE flatmounts and frozen sections were captured with an Olympus FluoView

https://imagej.nih.gov/ij/
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FV1000 confocal microscope using a 60× oil-immersion objective. The z-orthogonal sections
images were obtained using Imaris software (Bitplane Inc., Concord, MA, USA).

2.11. RPE Cell Immunocytochemistry (ICC)

Cultured RPE cells with their supporting filter were fixed in 4% formaldehyde and
0.1 M PBS for 30 min at RT. For confocal microscopy analysis of RPE monolayer cross-
sections, the fixed cells along with their filter were embedded in agarose (Millipore-Sigma)
and 50 µm sections were cut with a VT1000s vibratome (Leica Microsystem, Wetzlar,
Germany) [28]. To visualize phosphatidylethanolamine in the cell membranes, RPE cells
were incubated for two hours at RT with 1 µM Duramycin conjugated to Biotin (Molecular
Target Technologies, West Chester, PA, USA) diluted from 200 µM stock solution in water
containing 5% DMSO. For both wholemount and agarose sections of cultured RPE cells,
primary antibodies were applied overnight at 4 ◦C followed by the secondary antibodies
for 1 hour at RT using either goat anti-mouse IgG or goat anti-rabbit IgG, or streptavidin
conjugated to Alexa Fluor dyes (Thermo Fisher Scientific). In addition, phalloidin and DAPI
were used to delineate the cell boarder and nuclei, respectively. The cells were mounted
with 5% n-propyl gallate in 100% glycerol with coverslips. All primary and secondary
antibodies source and concentration were listed in Table S3. Images were captured with
an Olympus FluoView FV1000 confocal microscope using a 60× oil-immersion objective.
Images were visualized and analyzed by Imaris (Bitplane Inc.) or FluoView software
(Olympus, Waltham, MA, USA).

2.12. Transmission Electron Microscopy

RPE cells grown on culture inserts (Millicell-HA) were fixed with 2% formaldehyde
and 2.5% glutaraldehyde in 0.1 M PBS (pH 7.2), treated with 1% osmium tetroxide dissolved
with 0.1 M PBS, then dehydrated in a graded series of alcohols and embedded in Araldite
502 (Electron Microscope Sciences, Hatfield, PA, USA). Ultrathin sections (at 70 nm in
thickness) were cut on a Leica Ultracut microtome, collected on 200-mesh copper grids,
and double-stained with uranyl acetate and lead citrate. The images (~12–18 per transwell)
were collected in a JEM-1400 electron microscope (JEOL, Peabody, MA, USA) with ORIUS
SC1000b Camera at 2000× and analyzed using Gatan Microscopy Suite Software (Gatan,
Inc., Pleasanton, CA, USA).

2.13. Quantification and Statistical Analysis

Statistical analysis for each experiment is described in figure legends, where “n” rep-
resents biological replicates. For human studies, we used one line of Control and two
lines of STGD1 RPE cells seeded and grown on filters in 24-transwell plates; one filter
(with ~2 × 105 RPE cells per filter/transwell) represents an individual biological sample,
unless otherwise specified. Every experiment with human RPE cells included a minimum
of three independent biological samples and the experiments were repeated twice with
triplicates (3 × single filter/transwell for a total of n = 6), or with duplicates (2 × single fil-
ter/transwell, for a total of n = 4) per group/genotype. The results were presented as means
with standard deviation of a minimum of three to six animals or human biological samples
per group/genotype. Data analyses were performed using GraphPad Prism 9.0 package
(GraphPad by Dotmatics, San Diego, CA, USA). Comparisons between groups were evalu-
ated using two-tailed Student’s t-test with a statistical significance reported at * p < 0.05;
** p < 0.005; *** p < 0.0005; **** p < 0.0001.
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3. Results
3.1. Control and STGD1 RPE Cultured Cells Have Similar Morphological Features

In vivo complement activation observed in Abca4−/− mice and excessive MAC deposi-
tion evidenced in STGD1 postmortem donor eyes compelled us to investigate the role of
complement in STGD1 pathogenesis using patient-derived RPE cells [11–13]. For this study,
we selected a STGD1 patient with two ABCA4 mutations on different alleles: (i) c.3386G >
T; p.Arg1129Leu and (ii) c.[5461-10T > C;5603A > T]; p.[Thr1821Aspfs*6,Thr1821Valfs*13;
(Asn1868Ile)] [29–31]. The R1129L substitution on the first allele is located within the
nucleotide-binding domain 1 (NBD1) of ABCA4, previously shown to cause reduction
in protein abundance and ATP-binding capacity when expressed in the 293T cells [32].
The second allele mutation was newly identified in this STGD1 patient and predicts a
null protein [29]. The iPSC lines of control (normal) and clinically diagnosed STGD1 pa-
tient were derived into RPE cells according to standardized protocols [9,16,27] with their
molecular characterization being recently published in Matynia et al [9]. In the current
study, the RPE cells were seeded on a transwell filter and maintained in culture using a
conditioned medium without retinoids for an initial morphological evaluation. By qRT-PCR
analysis, mRNA for differentiation and pigmentation marker proteins were at similar levels
in control and STGD1 RPE cells at three- and five-months in culture, while the mRNAs for
pluripotency markers were insignificantly expressed (Figure S1A,B). By a chromogenic in
situ hybridization assay, we observed a comparable distribution of ABCA4 mRNA expres-
sion in the STGD1 and control RPE cells (Figure S1C). Similar levels of ABCA4 mRNA in
STGD1 and control RPE cells were found by qRT-PCR after two- and five-months in culture
(Figure 1A), consistent with near-normal ABCA4 transcript levels found by RNASeq analy-
sis [9]. At the protein level however, STGD1 RPE cells contained only ~15% of the ABCA4
found in the control RPE cells (Figures 1B and S1D). By immunohistochemistry, control
RPE cells displayed a homogeneous membrane distribution of ABCA4 throughout, unlike
the punctate profile observed in the STGD1 RPE cells (Figure 1C). Intracellular localization
of normal ABCA4 protein in RPE cells was assessed with an antibody against the endosome
marker EEA1 (Figure S1E), as previously shown in mouse RPE cells and fetal human RPE
cultured cells [7]. In STGD1 RPE cells, the mutated ABCA4 protein seemed to colocalize
with EEA1 (Figure S1E). Together, these findings suggest degradation and mislocalization
of the mutated ABCA4 protein. At two-months in culture, control and STGD1 RPE cells
had both grown to confluent monolayers with homogenous pigmentation and a typical
RPE cobblestone appearance (Figure 1D). Transmission electron microscopy revealed polar-
ized RPE cells with apical microvilli, basal infoldings, and intracellular pigment granules
for both STGD1 and control RPE cells (Figures 1E and S1F). En-face confocal images of
phalloidin staining for apically localized actin filaments showed well-defined hexagonal
cell borders with similar cell counts for control and STGD1 RPE cells (Figure 1F,G). Since
the formation of functional cellular junctions is crucial for both maintenance of epithelial
integrity and the barrier role of RPE, we measured the transepithelial resistances (TER) in
three-months cultures. STGD1 and control RPE cells exhibited similar TER of ~200 Ω/cm2

