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ABSTRACT OF THE DISSERTATION

Signature Search Method Development and Application in Drug Discovery
by
Yuzhu Duan

Doctor of Philosophy, Graduate Program in Genetics, Genomics and Bioinformatics
University of California, Riverside, March 2022
Dr. Thomas Girke, Chairperson

This dissertation is about the development of gene expression signature (GES)
search methods and their application in drug discovery, specifically for promoting healthy
aging. GES searching is a powerful technology facilitating the identification of drugs for
treating diseases and drug repurposing. This is achieved by identifying drugs in GES
databases inducing signatures similar to query GESs obtained from diseased samples or
drug treatments. The new connections are useful for developing pharmacological interven-
tions. This dissertation is divided into the following three components. First, I developed
the signatureSearch R/Bioconductor package that integrates existing and novel methods
for GES searching and functional enrichment analysis (FEA). Subsequently, I tested the
performance of different GES search methods. They represent the first systematic perfor-
mance tests of these methods in the field. Second, I applied signatureSearch to the human
healthy aging field to reveal insights into longevity associated (LA) drugs and their tar-
gets by searching the Integrated Network-based Cellular Signatures (LINCS) database. For

this, I assessed the performance of LINCS drugs, inducing GESs representative for their



mechanism of action (MOA), by computing for each MOA a recall score based on the GES
similarity of the corresponding drugs. The obtained recall scores were used to prioritize LA
drugs in the downstream discovery. LA MOA categories along with the corresponding drugs
were identified by querying LINCS with GESs of drugs present in LINCS and DrugAge, and
scoring the enrichment of each MOA. The corresponding LA pathways were identified via
global mapping of targets of LA drugs and MOA categories. Next, I searched LINCS with
the GESs from 11 well-studied LA drugs and one longevity phenotype. To identify LA path-
ways, the targets of the newly identified LA drugs were used for FEA. The results from the
three steps were integrated and then interrogated with a combinatorial approach to select
the most reliable set of LA drugs and targets. Collectively, this study identified a list of
drugs, targets and pathways useful for pharmacological lifespan extension strategies. Third,
I developed several data packages to incorporate in signatureSearch detailed annotations of

drugs and targets from different community databases.
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Chapter 1

Introduction

1.1 Overview

Genome-wide profiling technologies for mRNAs and proteins provide comprehensive record-
ings of biological processes. Their high-resolution can be used to distinguish cell and tissue
types, and to classify dynamic cellular processes into distinct biological states such as de-
velopmental stages, defense responses to perturbagens, as well as to separate healthy from
diseased phenotypes [109, 173]. To take full advantage of the fingerprint-level selectivity of
the technology, so called Gene Expression Signature (GES) Search (GESS) algorithms are
essential to accurately quantify the similarities among mRNA or protein profiles available
in reference databases. With these methods one can identify similar GESs that are likely
to be induced by the same or related biological mechanisms [162]. This approach is analo-
gous to the similarity-function principle used in many areas of biology, such as in genomics
where genes with a high degree of sequence similarity are likely to share similar molecular

functions.



With the availability of databases containing GESs of thousands of treatments
tested on many cell types, it is now possible to systematically search for genetic backgrounds,
diseases, physiological conditions or small molecules inducing gene expression responses that
are similar to a query GES. Both positively or negatively correlated search hits can provide
insights into previously unknown connections among biological networks. For example,
distinct diseases may lead to overlapping mRNA expression patterns resulting from the
same or related immune response processes. Mutations inducing similar GESs may allow to
functionally associate them with biological processes even if the affected genes do not share
detectable sequence similarities. Similarly, drugs used for different therapeutic applications
may have similar GESs due to related mode of actions (MOAs). Among other leads, this
information can be used for identifying novel drug targets or for developing drug repurposing
approaches [34]|. Ultimately, the technology has the potential to lead to the discovery of
novel pharmaceutical treatments for diseases, such as for health conditions characterized by
specific GESs that are anti-correlated with those of candidate drugs. Beyond these utilities,
the GESS technology has a wide application spectrum for addressing fundamental research
problems in biology and human health.

An important requirement for the GESS technology is the availability of reference
databases containing GESs suitable for addressing specific research questions. GESs can
be composed of gene sets (GSs), such as the identifier sets of differentially expressed genes
(DEGs), or various types of quantitative gene expression profiles (GEPs) for a subset or
all genes measured by a gene expression profiling technology. Some publications refer with

the term GES mainly to GSs, or use as extended terminology ‘qualitative and quantitative



GESs’ [28]. For clarity and consistency, I defines GES as a generic term that comprises both
GSs and GEPs [109]. This generalization is important, because several GESS algorithms
are introduced here that depend on reference databases containing GSs in some and GEPs
in the majority of cases generated with various statistical methods. To also distinguish the
queries (Q) from the entries in the reference databases (DB), they will be referred to as
GES-Q and GES-DB entries in general descriptions, and as GS-Q or GEP-Q, and as GS-DB
or GEP-DB in specific cases, respectively.

Three major approaches are commonly used to assemble community GES-DBs.
First, they can be assembled from the results of published genome-wide expression experi-
ments. Due to the heterogeneous nature of how result tables are organized in publications,
the corresponding publication-based collections are often composed of GSs (e.g. DEGs in
GS-DBs). Examples in this category include GeneSigDB, MSigDB, DSigDB and GSKB
[22, 117, 36, 107, 228]. Second, both GS-DBs and GEP-DBs have been assembled by sys-
tematically re-analyzing genome-wide expression data from public repositories such as GEO
[201, 136]. This reanalysis approach allows to include the corresponding numeric expression
data, while also using consistent statistical methods for normalization, DEG detection and
other analysis routines across studies. Third, large-scale experimental screening efforts have
been used to assemble GEP-DBs, such as for a wide range of genetic and drug perturbation
measurements across many cell types. These de novo screening efforts allow a high level of
control over both experimental conditions as well as statistical analysis methods. Specific
examples of GEP-DBs are described in the next paragraph. Importantly, all three categories

of GES-DBs are supported by the GESS methods.



One of the first screening-based GEP-DBs [86] was developed by Hughes et al.
(2000). It contained GEPs of 300 diverse mutations and chemical treatments to functionally
annotate both small molecules and genes in yeast. The study demonstrated that the cellular
pathways perturbed by genetic modifications or small molecules can be determined by pat-
tern matching. In mammalian biology, Ganter et al. (2005) generated a large-scale GEP-DB
containing perturbations of several rat tissues with 600 drugs [59]. They also demonstrated
the utility of GEP-DBs for predicting pathological events in rats. However, these in vivo
studies did not easily scale to larger quantities of small molecule assays mainly due to the
high cost and time of performing compound screens on living animals. Lamb et al. (2006)
generated the first large-scale mammalian cell line-based GEP-DB, called ‘Connectivity Map’
or CMAP [109]. Initially, it included GEPs for 164 drugs screened against four mammalian
cell lines [140]. A few years later CMAP was extended to CMAP2, which contains GEPs
for 1,309 drugs and eight cell lines. More recently, a much larger GEP-DB was released by
the Library of Network-Based Cellular Signatures (LINCS) Consortium [186]. In its initial
release, the LINCS database contained perturbation-based GEPs for 19,811 drugs tested on
up to 70 cancer and non-cancer cell lines along with genetic perturbation experiments for
several thousand genes. The number of compound dosages and time points considered in the
assays has also been increased by 10-20 fold. The CMAP/CMAP2 databases use Affymetrix
Gene Chips as the platform for expression analysis. To scale from a few thousand to many
hundred thousand GEPs, the LINCS Consortium uses the more economic L1000 assay. This
bead-based technology is a low cost, high-throughput reduced representation expression

profiling assay. It measures the expression of 978 landmark genes and 80 control genes by



detecting fluorescent intensity of beads after capturing the ligation-mediated amplification
products of mRNAs [140]. The expression of 11,350 additional genes is imputed from the
landmark genes by using as training data a collection of 12,063 Affymetrix gene chips [37].
The substantial scale-up of the LINCS project provides many new opportunities to explore
MOAs for a large number of known drugs and experimental drug-like small molecules. Com-
plementary proteomics GES-DBs are also being developed by several community projects
[50]. Additional large-scale expression data and databases, where GESS applications can
lead to interesting findings, consider cancer, tissue-specific, and single cell assays, such as
TCGA, GTex and Single Cell Portal, respectively [21, 69, 1].

Because GESS results are usually composed of complex lists of perturbagens (e.g.
drugs) ranked by their GES similarity to a GES-Q of interest, their functional interpretation
is difficult with respect to the cellular networks and pathways affected by the top ranking
results. In the case of drug-based GES-DBs, one can overcome this challenge by utilizing the
knowledge of the target proteins of the top ranking drugs to perform functional enrichment
analysis (FEA) based on community annotation systems, such as Gene Ontology (GO),
pathways (e.g. KEGG, Reactome), drug MOAs, or Pfam domains. To perform this analysis,
the ranked drug sets are converted into the corresponding target gene/protein sets they
modulate, and then Target Set Enrichment Analysis (TSEA) based on a chosen functional
annotation system is pursued. Alternatively, the functional annotation categories of the
targets can be assigned to the drugs directly to perform Drug Set Enrichment Analysis

(DSEA).



1.2 Need to Develop GESS Software Environment

Currently, no one-stop software solution is available to perform the analyses outlined above
in an integrated manner using a variety of GESS/FEA algorithms across several pre-built or
custom GES-DBs. Previous work in this field includes web-based tools |43, 186, 109, 181, 147|
and standalone software [111, 162|. Both types are usually restricted to the usage of specific
pre-configured GES-DBs of limited size with insufficient options to choose among GESS
methods. To address these limitations, I have developed the signatureSearch software. This
R/Bioconductor package provides several important enhancements to the field including
access to: (a) an integrated and flexible analysis environment for GESS applications; (b) a
wide range of GESS methods; (c¢) novel enrichment algorithms for interpreting GESS results;
(d) data containers, classes and accessor methods designed to scale to very large GES data
sets; (e) batch query support for large-scale applications; (f) access to several large pre-built
GES-DBs; as well as (g) support for searching custom GES-DBs.

A substantial amount of development effort has been invested by this project to
provide efficient access to some of the largest GES-DBs that are currently available in the
public domain (e.g. CMAP2 and LINCS). Since those databases are designed around chemi-
cal perturbation experiments, this project will mainly apply the signatureSearch in the drug
discovery field. In this context it is important to emphasize that the design of signature-
Search is highly generic, meaning it can be used for GES-Qs and GES-DBs from many other

research areas in biology or human health.



1.3 Discovery of Healthy Aging Drugs

The GESS/FEA environment implemented in the signatureSearch software can be
applied to the human longevity field to discover novel longevity associated drugs. Human
longevity and healthy aging is a major worldwide medical challenge. It is difficult to iden-
tify drugs and compounds that extend human lifespan since human longevity and healthy
aging are interconnected and multifaceted phenotypes involving sex differences, genetic, epi-
genetic, environmental, and lifestyle components. Large epidemiological and genetic studies
at the national and international levels have identified genetic markers that are both cor-
related, and in more isolated cases, causally linked to molecular mechanisms promoting
longevity. Genetic risk factors for developing aging-related diseases include mutations in
BRCA1, TP53, KRAS and EGFR, whereas lifespan promoting genetic changes comprise
ablation of IGF-1, GHR, PAPP-A, IRS2, apolipoprotein E (APOE) and Forkhead Box O
3A (FOXO03A) [125, 183, 7, 163, 32, 213|. Certain epigenetic modifications, such as DNA
methylation, are also linked to lifespan increases and aging related diseases |75, 94, 108, 189].
Studies have shown that siblings of nonagenarians [209] and of centenarians [143, 214, 164|
have a high probability of living nearly 100 years, lower mortality rate and delayed onset of
age-related diseases [191, 144|. Apart from genetic factors, several studies have demonstrated
that longevity is amendable to diet and exercise including calorie restriction in the absence
of nutrient deprivation, intermittent fasting, as well as restriction of protein, methionine
and tryptophan [53]. Further, a higher than normal concentration of centenarians live in so
called blue zones of the world. Most likely, the average lifespan within these blue zones has

increased over the past decades mainly because of specific lifestyle choices and environmen-



tal conditions, rather than genetic factors [127, 19, 35]. The important role genes play on
human healthy aging and the discovery that lifespan can be extended via both behavioral
and dietary modifications demonstrate the possibility of identifying functional pathways re-
lated to healthy aging and developing broadly applicable therapeutic interventions for the
prevention of aging-related disorders [53, 87, 165].

Additional analyses have delineated a number of longevity associated pathways
(LAPs) including energy metabolism, cholesterol and lipid metabolism, inflammation, DNA
damage response and repair [39], telomere length maintenance [3|, and heat shock response
[160]. In addition, researchers have found that signaling pathways involved in detecting
and interpreting nutrient or energy levels, such as the insulin/insulin-like growth factor 1
(IGF-1) signaling pathway [213, 95|, mechanistic target of rapamycin (mTOR) [93], and
adenosine monophosphate-activated protein kinase (AMPK) [53, 190] play important roles
in regulating transcriptional responses associated with extended reproduction, growth, and
lifespan. Clinical studies also demonstrated that genes implicated in lipoprotein metabolism,
cardiovascular homeostasis, immunity, and inflammation may have a strong impact on ag-
ing, age-related diseases, and organism longevity [163, 24, 40]. Thus far, there has been only
limited success translating these findings into life span enhancing pharmacological interven-
tions. In part this is due to a limited ability of identifying compounds that elicit changes in
gene expression similar to those involved in longevity.

To date, many pharmaceutical agents have been identified that target LAPs and
may have positive effects on lifespan. Most of the well-studied drugs or small molecules

that can be used to extend life span in model organisms are populated and curated in



the DrugAge [6] database, which is manually curated by experts and contains an exten-
sive compilation of drugs, compounds and supplements (including natural products and
nutraceuticals) with anti-aging properties. At the time of writing, DrugAge contains 1,832
assays manually curated from 469 publications featuring 567 different life-span extending
compounds from studies across 30 model organisms, including worms, flies, yeast and mice
(http://genomics.senescence.info/drugs/). It can be used as a reference database to
further identify and prioritize candidate longevity associated drugs (LADs). The drugs that
are listed as compounds in testing (CIT) in longevity assays from the Interventions Test-
ing Program (ITP) at the National Institute on Aging [206] can also be a LAD resource.
Among these agents are tanespimycin, minocycline, acarbose, resveratrol, aspirin, curcumin,
estradiol, simvastatin, rapamycin, and metformin. They are currently under consideration
to be used as pharmacological interventions to prevent and/or reverse aging related diseases
[15, 185, 171, 78, 8, 80, 76, 178, 112, 57|. Rapamycin (also known as Sirolimus) is an FDA
approved drug for preventing organ transplant rejection and treating a rare lung disease
with its immunosuppressant activity in humans. It inhibits the mTOR pathway, slows the
aging process and extends lifespan in mice, yeast, worms, and flies [92]. However, systematic
studies are missing to determine which FDA approved and novel medications are promising
candidates for translational lifespan promoting interventions in humans.

The GESS technology can be used to various applications for designing novel
health- and lifespan- promoting interventions. The effectiveness of the approach has been
demonstrated in a wide range of biological areas [109, 227, 198, 205, 224, 102, 174]. Addi-

tionally, the technology has been applied to questions related to aging and longevity in mice
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and humans [158, 195, 89]. However, the application of GESS for systematic identification of
compounds with potential lifespan extending properties has not been performed yet. To ad-
dress the knowledge gap, this study used GESS analyses to characterize drugs based on GES
similarities followed by FEA using known molecular targets of the top ranking compounds

to identify and functionally characterize new and existing LADs and LAPs.

