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Abstract 

This study examined learning and transfer of a simple 
mathematical concept when learning a symbolic sentential 
format versus learning a diagrammatic format. Undergraduate 
college students learned an instantiation of a cyclic group and 
were then given a test of a novel isomorphic group of the 
same order followed by a test of a novel non-isomorphic 
group of a higher order. The results were that both the 
sentential and the diagrammatic formats led to successful 
learning and transfer to the novel isomorphic group.  
However, only learning from the diagrammatic representation 
produced successful transfer to the non-isomorphic group.  
These findings suggest that learning a diagrammatic 
representation of a mathematical concept can have transfer 
advantages over learning strictly sentential formats. 
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Introduction 
Mathematical concepts are often difficult for students to 
acquire.  Part of this difficulty may be related to the fact that 
mathematics is generally expressed with abstract symbols, 
such as variables. Mathematical symbols can be challenging 
for students to interpret and use, leading to misconceptions 
and obstacles to learning.  For example, many algebra 
students believe that if x is an integer, then y is the next 
larger integer (Wagner, 1981, 1983). Another common 
misconception is that equivalent equations with different 
variables, such as 7×𝑤 + 22 = 109 and 7×𝑛 + 22 = 109, 
have different solutions (Wagner, 1981, 1983). 

Other evidence for the difficulty of using symbols comes 
from comparing performance on purely symbolic tasks to 
analogous contextualized tasks and finding an advantage for 
reasoning and problem solving in the contextualized formats 
(e.g. Saxe, 1988; Koedinger & Nathan, 2004; Koedinger, 
Alibali, & Nathan, 2008). For example, students are 
frequently more successful solving simple algebra problems 
when presented as story problems than when presented as 
symbolic expressions (Koedinger & Nathan, 2004; 
Koedinger, et al, 2008).  The advantage of contextualized 
situations may be that when contexts are familiar to 
students, they can derivate mathematical structure from the 
context itself (Bassok, 1996, 2003).  For instance, given a 
situation involving 12 tulips and 3 vases, students tend to 
divide 12 by 3 instead of performing another arithmetic 
operation because a group of flowers is typically divided 
between a number of vases. Familiar contextualization may 
also facilitate learning of new concepts (e.g. Kaminski, 
Sloutsky, & Heckler, 2013).   

Although contextualized representations of mathematics 
may sometimes facilitate reasoning, problem solving, and 
initial learning, such representations can hinder transfer of 
mathematical knowledge to novel situations (Kaminski, 
Sloutsky, & Heckler, 2008, 2013).  When college students 
learned an algebraic system through a familiar context that 
facilitated initial learning, they were unable to transfer 
knowledge to a novel analogous domain. However, students 
who learned the same concept through a generic symbolic 
format successfully transferred knowledge.  Transfer failure 
may be due to the fact that contextualized real-world 
instantiations of mathematics communicate more 
nonessential information than simple symbolic 
instantiations (Kaminski et al, 2013).  This nonessential 
information is often salient and may divert attention from 
the less salient mathematical structure, making it difficult to 
recognize the mathematical structure in novel, superficially 
dissimilar situations (Kaminski, et al, 2008, 2011, 2013). 

However, an important question remains.  Does all 
extraneous information hinder transfer? Perhaps some 
representations of mathematics have extraneous information 
that can facilitate transfer.   One possible type of 
representation is a visual display that helps communicate the 
relevant global relational structure. Such displays are 
diagrams, and include graphs, matrices, tables, as well as 
some nonstandard representations.  These visual displays 
instantiate a system with minimal extraneous information, 
but contain perceptual information that helps spatially 
organize the elements of the system according to the 
relevant relational structure. Previous research has 
demonstrated that diagrams may have advantages over 
sentential representations for reasoning and problem solving 
(e.g. Cheng, 2002; Lakin & Simon, 1987), analogical 
transfer (e.g. Gick & Holyoak , 1983; Pedone, Hummel, & 
Holyoak, 2001), and non-isomorphic transfer (Novick & 
Hmelo, 1994).  