(Figure 1H), comparable to the TER of human fetal RPE cells in culture [27,33,34].

3.2. OS Binding, Internalization, and Rhodopsin Degradation Are Normal in STGD1 RPE Cells

Phagocytosis of distal photoreceptor OS is an important function of RPE cells, which
serves to remove toxic products and maintain photoreceptor health [35,36]. To determine
if RPE cells are capable of phagocytosis, two-months cultured STGD1 and control RPE
cells were incubated with purified bovine OS using an optimized pulse-chase assay [27], in
which the amount of surface-bound Rho-containing OS (green channel) was determined
before permeabilization of the cells, and the amount of ingested Rho-containing OS was de-
termined after permeabilization of the cells as the difference between total Rho-containing
OS (permeabilized cells, red channel) and bound Rho-containing OS (green channel). In
the pulse phase (2 h, Figure S2A), staining with an antibody against rhodopsin (Rho) be-
fore (Figure S2A, Rho-bound) and after permeabilizing the cells (Figure S2A, Rho-total),
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we observed similar amounts of both bound (green arrows in all images) and ingested
Rho-containing OS (white arrows in the red channel and merge images) in the STGD1 and
control RPE cells (Figure S2A,C). In the chase phase (2 h after removal of bovine OS from
the media), we observed degradation of internalized Rho and an overall decrease in Rho
staining for both control and STGD1 RPE cells (Figure S2B). Quantification of total Rho
showed no significant difference between control and STGD1 RPE cells, suggesting similar
rates of OS uptake and Rho proteolysis (Figure S2D).
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Figure 1. Molecular and morphological features of Control and STGD1 RPE cells. (A) Relative
levels of ABCA4 mRNA by qRT-PCR from RPE cells for two (2)- and five (5)-months (mo) in culture.
(B) Normalized ABCA4 protein levels of three-months control and STGD1 RPE cells homogenates
(20 µg) by automated WES system (p = 0.025). STGD1 RPE cells have 85% reduction in ABCA4
levels compared to control. (C) Representative confocal microscopy images of three-months RPE
cells fixed and stained for ABCA4 (red, custom-made antibody, generous gift from Dr. Hui Sun).
DAPI (blue) stains the nuclei. Note a punctate distribution of ABCA4 throughout RPE cells of STGD1
compared to the control cells. Scale bar = 20 µm. (D–F) Representative images of two-months
of control and STGD1 RPE cells by light (D), electron (E), and confocal (F) microscopy analysis.
(D) RPE cells of both genotypes display similar cobblestone appearance and homogeneous pigmen-
tation; Scale bar = 100 µm. (E) Control and STGD1 RPE cells developed as a monolayer and were
polarized presenting apical microvilli (green arrow), melanosomes (white arrow), and nucleus (N).
Scale bar = 2 µm. (F) Phalloidin staining F-actin filaments (green) evidences a well-defined hexagonal
cell shape for both STGD1 vs control RPE cells. DAPI (blue) stains the nuclei. Scale bar = 20 µm.
(G) Bar graph shows similar number of cells per view field (140 µm2) between the control and STGD1



Cells 2022, 11, 3462 9 of 22

RPE cells (two-months in culture). (H) Histogram shows the transepithelial resistance (TER) mea-
sured across monolayers of control and STGD1 RPE cells (three-months in culture). Note: All
RPE cells were grown in culture with conditioned medium without retinoids. In (A,B,G,H) data
presented as mean ± SD; Statistics analysis using Student’s t-test; ns = not significant; * p < 0.05;
n = 4–6 filter/transwell per genotype.