1.4 Integration of Annotations from Other Sources

As extensions of the signatureSearch package, I developed several data packages
that incorporate detailed annotations and structures of drugs to facilitate the interpretation
of GESS results. The chosen annotations focus on drug-target information from different
community databases, including DrugBank, DrugAge, CMAP2 and LINCS. Databases such
as PubChem [101]|, ChEBI [79], ChEMBL [61], and DrugBank [215] provide nomenclature,
structure and/or physical properties of large numbers of compounds and their drug tar-
gets. One of the databases used for extending signatureSearch is DrugBank. It covers
sequence, structure and mechanistic data about drug molecules with their gene/protein tar-
gets [216]. It also contains information about clinical and drug repurposing trials [215].
At the time of writing this thesis, the DrugBank database contained a total number of
14,549 drugs, including 11,898 small molecules, 2,651 biotech drugs, and 4,167 approved
drugs (https://go.drugbank.com/stats). Another database included here is CMAP2.
It provides information about the experimental design of bioassay results of drugs, their
names, identifiers and SMILES strings. Additional annotations such as Mechanism of Ac-

tions (MOAs) were obtained from PubChem and DrugBank. Drug annotation from LINCS
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were also integrated. This provides for over 20,000 small molecules screened with GES
data from LINCS their names, SMILES strings, targets, MOAs, etc. The annotation and
structure data from these sources were organized in an SQLite database and combined with
efficient accessor functions to access the data from R. The resulting R/Bioconductor data
package was named customCMPdb.

To obtain via a web interface drug-target annotations for any gene or protein list
provided by users, I developed the Shiny web application geneTargetAnno. If the gene ids
in the users’ provided gene table are included in the application’s url, the gene ids can be
easily linked to application’s drug-target annotation page to retrieve the targeted drugs and
their structures for the query genes. The provided gene table can be from any type of bio-
logical studies, such as the differential expressed (DE) genes that are from DE analysis on
the biological state of interest, or genes affected by single nucleotide polymorphisms (SNPs)
prioritized by a genome-wide association study (GWAS) project. It can be used to identify
the directly targeted drugs for genes of interest, thus to further identify candidate drugs and
potential treatments of diseases if dysregulation of the input genes are related to the disease
status. Shiny is a web application framework for R. It can be used to easily build interactive
web apps directly from R (https://shiny.rstudio.com/). The developed Shiny apps can
be run locally or deployed on web services including AWS and shinyapps.io. The geneTar-
getAnno service integrates annotations about drug-target interaction, tested organisms and
structure information from DrugBank and STITCH (Search Tool for Interacting Chemi-
cals). The latter contains protein—chemical interaction networks obtained from databases

and prediction methods [188]. The most recent release of the STITCH database contained
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data from more than 9,600,000 proteins of 2,031 eukaryotic and prokaryotic genomes, and
430,000 compounds (http://stitch.embl.de).

The R/Bioconductor packages and Shiny web service developed by this project
provide several important enhancements to the cheminformatic field including (a) access
to a pre-configured SQLite database containing is a comprehensive collection of compound
annotations from DrugBank, DrugAge, CMAP2 and LINCS; (b) query functions for drug-
target analysis as well as obtaining detailed compound annotations; (c) compatibility with
other cheminformatics tools such as ChemmineR for a variety of compound rendering, sim-
ilarity search and clustering methods, as well as (d) data containers, classes and accessor

methods designed to add and query custom compound annotations.
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Chapter 2

signatureSearch Tool

2.1 Abstract

signatureSearch is an R/Bioconductor package that integrates a suite of existing
and novel algorithms into an analysis environment for gene expression signature (GES)
searching combined with functional enrichment analysis (FEA) and visualization methods
to facilitate the interpretation of the search results. In a typical GES search (GESS), a query
GES is searched against a database of GESs obtained from large numbers of measurements,
such as different genetic backgrounds, disease states and drug perturbations. Database
matches sharing correlated signatures with the query indicate related cellular responses
frequently governed by connected mechanisms, such as drugs mimicking the expression re-
sponses of a disease. To identify which processes are predominantly modulated in the GESS
results, I developed specialized FEA methods combined with drug-target network visualiza-
tion tools. The provided analysis tools are useful for studying the effects of genetic, chemical

and environmental perturbations on biological systems, as well as searching single cell GES
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databases to identify novel network connections or cell types. The signatureSearch software
is unique in that it provides access to an integrated environment for GESS/FEA routines
that includes several novel search and enrichment methods, efficient data structures, and

access to pre-built GES databases, and allowing users to work with custom databases.

2.2 Materials and Methods

2.2.1 Implementation

signatureSearch has been implemented as an open-source Bioconductor package us-
ing the R programming language for statistical computing and graphics. The affiliated data
package signatureSearchData, provides direct access to large data sets, such as pre-built
GES-DBs and annotation databases that are hosted on Bioconductor’s ExperimentHub.
Both packages are freely available for all common operating systems. To optimize reusabil-
ity and performance, their functions and data containers are designed based on existing
Bioconductor S4 core classes. Some of the time consuming computations have been imple-
mented in C++ using R’s C++ interface. Additional implementation details are provided
in the Software Design section below. Up-to-date source locations and versions of data sets

are provided in the vignettes and help files of the two packages.

2.2.2 Data Types of Queries and Databases

As outlined in the Introduction section, GESs of both queries and those stored
in databases can be composed of GSs, or various types of quantitative GEPs for all genes

measured by a gene expression technology or only a subset of them. Depending on the extent
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the expression data have been pre-processed, the following distinguishes four major levels,
where the first three and fourth belong into the GEP and GS categories, respectively. These
four levels are: (1) normalized intensity or count values from hybridization- and sequencing-
based technologies, respectively; (2) log fold changes (LFC) usually with base 2, Z-scores or
p-values obtained from analysis routines of DEGs; (3) rank transformed versions of the GEPs
obtained from the results of level 1 or 2; and (4) GSs extracted from the highest and lowest
ranks under level 3. Typically, the corresponding GSs are the most up- or down-regulated
DEGs observed among two biological states, such as comparisons among untreated vs. drug
treatment or disease state. The order the DEG identifier labels are stored may reflect their
ranks or have no meaning. When unclear, the text specifies which of the four pre-processing

levels were used along with additional relevant details.

2.2.3 Reference Databases

The GESS algorithms and data structures provided by signatureSearch and signa-
tureSearchData, respectively, are designed to work with most genome-wide expression data
including hybridization- and sequencing-based methods, such as Affymetrix or L1000, and
RNA-Seq. Currently, the pre-built GES-DBs in signatureSearchData include GEP data from
the CMap and LINCS projects that are largely based on drug and genetic perturbation ex-
periments performed on variable numbers of human cell lines [109, 186, 47]. The CMap data
were downloaded from the CMap project site (Version build02), and the LINCS data have
been downloaded from GEQO. Additional details on the content and design of these databases
are provided in the Introduction of this article. In signatureSearchData these data sets have

been pre-processed to be compatible with the different GESS algorithms implemented in
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signatureSearch (Table 2.1). Additional details about pre-processing routines are available
in the following section as well as the package documentation. In addition, the package
provides functions along with user instructions for generating custom databases that are
compatible with the corresponding GESS methods. Moreover, instructions are provided
how to work with other public domain GES-DBs including GS-DBs, such as MSigDB and

GSKB |22, 117, 36, 107, 228].

2.2.4 Pre-processing and cutoffs for queries and databases

The quantitative gene expression profiling (GEP) data used by this study were
downloaded from Bioconductor’s ExperimentHub with utilities provided by the signature-
SearchData package. The latter provides pre-configured data sets for this project. At the
time of writing, the GEP databases (GEP-DBs) included in signatureSearchData are LINCS
and CMAP2 [109, 186]. Since the experiment section of this article uses LINCS data, the
following focuses on the pre-processing and filtering routines of this dataset. The non-
quantitative gene sets (GSs) used as GS queries (GS-Qs) and GS databases (GS-DBs) in the
article were also extracted from LINCS. The corresponding filtering parameters for obtaining
these GSs are given in the next paragraph. Similar information, with additional details for
both LINCS and CMAP2, is available in the vignette of the signatureSearchData package.
Although CMAP2 was not used in the experiment section of this article, the following does
include an overview of the corresponding pre-processing routines of this data set mainly to

illustrate how to use CMAP2 instead of LINCS for similar analyses.
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LINCS GEP data

The Broad Institute has generated the LINCS GEP data with the bead-based L.1000
assay for gene expression profiling. Since this technology is not widely used yet and pre-
processing methodologies for its data are limited in the public domain, I have chosen to use
the pre-generated data instances from the LINCS project directly rather than attempting to
regenerate them from raw data. The GEP data from LINCS data can be downloaded from
GEO in 5 different pre-processing levels [186]. Level 1 data are the raw mean fluorescent
intensity values that come directly from the Luminex scanner. Level 2 data are the expression
intensities of the 978 landmark genes. They have been normalized and used to impute the
expression of an additional set of 11,350 genes, forming Level 3 data. A robust Z-scoring
procedure was used to generate differential expression values from the normalized profiles
(Level 4). Finally, a moderated Z-scoring procedure was applied to the replicated samples
of each experiment (mostly 3 replicates) to compute a weighted average signature (Level 5).
For a more detailed description of LINCS’ pre-processing methods, readers want to refer to
the methods section in the corresponding publication by Subramanian et al., 2017 [186].

The differential expression data from LINCS used in this article are level 5 Z-
scores. Since some GESS methods such as gCMAP and Fisher require gene sets in the
reference database, Z-score cutoffs can be used to filter for sets of up- and down-regulated
differentially expressed genes (DEGs). In this article, the corresponding up or down DEG
sets were obtained with Z-score cutoffs of > 1 or < —1, respectively. In signatureSearch,
these Z-score cutoffs can be assigned to filtering arguments to generate either query or

database instances meeting the corresponding Z-score constraints. Examples of GS-DBs
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where this is relevant are those used by the gCMAP and Fisher GESS methods. In addition
to using Z-score cutoffs, GS-Qs can also be extracted by specifying a fixed number of the most
extremely up- and down-regulated genes, such as the top 150 up- and down-regulated DEGs,
respectively. Whether GS-Qs or GS-DBs instances were obtained by Z-score or number
cutoffs is specified in the corresponding sections of the article. If the cutoff parameters
deviate from the above default values then they are given as well. Examples of GESS
function calls related to these routines are provided in the vignettes of the software and
data packages of the signatureSearch environment. For instance, the subsection ‘DEG and

Cutoff Definitions’ in the signatureSearchData vignette provides details on this topic.

CMAP2 GEP data

This section provides a short overview of the CMAP2 data pre-processing steps
to illustrate how this drug-perturbation GEP-DB could be used instead of LINCS for the
performance test and proof-of-concept experiments included in this article. Both databases
are supported by signatureSearchData, but for consistency I only used the LINCS database
in the experimental sections. Since the Affymetrix GeneChip® technology used by CMAP2
is supported by a rich ecosystem of widely used analysis software, I generated the pre-
processed and final data tables for this data set from the corresponding raw files (here
CEL files), and deposited the results on Bioconductor’s ExperimentHub for easy access
with signatureSearchData. To compare the search results generated with the CMAP2 online
service and the GESS methods from signatureSearch, 1 also included the CMAP2 rank
matrix that is based on rank transformed differential expression values for all assayed genes.

The latter can be downloaded from the CMAP2 project site. For the raw data processing
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from CEL files, normalized gene expression data were generated with the MAS5 algorithm
[142]. Next, the DEG analysis was performed with the limma package [154] using the
experimental design table included in the CMAP2 data set to define replicates, as well as
control and treatment samples. The statistical result tables generated by limma, including
LFC values, p-values and false discovery rates (FDR), were saved to the HDF5 files I am
hosting on Bioconductor’s ExperimentHub. These statistical values can be used by the query
retrieval and GESS methods in signatureSearch to define DEGs with single or combinatorial
cutoff parameters, such as DEGs that have an LFC value of > 1 or < —1, and an FDR of
< 0.01. Although the LINCS and CMAP2 result tables had to be generated with different
statistical methods, one can filter in both cases for DEGs with cutoffs that can be applied
to statistical values with comparable meaning (e.g. LFCs can be used instead of Z-scores).
Detailed instructions along with the corresponding R code for creating the corresponding
gene expression and statistical result tables are provided in the CMAP2 pre-processing
sections of the signatureSearchData vignette. For instance, instructions for defining DEG
sets with combinatorial filters of statistical parameters are given in the Supplement section

of the vignette under ‘DEG and Cutoff Definitions’.

2.2.5 Compatibility Among Data Types

The types of query and database GESs that can be combined in a search usu-
ally depends on the chosen GESS algorithm. To avoid incorrect selections for users, the
corresponding GESS functions in signatureSearch enforce the usage of compatible query
and database combinations. Which GES types are compatible with each search method is

summarized in Table 2.1.

19



Table 2.1: Categories of GESS algorithms by data types. The table compares the different
data types used as queries and databases by the GESS methods implemented in signa-
tureSearch. The specific GEP types used by the methods are: ?rank transformed profiles,
b7Z-scores, “normalized intensities or read counts. 9Pearson or Spearman correlation coeffi-
cient.

Category Method Query Database
CMAP GS Rank®
gCMAP Rank GS

Set-based LINCS GS Z-scores?

Fisher exact GS GS

Correlation | PCC/SCCY  LFC or SIG® LFC or SIG

2.2.6 Overview of Analysis Workflow

A typical analysis workflow in signatureSearch consists of three major steps (Figure
2.1). First, GESS methods are used to identify biological states or perturbagens such as
drugs that induce GESs similar to a query GES of interest. The queries can be GSs or GEPs
from genetic, drug or disease perturbations, as well as from many other experiment types.
When using a GES-DB based on drug perturbations such as LINCS, then the MOAs of
most drugs represented by GESs in the corresponding reference databases are known. With
this information one can associate a query GES with the corresponding molecular mecha-
nisms including available drug-target interactions. The obtained connections are useful to
gain insights into pharmacological and/or disease mechanisms, and to develop novel drug
repurposing approaches. Second, specialized functional enrichment analysis (FEA) methods
using annotations systems, such as Gene Ontology (GO), pathways or Disease Ontology
(DO), have been developed and implemented in this package to efficiently interpret GESS
results. The latter are usually composed of lists of perturbagens (e.g. drugs or mutations)

ranked by the GES similarity scores returned by a chosen GESS method. Interpreting
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these lists of perturbagens without signatureSearch’s functional interpretation methods is
extremely difficult. Third, network reconstruction functionalities are integrated for visual-
izing the final results, e.g. in form of drug-target networks (DTN). Figure 2.1 illustrates the
major steps of a typical workflow in signatureSearch. For each GESS and FEA step, sev-
eral alternative methods have been implemented in signatureSearch to allow users to choose
the best possible workflow configuration for their research application. Basic guidelines for
choosing software tools are provided below as well as in the documentation of the package.
The individual search and enrichment methods are introduced in the sections below.

For users working in drug discovery or chemical genomics, a rich suite of chemoin-
formatics functionalities is readily available to enhance the above workflow via the affiliated
ChemmineR package [23, 203|. This way one can start with structure similarity searches to
first identify related drugs represented as perturbagens in a GES database. Subsequently,
the corresponding GESs are used as queries in the above GESS/FEA workflow. Moreover,
one can cluster GESS results by structural or physicochemical similarities of the correspond-
ing small molecules, e.g. to assess the quality of GESS results. The approach is based on
the assumption that related compounds are more likely to induce similar GESs resulting in

similar GESS rankings.

2.2.7 Analysis Methods

The following describes the methods used within each of the three major steps of

a stgnatureSearch analysis workflow.
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Figure 2.1: Overview of GESS and FEA workflow. GES queries are used to search a drug-
based GES reference database for drugs inducing GESs similar to the query. To interpret
the results mechanistically, the GESS results are subjected to functional enrichment analy-
sis (FEA) including drug and target set enrichment analyses (DSEA, TSEA). Both identify
enriched functional categories (GO terms and/or KEGG pathways) in the GESS results.
Subsequently, drug-target networks (DTNs) are reconstructed for visualization and inter-
pretation.