The advantage of an effective diagram over a sentential 
representation may be increased salience of the relations 
between elements and an ability to accommodate a different 
number of relevant elements. Consider the example of 
probability.  A sentential format would list relevant 
probabilities of events 𝐴,𝐵,𝐶, as 𝑃 𝐴 ,𝑃 𝐵 ,𝑃(𝐴 𝐶), etc. 
A tree diagram could visually highlight the relationships 
between events and could be modified to include additional 
events.  By doing so, diagrams may help to communicate 
higher-order structure, which may allow the learner to 
transfer knowledge not only to isomorphic situations (i.e. 
structurally analogous situations) but also to non-isomorphic 
situations of the same structural class.   
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For pedagogical reasons, it is important to examine 
conditions that promote both isomorphic and non-
isomorphic transfer because application of mathematical 
knowledge involves both isomorphic transfer (e.g. transfer 
of solution strategies to analogous story problems) as well 
as non-isomorphic transfer (e.g. solution techniques for 
systems of two variables applied to systems of more than 
two variables). From a theoretical perspective, it is 
important to understand how both types of transfer 
processes are related. Many theories of analogical transfer 
posit that successful transfer requires alignment of structure 
across a familiar domain and an isomorphic target domain; 
this alignment places analogous elements in a one-to-one 
correspondence across domains (e.g. Gentner, 1983, 1988; 
Gentner & Holyoak, 1997; Holyoak & Thagard, 1989, 
1997). From multiple instances, learners may form abstract 
schematic representations that reflect commonalities of the 
instances (Gick & Holyoak, 1983; Novick & Holyoak, 
1991; Reed, 1993). These theories can account for transfer 
of mathematical knowledge across isomorphs.  However, it 
is unclear how they can account for transfer across non-
isomorphic domains in which structure cannot be aligned 
across instances. If learning of diagrams allows transfer to 
non-isomorphic situations, do learners align structure when 
transferring to an isomorphic situation? 

The goal of the present research was to examine learning 
and transfer of a novel mathematical concept from a strictly 
sentential symbolic representation versus a diagrammatic 
representation.  This study examined both isomorphic 
transfer (transfer to another system with the same relevant 
structure and the same number of elements) and non-
isomorphic transfer (transfer to another system with the 
same relevant structure but a different number of elements).    
When learning the strictly sentential representation, 
participants may acquire only knowledge of isolated 
relations between elements and may not gain insight into the 
higher-order mathematical structure. When learning the 
diagrammatic representation, participants may learn more 
than isolated relations between individual elements.  They 
may acquire a structural representation of the concept that 
can be modified to include more elements than initially 
learned.   As such, the diagram may help communicate 
higher-order structure, and learning this diagram may 
facilitate recognition of this structure in novel isomorphic 
domains as well as non-isomorphic domains of the same 
type of structure.  Therefore, it is hypothesized that both the 
sentential and diagrammatic representations will result in 
successful learning and isomorphic transfer, but only the 
diagrammatic representation will result in successful non-
isomorphic transfer.  

The concept under consideration was that of a cyclic 
group (defined in the Method section).  Participants learned 
an instantiation of a cyclic group of order 3 (i.e. three 
unique elements) with or without the inclusion of a diagram. 
Participants were then tested on a novel cyclic group of 
order 3 to examine isomorphic transfer. They were also 
asked to match analogous elements across domains to 

investigate whether there are differences in structural 
alignment when learning a strictly sentential versus a 
diagrammatic representation. Afterward participants were 
tested on a novel cyclic group of order 4 (i.e. four unique 
elements) to examine non-isomorphic transfer.   

Experiment 

Method 
Participants Fifty-eight undergraduate students from a 
large Midwestern university participated in the experiment 
and received partial credit for an introductory psychology 
course.  
 