3.3. ABCA4-Flippase Activity Is Reduced in STGD1 RPE Cells

To test for ABCA4-flippase activity, RPE cells grown in culture for three-months with-
out exposure to retinoids were fed with a single dose of bovine OS, estimated to contain
~1200 pmoles 11-cis-retinaldehyde (11c-RAL) in the form of rhodopsin. Media and cells
were harvested the following day (Figure 2A). Upon proteolytic digestion of OS proteins
in RPE phagolysosomes, free 11c-RAL is released and thermally isomerized to all-trans-
retinaldehyde (at-RAL) within acidic endolysosomes. ABCA4 was shown to ‘flip’ 11c- and
at-RAL coupled to phosphatidylethanolamine (as N-ret-PE) across membranes with similar
efficiencies [5]. The transfer of N-ret-PE from the lumenal to cytoplasmic face of the mem-
branes, in photoreceptor OS and RPE endolysosomes, prevents the secondary condensation
of N-ret-PE with another at-RAL to form a toxic bisretinoid. In RPE cells, translocation of N-
ret-PE facilitates the recycling of at-RAL to 11c-RAL visual chromophore via the RPE visual
cycle [5,7] (Figure 2B). After overnight incubation, we extracted retinoids from both the
media and RPE cell-homogenates and analyzed them by HPLC. Untreated cells and their
corresponding media showed no detectable retinoids (Figures 2C and S3A). The retinoid
content of OS-supplemented media was similar for control- and STGD1-derived RPE cell
cultures, mainly comprising 11c-RAL (Figure S3A,B). In contrast, HPLC analysis of the RPE
cell homogenates showed approximately two-fold lower levels of all-trans-retinyl-palmitate
(at-RP), an insoluble storage form of vitamin A, in STGD1 vs control RPE cells. This result
is consistent with the reduced N-Ret-PE flippase activity of the mutated ABCA4 protein
and impaired recycling of OS visual pigments (Figure 2C,D). PE phospholipid alone is also
a substrate of ABCA4 that was shown to be actively flipped across the photoreceptor disc
membranes in the same direction as N-Ret-PE [5]. Media of two-month-old cultured RPE
cells was supplemented with bovine retina extract and the PE distribution was visualized
by confocal microscopy at six-months after a short incubation with duramycin, a cyclic pep-
tide that binds PE with high affinity and specificity [37]. We found that duramycin-bound
PE was dispersed along both plasma and internal membranes of the control RPE cells
(Figure 2E). In contrast, STGD1 RPE cells displayed intracellular PE-aggregates without
clear PE-duramycin-association with the plasma membrane (Figures 2E and S3C). Quan-
tification of pixel intensity from confocal images stained with PE-duramycin indicated
~50% increased levels in the RPE cells of STGD1 versus control (Figure 2F), which is further
evidence of dysfunctional ABCA4 protein.
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Figure 2. ABCA4-flippase activity is reduced in STGD1 RPE cells. (A) Diagram of a transwell with
RPE cells grown on a filter to summarize our experimental setting to evaluate recycling of retinalde-
hyde following overnight incubation with bovine OS containing rhodopsin (retinaldehyde bound
with opsin); retinoids were extracted in hexane from media and cell homogenate and analyzed by
high-performance liquid chromatography (HPLC). (B) Diagram of proposed ABCA4-flippase activity
in the endolysosomes of the RPE cell. Following rhodopsin proteolysis, 11-cis-retinaldehyde (11c-RAL)
and its thermoisomerized form all-trans-RAL (at-RAL) condense with phosphatidylethanolamine
(PE) in the endolysosomal membrane to form N-retinyledene-PE (N-Ret-PE). ABCA4 transporter
translocates both N-Ret-PE and PE to the cytoplasmic side for recycling. Upon hydrolysis of N-Ret-PE,
the 11c-RAL (bound to CRALBP) is readily available to reconstitute the visual pigment, while at-RAL
must be reduced by RPE retinal dehydrogenases (RDHs) to all-trans-retinol (at-ROL) which is the
substrate for lecithin-retinol-acyltransferase (LRAT), the major retinyl ester synthase in RPE cells.
LRAT esterifies the at-ROL to all-trans-retinyl-palmitate (at-RP), an insoluble storage form of vitamin
A, that can be stored or further used as the substrate of RPE65-isomerase to form 11-cis-retinol
(11c-ROL) followed by RDH5-oxidation to 11c-RAL. (C) Representative HPLC chromatograms at 325
nm of hexane extracts of untreated (left) and OS-treated (right) of three-months control (cyan/blue
traces) and STGD1 (orange/red traces) RPE cells. Note that untreated cells (left) have no detectable
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retinoids and all-trans-retinyl palmitate (at-RP) is the only detected retinoid in the OS-treated cells
(right). Brackets indicate non-retinoid peaks based on spectral analysis and (#) indicates change in
solvent gradient. (D) Levels of at-RP in the STGD1 RPE cell homogenate were significantly lower vs
control. Average data is presented as mean ± SD; Statistics analysis using Student’s t-test; * p < 0.05
(p = 0.0106); n = 6 filter/transwell per genotype. (E) Representative confocal merge images of
~six-months control (left) and STGD1 (right) RPE cells that were treated with 1 µM Duramycin (red),
specifically labeling the head-group of phosphatidylethanolamines (PE). Phalloidin (green) staining
F-actin filaments and nuclei stained by DAPI (blue). Corresponding z-orthogonal representative
confocal images are shown below the en-face images. Intracellular PE-aggregates (white arrows)
are noticeable in both en-face and z-orthogonal images of STGD1 RPE cells versus control which
display significant PE-Duramycin/Phalloidin co-localization (orange-like color area delineating
cell boundaries). (F) Bar graph shows the relative PE-duramycin levels determined by measuring
pixel intensity from acquired confocal images (n = 10 for Control and n = 9 for STGD1). Average
data presented as mean ± SD; ** p < 0.005 (p = 0.0048); n = 3 filter/transwell per genotype; Scale
bar = 10 µm. Note: RPE cells were grown in culture for three-months (C,D) without any retinoid
supplementation and for six-months (E,F) with bovine retinal extract supplementation (~1.5 pmoles
per feeding, twice per week). Drawings in (A) and (B) were created with BioRender.com.