22



GESS Methods

At the time of writing signatureSearch includes five GESS algorithms, with ad-
ditional algorithms to be added in the future. Alternatively, users can provide their own
GESS methods. Based on the data types represented in the query and database, they can be
classified into set- and correlation-based methods (see Table 2.1 and Figure 2.1). The first 4
methods described below are set-based, whereas the last one is a correlation-based method.
I refer to a search method as set-based if at least one of the two data components (query
and/or database) is composed of a GS (e.g. gene labels) that may be ranked or unranked. In
contrast to this, correlation-based methods require quantitative GEPs, usually of the same
type for both the query and the database entries, such as normalized fluorescence intensities,
read counts or Z-scores. An advantage of the set-based methods is that their queries can
be the highest and lowest ranking gene sets in each direction derived from a genome-wide
profiling technology that may differ from the one used to generate the reference database.
However, the precision of correlation methods often outperforms set-based methods as will
be shown in the Result section. This is most likely a result of the larger information content
used by correlation-based methods compared to set-based methods. On the other hand,
due to the nature of the expected input, correlation-based methods are usually only an
option when both the query and database entries are GEPs generated by the same or at
least comparable expression assay technologies. In other words, set-based methods are more
technology agnostic than correlation-based methods, but may not provide the best recall
performance as shown below. The following describes the most important features of each

of the five GESS methods. For clarity and simplicity, the first method will be introduced in
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more detail, while the descriptions of the remaining ones will focus mainly on their common
and unique features. Since the data types used for the queries and reference databases are
different among the GESS methods, the corresponding input requirements will be specified
for all of them. This is important both to understand the basic principles of the algorithms,
and to choose the appropriate GESS methods for specific data sets available to users.

The Connectivity Map (CMap) GESS method [109], here termed as CMAP, uses
as GS-Qs the most strongly up- and down-regulated genes from an experiment, while the
reference database is composed of rank transformed GEPs (e.g. ranks of LFC or Z-scores)
containing all genes or proteins detected by the underlying expression technology. The
actual GESS algorithm of the CMAP method is based on identifying a maximum in a vec-
torized rank difference calculation for each of the up and down GS-Qs separately [109].
After subtracting the down from the up maximum, or assigning zero to certain exceptions,
the resulting raw scores are scaled to values from 1 to -1. The final ‘Connectivity Scores’
expresses to what degree the up and down components of the GS-Q are enriched on the top
and bottom of each database entry, respectively. The search results are a tabulated repre-
sentation of the identifiers and descriptions of each GEP entry in the reference database that
can be ranked by the connectivity score obtained for the corresponding GS-Q. If the utilized
GEP-DB was obtained from drug perturbation experiments then the corresponding GESS
scores indicate which drugs induce similar or opposing GESs as the query. Although several
variants of the CMAP algorithm are available in other software packages including Biocon-
ductor, the CMAP implementation provided by signatureSearch is unique by following the

original description of the authors as closely as possible. This allows the reproduction of the
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search results obtained from the corresponding CMAP2 web service of the Broad Institute.
Determining whether the results generated by both tools will consistently be the same for
any GS-Q is not feasible at this point, because CMAP2 is only available as a web service
that does not support large-scale queries required for systematic performance testing.

A more complex GESS algorithm was introduced by Subramanian et al. (2017),
here referred to as LINCS method. While related to the original CMAP method, there are
several important differences among the two approaches. First, LINCS weights the genes in
the GS-Q based on the corresponding differential expression values of the GESs in the ref-
erence database (e.g. LFC or Z-scores). Thus, the reference database used by LINCS needs
to store the actual differential expression values rather than their ranks. Another relevant
difference is that the LINCS algorithm uses a bi-directional weighted Kolmogorov-Smirnov
enrichment statistic to compute a ‘Weighted Connectivity Score’ (WTCS) as similarity met-
ric. If experimental design groups for the GEP entries in the database are available, such as
shared cell types and treatment types, then the WTCS can also be normalized and standard-
ized to obtain the ‘Normalized Connectivity Scores’ (NCS) and ‘Standardized Enrichment
Scores’ (7), respectively. To the best of our knowledge, the LINCS search and scoring
functionalities in signatureSearch provides the first downloadable standalone software im-
plementation of this algorithm.

The Bioconductor gCMAP [162] package provides access to a related but not iden-
tical implementation of the original CMAP algorithm described above. While the computa-
tion of the connectivity score is similar, the main difference is that gCMAP uses as a query

a rank transformed GEP and each entry in the reference database is a GS composed of the
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labels of up- and down-regulated DEG sets. This is the opposite situation of the CMAP
method, where the query is composed of the labels of up- and down-regulated DEGs and
the database contains rank transformed GEPs.

Fisher’s exact test [68] can also be used as a GESS method by iteratively running
the test to assess the degree of similarity shared among a GS-Q with each entry in a refer-
ence GS-DB. This method performs an over-representation analysis based on a two-by-two
incidence matrix. The latter comprises set comparison counts for each GS comparison pair,
including the number of genes in each GS, the numbers of their common and unique genes,
the total number of genes in the reference database (universe), as well as certain derivatives
of these numbers. The resulting enrichment probabilities are based on the hypergeometric
distribution. To account for the multiple hypothesis testing situation of a search result, the
obtained p-values are adjusted with the Benjamini & Hochberg method [12]. In this case
the search method is entirely set-based, because both the query and the database entries are
composed of GSs, such as DEG sets. When the reference database is a quantitative GEP-DB
then it can be converted to a GS-DB in signatureSearch on the fly using a user-definable
cutoff (e.g. score or p-value).

If both the query and the database entries are available as numeric GEPs then
correlation-based similarity metrics [56], such as Spearman or Pearson correlation coeffi-
cients, can be used as GESS methods. In short, correlation methods express the strength
and direction of a linear relationship between two sets of paired numeric values (e.g. two
GEP vectors) with a correlation coefficient. The latter is defined as the covariance of the

numeric values divided by the product of their standard deviations. As non-set-based meth-
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ods, they require the same type of quantitative gene expression values for both the query
and the database entries, such as normalized intensities or read counts from microarrays or
RNA-Seq experiments, respectively. The correlation-based searches can either be performed
with the full set of genes represented in the database or a subset of them. The latter can be
useful to focus the computation for the correlation values on certain genes of interest such as
a DEG set or the genes in a pathway of interest. In this regard the correlation-based GESSs,
performed on subsets of genes, are unique in one important aspect. That is, they allow gen-
erating meaningful GESS results for GEP-Qs, where the corresponding query genes can be
derived from a variety of sources or custom collections. This means they are not necessarily
expected to be the highest ranking gene or protein candidates, such as DEGs, discovered
in a genome-wide profiling experiment as it is often expected for most set-based methods.
The following refers to a correlation-based GESS as SPall or SPsub when considering in a
search with the Spearman method the data of all assayed genes or only a subset of them

(e.g. DEG set), respectively.

FEA Methods

GESS results are lists of GEP-DB or GS-DB entries ranked by the similarity metric
of a chosen GESS method. When searching drug-based GES-DBs, then the corresponding
drugs are ranked accordingly. Interpreting these search results with respect to the cellular
networks and pathways affected by the top ranking drugs is difficult. To overcome this
challenge, the knowledge of the target proteins of the top ranking drugs can be used to
perform functional enrichment analysis (FEA) based on community annotation systems,

such as Gene Ontology (GO), pathways (e.g. KEGG, Reactome), drug MOAs or Pfam
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domains. For this, the ranked drug sets are converted into target gene/protein sets to
perform Target Set Enrichment Analysis (TSEA) based on a chosen annotation system.
Alternatively, the functional annotation categories of the targets can be assigned to the drugs
directly to perform Drug Set Enrichment Analysis (DSEA). Although TSEA and DSEA are
related, their enrichment results can be distinct. This is mainly due to duplicated targets
present in the test sets of the TSEA methods, whereas the drugs in the test sets of DSEA are
usually unique. Additional reasons include differences in the universe sizes used for TSEA
and DSEA.

Importantly, duplications in the test sets of the TSEA are commonly caused by
several distinct drugs sharing the same target proteins. Standard enrichment methods, such
as those used for gene set enrichment, would eliminate these duplications since they assume
uniqueness in the test sets. Removing duplications in TSEA would be inappropriate since it
would erase one of the most important pieces of information of this approach. To solve this
problem, I developed and implemented in the TSEA methods of signatureSearch a weighting
method for duplicated targets, where the weighting is proportional to the frequency of the
targets in the test set.

To perform TSEA and DSEA, drug-target annotations are essential. In signa-
tureSearch they have been assembled from several sources, including DrugBank, ChEMBL,
STITCH, and the Touchstone dataset from the LINCS project [215, 61, 104, 186]. Most
drug-target annotations provide UniProt identifiers for the target proteins. If necessary,
protein identifier sets can be mapped via their encoding genes to the chosen functional an-

notation categories, such as GO or KEGG. To minimize bias in TSEA or DSEA, often caused
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by promiscuous binders, it can be beneficial to remove drugs or targets that bind to large
numbers of distinct proteins or drugs, respectively. To conduct TSEA and DSEA efficiently,
signatureSearch and its helper package signatureSearchData, provide several convenience
utilities along with drug-target lookup resources for automating the mapping from drug sets
to target sets to functional categories (Table 2.2). To avoid additional duplications caused
by many-to-one relationships among protein isoforms and their encoding genes, most FEA
tests involving proteins in their test sets are performed on the gene level in signatureSearch.
For this, the corresponding functions in signatureSearch will usually convert target protein
sets into their encoding gene sets using identifier mapping resources from R/Bioconductor,
such as the org. Hs.eg.db annotation package. Because of this as well as simplicity, the fol-
lowing text and the corresponding documentation of the software will refer to the targets of
drugs almost interchangeably as proteins or genes, even though the former are usually the
direct, and the latter only the indirect, targets of drugs, respectively.

The following introduces the functionalities in signatureSearch for performing TSEA
on drug-based GESS results using as functional annotation systems GO and KEGG path-
ways. For this the enrichment tests can be performed with three widely used algorithms
that have been modified in signatureSearch to take advantage of duplication information
present in the test sets used for TSEA. The relevance of these target duplications is ex-
plained above. To account for multiple hypothesis testing situations, the FEA functions
support seven p-value adjustment methods. The Benjamini & Hochberg (BH) method is
usually set as the default adjustment. The latter is used for the FEA tests included in this

article [12]. First, I developed the Duplication Adjusted Hypergeometric Test (dup hyperG).
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This test is based on the hypergeometric distribution, which determines whether a discov-
ered gene set shows an enrichment in functional annotations that is more extreme than
what is expected from random sampling from the same gene universe [42]. To maintain the
duplication information in this test, the size of the test set and number of proteins belonging
to an annotation category (e.g. GO term) are both adjusted by the frequency of the target
proteins in the test set. Effectively, the approach removes the duplications, but maintains
their frequency information in form of weighting values. Second, I developed the Modified
Gene Set Enrichment Analysis (mnGSEA). The original GSEA method calculates the degree
to which annotation categories are enriched at the extremes of ranked gene lists. For this an
enrichment score is computed with a running sum Kolmogorov-Smirnov statistic and then
evaluating significance by comparing the results to a null distribution derived from random
queries [187]. To perform GSEA with duplication support, I am introducing in signature-
Search a modified GSEA (mGSEA) method, where the frequency information of targets is
preserved by a weighting approach. Third, I implemented the MeanAbs (mabs) method in
signatureSearch. MeanAbs is a simple but effective method for performing gene set-based
enrichment analysis [46]. It assesses the enrichment of genes in an annotation category sim-
ply by averaging their absolute values of a chosen statistics (e.g. logy ratios or Z-scores).
Subsequently, significance is evaluated by comparing the result to a null distributions de-
rived from random permutations of queries. The following describes the TSEA algorithms

in more detail.
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A. Duplication Adjusted Hypergeometric Test (dup hyperG)
The classical hypergeometric test assumes uniqueness in its gene/protein test sets. Its p-

value is calculated according to

&)

In case of GO term enrichment analysis the individual variables in equation (2.1) are as-

pziw. (2.1)

signed the following values. N is the total number of genes/proteins contained in the entire
annotation universe, D is the number of genes annotated at a specific GO node, n is the total
number of genes in the test set, and x is the number of genes in the test set annotated at a
specific GO node. To maintain the duplication information in the test set used for TSEA,
the values of n and x in the above equation are the corresponding gene counts including
duplications.

B. Modified Gene Set Enrichment Analysis (mGSEA)

The original GSEA method [187] uses predefined gene sets S's defined by a chosen functional
annotation system, such as GO or KEGG categories. The goal is to determine whether the
genes in S are randomly distributed throughout a ranked test gene list L (e.g. all genes
ranked by LFC), or enriched at the top or bottom of L. This is expressed by an Enrichment
Score (ES) reflecting the degree to which a set S is overrepresented at the extremes of
L. For TSEA, the test set L is a target set T associated with the top ranking drugs in
a GESS result obtained from a drug-based GES database. Frequently, the corresponding
gene identifiers in 7' are not unique, because several drugs in a GESS result may share

the same targets. To account for the characteristic nature of GESS results, it is of utmost
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importance to maintain this duplication information as much as possible. To perform GSEA
with duplication support, here referred to as mGSFEA, the target set T is transformed to a
score ranked target list Ly, of all targets included in the corresponding annotation system.
For each target in T, its frequency is divided by the number of all targets in T (including
duplications), which is the weight of that target. For targets present in the annotation
system but absent in the target set T, their scores are set to 0. Thus, every target in the
annotation system will be assigned a score. Subsequently, the target list will be sorted
decreasingly to obtain L. Importantly, the original GSEA method cannot be used for
TSEA directly since zeros are very frequent in L,,-. As a result, the sum Ng can become
zero too which cannot be used as the denominator in equation (2.2) from Subramanian et
al. (2005). To avoid this problem, the affected ES values are ignored by assigning -1 as a

tag.

P
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If only some genes in set S have scores of zeros then the value of Npg is increased according
to equation (2.3). The latter adds to Ng the minimum value of the non-zero gene scores in
S multiplied by the number of genes in S that have scores of zero. Increasing Ngi can in
return decrease the weight of the genes in S that have non-zero scores. To compensate for
this, the mGSEA algorithm computes Ni according to equation (2.3) instead of equation
(2.2). Pyit(S,7) in equation (2.2) evaluates the fraction of genes in S ("hits") weighted by
their scores present up to a given position i in L., where r; is the score of gene j in Lyq,.

Typically, the exponent p is set to 1 in order to weight the genes in S by their scores in Liq,-.
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The motivation for the above modifications is that if only a small number of genes in set S
has non-zero scores and these genes rank high in Ly, the weight of these genes will be close
to 1 resulting in an ES(S) of close to 1. Thus, the original GSEA method would score the
gene set S of a functional category as significantly enriched. However, this is undesirable
because in this example only a small number of genes is shared among the test target set
T and the gene set S of a functional category. To avoid this, small weights are assigned
to genes in S that have scores of zero. The latter decreases the weight of the genes in S
that have scores other than zero, thereby decreasing the false positive rate. Finally, the
functional categories (gene sets Ss) are ranked by E'S from highest to lowest, where the top
ranking ones are favored as enriched GO terms and KEGG pathways.