Materials and Design The experiment included three 
phases: (1) training and testing in a learning domain, (2) 
testing in an isomorphic transfer domain, and (3) testing in a 
transfer domain of the same structure as the learning domain 
but higher order.  Participants were randomly assigned to 
one of three conditions (Diagram, No Diagram, or 
Baseline).  Participants in the Diagram and No Diagram 
conditions learned different instantiations of a cyclic group 
of order 3 during the first phase of the experiment.  
Participants in the Baseline condition proceeded directly to 
phase 3, omitting phases 1 and 2. The purpose for the 
Baseline condition was to measure spontaneous 
performance in the non-isomorphic transfer domain, without 
prior instruction on the concept.  The isomorphic transfer 
domain (phase 2) was used in several previous studies 
(Kaminski, et al, 2008, 2013); without first learning an 
isomorphic domain, participants were unable to score above 
chance on this transfer domain.  

The learning domain and two transfer domains were 
artificially constructed instantiations of the concept of a 
cyclic group.  The learning domains and the first transfer 
domain were of order 3 (i.e. had three unique elements), and 
the second transfer domain was of order 4 (i.e. had four 
unique elements). A Cyclic Group of Order n is a set of n 
elements, or equivalence classes, and an associated binary 
operation over which the following algebraic properties 
hold:  associativity, commutativity, existence of identity, 
and existence of inverses.  This means that if the operation 
is denoted by “+”, then the following are true.  The 
Associative Property states that for any elements, x, y, z, of 
the set, (x + y) + z  = x + (y + z).  The Commutative 
Property states that for any elements x, y of the set, x + y = 
y + x.  Also, there is an element, I, in the set called the 
Identity Element, such that for any element, x, x + I = x. 
Finally, for any element, x, there exists an Inverse Element, 
y, such that x + y = I. In addition, a cyclic group is a group 
that can be generated by a single element. This concept is 
equivalent to addition modulo n. 

The concept of a cyclic group can be instantiated in an 
unlimited number of ways. The instantiations used for both 
the Diagram and No Diagram conditions involved three 
arbitrary symbols,      ,      , and       .  Participants learned 
the principles of a cyclic group instantiated as associations 
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between the symbols. The difference between the conditions 
was the presence or absence of a diagram, the procedure for 
using the diagram, and the associated cover stories.  

In the No Diagram condition, the instantiation was 
described to participants as rules of a symbolic language in 
which combinations of two or more symbols yield a 
predictable resulting symbol. Statements were expressed as 
symbol 1 symbol 2 à resulting symbol.  Table 1 shows the 
symbols, the specific rules, and examples.  In the Diagram 
condition, the cyclic group was described to participants as 
rules for a code-breaking device that can be used to decode 
sequences of symbols. The decoding device appeared as a 
circle with three equally spaced positions marked.  One 
symbol was placed at each position.  Given a sequence of 
two or more symbols, the decoder could be used to 
determine a resulting symbol by starting at the first symbol 
and moving clockwise around the dial shown in Figure 1. 
Figure 1 also presents the procedure for using the decoder, 
the specific rules, and an example.  

In both conditions, participants were taught the same 
associations between sequences of symbols and saw the 
same sentential statements, symbol 1 symbol 2 à resulting 
symbol.   The rules, examples, and test questions were 
identical in both conditions.  Aside from different cover 
stories, the only difference between the conditions was the 
inclusion of the diagrammatic representation (i.e. the 
decoding device) and its associated procedure in the 
Diagram condition. At the end of phase 1, participants were 
tested with a 24-question multiple-choice test.   

The second phase of the experiment was testing of an 
isomorphic transfer domain. This transfer domain was 
identical for both conditions and was also a cyclic group of 
order 3 involving three images of perceptually rich objects.  
It was described as a children’s game where children 
sequentially point to objects and “the winner” points to a 
final object (see Transfer Domain 1 in Table 1).  
Participants were told that the correct final object is 
specified by the rules of the game (which were the rules of a 
cyclic group).  Furthermore, in both conditions they were 
told that the rules were like those of the system they just 
learned.  No explicit training in the transfer domain was 
given; instead, participants were shown a series of examples 
from which the rules could be deduced (see operands and 
results for Transfer Domain 1 in Table 1). Participants were 
asked to figure out the rules of the game by using their 
knowledge of the learned system.  Then they were tested 
with a 24-question multiple-choice test, isomorphic to the 
test in the learning phase of the Diagram and No Diagram 
conditions, but using the elements of the transfer domain.   