3.4. LRAT and RPE65 Activities Are Similar in Control and STGD1 RPE Cells

Reduced levels of at-RP in homogenates of STGD1 versus control RPE cells (Figure 2D)
could be caused by reduced LRAT protein levels instead of reduced at-ROL substrate for
at-RP synthesis. To test this possibility, we performed quantitative immunoblotting and
found similar LRAT levels in the control and STGD1 cell homogenates (Figure S4A,B).
Immunoreactivity for LRAT antibody in agarose sections showed comparable staining in
both STGD1 and control RPE cells (Figure S4C). Still another possibility is that RPE65 level
and activity may be increased in STGD1 versus control cells. Since RPE65 is a retinoid
isomerohydrolase that converts at-RP to 11c-ROL plus free palmitic acid [38], increased
RPE65 could also cause reduced levels of at-RP in STGD1 RPE cells. We observed similar
levels of the RPE65 protein in control and STGD1 RPE cells as determined by quantitative
immunoblotting and confocal microscopy, respectively (Figure S4D,F). To evaluate the
specific activities of LRAT and RPE65 in vivo, we incubated the RPE cells with 10 µM at-
ROL in the basal media supplemented with 1% BSA (Figure S4G). Additionally, the apical
medium was supplemented with 10 µM of apo-interphotoreceptor retinol-binding protein
(apo-IRBP) to protect the released 11c-RAL generated after at-ROL was processed through
the RPE visual cycle steps. IRBP has high affinity for 11c-RAL facilitating its transfer from
the RPE to photoreceptors to regenerate the visual pigment by binding to the cone- and
rod-opsins [39,40]. Extracts of the RPE cell homogenate and corresponding media were
analyzed by HPLC to quantify the retinoid content. We found that levels of at-ROL and at-
RP, the resultant product of LRAT activity, were similar in the homogenates of control and
STGD1 RPE cells (Figure S4H,J). Also, no difference in the levels of at-ROL and 11c-RAL
released in the media was observed in the control vs STGD1 RPE cells (Figure S4I,J). Taken
together, these data suggest that the levels and activities of the key visual-cycle proteins,
LRAT and RPE65, were similar in control versus STGD1 RPE cells supplied with at-ROL,
and therefore not responsible for the reduced at-RP found in the STGD1 cells fed with OS
containing retinaldehydes (Figure 2D).

3.5. Autofluorescent Material Accumulates in STGD1 RPE Cells

Impaired recycling of retinaldehyde, due to loss of the ABCA4 transporter function,
leads to secondary condensation of N-ret-PE with at-RAL to form an autofluorescent
bisretinoid such as A2E in the RPE cells of STGD1 donors and Abca4−/− mice [13,41]. Here,
we acquired bisretinoid-autofluorescence images at 488nm of control and STGD1 RPE
cells maintained in culture for three- or 12-months in the presence of bovine retinal extract
(~1.5 pmoles RALs per feeding twice per week). Compared to RPE cells from unaffected
human controls, STGD1 RPE cells showed slightly increased autofluorescence at three-
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months, and two-fold increased autofluorescence after 12-months in culture (Figure 3A,B).
In Abca4−/− and STGD1 donor eyes, the presence of bisretinoids in the RPE caused cellular
stress, evidenced by elevated lipid peroxidation products such as malondialdehyde (MDA)
and 4-hydroxynonenal (4-HNE) [11,13]. Similarly, analysis of STGD1 RPE cells grown
in culture for 12-months showed stronger immunoreactivity for the 4-HNE antibody
compared to the control RPE cells (Figure 3C).

Figure 3. Age-dependent autofluorescent buildup and lipid peroxidation are amplified in STGD1
RPE cells. (A) Representative confocal images of autofluorescence (green) acquired with an excitation
of 488nm (emission of 515nm) of control (left) and STGD1 (right) RPE cells in culture for three-
months (3-mo, top row) and 12-months (12-mo, bottom row) in the presence of bovine retinal extract
supplemented at two-months (~1.5 pmoles per feeding). Scale bar = 10 µm. (B) Bar graphs show the
relative autofluorescence levels determined by measuring pixel intensity from images acquired at
3-mo (left) and 12-mo (right). Statistics analysis using Student’s t-test; ** p < 0.005 (p = 0.0012) and
**** p < 0.0001; n = 3 filter/transwell per genotype. (C) Representative confocal images of 12-months
RPE cells fixed and stained with an antibody against 4-hydroxynonenal (4-HNE, red), a natural lipid
peroxisomal marker. Phalloidin (green) stains the apical F-actin filaments and DAPI (blue) marks the
cell nuclei. Note the intense immunoreactivity for the 4-HNE antibody on the STGD1 RPE cells. Scale
bar = 10 µm; n = 3 filter/transwell per genotype.