C. MeanAbs (mabs)

The input for the MeanAbs method is Ly, the same as for mGSEA. In this enrichment
statistic, mabs(S), of a gene set S is calculated as mean absolute scores of the genes in S [49].
In order to adjust for size variations in gene set S, random permutations (e.g. m = 1000) of
Liqr are performed to determine mabs(S, ). Next, mabs(S) is normalized by subtracting
the median of the mabs(S,n) and then dividing by the standard deviation of mabs(S, )
yielding the normalized scores Nmabs(S). Subsequently, the portion of mabs(S,7) that is
greater than mabs(S) is used as nominal p-value. Finally, the resulting nominal p-values

are adjusted for multiple hypothesis testing using the Benjamini-Hochberg method [12].
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Instead of translating ranked lists of drugs into target sets, as for TSEA, the func-
tional annotation categories of the targets can be assigned to the drugs directly to perform
Drug Set Enrichment Analysis (DSEA) instead. Since the drug lists from GESS results are
usually unique, this strategy overcomes the duplication problem of the TSEA approach. This
way the above described enrichment methods, such as GSEA or tests based on the hyper-
geometric distribution, can be readily accommodated in the underlying statistical methods
without major modifications. As explained above, TSEA and DSEA performed with the
same enrichment statistics are not expected to generate identical results. Rather, they often

complement each other’s strengths and weaknesses.

DTN Visualization

After identifying in drug-based GESS results enriched target classes via the above
described FEA methods, it is important to visualize the results in graphical representations
that are designed to simplify the functional interpretation of the analysis outcomes. To
address this important need, signatureSearch provides functions to render the final results
in form of interactive drug-target network representations.

In addition to network graphics, the signatureSearch package provides several other
visualization and plotting functionalities. This includes visual summaries of GESS ranking
scores (Table 2.2) which can be applied to selected perturbation types in GESS results across
cell types and cell type classifications, such as normal and tumor cells. In addition, various
visualization functionalities for FEA results are available, such as dotplots and gene-concept
networks. To maximize shareability and extendability across open-source environments,

visualization resources from other packages are integrated such as clusterProfiler [229].
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2.2.8 Software Design

Integrating analysis software for GESS and FEA applications into an R/Bioconduc-
tor package has several advantages. First, Bioconductor provides access to a large number
of high-throughput genome analysis tools that are interoperable by sharing the same data
structures and S4 classes optimized for statistical analysis. Second, the approach simplifies
the development of automated end-to-end workflows for conducting GESSs for many appli-
cation areas. Third, it consolidates an expandable number of GESS and FEA algorithms
into a single environment that allows users to choose the most appropriate methods and
parameter settings for a given research question. Fourth, the usage of generic data objects
and classes improves maintainability and reproducibility of the provided functionalities,
while the integration with the existing R/Bioconductor ecosystem, such as the widely used
summarizedExperiment class infrastructure, maximizes their extensibility and reusability
for other data analysis applications. Fifth, it provides access to several community pertur-
bation reference databases along with options to build custom databases with support for
most common gene expression profiling technologies (e.g. microarrays and RNA-Seq).

Figure 2.2 illustrates the design of the package with respect to its data containers
and methods used by the individual GES analysis workflow steps. Briefly, expression pro-
files from genome-wide gene expression profiling technologies (e.g. RNA-Seq or microarrays)
are used to build a reference database stored in the Hierarchical Data Format 5 (HDF5).
HDF5 is a technology that enables storage and efficient retrieval of very large data sets. For
convenience the signatureSearchData package provides pre-built HDF5 reference databases

for users. A search with a query signature against a reference database is initialized by
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Signature Sources

signatureSearchData

drug-target network analysis and visualization.
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Figure 2.2: Design of signatureSearch package. GES reference databases are constructed
from expression profile collections (RNA-Seq, Affymetrix chip or other technologies) and
stored as HDF5 files. To perform GESSs, all query parameters are defined in a ¢Sig search
object where users can choose among over five search algorithms. The results are stored
in a gessResult object that can be functionally annotated with different TSEA and DSEA
methods. The enrichment results are organized in an feaResult object that can be used for

Searching

Interpretation



Table 2.2: List of important functionalities provided by signatureSearch and signatureSearch-
Data. The names of functions and libraries are italicized. *Only the most common input
types are listed. Acronyms are defined in the text.

Function Name

Description

Input®

Output and Comments

(1) GES Databases
CMAP2
LINCS
Custom

(1I) GESS Methods
gess_ cmap
gess_lincs
gess_ gemap
gess_ fisher
gess_ cor

(I1II) FEA Methods
tsea_ mGSEA
tsea_ dup_hyperG
tsea_mabs
dsea_ hyperG
dsea_ GSEA

(1V) Visualization
gess_
comp_ fea_res
dtnetplot

Affymetrix drug signatures
L1000 drug & genetic signatures
User provided signatures

CMAP method [109]
LINCS method [186]
gCMAP method [162]
Fisher’s exact test 68|
Correlation methods [56]

Modified GSEA algorithm [187]
Duplication adjusted hyperG test [42]
meanAbs method [46]
Hypergeometric test [42]

GSEA algorithm [187]

GESS result visualization
FEA result comparison
Drug-target networks

Raw, normalized and rank-based expression data
Normalized and weighted averaged expression data

Many types of expression data

GS-Q: DEG; GEP-DB: Z-score/LFC ranks
GS-Q: DEG; GEP-DB: Z-s S

GEP-Q: Z-score/LFC ranks; GS-DB: DEG
GS-Q: DEG; GS-DB: DEG

GEP-Q; GEP-DB: same genes and GEP type

Score ranked target list
Target set with duplication
Score ranked target list
Drug set

Score ranked drug list

gessResult object
List of feaResult from FEA methods
Drug set; pathway ID

GES reference DB stored as HDF5 that
can be accessed via signatureSearchData
from EzperimentHub or user system

gessResult object containing search result
table with similarity scores for each
perturbagen GES in the reference database,
the query signature itself, as well as details
about the chosen search parameters

feaResult object containing statistical
enrichment results, details about chosen
functional annotation system, labels of
drugs used for testing, as well as

their corresponding target information

Dot plot of drug similarity scores
Dot plot comparing result consistency
Interactive network graph

declaring all parameter settings in a qSig search object. Currently, users can choose here
among five different search algorithms implemented in signatureSearch, while additional al-
gorithms will be added in the future. The five implemented algorithms are listed in Table
2.2 and described in the previous section of this article. To minimize memory requirements
and improve time performance, large reference databases are searched by sequential or par-
allel processing of its GES entries in batches of user-definable size. The search results are
stored in a gessResult object that contains all information required to be processed by
the downstream functional enrichment analysis (FEA) methods such as drug set and target
set enrichment analysis (TSEA and DSEA) methods. The resulting functional enrichment
information is organized in a feaResult object that can be passed on to various drug-target

network construction and visualization methods implemented in signatureSearch.
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2.3 Results

2.3.1 Performance Comparisons of GESS Methods

A. Test Design

Compounds with similar functional or structural properties are expected to induce
GESs that are more similar among each other than those induced by compounds with dis-
similar properties [186]. Based on this proof-of-concept assumption, I aim to systematically
compare the performance of the six GESS methods, currently implemented in signature-
Search, in recovering both functional and structural categories using known MOA categories
and structure similarity clusters (SSC), respectively. That is, I ask the question: do drugs
with similar molecular effects or structural features cluster in GESS results according to the
corresponding classifications?

The MOA annotations used for these tests were downloaded from the Touchstone
database [186]. The downloaded MOA annotations include 276 MOA categories and drug-
target annotations for 1,555 drugs. Since not all of the MOA categories are expected to
perform equally well in the GESS performance tests, the MOAs were ranked by their recall
rates, and 25% of the top performers (here 69 MOAs with 309 drugs) were used for testing.
To avoid bias in the final MOA selection, the recall rates were calculated across all GESS
methods. Examples of poor performing MOA categories include those enriched in drugs
that bind to sets of unrelated target proteins, or drug targets positioned far downstream
of transcriptional regulation processes. In both cases the drugs of the corresponding MOA

categories are not expected to induce related gene expression changes. Thus, including these
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problematic MOAs in the recall performance tests would unnecessarily degrade the overall
performance of the GESS methods.

The SSC categories were generated with the binning clustering method of the
ChemmineR package [23]. This clustering step used atom pairs for structure similarity
comparisons and the Tanimoto coefficient as similarity metric. For assigning compounds to
clusters, a Tanimoto coefficient of 0.6 was used as similarity cutoff. The latter was chosen
because it often generates, in combination with the atom pair method, clusters of reasonable
size with relatively low numbers of false negatives and positives [203, 4]. Since PC3 cells
had the best screening coverage in the LINCS database, the 5,253 compounds participating
in the corresponding assays were used to generate the SSCs. Subsequently, the SSCs were
filtered the same way as the MOA categories above, meaning only 25% of the top performers
(here 139 SSCs with 542 compounds) were used for testing. The more details on the filtering
procedure are provided in the following paragraph.

The 276 MOA categories were downloaded from the Touchstone database. They
were associated with at total of 1,555 compounds. Since not all MOA categories are expected
to contain drugs that induce similar gene expression changes, MOA categories predominantly
associated with dissimilar GESs were eliminated by a filtering process based on recall rates
that were averaged across all six GESS methods. For this, the GESs associated with drugs
belonging to a MOA category were searched iteratively against the LINCS database. For
each query result, the rankings of the GESs belonging to the same MOA category as the
query were recorded. The joined ranking results for all queries of a MOA were then sum-

marized using the mean of the ranks, and the mean rank percentile was set as the recall
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rate of a MOA for the corresponding GESS method. To make sure none of the six GESS
methods had been given an unfair advantage in this selection process, the MOA level recall
rates were combined by calculating the mean of the recall rates across all six GESS methods.
The latter was used for the final ranking of the MOA categories. Subsequently, the top 256%
ranking MOA categories were used for the GESS performance tests described in the main
text of this article. The final set included a total of 69 MOA categories associated with 309
compounds. The filtering of the SSC categories was performed the same way as the filtering
of the MOA categories.

The GESs induced by the drugs in each MOA and SSC category were queried with
each of the six GESS algorithms against the LINCS database and their similarity scores
recorded for the corresponding database entries (Figure 2.3A). The query GESs of each
drug used for the four set-based methods (CMAP, gCMAP, Fisher and LINCS) and the
two correlation-based methods (SPsub or SPall) were the GSs corresponding to the 150
most strongly up- and 150 most down-regulated DEGs, and the GEPs subsetted to the
same GSs or those for all assayed genes, respectively. The cell type, treatment time point
and concentration chosen for these experiments were PC3, 24h and 10uM, respectively.
Subsequently, the performance among GESS methods was compared in the form of receiver
operating characteristic (ROC) curves by evaluating the true positive rate (TPR) against
the false positive rate (FPR) across the full range of similarity scores obtained for each
GESS method [156]. ROCs were computed for each GESS method by calculating their
cumulative TPRs and FPRs from a binary vector that was sorted by the similarity scores

of the combined query results (Figure 2.3B-C). In each binary result component, drugs
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Table 2.3: GESS methods applied to MOA categories. To assess whether the observed per-
formance differences are statistically significant for all pair-wise comparisons, the bootstrap
method was used for both the global AUC and pAUC metrics. The BH method was used
for multiple testing correction [12]. The columns contain: GESS method 1*; GESS method
2P P-value® and adjusted P-valued.

AUC pAUC (FPR 0.01) | pAUC (FPR 0.05) | pAUC (FPR 0.10)
GESSI* GESS2P | P-Value® P-Adjustd | P-Value P-Adjust | P-Value P-Adjust | P-Value P-Adjust
¢gCMAP CMAP 6.2¢-70 1.3e-69 2.7e-11 2.9e-11 4.7¢-29  5.4e-29 1.3e-39 1.5e-39
gCMAP Fisher 1.4e-104  3.5e-104 1.3e-56 2.7e-56 1.6e-96 4.0e-96 | 1.1e-124  3.2e-124
gCMAP SPall 8.1e-217  6.1e-216 | 9.8e-44 1.6e-43 3.7e-72  6.2e-72 2.9e-89  5.4e-89
gCMAP LINCS 3.0e-182 1.5e-181 1.6e-97 4.9e-97 1.6e-193  2.4e-192 | 2.0e-211  1.5e-210
gCMAP SPsub 7.0e-236  1.0e-234 | 6.4e-145 9.6e-144 | 3.3e-181  2.5e-180 | 8.9¢-218 1.3e-216
CMAP  Fisher 1.7e-27 2.1e-27 1.1e-48 2.1e-48 1.0e-60 1.5e-60 3.2e-69 4.7e-69
CMAP  SPall 5.3e-65 9.9e-65 5.4e-38  8.1e-38 2.0e-37  2.5e-37 7.3e-42  9.le-42
CMAP LINCS 1.5e-132  5.8¢-132 | 4.0e-86 1.0e-85 | 1.1e-151  5.3e-151 | 2.7e-159  1.3e-158
CMAP  SPsub 2.0e-128  5.9e-128 | 2.2e-125 1.6e-124 | 1.7e-144  6.3e-144 | 2.4e-141  8.8e-141
Fisher SPall 1.2e-04 1.3e-04 1.5e-07  1.5e-07 | 9.1e-19  9.8e-19 1.4e-15 1.5e-15
Fisher LINCS 2.8e-28 3.8¢-28 3.9e-13  4.5e-13 7.8e-60 1.1e-59 4.4e-62  6.1e-62
Fisher SPsub 2.3e-62 3.9e-62 2.3e-99 1.1e-98 1.2e-84  2.2e-84 7.6e-75 1.3e-74
SPall LINCS 1.4e-16 1.6e-16 2.8¢-22  3.4e-22 1.1e-85  2.4e-85 1.1e-90  2.3e-90
SPall SPsub 1.1e-49 1.6e-49 9.1e-99  3.4e-98 | 1.1e-105 3.2e-105 | 1.3e-116  3.3e-116
LINCS SPsub 1.0e-01 1.0e-01 5.2e-33 7.1e-33 5.7e-02 5.7e-02 1.8e-01 1.8e-01

from the same and different categories as the corresponding query were indicated with
ones and zeros, respectively. The same ROC calculations were performed on MOA and
SSC categories separately. In both cases this was done on both the category level and the
global level by generating ROCs for each category separately and all of them combined,
respectively. To quantitatively compare the ROC performance results, I calculated the Area
Under the Curve (AUC) as well as partial AUCs (pAUCs). While the full AUC evaluates
the performance over the entire range of GESS similarity scores, the pAUCs are used for
testing early enrichment at specific FPRs, where I chose FPRs of 1%, 5% and 10%. To
assess whether the observed performance differences are statistically significant for all pair-
wise comparisons among AUCs and pAUCs (Figure 2.3D-E), the bootstrap method from
Robin et al. [74, 156] was used combined with the Benjamini-Hochberg (BH) method for

multiple testing correction [12]. The results of these tests are provided in Table 2.3 and 2.4.
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Table 2.4: GESS methods applied to SSC categories. The column titles and content of this
table are organized the same way as in Table 2.3.