Following the test, participants were asked to match 
analogous elements across the learning and transfer 
domains.  Correct matching of elements was taken as an 
indicator of correct structural alignment between the 
learning and transfer domains. For cyclic groups of order 3, 
there are two possible correct mappings between groups. 
The identity element is unique; therefore a correct mapping 
must align these two elements across domains. However, 

the mapping between remaining two elements is not unique. 
Therefore, a response was considered correct if (a) the 
mapping was one-to-one and onto (i.e., each learning 
element corresponded to a single transfer element and each 
element of the transfer elements were used) and (b) the 
mapping preserved the identity element. In other words, if a 
participant used each of the group elements and mapped the 
identity element correctly, then the response was correct.  
Because the critical aspect was correctly choosing the 
identity element and most participants were expected to 
form mappings that were onto, 33% accuracy was used as a 
conservative measure of chance for a group of participants.   

The third phase of the experiment was testing of a non-
isomorphic domain of the same structure as the learning 
domain (i.e. a cyclic group of order 4).  Participants were 
given a paper and pencil ten-question multiple-choice test 
(see Table 2) and told that the knowledge of the system they 
learned first can help them figure out the new system. They 
were also given five example statements (the operands and 
results shown in Table 2) from which the complete set of 
rules could be deduced.  
 

 
Table 1: Stimuli for the learning and isomorphic transfer 

domains. 
 

   
 

   
      

 Learning Domain 

Cyclic group of order 3 

Transfer Domain 1 

Cyclic group of order 3 

Elements  

           

Identity   

 
 

Associations  
between 
elements 

(Presented as rules) (Presented as examples) 

Operands Result Operands Result 

    
    

    
    

        

    
    

Example 
Test 
Question 

Find the resulting 
symbol. 
 

        à ___ 
 

 
 

Answer:   

If children pointed to 
these object,  

       , 
what object did the 
winner  point to? 

Answer:   
   

	

C	
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Figure 1: Diagram used in the Diagram Condition 

 
 
 

Table 2: Stimuli for non-isomorphic transfer domain. 
 

 Transfer Domain 2 
Cyclic group of order 4 

Elements S   ★  ¤  £  
Identity S 
Associations 
between 
elements 

(Presented as examples) 

Operands Result 

     S , ★   ★ 

S , ¤ ¤ 
 ★ , ★   ¤ 
¤ , ¤ S 
★ , ¤ £  

Example        
Test Question 

Find the resulting symbol. 

S, ★, ¤,£  à ? 
 

Answer:  ¤ 
 

 
 
Procedure Participants were seen individually in a lab on 
campus.  Phases 1 and 2 were presented on a computer. 
Participants proceeded at their own pace, with their 
responses recorded by the computer.  The learning phase 
consisted of approximately 80 slides and required 
approximately 15 minutes to complete.  The transfer phase 
(phase 2) consisted of 48 slides and took on average 10 
minutes to complete.  The second transfer phase (phase 3) 
took participants approximately 8 minutes to complete. All 
material in phase 3 was presented on paper.  

Results  
Four participants (two Diagram and two No Diagram) 

were removed from the analysis because they failed to learn  

Table 3. Mean accuracy (percent correct) on learning and 
isomorphic transfer. Note: Standard deviations are presented 

in parentheses. Chance performance is 37.5% 

  Learning Transfer 
No Diagram 78.9 (14.5) 78.5 (17.8) 

Diagram 85.2 (8.95) 74.5 (22.1) 
 
 
the concept in phase 1; their learning scores were less than 
11 and no different than the chance score of 9 (i.e. 37.5%). 