3.6. Complement Dysregulation Is Evidenced in STGD1 RPE Cells

Stimulation of C3 activity by bisretinoids has been shown in vivo and in vitro [10,11,42].
Here, we assessed C3 components and the complement negative regulatory proteins, CD46,
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CD59, and CFH by immunohistochemistry and immunoblotting at three-months in human-
derived RPE cultured cells. On sections, C3 immunolabeling appeared throughout the
RPE cells and was approximately two-fold higher in STGD1 versus control RPE cells
(Figure 4A,B). Elevated C3b/iC3b breakdown fragments were further confirmed by quanti-
tative immunoblot analysis (Figure 4C,D). Using fixed sections and RPE cell homogenates,
C3a, a short-lived soluble fragment released after C3 fragmentation, was investigated
with an antibody against its more stable form, C3a-desArg along with its C3a cognate
membrane-bound receptor C3aR. While the C3a fragment was not detected in the RPE cells
(Figure 4C), immunoblotting and immunostaining for its cognate receptor, C3aR, showed
similar distribution and levels in control and STGD1 RPE cells (Figure S5A–C). C5aR lev-
els were also similar in control and STGD1 RPE cells (Figure S5B,D), suggesting that the
C5a/C5aR signaling pathway downstream of C3a/C3aR is also not activated. Next, we
determined the levels of CD46, a membrane-bound, early-stage inhibitor of C3 convertase.
CD46 appeared to localize predominantly on the basolateral side of the RPE cells. By
confocal microscopy, CD46 immunostaining was notably diminished and pixel intensity
quantification of CD46 showed approximately two-fold reduction in STGD1 versus human
control RPE cells (Figure 4E,F). Further, CD46 levels in STGD1 RPE cells were only ~65% of
the levels in control RPE cells by quantitative immunoblotting (Figure 4G,H). Unlike CD46,
the cellular distribution and levels of CD59, another membrane-bound complement regula-
tory protein that inhibits the final step of the C3 cascade, were similar in the STGD1 and
control RPE cells (Figure S5E,F). By quantitative immunoblotting, we measured levels of
complement factor H (CFH), a major soluble complement regulatory protein, in the media
of cultured RPE cells. Levels of CFH, along with unrelated secreted protein PEDF, were
also similar between STGD1 and control RPE cells (Figure S5G,H). Taken together, these
data suggest a primary deficiency of C3 convertase inhibition during the early complement
amplification phase on the surface of STGD1 RPE cells.

3.7. Markedly Elevated MAC Deposition Is Present on the STGD1 RPE Cells

Excessive C3 hydrolysis and increased C3b opsonizing affinity on the plasma mem-
brane due to C3 convertase activity are responsible for the assembly of terminal complement
complex C5-C9 [43]. We assessed formation of this terminal complex on the surface of
STGD1 and control RPE cells at different times in culture by confocal microscopy with an
antibody against MAC (C5b-9 complex). We observed 1.2- and two-fold increased MAC
levels on the STGD1 versus control RPE cells at three and 12 months in culture, respectively
(Figures 5A,B and S6A). Orthogonal images obtained from z-stacked optical sections, from
the apical side, showed that MAC deposition was predominantly on the basolateral poles
of these cells and evidenced its internalization more abundantly in the STGD1 RPE cells
(Figure 5A). Additionally, MAC localization was confirmed in the STGD1 and control RPE
cells using an antibody against peropsin, an integral membrane protein expressed only
in the apical microvilli of RPE cells (Figure S6B) [22]. Furthermore, the en-face view of
phalloidin-staining apically distributed actin filaments showed an advanced dysmorphism
(discontinued lines and wider cell size, indicated by stars, respectively) in the aged STGD1
versus control RPE cells (Figures 5A and S6A). These changes after 12-months in culture
were mirrored by a decline in junctional complexes between cells, reflected by a ~35%
loss of cell number and ~80% reduction of TER in the STGD1 versus control RPE cultures
(Figure 5C,D).
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Figure 4. C3 complement dysregulation is observed in STGD1 RPE cells. (A) Representative confocal
images of C3/C3b/iC3b (red) staining on sections of fixed and agarose embedded RPE cells of
control (top) and STGD1 (bottom). (B) Histogram shows the relative levels of C3 based on pixel
intensity acquired by confocal microscopy. Average data presented as mean ± SD; *** p < 0.0005
(p = 0.0003); n = 3 filter/transwell per genotype. (C) Representative immunoblots of equal amount
of RPE cell homogenates of control and STGD1 using C3, C3a-desArg, and GAPDH antibodies.
Under reducing conditions, C3 antibody recognizes C3b, iC3b, and C3a fragments. C3a fragment
was not detected with either of the C3 or C3a-desArg antibodies. Numbers one to three on each blot
represent independent biological samples for each genotype. (D) Histogram presents the relative
levels of cumulative C3b and iC3b major fragments after normalizing to GAPDH loading control.
Average data is presented as mean ± SD; * p < 0.05 (p = 0.041); n = 3 filter/transwell per genotype.
(E) Representative confocal images of CD46 (red) staining on sections of RPE cells of control (top)
and STGD1 (bottom). Noticeable diminished CD46 staining was observed in STGD1 RPE cells.
(F) Histogram shows the relative levels of CD46 protein based on pixel intensity acquired by confocal
microscopy. Average data is presented as mean ± SD; ** p < 0.005 (p = 0.0013); n = 3 filter/transwell
per genotype. (G) Representative immunoblot of 10 µg total protein of RPE homogenates from two
biological samples (1- and 2-) consisting of pooled two transwells of RPE cells of control and STGD1,
respectively. (H) Histogram presents the relative levels of CD46 after normalizing to GAPDH loading
control. Average data is presented as mean ± SD; * p < 0.05 (p = 0.037); n = 3 replicates per genotype.
Note: All RPE cells were grown in culture for three-months in the presence of bovine retinal extract
supplemented at two-months (~1.5 pmoles per feeding) at regular feeding regimen (twice a week).
Immunohistochemistry staining and quantification of C3/C3b/iC3b (A,B) and CD46 (E,F) were
done using sections from the same transwell (n = 3 filter/transwell per genotype). Experiment was
repeated twice. In (A,E) nuclei were stained with DAPI (blue) and scale bar = 20 µm.
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presence of bovine retinal extract supplemented at two-months (twice per week). Corresponding z-
orthogonal sections for 12-mo group are shown below the en-face confocal images. En-face images 
of 12-mo STGD1 RPE cells displayed numerous larger cells (white stars) delineated by the Phal-
loidin staining and co-localization of C5b-9 with Phalloidin is indicated by yellow arrows. Abun-
dant C5b-9 immunoreactivity, with predominant basolateral distribution (indicated by the black 
arrows), is also evidenced in the z-orthogonal sections of 12-mo STGD1 RPE cells. Nuclei were 
stained with DAPI (blue). Scale bar = 10 μm. (B) Bar graphs show the relative C5b-9 levels deter-
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data presented as mean ± SD; * p < 0.05 (p = 0.037 for 3-mo and p = 0.015 for 12-mo); n = 3 fil-
ter/transwell per genotype. (C) Histogram shows average data presented as mean ± SD for total cell 
count of 12-mo control and STGD1 RPE cells; ** p < 0.005 (p = 0.001); n = 3 filter/transwell per geno-
type. (D) Transepithelial resistance measurements of 12-mo control and STGD1 RPE cells. Average 
data presented as mean ± SD; **** p < 0.0001; n = 5 filter/transwell for control and n = 6 filter/transwell 
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Figure 5. MAC (C5b-9) deposition induces cell damage in STGD1 RPE cells. (A) Representative
confocal merge images of C5b-9 (red) and Phalloidin (green) acquired of control (left) and STGD1
(right) RPE cells in culture for three-months (3-mo, top row) and 12-months (12-mo, bottom row) in
the presence of bovine retinal extract supplemented at two-months (twice per week). Corresponding
z-orthogonal sections for 12-mo group are shown below the en-face confocal images. En-face images
of 12-mo STGD1 RPE cells displayed numerous larger cells (white stars) delineated by the Phalloidin
staining and co-localization of C5b-9 with Phalloidin is indicated by yellow arrows. Abundant
C5b-9 immunoreactivity, with predominant basolateral distribution (indicated by the black arrows),
is also evidenced in the z-orthogonal sections of 12-mo STGD1 RPE cells. Nuclei were stained
with DAPI (blue). Scale bar = 10 µm. (B) Bar graphs show the relative C5b-9 levels determined
by measuring pixel intensity from images acquired at 3-mo (left) and 12-mo (right). Average data
presented as mean ± SD; * p < 0.05 (p = 0.037 for 3-mo and p = 0.015 for 12-mo); n = 3 filter/transwell
per genotype. (C) Histogram shows average data presented as mean ± SD for total cell count of
12-mo control and STGD1 RPE cells; ** p < 0.005 (p = 0.001); n = 3 filter/transwell per genotype.
(D) Transepithelial resistance measurements of 12-mo control and STGD1 RPE cells. Average data
presented as mean ± SD; **** p < 0.0001; n = 5 filter/transwell for control and n = 6 filter/transwell
for STGD1. Statistics analysis using Student’s t-test.