AUC pAUC (FPR 0.01) pAUC (FPR 0.05) pAUC (FPR 0.10)

GESS1  GESS2 | P-Value P-Adjust | P-Value P-Adjust | P-Value P-Adjust | P-Value P-Adjust
gCMAP CMAP | 7.7¢-183 1.9e-182 | 1.3e-10 1.4e-10 8.7e-28 1.0e-27 5.6e-34 6.0e-34

gCMAP Fisher | 2.0e-155 3.8e-155 8.1e-64 1.3e-63 9.6e-147  1.6e-146 | 1.6e-197  3.0e-197
gCMAP SPall 0.0e+00  0.0e+00 | 1.6e-59 2.4e-59 3.0e-96 4.0e-96 | 2.2e-130  3.0e-130
gCMAP LINCS | 0.0e+00 0.0e+00 | 2.7e-173  8.0e-173 | 0.0e+00 0.0e+00 | 0.0e+00 0.0e+00
gCMAP SPsub | 0.0e+00 0.0e+00 | 4.5¢-236 3.4e-235 | 0.0e+00 0.0e+00 | 0.0e+00 0.0e+00
CMAP Fisher 3.7e-28 4.3e-28 3.2e-54 4.4e-54 1.1e-114 1.6e-114 | 2.2e-135 3.2e-135
CMAP SPall 2.3e-84 3.2e-84 3.0e-52 3.8e-52 5.3e-64 6.7e-64 5.3e-78 6.6e-78

CMAP  LINCS | 5.9¢-190 1.8e-189 | 7.2e-166 1.8e-165 | 0.0e+00 0.0e+00 | 0.0e+00 0.0e+00
CMAP  SPsub | 1.1e-275 4.0e-275 | 2.7e-251 4.1e-250 | 0.0e--00  0.0e+00 | 0.0e--00  0.0e-+00
Fisher SPall 1.3e-03 1.3e-03 8.2e-02 8.2e-02 6.9e-26 7.4e-26 3.8e-36 4.3e-36

Fisher LINCS | 4.6e-86 7.0e-86 8.0e-71 1.5e-70 7.2e-157  1.4e-156 | 1.0e-162 1.7e-162
Fisher SPsub | 7.7e-158 1.6e-157 | 7.3e-209  3.6e-208 | 1.1e-231  2.8e-231 | 1.1e-235 2.6e-235
SPall LINCS | 2.8e-53 3.5e-53 4.3e-72 9.3e-72 | 1.7e-185 3.7e-185 | 1.8e-200  3.9¢-200
SPall SPsub | 2.5e-153  4.2e-153 | 5.1e-189  1.9¢-188 | 8.2¢-253  2.5e-252 | 1.4e-300 4.3e-300
LINCS SPsub 3.8e-15 4.1e-15 3.1e-32 3.6e-32 7.9e-11 7.9e-11 1.0e-04 1.0e-04

B. Test Results

The distributions of the category level AUCs and pAUCs for MOAs and SSCs are
shown in Figures 2.4A-B and C-D, respectively, in the form of violin plots that are sorted by
the corresponding global AUC and pAUC values. Figure 2.4F summarizes the performance
test results for MOA and SSC categories in form of ranks of AUC and averaged pAUC
outcomes. The sums of the ranks (here height of stacked bars) reflect the final performance
ranking of each GESS method.

According to the performance results in Figure 2.4, SPsub consistently shows the
best recall performance for MOA and SSC categories with respect to both global and early
enrichment. LINCS performs second best for the same performance metrics. The perfor-
mance rankings of the other four GESS methods are also relatively consistent across the four
AUC/pAUC metrics. Their final rankings in decreasing order are: SPall, Fischer, CMAP

and gCMAP (2.4E). The corresponding bootstrap test results in Tables 2.3 and 2.4 indicate
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Figure 2.3: Performance testing strategy of GESS methods. (A) The GESs of the drugs
in each MOA and SSC category were searched against the LINCS database with each of
the six GESS methods. The results were sorted by the corresponding similarity scores,
here indicated by boxes with color gradient. GESs from the same and different MOA /SSC
categories (CAT) as the query were indicated in a binary vector with ones and zeros (next to
boxes), respectively. After joining the binary vectors for each category group and re-sorting
them by the corresponding scores, cumulative TPRs and FPRs were plotted in form of
ROCs. This was done on the global level (B) and the CAT level (C) for the MOA and SSC
classifications separately. (D) The distributions of AUC/pAUC values from each CAT-level
are depicted by violin plots with mean values and standard deviation (STDEV) bars given
in the middle. In addition, the global AUC/pAUC values are indicated by triangles. (E)
The statistical significance of the observed differences among the global AUC/pAUC values
of the six GESS methods was assessed by a bootstrap test described in the text.
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that the observed differences among the AUC and pAUC values are statistically significant
for nearly all pair-wise comparisons.

Among the correlation-based methods, SPsub performs better than SPall with
respect to the AUC and pAUC performance metrics. One reason for this trend may be a
lower noise level in the expression profiles used for computing the correlation coefficients
for SPsub than SPall. The GEPs used for the SPsub method are usually enriched in genes
(here most up- and down-regulated DEGs) that are robustly expressed, whereas the full gene
repertoire used by SPall contains a larger proportion of genes with noisy expression signals.
Among the set-based GESS methods, LINCS performs best, while the classical Fisher’s exact
test outperforms CMAP and gCMAP with respect to AUC and pAUC metrics for both MOA
and SSC categories. The stronger performance of the LINCS method compared to the other
three set-based methods is most likely due to the additional weighting information utilized
by this method.

Importantly, the global AUC values of the GESS methods are not expected to be
very close to the best possible value of 1. However, they are in a high enough range to
be substantially distinct from random assignments of drugs to MOA and SSC categories.
In panel A and C of Figures 2.4, the global AUC values for MOA and SSC categories
range from 0.53 - 0.72 and 0.54 - 0.77 with mean values of 0.65 and 0.68, respectively.
It also has to be noted that the AUCs of the SSC categories are consistently higher than
their MOA counterparts. This trend is expected because the SSCs were assembled with a
single algorithm resulting in more homogeneous compound categories than the more complex

annotation-based MOA classification system.
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Figure 2.4: Recall performance of GESS methods on MOA and SSC categories. (A) The
distributions of the ROC performance results of the 69 MOA categories are plotted in form
of violin plots for each of the six GESS methods. The corresponding mean values, standard
deviation bars and global AUCs are indicated within each violin by dots, vertical lines and
triangles, respectively. The GESS methods are ordered by increasing global AUC values.
(B) The corresponding distributions of pAUC values are given for FPRs of 1%, 5% and
10%. In this composite plot, the GESS methods are ordered by the mean of the ranks of
their global pAUC values. (C)-(D) The GESS performance results of the 139 SSC categories
are plotted the same way as the corresponding MOA results. (E) The performance results
under (A)-(D) are summarized in form of stacked bar plots where the sum of the ranks is
used to order the GESS methods from left to right by increasing performance. Each bar
is composed of the ranking of the global AUCs and the mean ranking of the corresponding
pAUCs for both MOA and SSC categories.
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While the ranges of the AUC values for both classification types are reasonably high
for real data, their absolute values should not be confused with a metric suitable for judging
how well the majority of the GESS methods or the underlying GES assay technologies
perform overall. Lower AUC values are expected for both category types mainly due to the
complex nature of the real data set used for testing without degrading the reliability of the
AUC-based ranking of the GESS methods. Clearly, the statistically significant ranking of
the AUC values is the relevant information obtained from these tests. The following gives
additional details why the maximum achievable AUC values are expected to be lower. First,
the chosen MOA classifications are based on complex drug annotation data, which often
do not have simple and unambiguous ground truth answers as it is possible with synthetic
data. The structural similarity groupings of the SSC categories are also not expected to
join compounds into groups, where every member is guaranteed to interact with the same
targets or molecular processes. Second, the high noise level present in real large-scale mRNA
expression data make correct assignments challenging, which in turn causes an additional
reduction of the AUC values. Third, the presence of drugs binding to several targets from
different MOA and SSC categories induces complex composite GESs. Finally, categories
far up- or downstream of transcriptional control processes are unlikely to contain many
drugs that recall each other to a high degree, no matter how well a GESS method performs
overall. Despite these limitations, the MOA- and SSC-based GESS performance testing
methods, chosen for this study, are appropriate choices in this use case, because they capture
more biologically relevant information than alternative classification approaches based on

synthetic data.
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C. Time and Memory Performance

The GESS methods in signatureSearch process reference databases in batches with
user-definable numbers of GES entries in each iteration of a full database scan. This allows
searching of very large databases, while capping the memory consumption within the re-
sources available on a computer system without major compromises on time performance.
The time and memory performance of the six GESS methods is given in Table 2.5 for search-
ing the LINCS database subsetted to ten thousand entries with a batch size limit of five
thousand. The differences among the methods with respect to memory footprint and time
performance for a fixed batch size is largely proportional to the size differences of the data
required for each algorithm. For instance, the methods SPsub and Fisher only require for
each GES entry the GSs of the most up- and down-regulated genes, whereas CMAP, LINCS
and SPall require quantitative or rank-transformed GEPs for all assayed genes. Similarly,
the processing times are shorter for the methods with more compact database entries, due
to shorter load times when reading batches of GES entries into memory. The above time
performance results are given for a single CPU core. If additional performance is needed
(e.g. with very large databases), then it is easy to accelerate the search times by using the

parallelization routines available in R/Bioconductor, such as BiocParallel or batchtools [14].

Table 2.5: Time and memory performance

GESS method Time Memory

CMAP 1.2min  3.5GB
LINCS 1.7min  2.3GB
gCMAP lmin  290MB
Fisher 9s 238MB
SPall 1min 838MB
SPsub 13s 238MB
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D. Comparisons with Competing Software

This project implements commonly used GESS methods in a single environment
including those that were previously only available as web services. Their performance has
been compared above (Figures 2.3 and 2.4). Direct comparisons with web services are not
an option for these tests, because they require large scale queries in the range of thousands
of database searches with control over the GES database composition. Those requirements

are usually not supportable by web services.

2.3.2 Use Case

The following demonstrates how the functionalities of signatureSearch can be ap-
plied to discovery-oriented research related to basic questions in biology, drug discovery and
biomedical sciences. I selected as a query the GEP of SKB cells (skeletal muscle forming
myoblasts) treated with vorinostat to search the LINCS expression database with the SPsub
method. The latter GESS method was selected because it produced the strongest results in
the above performance tests (Figures 2.3 and 2.4). Both the query (GEP-Q) and the entries
in the reference database (GEP-DB) were based on pre-processed gene expression intensity
values sub-setted to the 150 most up- and down-regulated genes from the vorinostat treat-
ment of SKB cells. The drug vorinostat is a small molecule inhibitor of histone deacetylases
(HDACs). Pharmacologically, it is used as antineoplastic agent and to treat cutaneous T-
cell lymphomas (CTCL). It was chosen for this proof-of-concept test because several related
HDAC inhibitor drugs with well annotated target annotations are represented in the LINCS

database. Moreover, it has been used for similar reasons by other benchmark studies [109]
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to determine whether GESSs of structurally and mechanistically related drugs are able to
enrich each other at the top of GESS results.

Table 2.6 shows the top ten drugs of the vorinostat GESS result identified by SPsub
and ranked by absolute correlation coefficients. Impressively, nearly all of the top ranking
drugs are annotated to target the same or similar HDACs as the vorinostat query. Most
importantly, the remaining two drugs in the table, KM-00927 and PCI-24781 (Abexinos-
tat), are not yet annotated as HDAC inhibitors in the corresponding drug-target databases.
However, two recent studies have identified them as novel HDAC inhibitors [172, 119]. PCI-
24781 is an experimental drug candidate for cancer treatment, that has been approved for
Phase II clinical trials for the treatment of B-cell lymphoma. It has also been identified as
a novel hydroxamic acid-based HDAC inhibitor [155]. This result is an excellent example
for demonstrating the power of the GESS technology in identifying targets for experimental
drugs, as well as novel targets for drug repurposing approaches. Figure 2.5 compares the
corresponding chemical structures of the compounds listed in Table 2.6. They are plot-
ted in the order of a hierarchical clustering dendrogram generated with the structure-based
clustering utilities of the affiliated ChemmineR package [23]. While it is not expected that
GESS-based rankings will perfectly agree with structure-based rankings, at least in this
case the compound groupings of the two methods are in reasonable agreement, as several
compounds in Table 2.6 are indeed structurally related, such as PCI-24781, panobinostat,
scriptaid and vorinostat.

Next, the top 100 drugs of the vorinostat GESS result were functionally annotated

with the FEA methods implemented in signatureSearch. Since the results of the differ-
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Table 2.6: Top ranking drugs of vorinostat query. The GES of SKB cells treated with
vorinostat was used as query to search the LINCS database with the SPsub method. The
rows are sorted decreasingly by absolute Spearman Correlation Coefficients?. The other
columns include ranks?, drug namesP, cell types ¢, and the gene symbols of the corresponding
target sites®.

Rank® Drug Name?  Cell Type® SCCA Targets®
1 Vorinostat SKB 1.00  HDACI1; HDAC10; HDACT11...
2 Trichostatin-a SKB 0.99 HDACI1; HDAC10; HDAC?2...
3 KM-00927 SKB 0.98
4 Scriptaid SKB 0.97 HDAC1; HDAC2; HDACS...
5 HC-toxin SKB 0.97 HDAC1
6 Belinostat SKB 0.97 HDACI; HDAC10; HDAC11...
7 Panobinostat SKB 0.96 HDACI1; HDAC10; HDACI11...
8 PCI-24781 ASC 0.95
9 HC-toxin ASC 0.95 HDACI1
10 Vorinostat ASC 0.94 HDACI1; HDAC10; HDACI11...
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Figure 2.5: Structure-based hierarchical clustering dendrogram for drugs listed in Table 2.6.
Experimental drugs lacking structure information are not included.

ent FEA methods were similar, the following considers only the results of the dup hyperG
method. Table 2.7 shows the 5 highest ranking GO terms of the Molecular Function (MF)
and Biological Process (BP) ontology. The most highly enriched terms of the MF ontology
are all related to histone deacetylase activity. This is expected since the target sites of the top
ranking drugs are predominantly HDACs. The corresponding enrichment result for the BP
ontology agrees well with the MF result since it is also dominated by histone deacetylation

processes. Given vorinostat’s HDAC inhibitor activity, the obtained FEA results demon-
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strate the efficiency of signatureSearch’s FEA methods in identifying the correct pathways
targeted by a query drug. Besides processes related to histone deacetylase activities, several
biologically connected processes are enriched as well (Table 2.7), such as hair follicle placode
formation. This is interesting because a recent study has shown that the suppression of
epidermal HDAC activity leads to disrupted hair follicle regeneration and homeostasis [85].
This finding demonstrates the utility of the GESS/FEA workflow in identifying alternative
target pathways that may enable novel drug repurposing approaches for query drugs of inter-
est in the future. To highlight the importance of the FEA step in the overall workflow, Table
2.8 provides the enrichment results when using the genes of the initial GEP-Q instead of the
downstream drug-target gene set from the GESS result for the same GO term enrichment
analysis. When comparing the top ranking GO terms in both Tables 2.7 and 2.8 then there
are no top ranking GO terms shared among the results. This is not surprising since the
GES-Q contains the genes exhibiting the most pronounced expression changes after treating
SKB cells with vorinostat, while the genes used for the FEA analysis are the genes encoding
the target proteins of the top ranking drugs in the initial GESS search result. Typically,
there are no or only minor overlaps expected among the genes in these two sets (here 1.6%
of GEP-Q). Most importantly, only the FEA approach identifies the correct target pathway
for the vorinostat query, whereas the GO term enrichment analysis with the genes from the
initial GES-Q contains terms that are fundamentally different and unrelated to the vorino-
stat target pathway. This comparison demonstrates the critical role of the FEA method for
the overall analysis workflow in predicting target pathways in drug-based GESS results with

signatureSearch.
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Table 2.7: Top ranking MF and BP terms obtained with dup hyperG. The columns contain:
GO Ontology?; GO Term description/IDP; number of proteins in GO term®, test setd and
intersect®, raw p-valuef, and adjusted p-value® using the BH method for multiple testing
correction. To save space, longer GO term descriptions have been shortened.