Note that for the following analyses, learning scores and 
isomorphic transfer scores were not normally distributed in 
the Diagram condition; the distributions were negatively 
skewed  (SWs <.89, dfs = 18, ps < .04).  In addition, non-
isomorphic transfer test scores had bimodal distributions in 
both conditions. Therefore, non-parametric analyses were 
done to examine each of these scores.   

Participants in both conditions successfully learned the 
concept (see Table 3).  Learning scores were above chance 
in both conditions, Wilcoxon Signed Ranks Test, Zs > 3.72, 
ps < .001. There were no significant differences in learning 
levels between conditions, Mann-Whitney U test, U = 123.5, 
p = .22. 

In phase 2 (i.e. testing of an isomorphic transfer domain), 
participants also performed well in both conditions (see 
Table 3). Scores were above a chance score of 37.5%, in 
both conditions, Wilcoxon Signed Ranks Test, Z s > 3.63, ps 
< .001.  Note that previous research demonstrated that 
without initially learning an isomorphic domain, 
participants were unlikely to score above chance on this 
transfer task (Kaminski, et al, 2008, 2013).  Therefore, it 
appears that participants in both conditions successfully 
transferred structural knowledge acquired in phase 1 to 
answer questions about the isomorphic domain in phase 2. 
No significant difference in transfer scores between the two 
conditions was found, Mann-Whitney U test, U = 151.0, p = 
.74. 

In addition, most participants in both conditions 
accurately matched analogous elements across the learning 
and isomorphic transfer domains (83% in the Diagram 
condition and 78% in the No Diagram condition), 
suggesting that they successfully aligned analogous 
structure across the two domains.  The percent of 
participants in both conditions was well above chance of 
33% and not different between conditions, Fisher Exact test, 
ps = 1.00.  

While there were no differences in performance levels 
between conditions for phases 1 and 2, there were 
significant differences in performance in phase 3 (i.e. testing 
on a non-isomorphic domain of similar structure).  Scores in 
the Diagram and No Diagram conditions had bimodal 
distributions; Table 4 presents the frequency of scores at 
different levels.  Transfer scores were higher in the Diagram 
condition (M = 67.8, SD = 9.69) than in the No Diagram 
condition (M = 41.1, SD = 7.79), Mann-Whitney U test, U =  
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Table 4. Percent of participants in each condition scoring 
at different levels on the non-isomorphic transfer task. 

 Accuracy Level 
 Low 

(0-40%) 
Middle 

(50-70%) 
High 

(80-100%) 

Baseline 61 33 6 
No Diagram 61 17 22 

Diagram 39 0 61 
 
 
97.5, p < .04. Furthermore, scores in the Diagram condition 
were higher than scores in the Baseline condition (M = 
41.1%, SD = 19.1%), Mann-Whitney U test, U = 107.0, p < 
.04, one-tailed. However, scores in the No Diagram condition 
were not significantly different than those in the Baseline, U 
= 144.5, p = .58. This finding suggests that the majority of 
participants in the Diagram condition were able to transfer 
knowledge of the cyclic group order 3 to the non-isomorphic 
cyclic group of order 4, but the majority of participants in the 
No Diagram condition were not able to do so.  
 

Discussion 
The goal of the present study was to investigate transfer of 
mathematical knowledge when learning a strictly sentential 
representation versus learning a diagrammatic 
representation. This study considered transfer to a novel 
isomorphic domain as well as transfer to a novel non-
isomorphic domain of the same structural class.  Both 
formats resulted in equally successful learning and 
isomorphic transfer.  However, participants who learned the 
diagram were more successful at non-isomorphic transfer 
than those who learned only the sentential format.  These 
findings suggest that although the diagram added non-
essential information, this information did not hinder 
learning or isomorphic transfer.  Moreover, the inclusion of 
this information resulted in a clear advantage for non-
isomorphic transfer.   