3.8. MAC-Mediated RPE Cell Damage Is Evident in the Eyes of Abca4−/− Mice

Accumulation of toxic bisretinoids and elevated complement C3 activity were previ-
ously shown in the RPE of Abca4−/− mice at ~10-weeks, prior to the onset of photoreceptor
degeneration [11,41]. Presumably, oxidized bisretinoids and C3b opsonization on the
plasma membrane, along with the buildup of internalized C3b/iC3b fragments, led to a
loss of RPE cells followed by degeneration of photoreceptors beginning at six-months in
Abca4−/− mice [41,44,45]. Here, we evaluated the C3b/C3a breakdown fragments and their
corresponding inactive forms (iC3b/C3a-desArg), by immunoblotting of RPE homogenates
from six-month-old wild-type versus Abca4−/− mice (Figure S7A,B). We performed this
analysis using a C3 antibody against the full-length protein and a C3a-desArg antibody
specific for the smaller fragment C3a. Irrespective of the antibody and using reducing
conditions to render all C3 fragments in the RPE cell homogenates, we could not detect the
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C3a ~9 kDa band in the mouse RPE homogenates from either wild-type or Abca4−/− mice
(Figure S7A,B). Moreover, immunostaining of mouse retina with C3a-desArg antibody
displayed comparable C3a intensity for both wild-type and Abca4−/− mice (Figure S7D).
At the same time, levels of the C3a receptor protein (C3aR) were similar in wild-type
and Abca4−/− RPE homogenates by immunoblotting (Figure S7A,C), and in mouse retina
sections by confocal immunofluorescence analysis (Figure S7D). To investigate the extent
of the complement activation, we prepared RPE flatmounts from wild-type and Abca4−/−

mouse RPE and performed immunohistochemistry with an antibody against C5b-9 termi-
nal complement complex. We observed more intense immunolabeling of C5b-9 complex
in RPE cells from Abca4−/− mice versus wild-type mice (Figure S7E,F). Further, we de-
tected larger cells containing three or more nuclei, likely due to membrane fusion between
cells, suggesting the formation of RPE syncytia in Abca4−/− compared to wild-type mouse
flatmounts (Figure S7E). Orthogonal z-stacked optical sections, obtained from the apical
side of the RPE flatmounts, revealed that MAC deposits were internalized by the RPE and
were more pronounced on the basolateral plasma membrane of the Abca4−/− mice (Figure
S7F). Cell count showed a two-fold increase in the multinucleated cells in the Abca4−/− vs
wild-type RPE flatmount (Figure S7G). These data suggest that in the Abca4−/− mice, the
C3 amplification loop is accompanied by an ongoing fully activated complement cascade
and possible MAC-mediated lysis of RPE cellular plasma membrane.