Ontology* GO TermP N GO® N Test? N Match® P-Value! P-Adjust®
MF HDAC activity (H3-K14) (GO:0031078) 11 323 97 0.00e+00  0.00e+00
MF NAD-dependent HDAC activity (H3-K14, GO:0032041) 11 323 97 0.00e+00  0.00e+00
MF NAD-dependent HDAC activity (GO:0017136) 16 323 98 0.00e+00  0.00e+00
MF NAD-dependent PDAC activity (GO:0034979) 17 323 99 0.00e+00  0.00e+00
MF HDAC activity (GO:0004407) 44 323 98 0.00e+00  0.00e+00
BP Histone H3 deacetylation (GO:0070932) 21 323 98 0.00e+00  0.00e+00
BP Histone H4 deacetylation (GO:0070933) 11 323 59 0.00e+00  0.00e+00
BP Histone deacetylation (GO:0016575) 86 323 101 0.00e+00  0.00e+00
BP Hair follicle placode formation (GO:0060789) 5 323 23 0.00e+00  0.00e+00
BP Fungiform papilla morphogenesis (GO:0061197) 5 323 23 0.00e+00  0.00e+00

Table 2.8: Top ranking GO MF and BP terms obtained from direct enrichment of the
vorinostat GS-Q with hypergeometric test. The columns contain: GO Ontology?; GO Term
description/IDP; number of genes in GO term®, test set? and intersect®, respectively; as well
as enrichment p-value! and adjusted p-value® using the Benjamini-Hochberg (BH) method.
To save space, longer GO term descriptions have been shortened.

Ontology* GO TermP N GO°® N Test? N Match® P-Value! P-Adjust8
MF phospholipase activator activity (GO:0016004) 12 295 4 3.4e-05 0.013
MF kinase regulator activity (G0O:0019207) 207 295 13 4.6e-05 0.013
MF lipase activator activity (GO:0060229) 14 295 4 6.6e-05 0.013
MF transcription coactivator activity (GO:0003713) 319 295 16 9.6e-05 0.014
MF RNA polymerase II TF binding (GO:0001085) 155 295 10 2.8e-04 0.024
BP cellular response to peptide (GO:1901653) 385 293 21 8.3e-07 0.003
BP regulation of apoptotic signaling pathway (G0O:2001233) 406 293 20 7.1e-06 0.010
BP histone modification (GO:0016570) 454 293 21 1.1e-05 0.010
BP response to metal ion (GO:0010038) 364 293 18 1.9e-05 0.010
BP covalent chromatin modification (GO:0016569) 474 293 21 2.1e-05 0.010

Subsequently, drug-target networks (DTNs) were constructed to visually interpret
the FEA results and prioritize interesting candidate drugs. A sample DTN is shown in Figure
2.6 where the term ‘histone deacetylase activity’ (H3-K14 specific; GO:0031078) was chosen
since it is one of the highest scoring GO MF terms in the previous result. The drugs and
target proteins are depicted in Figure 2.6 as yellow boxes and circles, respectively, including
vorinostat and its histone deacetylase targets. In the signatureSearch package these DTN
graphs are fully interactive, where users can zoom into network modules, as well as select

drugs and/or proteins in the drop-down menu located in the upper left corner of the plot.
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Figure 2.6: Drug-target network module of Histone Deacetylase Activity (H3-K14 specific;
GO MF ID: GO:0031078). Drugs and targets are depicted as boxes and circles, respectively.
The color of the circles indicates the number of connections.
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2.4 Discussion

I have developed signatureSearch as an integrated and extendable environment for
performing GESSs with a variety of algorithms combined with FEA and DTN visualization
methods. The latter two are useful for guiding the downstream biological interpretation of
GESS results. As outlined in the introduction and method sections, the software provides
many useful and unique features, such as access to an end-to-end workflow toolkit covering
most functionalities required for a wide range of GESS applications relevant to discovery-
oriented research. It also provides access to an unmatched number of algorithms for both
GESS and FEA routines, where I introduce several novel enrichment algorithms for inter-
preting GESS results. Importantly, the GESS methods in signatureSearch scale from single
GES queries to large scale applications with thousands of GES queries using public or cus-
tom reference databases. This enables permutation tests with large numbers of randomized
queries required to evaluate the robustness of GESS/FEA results. Typically, these types of
large scale queries are not practical to support in other GESS tools that are predominantly
based on web services. This study is also unique by testing the performance of the GESS
algorithms in recalling MOA and SSC categories with drug-induced query GESs. To the
best of our knowledge, the performance of GESS methods has not been systematically com-
pared as it has been done here. In these performance tests I find that the correlation-based
methods, SPall and SPsub, outperform most set-based methods with respect to the chosen
ROC performance criteria. Among the set-based methods LINCS performs the best, most

likely because of the additional weighting information utilized by its algorithm.
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Although correlation-based GESS methods show the best performance in our tests,
the query types required for them are more complex than the simple gene identifier sets re-
quired for the set-based methods. Moreover, for compatibility reasons the quantitative
queries of correlation methods should preferentially be derived from the same gene expres-
sion technology and organism used for generating the reference database. In this regard the
set-based methods are less restrictive and more versatile than correlation-based methods.
Especially, for complex expression experiments, it is often easier to obtain a GES query com-
posed of an identifier set of induced and repressed genes than the quantitative counterpart
required for correlation-based approaches. Query gene sets from related species can also
be used by translating them via ortholog mappings to the corresponding genes represented
in the GES database. Moreover, set-based methods are more likely to exhibit reasonable
performance in cross-omics queries, such as querying transcriptomic GES databases with
up- and down-regulated gene sets from GWAS, proteomics or possibly even metabolomics
studies. In summary, an advantage of set-based methods is that they are more technology
agnostic but may not reach the recall performance of correlation-based methods. Integrat-
ing important GESS and FEA methods into an R/Bioconductor package also offers several
unique advantages not present in related software applications. Here, the signatureSearch
packages simplifies the development of automated end-to-end workflows for conducting sig-
nature searches in many application areas. It consolidates an extendable number of GESS
and FEA algorithms into a single environment that allows users to compare results among
methods as well as define and incorporate custom methods. Moreover, the usage of generic

data objects and classes improves maintainability and reproducibility of the provided func-
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tionalities, while the integration with the existing R/Bioconductor ecosystem maximizes
their extensibility and reusability for other data analysis applications. Finally, signature-
Search provides access to several community perturbation reference databases along with
options to build custom databases with support for most common mRNA expression pro-
filing technologies. This design will also support expression profiling databases from other

omics domains such as proteomics.

2.5 Conclusion

The signatureSearch package provides a general purpose environment for identi-
fying similar GESs in reference databases, while also guiding the downstream functional
interpretation of the discovered connections. The functionalities of the package pave the
way for discovering biologically relevant connections in gene networks. Those are useful to
gain insights into stress-response pathways, to improve treatments for diseases, or to iden-
tify novel target site candidates for experimental drug-like small molecules or alternative
targets of approved drugs for drug-repurposing approaches. In the future I will continue
to enhance the package by adding several new features. First, I will include additional
GESS/FEA methods optimized and tested for sparse GES data, such as GESs from single
cell sequencing experiments. Second, support will be added for managing large numbers
of heterogeneous query GESs in a single container that can be populated from flat files
or a custom query database. Third, a batch run function will be added to execute the
GESS/FEA workflow on any number of these heterogeneous queries automatically. Fourth,

support for community workflow environments, such as CWL and systemPipeR [72], will be
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added to operate signatureSearch from start to finish from R or other popular programming

languages such as Python or Bash.

2.6 Availability of Software and Data

signatureSearch and signatureSearchData are open source packages that have been
reviewed, tested and accepted by the Bioconductor project. Both are freely available for all
common operating systems from Bioconductor and GitHub: signatureSearch and signature-

SearchData.
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https://bioconductor.org/packages/signatureSearch
https://bioconductor.org/packages/signatureSearchData
https://bioconductor.org/packages/signatureSearchData

Chapter 3

Application to Human Longevity

3.1 Abstract

Human longevity is influenced by genetic composition, environmental exposures,
healthy diet and lifestyle choices. However, very little is known about longevity promoting
biological processes that are accessible to pharmacological interventions. This study aims to
reveal novel insights into longevity-associated drugs (LADs), genes (LAGs) and pathways
(LAPs) by applying a combinatorial gene expression signature (GES) search strategy against
the Integrated Network-based Cellular Signatures (LINCS) database. First, the performance
of LINCS drugs, inducing GESs representative for their mechanism of action (MOA), was
systematically assessed by computing for each MOA a recall score based on the GES sim-
ilarity of the corresponding drugs. The obtained recall scores were used to prioritize LAD
candidates in the downstream discovery steps. Second, longevity-associated MOA categories
along with the corresponding drugs were identified by querying LINCS with GESs of drugs

present in both the DrugAge and LINCS databases, and subsequently scoring the enrich-
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ment of each MOA at the top of the ranked GES search results. The corresponding LAP
candidates were identified via drug-target annotations available for each longevity-associated
MOA category. Third, the most focused search results were generated by querying LINCS
with the GESs from 11 well studied LADs as well as one longevity phenotype. To identify
LAGs and LAPs, the target protein annotations of the newly identified candidate LADs
were used for functional enrichment analysis. Finally, the results from the three steps were
integrated and then interrogated with a combinatorial approach to select the most reliable
set of novel LAD and LAP candidates. Collectively, this study identified a list of drugs,

target proteins and pathways useful for pharmacological lifespan extension strategies.

3.2 Results

Figure 3.1 illustrates the analysis strategy in the human longevity research field.
The GESS results from DrugAge LADs queries allowed to connect LADs with longevity
associated MOAs. The GESs of well-characterized known LADs (‘Eleven LADs Selection
method section) were searched against LINCS to identify novel LAD candidates triggering
similar expression responses as the query LADs. FEA was performed on the top rank-
ing LAD candidates to identify cellular networks and pathways that may be accessible to
longevity-promoting pharmacological treatments. The resulting insights were used to iden-
tify novel LAD candidates useful for testing their effects on delaying or preventing aging
related diseases in downstream assays. Taken together, this project identified putative LADs,
LAGs and LAPs for drug development and repurposing to provide novel opportunities in

the studies of pharmacologically modulating aging-related processes and diseases.
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For readability and clarity, the following text uses acronyms for the drug sets used
by this study. LADS7 refers to 87 DrugAge LADs that are also present in LINCS. This
LADS8T set was used for connecting MOAs with longevity. LADI1 is a set of 11 high-
confidence LADs used in the discovery and drug repurposing components of this study. The
LAD11 drugs are also part of NIH’s Interventions Testing Program (I'TP). They are listed in
Table 3.1 along with their target, MOA, and other functional and therapeutic information.
Finally, WCD3 refers to three well-characterized, non-longevity drugs (vorinostat, chlor-
promazine and alvocidib) that were used for the proof-of-concept tests of the GESS/FEA

workflow.

3.2.1 Recall Performance of MOA Categories

Dependent on the impact of the mechanisms of action (MOAs) of drugs on tran-
scriptional processes, different MOAs are expected to exhibit variable performance in GESS
applications. This is because drugs with MOAs directly perturbing transcriptional activi-
ties are more likely to induce GESs that are characteristic for each MOA than those largely
disconnected from these processes. Moreover, drugs within the same MOA are expected to
share more similar GESs than those from different MOAs. To systematically score the GESS
performance of known MOAs, they were ranked by the recall performance of the correspond-
ing GESs induced by drugs within each MOA (Figure 3.1A). The drug GESs were queried
against LINCS database using the SPsub GESS method. The latter was chosen since it was
the most accurate GESS method in performance tests conducted by Duan et al. (2020). At
the time of this study, the LINCS database contained 334 and 138 MOAs each containing

at least 2 or 5 drugs, respectively. Since recall performance tends to be robust for MOAs
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Figure 3.1: Strategy for identifying novel LADs, LAGs and LAPs. (A) The recall perfor-
mance of MOA categories with at least 5 annotated drugs were estimated by searching the
corresponding GESs against LINCS. The same MOAs were also ranked by their connec-
tivity to longevity by using the GESs of known LADs as queries (B). The corresponding
LADs included those present in both DrugAge and LINCS, as well as a custom set of 11
core LADs. Longevity associated target pathways were identified by enrichment analysis
using Reactome where the target proteins of the above LAD sets were used as test sets (C).
(D-F) An optimized GESS/FEA workflow was applied to three different GES sets from: (i)
three well-characterized drugs as proof of concept experiment; (ii) 11 core LADs; and (iii) a
longevity phenotype. The voting strategy was applied on 11 LADs GESs to get prioritized
LADs candidates. The candidates can be flagged and associated with MOAs in the above
recall performance tests.
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Table 3.1: Overview of 11 high-confidence LADs. LAD data sources are: ITP!: Interventions
Testing Program from National Institute on Aging (NIA); Fuentealba et al. (2019)2; Strong
et al. (2016)3. Additional annotation information is available in Table S1.

Drug PubChem MOA Targets N Targets Structure
O, 00
Sirolimus! (Rapamycin) 5284616 MTOR inhibitor CCRS, 4 {J\)l(
FGF2, e
FKBP1A,
MTOR

Tanespimycin? 6505803 HSPI0 inhibitor HSP9I0A, 2 T
HSP90B b

Acarbose! 41774 Glucosidase  in- AMY2A; 4 = 3“(2 0
hibitor GAA; <
MGAM;
ST

Simvastatin® 54454 HMGCR inhibitor CYP2C8; 5 ’Y‘Cé(
CYP3A4; e
CYP3A5;
HMGCR;
ITGB2

Minocycline! 54675783  Inhibit  protein IL1B; 12 door,
synthesis ALOXS5;
VEGFA;
CASP1;
NOS2...

Alpha-estradiol® 68570 Estrogen receptor ESRI1; ESR2; 11
agonist GPERI;
NRI1I2;
CYP2B6...

Beta-estradiol 5757 Estrogen receptor ESRI1; ESR2; 7
agonist GPERI;
NR1I2;
CHRNAA4...

Curcumin! 969516 Cyclooxygenase APP; CAL 21 o
inhibitor; Histone CA12; CAl14;
acetyltransferase CA2; ...
inhibitor; Lipoxy-
genase inhibitor;
NFkB  pathway

inhibitor
Resveratrol! 445154 Cytochrome P450 SIRTI; 12 ﬁi
inhibitor; ~ SIRT APOAIL; o
activator NQO2;
CSNK2A1;
PTGSLI...
Aspirin! 2244 Cyclooxygenase TP53; 19 \é
inhibitor NFKBIA;
EDNRA;
AKRICL;
PTGSI...
Metformin® 4091 Insulin sensitizer ACACB; 3 "'Y:YKN
INS:
PRKAB1

62



with a minimum number of 5 drugs (Figure 3.9), the following uses MOAs with at least 5
drugs. In Figure S1 the 138 MOAs were ranked based on their recall rates, where lower
values indicate better performance. The top ranking MOAs (Figure 3.2A) contain HDAC
inhibitor, JNK inhibitor, nucleophosmin inhibitor, bacterial 30S ribosomal subunit inhibitor,
MTOR inhibitor, tubulin inhibitor, inositol monophosphatase inhibitor, HMGCR inhibitor,
DNA dependent protein kinase inhibitor, PARP inhibitor, etc. Many of these mechanisms
are linked to transcriptional processes which in part explains their higher ranking as well as
their lower dispersion of median CORct scores compared to lower ranking MOAs that more
often act on processes far up- or down-stream from transcription.