Previous research has demonstrated that learning 
instantiations that include extraneous information hinder 
transfer of mathematical knowledge to novel isomorphs 
because the extraneous information is generally salient and 
likely diverts attention from the relevant structure 
(Kaminski et al, 2008, 2011, 2013).   Compared to strictly 
sentential representations, diagrams also communicate 
nonessential information to the learner.  For example, in the 
present study, it is not necessary to include the diagram; the 
same rules and associations were learned equally well in the 
No Diagram condition.  Clearly standard diagrams such as 
tree diagrams, matrices, and graphs also communicate 
nonessential information.  However while the information 
added by a diagram is nonessential, it is not necessarily 
irrelevant.  Effective diagrams use visual information to 
spatially organize elements of a system in a way that 

highlights relations and relevant structure and does not 
divert attention from the structure.  Such diagrams may help 
to communicate global structure of the system in manner 
that can be modified if necessary to incorporate a different 
number of elements.  

In the current study, the diagram was circular and likely 
helped to communicate the cyclic nature of the group and 
the fact that any element can be obtained as a result of 
operations involving the other elements. It is more difficult 
to recognize the cyclic nature of the relationship between 
elements in the strictly sentential format.  Even if learners 
had constructed a schematic representation of the concept 
from the sentential format without the diagram, the schema 
appears to reflect only local associations between three 
elements and not a more global structure that can be 
modified and applied to non-isomorphic situations.  

With regard to structural alignment, participants in both 
conditions were equally accurate at matching analogous 
elements, possibly suggesting structural alignment. 
However it is not clear that this element-level matching is 
necessary when learning the diagram or whether global 
structure can be mapped from learned to target domains 
without one-to-one correspondence of elements.   

Successful non-isomorphic transfer from learning the 
diagram suggests that participants have formed a more 
sophisticated internal representation of a structural class of 
mathematical entities, in this case cyclic groups of different 
orders.  Recognizing that different mathematical entities can 
fall into the same structural categories is an important part 
of advancing mathematical knowledge.  For example, 
algebra students should be able to modify techniques for 
solving systems of equations of two variables to solve 
systems of equations of more than two variables.  Similarly, 
college students should recognize that slope of a line is an 
instance of derivative of a function.  An effective diagram, 
if available, may help illuminate structure in a way that 
allows modification of the number of elements.   Standard 
mathematical diagrams such as matrices, graphs, networks, 
and Venn Diagrams do precisely this.  

At the same time, there may be limitations to the benefit 
of diagrams. The inclusion of diagrams may not always 
facilitate initial learning.  Correct interpretation and use of 
diagrams requires additional learning beyond learning 
standard sentential representations.  For some combinations 
of concepts, diagrams, and learners, such as those 
considered in this study, a diagram is easily learned.  
However, this is not always the case. For example, in 
middle school students, diagrams provided a benefit for 
solving algebraic word problems only for older students and 
high-achieving students, but not for younger students and 
lower-achieving students (Booth & Koedinger, 2012). Some 
concepts may be simple enough to be learned without such 
additional representations.  For more difficult concepts, 
some learners may be unable to fully learn the diagram and 
the relationship between the diagram and standard sentential 
formats such as equations.   
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It is also important to note that while a diagram is a visual 
representation of the elements and relations of a system, it is 
meaningless without knowledge of how to interpret it. The 
diagram used in the present study involved the visual 
representation in Figure 1 along with the procedure of how 
to use it.  The same is true for common mathematical 
diagrams such as multiplication tables and Cartesian graphs. 
These well known diagrams easily communicate 
information to us only because we have been explicitly 
taught procedures for constructing and interpreting them.     

Learning diagrams in addition to standard sentential 
mathematics may require additional effort.  For some 
learners and some diagrams, this may be challenging.  
However, the benefit of well-designed diagrams is likely 
worth the effort. Once learned, diagrams likely can provide 
advantages for transfer to isomorphic situations and many 
non-isomorphic situations.    
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