4. Discussion

The RPE is an integral component of the blood-retina barrier and contributes to daily
maintenance of the adjacent cellular layers [46]. The initiator of photoreceptor degeneration
in STGD1, and in some cases of AMD that are associated with specific ABCA4 variants, is
thought to be due to RPE dysfunction [3]. Rod and cone photoreceptors daily shed their dis-
tal OS, which are phagocytosed by the apical RPE as a mechanism to recycle OS components
and to detoxify lipids that have undergone oxidation and other light-dependent modifica-
tions [47,48]. Following phagocytosis, rhodopsin and cone-opsin visual pigments undergo
proteolysis, liberating their chromophore as free retinaldehyde, which is cytotoxic and
highly reactive [49]. Until recently, little was known about the detoxification and recycling
of retinaldehyde released into RPE phagolysosomes. When ABCA4 is missing, in Abca4−/−

mice or STGD1 patients, fluorescent retinaldehyde adducts (bisretinoids including A2E)
accumulate within RPE cells [41,50]. Recently, ABCA4 was shown to be present in RPE
internal membranes, in addition to photoreceptor OS [7,8]. Together these findings suggest
that ABCA4 in RPE serves to recycle retinaldehyde released during degradation of visual
pigments by transferring N-ret-PE from the luminal to cytoplasmic face of endolysosomal
membranes where the retinaldehyde can be reduced to retinol and re-enter the RPE visual
cycle.

In the current study, we analyzed the role of ABCA4 in RPE cells from a clinically and
genetically diagnosed STGD1 patient and an unaffected human control. Characterization
of RPE cells from these individuals showed that the ABCA4 products of the mutant loci
had no effect on the growth of fibroblasts, dedifferentiation of fibroblasts into iPSCs, or
reprogramming of iPSCs into RPE cells (Figures 1 and S1, and [9]). Importantly, both
control and STGD1 RPE cells matured into confluent monolayers at the same rate with
similar trans-epithelium resistances and displayed normal ultrastructural features. Further,
neither the control nor STGD1 RPE cells contained the AMD-associated SNP haplotypes
(Table S1). Lastly, both the OS phagocytotic capacities and visual-cycle enzyme activities
were similar in control and STGD1 RPE cells, allowing us to interrogate the coupling of
ABCA4 deficiency and complement dysregulation as the driver of RPE cell death without
the input from photoreceptor cells.

Although ABCA4 mRNA levels were comparable for STGD1 and control cells, lev-
els of the ABCA4 protein were five-fold lower in the STGD1 cells signifying functional
consequences [9,29,32]. We tested the ABCA4 N-Ret-PE flippase activity in the control
and STGD1 RPE cells that were never previously exposed to visual retinoids, by feeding
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them with a single ‘meal’ of bovine OS. As predicted by the patient’s ABCA4 variants,
recycling of retinaldehyde was significantly reduced in the STGD1 RPE cells. ABCA4 also
functions as a flippase for PE unconjugated to retinaldehyde [5], signaling a potential role
in the cellular distribution of PE. To test this possibility, we investigated PE localization
in RPE cells following treatment with duramycin, which binds the headgroup of PE [37].
Intracellular PE-aggregates and reduced PE in the plasma membrane in STGD1 RPE cells
suggest that altered PE metabolism may play a role in STGD1 pathogenesis. This novel
finding demands further investigation using additional RPE cells obtained from STGD1
patients with different ABCA4 mutations.

Patients with ABCA4-mediated retinopathies exhibit a strong correlation between
visual loss and increased short wavelength (SW) autofluorescence in the RPE due to the
presence of bisretinoids [2]. Bisretinoid levels are also several-fold higher in the RPE of
Abca4−/− versus wild-type mice [7]. Although ABCA4 is far more abundant in photorecep-
tors versus RPE cells, bisretinoid levels are several-fold higher in the RPE versus neural
retina [7]. Further, the major bisretinoid species, A2E, is undetectable in Abca4−/− neural
retinas and only found in RPE cells. Here, RPE cells supplemented with bovine retinal
extract showed much more 488-nm autofluorescent material in STGD1 versus control cells.
In vivo, the bisretinoid chemical structure renders them susceptible to further modification
and fragmentation, thereby generating reactive species responsible for increased oxidative
stress and destabilization of cellular physiological activities [51–57]. Similar to STGD1
donor eyes [13], 12-month-old STGD1 RPE cells showed markedly increased levels of the
lipid peroxidation marker, 4-HNE. Thus, RPE cells from the STGD1 patient recapitulates
multiple features of the phenotypes seen in STGD1-human and Abca4−/− mouse eyes.