Histone deacetylases (HDACs) are enzymes that remove acetyl groups from lysine
residues of core histones, resulting in a more closed chromatin structure and repression of
gene expression. HDAC inhibitors are a group of targeted anticancer agents that play impor-
tant roles in epigenetic or non-epigenetic regulation, apoptosis, and cell cycle arrest in cancer
cells [100]. C-Jun N-terminal kinase (JNK) signalling regulates both cancer cell apoptosis
and survival. It is considered a potential oncogenic target for cancer therapy [219]. Nucle-
ophosmin is a highly and ubiquitously expressed protein that plays crucial roles in ribosome
maturation and export, centrosome duplication, cell cycle progression, histone assembly and
response to a variety of stress stimuli. It is considered as a promising target for the treatment
of both haematologic and solid malignancies [41]. Bacterial 30S ribosomal subunits defined
an ‘assembly map’ for the order of association of each r-protein with rRNA. Their inhibitors
are bactericidal antibiotics that act by binding to the subunit inhibiting bacterial protein

synthesis, preventing tRNA attachment and also causing misreading of mRNA. Mechanistic
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target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism,
and immunity. It catalyzes the phosphorylation of multiple targets such as ribosomal protein
S6 kinase -1 (S6K1), Akt, protein kinase C (PKC), and type-I insulin-like growth factor re-
ceptor (IGF1R) to regulate protein synthesis, nutrients metabolism, growth factor signaling,
cell growth, and migration [83]. Tubulin inhibitors act by a common mechanism via bind-
ing to the colchicine site on tubulin, which is a promising target for new chemotherapeutic
agents for treatment of cancers, to inhibit tubulin assembly and suppress microtubule for-
mation [120]. Inositol monophosphatase (IMPase) are involved in the phosphatidyl inositol
(PI) signaling pathway, which affects a wide array of cell functions of cell growth, apoptosis,
secretion, and information processing. HMG-CoA reductase (HMGCR) is the rate-limiting
enzyme of cholesterol biosynthesis. HMGCR inhibitors (statins) are lipid-lowering medi-
cations clinically used to treat cardiovascular disease. The DNA-dependent protein kinase
(DNA-PK) plays an instrumental role in the overall survival and proliferation of cells. As a
member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, DNA-PK is best
known as a mediator of the cellular response to DNA damage and an intriguing therapeutic
target in the treatment of a variety of cancers. DNA-PK activity is also necessary for the
regulation of transcription, progression of the cell cycle, and in the maintenance of telomeres
[130]. Poly adenosine diphosphate-ribose polymerase (PARP) is a type of enzyme that helps
repair DNA damage in cells. PARP inhibitors are a type of cancer drug in targeted therapy

worked by preventing cancer cells from repairing, allowing them to die.
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Figure 3.2: MOA recall rates and longevity association plots. (A) Top 20 MOAs ranked
by recall performance. (B) Top 20 MOAs related to longevity ranked by median absolute
CORct scores from GESs using LAD87. (C) Top 20 MOAs related to longevity from GESs
using LAD11. Only MOAs with a minimum of 5 drugs are included for a total of 138 MOAs.
Bold names indicate MOAs present in at least 2 panels. The complete MOA ranking results
are available in Table S2, S3 and S4. ColMedianCORct values indicate the distribution of
median absolute CORct for MOA drugs. Recall Rate are expressed as rank percentiles, N
drugs represents the number of drugs in each MOA, and MedianCORct values indicate the
median absolute CORct from LADs GES queries.
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3.2.2 MOAs Connected with Longevity

Next, a comprehensive set of LAD-induced GESs was identified by intersecting
drugs present in both DrugAge and LINCS (LAD8T7). DrugAge is a curated database con-
taining small molecules with lifespan extending properties in a variety of animal systems [6].
The GEPs from LADS87 were used to query LINCS using the same GESS method as for the
above recall performance tests. To score MOA categories by their connectivity to longevity
(Figure 3.1B), the CORct scores of the search results were summarized to obtain a median
score for each MOA that was used for ranking the MOAs. Since not all LADs reported in
DrugAge may have longevity promoting effects in mammalian and human cells, a second
LAD-based MOA ranking was generated using LAD11. The complete MOA ranking results
are available in Table S2, S3 and S4.

The MOA to LAD connectivities are plotted for the top 20 ranking MOAs based
on results obtained with both the LADS87 set (Figure 3.2B) and the LADI1 set (Figure
3.2C). The rankings of the top 20 MOAs are highly consistent among the two results (see
bold labels in Figure 3.2B and C). The corresponding rankings of all MOAs in Table S3
and S4 are also similar as indicated by a pairwise Spearman correlation coefficient of 0.87.
Because the recall- and LAD-based results were generated with query GESs of different drug
combinations, their MOA rankings are not expected to agree among each other. In Figure
3.2A they are shown next to each other to assess whether high ranking MOAs in the LAD-
based results are supported by strong recall performance. Many of the top ranking MOAs
in the LAD connectivity results are functionally related to healthy aging processes and

longevity. Examples include chloride channel blocker, tricyclic antidepressant, MAP kinase
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inhibitor, PPAR receptor agonist, RAF inhibitor, TGF beta receptor inhibitor, glycogen syn-
thase kinase inhibitor, anthelmintic, dopamine uptake inhibitor, retinoid receptor agonist,
tachykinin antagonist, sigma receptor antagonist, casein kinase inhibitor, PISK inhibitor,
tubulin inhibitor.

Chloride channels are involved in a wide range of biological functions, including
epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contrac-
tion. Mutations in several chloride channels cause human diseases including cystic fibro-
sis, macular degeneration, kidney stones. Chloride-channel modulators have potential ap-
plications in the treatment of secretory diarrhoeas, polycystic kidney disease, osteoporo-
sis and hypertension, some of these disorders are age-related [200]. So chloride channel
might be a candidate target site to promote human healthy aging. Many studies have
demonstrated that signaling pathways of MAPK, glycogen synthase kinase (GSK3, a key
factor in growth and metabolism), PI3K, PPAR, RAF, TGF-beta (via insulin/IGF-1 sig-
naling (IIS) pathway) can regulates longevity and delay age-associated metabolic disease
[134, 179, 55, 221, 48, 176, 170|, suggesting that they might be promising target sites in
human to promote healthy aging and extend lifespan. Aging is accompanied with behav-
ioral and cognitive decline. A study shows that serotonin and dopamine level decrease with
age in C. elegans resulting in downregulation of the activity of neurons [226], dopaminergic
neurons can regulate aging and longevity in flies [193]. Sigma receptors play a modulatory
role in the activity of some ion channels and in several neurotransmitter systems, mainly in
glutamatergic neurotransmission. Sigma receptor ligands have been proposed to be useful

in several therapeutic fields such as amnesic and cognitive deficits, depression and anxi-
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ety, schizophrenia, analgesia, and against some effects of drugs of abuse (such as cocaine
and methamphetamine) [33]. Xu et al. (2019) found that the neuronal microtubule status
might affect organismal aging through DAF-16-regulated changes in fat metabolism, and
microtubule-based therapies might represent a novel intervention to promote healthy aging
[220].

Moreover, it has been demonstrated that glucocorticoid signaling has contributed
remarkably to therapeutic strategies in major organ systems in the human body [96] and
drugs corresponding to this MOA (e.g. dexamethasone, diflorasone, fluocinolone, hydro-
cortisone, triamcinolone) are known to modulate pathways related to human longevity. In
addition to these known aging related MOAs, a number of new longevity-associated MOAs
are also identified including retinoid receptor agonist, and tricyclic antidepressant. Retinoic
acid is important for developmental processes and cellular differentiation. It has antipro-
liferative and antioxidative properties, and regulates cellular differentiation [38, 168, 123].
Since the cellular effects of retinoic acid are mediated by the retinoid receptor, it is reason-
able to hypothesize that the development of additional retinoid receptor agonists may lead
to novel lifespan extending interventions. Moreover, tricyclic antidepressants may extend
lifespan via directly impacting cellular function by activating non-cell autonomous stress
responses or may alter neurophysiological responses that overall, may promote a healthy
aging process [91, 152, 146]. However, the effect of some MOAs on promoting longevity
and healthy aging may depend on the pharmacokinetics of the compounds that target these
pathways. For example, while nitric oxide (NO) is an important antiinflammatory signaling

molecule that mediates cellular function, high levels of NO bioavailability result in the gener-
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ation of peroxynitrite and cellular damage [10, 135, 169|. Therefore, the development of NO
production inhibitors may require dosage optimization. The effect of targeting longevity-
associated MOAs may also depend on preexisting conditions or the route of administration.
For example, corticosteroid agonists elicit antiinflammatory effects that extend lifespan and
quality of life in individuals with emphysema yet increase risk of morbidity and mortality in
individuals with rheumatoid arthritis [18, 30]. Regardless, the scope of the identified MOAs
and their relation to longevity is broad and includes a variety of cellular pathways that are

interesting targets for future longevity research.

3.2.3 LAD Targets within Global Pathway Map

To visualize and interpret the above MOA results, pathway enrichment analysis
was performed and projected onto a global pathway map including the 28 highest level
human pathways available in the Reactome database (Figure 3.1C, Figure 3.3). Pathways
enriched in the target proteins of the LADI11 set are highlighted as colored branches in a
fireworks plot (Figure 3.3A). To contrast enrichment differences among the three target sets
(LAD11, DrugAge drugs and MOA drugs), their enrichment results were compared for the
28 high level as well as the full set of 2,508 descendant pathways. The former are shown
as heatmap in Figure 3.3B, and the detailed results are available in Table S5. Descendant
pathways enriched predominantly in the target set of the LAD11 (Figure 3.3A) include:
SUMOylation (part of metabolism of proteins); activation of AMPK downstream of NM-
DARs (part of neuronal system); activation of PPARGC1A and mitochondrial biogenesis
(part of organelle biogenesis and maintenance); MTOR signaling and extra-nuclear estro-

gen signaling (part of signal transduction); translocation of SLC2A4 (GLUT4) for glucose
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transport (part of vesicle-mediated transport); and signaling by interleukins (part of im-
mune system). The targets of LAD11 and DrugAge drugs are significantly globally mapped
to gene expression (transcription) (descendant pathways are related to regulation of TP53
activity) and vesicle-mediated transport compared to a broader targets of MOA drugs, sug-
gesting that the genes/proteins regulating gene transcription are the main target site for
longevity-promoting drugs design, such as sirolimus is designed to target mTOR, which is a
key regulator of gene transcription.

Several of the above mentioned processes are known be involved in aging and
longevity in human and other organisms. Interestingly, SUMOylation is involved in cel-
lular senescence and aging in human cell lines [167]. It has been shown in C. elegans to
promote longevity and mitochondrial homeostasis [149]. AMPK controls the regulation of
cellular homeostasis, metabolism, resistance to stress, cell survival and growth, cell death,
autophagy, which are some of the most critical determinants of aging and lifespan. AMPK
activation is shown to delay aging and prolong lifespan in Drosophila melanogaster [180].
AMPK activation in the Drosophila’s nervous system induces autophagy both in the brain
and the intestinal epithelium, which is related to the anti-aging effects and extended lifes-
pan [196]. Many reports demonstrate that AMPK activation and AMPK responsiveness
decrease with age, which may explain the altered metabolic regulation, resulting in reduced
autophagic clearance of unnecessary products (via mTOR), an increase in oxidative stress
and decrease resistance to cellular stress (potentially due to DAF-16/FoxO and/or p53 sig-
naling pathways downregulation). Thus, finding efficient strategies of increasing AMPK

responsiveness and activation may be of important use as anti-aging treatments and for
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lifespan elongation [161, 196, 20]. Mitochondria plays a key role in energy homeostasis and
metabolism of reactive oxygen species (ROS), targeting pathways related to mitochondrial
biogenesis might be of interest for extending human longevity [71]. Many studies have
demonstrated that mTOR signaling have important influence on longevity and aging by
influencing aging-related processes such as cellular senescence, cell growth, metabolism, and
stem cell function [208, 138, 222, 92, 93, 83]. Extranuclear sex steroid receptors have been
found in many normal cells and in epithelial tumors, where they enact signal transduction
that impacts reproductive cycle, physiological stress responses, sleep cycle, and many other
nonsexual behaviors [114, 67]. Glucose transporters (GLUTS) is involved in regulating tissue-
specific glucose uptake and metabolism in the liver, skeletal muscle, and adipose tissue to
ensure homeostatic control of blood glucose levels. Reduced glucose transport activity re-
sults in aberrant use of energy substrates and is associated with insulin resistance and type 2
diabetes. Studies establish that GLUT2 and GLUT4 are critical contributors in the control
of whole-body glycemia [26]. Interleukins (ILs) are a group of cytokines modulating immune
system. It is one of the main signaling pathways modulating the complex relationship be-
tween aging and chronic morbidity. The IL-6 pathway appears to be profoundly implicated in
the pathophysiology of physical function decline and chronic diseases that often affect older
persons. The modulation of IL-6 production or effects could offer a major breakthrough in
prevention and treatment of people at advanced old age [122]. It may be possible to delay
age-related diseases and aging itself by suppressing pro-inflammatory molecular mechanisms
or improving the timely resolution of inflammation [153]. The transcription factor p53 plays

a critical role in tumor suppression. In response to stress signals, p53 regulates its target
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genes and initiates stress responses, including cell cycle arrest, apoptosis, and /or senescence,

to exert its function in tumor suppression. Emerging evidence has suggested that p53 is also

an important but complex player in the regulation of aging and longevity in worms, flies,

mice, and humans in a context-dependent manner [52, 197, 194, 9, 199, 148, 2|. The poten-

tial mechanisms by which p53 regulates aging and longevity including the p53 regulation of

IGF-1/AKT/mTOR signaling, stem/progenitor cells, and reactive oxygen species [51, 82].
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3.2.4 Optimization of GESS/FEA Workflow

To discover novel candidate LADs and target LAPs, the GESs of a diverse set of well
characterized LADs were used to perform GESS against the LINCS database. Subsequently,
functional enrichment analysis (FEA) was used to associate the resulting lists of the highest
ranking drugs with target proteins and pathways. The combined analysis workflow is termed
as GESS/FEA. To demonstrate the feasibility and efficiency of the approach (Figure 3.1D),
the GESS/FEA workflow was first tested on WCD3 in SKB (muscle), SKB (muscle), and
NPC (central nervous system) cell types respectively (Supplementary Sections). In this test
the assignment of the correct drugs and target pathways in GESS and FEA results served
as proof-of-concept. The results demonstrate that the LINCS GESS methods can identify
compounds that share similar targets/MOAs as the query drugs and the utility of the chosen

GESS/FEA workflow can discover the correct functional pathways of the query drugs.

3.2.5 GESS and FEA Results for Eleven LAD Signatures
GESS Results Summary

The GESS/FEA workflow was then applied to GESs of a diverse set of LAD11 to
discover novel candidate LADs and LAPs after validated with WCD3. In these analyses
the robustness of the obtained GESS/FEA results was assessed via a rigorous permutation
test computing Rank Robustness Scores (RRSs). Table 3.2 and Table 3.3 show the sample
GESS and FEA results for one sirolimus GES query. In order to understand the relationship
between drugs that may translate into animal studies, the query GESs for the LAD11 include

both in vitro (GESs drawn from LINCS database treated in human cell lines) and in vivo
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(GESs from RNA-Seq or Microarray technologies treated in mice tissues) samples. It results
a total of 56 query GESs for LAD11. Table 3.4 shows the sample information, the starred
cell types are selected when the LAD names are used as sample names in the results.