The complement system is a proteolytic cascade, activated through several initiating
pathways, representing the first line of defense against an invading pathogen [43]. To
prevent inappropriate inactivation and an attack on self, C3 activation, C3 hydrolysis
(tick-over), and C3 degradation are all kept in check by multiple complement negative-
regulatory proteins including CD46, CD59, and CFH. Both activating and regulatory
proteins of the complement cascade were shown to be expressed in RPE cells, suggesting
that the RPE protects the eye from blood-borne pathogens without dependence on systemic
factors [58–60]. Disruption of RPE homeostasis can lead to C3-mediated attack on these cells.
Augmented autofluorescence build-up observed in STGD1 RPE cells triggered C3 activity in
a similar fashion as was shown in the RPE cells of Abca4−/− mice and cultured human fetal
RPE cells challenged with bisretinoids [11,61,62]. In a previous study, we showed that over-
expressing the complement receptor 1-like protein y (CRRY), a major murine complement
regulator and a functional homolog of human CD46, reduced complement attack on
the RPE and rescued both bisretinoid accumulation and photoreceptor degeneration in
Abca4−/− mice [12]. Here, increased C3 convertase activity and reduced levels of the CD46
negative-regulatory protein set up the RPE for attack by the complement system in STGD1
cells while CFH levels remain unchanged. These findings suggest that photoreceptor
degeneration in Abca4−/− mice and STGD1 patients results from loss of RPE support due
to chronic complement dysregulation in the early stage of the cascade.

The RPE’s ability to internalize C3 and C5b-9 complex is another built-in defensive
mechanism to prevent further C3b opsonizing fragments and formation of a cytolytic
MAC on the plasma membrane [11,12,63]. Despite similar cell densities and morphologies,
we observed substantial MAC deposition on the surface of STGD1 versus control RPE
cells at three-months. MAC lytic effect is potentiated by the insertion of additional C9
molecules into the C5b-9 terminal complex blocked by CD59, another membrane-bound
negative regulator [64]. Here, we found that CD59 expression was not altered in STGD1
RPE cells signifying further that the early inhibitory step of the complement cascade by
CD46 is essential. When cells were maintained in culture for ~one year, we observed
extensive MAC-mediated damage to membranes with ~35% loss of cells in the STGD1
RPE cultures. Finally, the barrier integrity of RPE cells derived from the STGD1 patient
was severely compromised, indicated by a several-fold drop in TER. Comparable MAC-
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mediated pathological features were recently described in three donor eyes from STGD1
patients [13,14]. Notably, an inverse correlation between the basal laminar autofluorescent
deposits in dysmorphic RPE cells and CD46 immunoreactivity was also evidenced in the
AMD donor eyes [65]. STGD1 and AMD, despite superficially unrelated causes (loss of
the ABCA4 transporter versus multigenic risk alleles including mutations in the genes for
complement regulatory proteins), may actually both be caused by chronic inflammation of
the RPE due to dysregulation of the complement system.

Taken together, these findings stress the importance of the CD46 regulator to limit
the downstream C3 convertase activity that can lead to the harmful levels of complement
terminal complex on the RPE cells. In STGD1, the ongoing intracellular PE-buildup and
autofluorescent bisretinoid material, due to dysfunctional ABCA4 flippase, promotes the
complement activity and drives the formation of the terminal complement complex C5b-9
(Figure 6). It appears that chronic deposition of the C5b-9 terminal complex, initially at a sub-
lytic level, eventually destabilizes the plasma membrane by forming a lytic pore with loss
of the RPE cells. Inefficient PE translocation by mutated ABCA4 may also compromise RPE
cellular integrity due to an abnormal phospholipid composition of the plasma membrane.
In STGD1 and sub-group of AMD patients, loss of RPE cells precedes the degeneration
of photoreceptors. This may reflect an opportunity for therapeutic intervention window
directed towards the RPE cells. Our current study supports the potential of the use of
RPE cells as “disease-in-a-dish” biological system to test emerging therapies for ABCA4-
mediated retinopathies.
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Figure 6. Schematic diagram summarizing our data of healthy RPE (left) and STGD1 RPE
(right). ABCA4-deficiency in STGD1 RPE cells results in the ongoing intracellular accumulation
of autofluorescent-lipofuscin material, including phosphatidylethanolamine (PE) aggregates, and
augmented C3 complement cascade on the basolateral side of plasma membrane of RPE cells. An
early key pathological feature of STGD1 RPE cells is the improper inhibition of C3 convertase by
the CD46 complement negative regulator protein. Consequently, CD46 insufficiency in STGD1 RPE
cells causes abnormal formation of complement terminal complex (C5b-9) on RPE plasma membrane.
With more C9 addition to the C5b-9, the terminal complex destabilizes the plasma membrane by
forming a lytic pore which causes loss of the RPE cells in the STGD1 patients. Diagram created with
BioRender.com.
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5. Conclusions

The RPE is thought to protect the retina from inappropriate attacks of the innate
immune reactivity by expressing complement negative regulatory proteins. While genetic
association studies have established the role of complement system in the etiology of macu-
lopathies, such role for the RPE has never been shown in STGD1. Here, we recapitulated
key pathological features of STGD1 in cultured RPE cells derived from a STGD1 patient.
STGD1 RPE cells showed lipofuscin-mediated complement activation and improper com-
plement regulation. Decreased inhibition of the complement cascade by CD46 promoted
the formation of the membrane attack complex on STGD1 cells causing loss of RPE home-
ostasis and later cell death. Therefore, mitigation of RPE local complement dynamics may
slow disease progression in ABCA4-mediated retinopathies.
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for human RPE cells, Figure S3: ABCA4-flippase activity in the RPE cells, Figure S4: Visual cy-
cle proteins and activities in the RPE cells at three-months in culture, Figure S5: Complement
C3a/C5a, CD59, and secreted proteins profile in human RPE cells, Figure S6: MAC (C5b-9) de-
position accumulates in STGD1 RPE cells, Figure S7: Complement terminal complex destabilizes
the RPE plasma membrane of the Abca4−/− mice, Table S1: Control and STGD1 patient variant
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