To demonstrate a substantial difference from random, the in vitro GESS results
from the LAD11 GESs in starred cell types were compared with random queries. As shown
in Figure 3.4A and validated with WCD3 (Figure S2A), in general, the top ranking GESS
results of the LAD11 have larger NCS scores as a measure of GES similarity than random
GES queries. Next, the relationship between the GESS results and the identification of
drugs sharing MOAs with the query drug was explored and validated with WCD3 (Figure
S2B). In this analysis, GESS results were ranked by their absolute value of NCS scores and
unique by the compounds. The rankings of drugs in the GESS results were then highlighted
if they share a MOA with the query drug. As illustrated in Figure 3.4B, in general, drugs
sharing MOAs with the query drugs tend to be enriched in the top ranking GESS results,
demonstrating the ability of GESS method in retrieving compounds that share similar tar-
gets/MOAs as queries and suggesting that the similarity between compounds identified in
GESS may relate to the similarity between query-GESS result MOAs. Next, the LAD11
were hierarchically clustered by their GESS results ranking similarity. Resolved clusters
were then annotated with cluster specific overlapping reactome pathways (Figure 3.4C).
These results indicated that acarbose, resveratrol, tanespimycin, minocycline in cluster 1
are involved in neutrophil degranulation (R-HSA-6798695), sirolimus, simvastatin and as-
pirin in cluster 2 are involved in signaling by interleukins (R-HSA-449147), interleukin-4 and

interleukin-13 signaling (R-HSA-6785807) and G alpha (i) signalling events (R-HSA-418594),
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and curcumin, metformin, alpha-estradiol, beta-estradiol in cluster 3 are involved in fatty
acid metabolism (R-HSA-8978868), PIP3 activates AKT signaling (R-HSA-1257604), intra-
cellular signaling by second messengers (R-HSA-9006925) and diseases of signal transduction
by growth factor receptors and second messengers (R-HSA-5663202). The LAD11 were also
clustered by other metrics including structural similarity, Jaccard index of target proteins
and pathways (Supplementary Sections). Correlation analyses between GESS results from
in vitro and in vivo query samples for sirolimus, estradiol and acarbose treatments were
performed. The results indicate that the in vitro and in vivo samples have more correlation
within them compared to correlation between in vitro and in vivo samples (Figure 3.4D).
In order to get prioritized drugs (PDs) in GESS results for each query LAD summa-
rized across different cell types and technologies, several drug prioritization methods (DPMs)
were proposed and tested (Supplementary Sections). The VoteNCSunique method with drug
classification was demonstrated as the most effective method in retrieving drugs sharing
MOAs with the query LAD in their top rankings. The following shows the drug prioritiza-
tion results for each of the LAD11 by using the VoteNCSunique method, which computing
a summary score for each LINCS drug ranking in the top N positions across many GESS
results (i.e. cell types), and then re-ranking the results accordingly. Figure 3.4E, 3.4F, and
S5-7 show the top 50 PDs for each of the LAD11. In addition to the 11 query LADs, many
other famous drugs in DrugAge database are prioritized in the list including wortmannin
(a fungal metabolite that was identified as a potent and selective inhibitor for phospho-
inositide 3-kinases (PI3Ks) and PI3K-related enzymes), cinnarizine (antihistamine used for

motion sickness), SU-4312 (selective and potent vascular endothelial cell growth factor re-
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ceptor (VEGFR) inhibitor), arctigenin (a plant lignan with antioxidant, anti-inflammatory,
anti-cancer and antiviral activities), dihydroergocristine (an ergot alkaloid that has an par-
tial agonist activity on dopaminergic and alpha-adrenergic receptors, antagonist activity on
serotonin receptors. The drug was approved by FDA for the treatment of dimentia like
Alzheimer’s), lonidamine (a drug that interferes with energy metabolism of cancer cells,
principally inhibiting aerobic glycolytic activity by its effect on mitochondrially-bound hex-
okinase (HK)), quercetin (a plant pigment that belongs to flavonoids), geldanamycin (a anti-
tumor antibiotic that potently inhibits the function of Heat Shock Protein 90 (HSP90) that
play important roles in the regulation of the cell cycle, cell growth, cell survival, apoptosis,
angiogenesis and oncogenesis), CGP-52411 (a selective inhibitor of the epidermal growth
factor receptor (EGFR), also inhibits and reverses the formation of A342 fibers associ-
ated with Alzheimer’s disease, reduces neurotoxicity by blocking Ca?* influx into neuronal
cells), and staurosporine (a alkaloid isolated from Streptomyces staurosporeus exhibiting
anti-cancer activity. It is a potent, non-selective inhibitor of protein kinases) that are clas-
sified into layer 1 (MOA match) or layer 2 (pathway match), they can be very promising
drugs in extending lifespans for drug repurposing. Moreover, wortmannin, geldanamycin,
lonidamine and dihydroergocristine are also prioritized from another summary approach
across LADI11 (Supplementary Sections, Figure S8), SU-4312, staurosporine and quercetin
are filtered from the drug-target (DT) network of signaling by VEGF Reactome pathway
(Figure 3.6D), making them more convincing. Some of the drugs in layer 1 or layer 2 with
therapeutic efficacy could also be interesting, such as AZD-8055, BMS-754807, amsacrine,

itraconazole, cyclopentolate, leflunomide, clotrimazole, rosuvastatin, dexketoprofen, trogli-
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tazone, estropipate, budesonide, mesalazine, fenbufen, diethylstilbestrol, tenoxicam, estrone,
and gamma-linolenic-acid. Layer 3 contains a list of unknown drugs or small molecules that
can be assumed as novel findings such as latrunculin-b, PI-828 MNITMT, U-0124, SA-
1922006, MW-A1-12, oxetane, O-3M3FBS, SC-1-004, MW-SHH-61, isoflupredone-acetate,
and THZ-2-98-01. The top 50 PDs for each of the LAD11 are then summarized into one
heatmap by including drugs that are supported /prioritized by at least two LADs (Figure 3.5,
Table S8). 12 drugs are supported by 3 query LADs including apigenin (a flavonoid found in
many fruits and vegetables as well as in Chinese medicinal herbs, it has been widely inves-
tigated for its anti-cancer activities and low toxicity [223]), betulinic-acid (a natural penta-
cyclic triterpenoid with antiretroviral, antimalarial, and anti-inflammatory properties, has
potential as an anticancer agent by inhibition of topoisomerase [31]), gamma-linolenic-acid
(an omega-6 fatty acid, which the body can convert to substances that reduce inflammation
and cell growth), hyperforin (a phytochemical that exhibits antidepressant activity, antibi-
otic activity against gram-positive bacteria, and antitumoral activity in vivo), mepacrine (an
acridine derivative initially used for malaria and later as an antiprotozoal and immunomod-
ulatory agent), mevastatin (a cholesterol-lowering agent), NU-7026 (an ATP-competitive
inhibitor of DNA-dependent protein kinase (DNA-PK)), rosuvastatin (used along with a
proper diet to help lower "bad" cholesterol and fats (such as LDL, triglycerides) and raise
"good" cholesterol (HDL) in the blood), serdemetan (an orally bioavailable HDM2 antag-
onist with potential antineoplastic activity. It inhibits the binding of the HDM2 protein
to the transcriptional activation domain of the tumor suppressor protein p53), sulindac (a

nonsteroidal anti-inflammatory drug used to treat mild to moderate pain and help relieve
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Table 3.2: Top 10 ranking drug cell terms in the GESS result from one sirolimus GES
query in SKB cell with LINCS GESS method. RRS5: rank robustness score at 5 percent
randomization.

Rank Drug Name Cell WTCS WTCS Pval NCS  Tau NCSct Targets RRS5
1 sirolimus SKB 1.00 0.00e+00  2.80 99.96 1.22 CCR5; FGF2; FKBP1A; 1.00
MTOR
2 BRD-K37940862 HT29 0.65 1.52e-05 1.97 98.38 1.19 1.00
3 BRD-K01614657 SKB 0.67 1.44e-05 1.87 97.73 1.03 0.80
4 SB-218078 SKB 0.66 1.46e-05 1.86 98.72 0.03 CHEK1 0.93
5 BRD-K82971429 SKB 0.66 1.46e-05 1.86 99.62 0.93 0.79
6  wortmannin HT29 0.62 1.67e-05 1.86 99.19 1.33 ATM,; ATR; MTOR; 0.69
MYLK; PI4KA; ...
7 wortmannin A549 0.60 1.73e-05 1.84 97.95 1.33 ATM; ATR; MTOR; 0.66
MYLK; PI4KA; ...
8 amsacrine HAIE 0.60 1.72e-05 1.83 98.84 1.22 ALB; KCNH2; ORMI; 0.68
TOP2A; TOP2B
9 BRD-K16541732 SKB 0.65 1.52e-05 1.82 98.20 1.27 0.78
10 BRD-K61776140 SKB 0.65 1.53e-05 1.82 98.55 0.97 0.72

symptoms of arthritis), tenoxicam (an anti inflammatory analgesic used to treat mild to
moderate pain) and WY-01-034 (PubChem CID: 70680403). Drug dihydroergocristine is
supported by 2 query LADs of estradiol and simvastatin. Table 3.5 lists the annotations
for all of the prioritized DrugAge drugs in this project, such as description, tested assays,
and publications. Users could choose from these drug lists according there research interest
that are worth testing in experiment studies. For example, the candidate drugs can be first

tested in mouse fibroblasts and then in living mice for their efficacy in extending life span.

FEA Results Summary

In order to discover new pathways that are accessible to pharmacological life span
extension strategies, I investigated which pathways are enriched among the molecular targets
of the top ranking drugs in GESS results. This analysis was performed in several steps.
First the ranking positions of the pathways directly targeted by the query LADs in their

pathway rankings in FEA results were explored and validated with WCD3 (Figure S2C) to
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Figure 3.4: GESS result summaries across LAD11 queries. A: NCS score distributions in
the GESS results from LAD11 queries and one random GES query as negative control for
NCS scores less than -1.00 (left panel) and greater than 1.00 (right panel) after setting count
cutoff as 100 to better show the NCS distributions at left and right extremes. The color key
shows the P-values of the WTCS score for the entries in the GESS results. B: GESS result
rankings of drugs in the same MOA as the query LAD. Numerical values in the x-axis labels
indicate the number of drugs sharing the MOA. Black dots represent drugs sharing the same
MOA as query LAD and Grey bars indicate the total number of drugs in GESS results. C:
hierarchical clustering of LAD11 by their GESS results ranking similarity. The color key
indicates the Spearman correlation coefficient of the GESS result rankings from NCS scores
after filtering of zeros. D: Clustering of in vitro and in vivo samples from sirolimus, acarbose
and estradiol queries by their GESS results ranking similarity. The color key is the same as
Figure C. E and F: Top 50 PDs from voteNCSunique method with stratification on LADs
queries of sirolimus and acarbose, respectively. The columns are query samples that are
clustered by Euclidian distance of NCSunique scores. The compound annotations plotted
in the right bars include layer information (Layer), whether in DrugAge database (isLAD),
whether the compound share at least one MOAs with MOAs of LAD11 (MOA Match), the
number of compound targeted Reactome pathways shared with target Reactome pathways
of LAD11 (N Pathway), whether the compound is therapeutic (Therapeutic), Max phase
study by FDA (Max Phase). The complete tables containing all compounds rankings from
voting strategy with scores, layer and annotation information corresponding to the heatmaps
are stored in Synapse (syn27074560).
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Figure 3.5: Combined PDs from LADI11 queries with at least 2 LADs support. The top 50
PDs from each individual LAD of LAD11 are combined into one drug list ranked by number
of LADs queries that have the drug in their top 50 PD list (Nsupport) and the drugs are
filtered with at least 2 Nsupport. It results in 91 drugs in this list. The corresponding table
with no Nsupport cutoff is at Table S8.



Table 3.3: Top 10 ranking Reactome pathways in the FEA result from one sirolimus GES
query in SKB cell with dup hyperG method. N term/t/m: number of genes in the pathway,
test set and intersect. P-adjust: P-value using the Benjamini-Hochberg (BH) method for
multiple testing correction.

Annot Term N term/t/m  P-value P-adjust
Reactome Adrenoceptors (R-HSA-390696) 9/247/13 0.00e4+00 0.00e+00
Reactome Amine ligand-binding receptors (R-HSA-375280) 42/247/29 1.26e-38  5.79e-36
Reactome Class A/1 (Rhodopsin-like receptors) (R-HSA-373076) 335/247/47  3.35e-24  1.03e-21
Reactome GPCR ligand binding (R-HSA-500792) 467/247/47  4.37e-18  1.01le-15
Reactome VEGFA-VEGFR2 Pathway (R-HSA-4420097) 99/247/21 5.89¢-15  1.09e-12
Reactome Signaling by VEGF (R-HSA-194138) 108/247/21 3.74e-14  5.74e-12
Reactome CD28 co-stimulation (R-HSA-389356) 33/247/13 1.46e-13  1.92e-11
Reactome CD28 dependent PI3K/Akt signaling (R-HSA-389357) 22/247/11 4.46e-13  5.05e-11
Reactome G alpha (i) signalling events (R-HSA-418594) 405/247/37  4.94e-13  5.05e-11
Reactome Nucleotide-like (purinergic) receptors (R-HSA-418038) 16,/247/9 1.59e-11  1.47e-09

see whether the top ranking pathways in FEA results are correct target pathways of query
drugs. For each LAD GES query, FEA analysis was performed on the targets of top 100
ranking drugs in the GESS results and the resulting pathways were ordered by adjusted p-
values. Next, positions of target pathways of query drugs in their FEA results were plotted
as dots in Figure 3.6A. Even though some drugs target a broad range of pathways, many of
them matched in the top ranking positions in FEA results. In other words, the top ranking
pathways in FEA results are those correctly targeted by query LADs, especially for LADs of
sirolimus, metformin, tanespimycin, resveratrol, aspirin, alpha-estradiol and beta-estradiol.

Next, Reactome pathways in the FEA results were prioritized for each LAD across
its multiple query GES samples in different cell types by voting strategy (Figure 3.6B, 3.6C
and Figure S9-11, Table S11), the top 50 prioritized Reactome pathways (PPs) for each
LAD were combined into one list by ranking them by the number of their support query
LADs (Figure 3.7). Collectively, these results identified many Reactome pathways that
might be related to human longevity with additional support on the enrichment results

from genes in the GeneAge database (Table S10). The candidate LAPs include PI3K/AKT
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Table 3.4: Summary table of LAD11 query GESs from in vitro and in vivo across different
cell types or tissues. The starred cell types are used when the LAD names are used as sample
names in the results. Condition: mouse condition when sacrificed, the numbers are age in
month, M/F represent female/male, chronic means longer term treatment on old mouse.

SampleName LAD Source  Tissue Cell GEO Accession Platform  Organism Condition
acarbose_ inVitro_ muscle.SKB acarbose inVitro muscle SKB® L1000 Human
acarbose_inVitro_liver. PHH acarbose inVitro liver PHH L1000 Human
alpha-estradiol _inVitro_kidney. HAIE alpha-estradiol inVitro kidney HAIE L1000 Human
aspirin_inVitro_breast. MCF7 aspirin inVitro breast MCF7" L1000 Human
curcumin_inVitro_skin. FIBRNPC curcumin inVitro skin FIBRNPC™ L1000 Human

estradiol _inVitro_kidney. HA1E estradiol inVitro  kidney HAIE" L1000 Human

estradiol _inVitro_ liver. HEPG2 estradiol inVitro liver HEPG2 L1000 Human

estradiol _inVitro_liver. PHH estradiol inVitro liver PHH L1000 Human
metformin_inVitro skin. FIBRNPC metformin inVitro  skin FIBRNPC” L1000 Human
metformin_inVitro_kidney. HEK293T  metformin inVitro  kidney HEK293T L1000 Human
minocycline_inVitro_ breast. MCF7 minocycline inVitro breast MCF7" L1000 Human
resveratrol _inVitro_ muscle.SKB resveratrol inVitro muscle SKB" L1000 Human
resveratrol _inVitro_ adipose. ASC resveratrol inVitro adipose ~ ASC L1000 Human
resveratrol _inVitro_liver. PHH resveratrol inVitro liver PHH L1000 Human
simvastatin_inVitro_muscle.SKB simvastatin inVitro muscle SKB* L1000 Human
sirolimus_inVitro_ muscle.SKB sirolimus inVitro muscle SKB* L1000 Human
sirolimus_inVitro_ adipose. ASC sirolimus inVitro adipose ~ ASC L1000 Human
sirolimus _inVitro_kidney. HA1E sirolimus inVitro  kidney HAIE L1000 Human
sirolimus_inVitro_ liver. HEPG2 sirolimus inVitro liver HEPG2 L1000 Human
sirolimus_inVitro_ liver. PHH sirolimus inVitro liver PHH L1000 Human
tanespimycin_inVitro_skin. FIBRNPC  tanespimycin inVitro skin FIBRNPC” L1000 Human
Acarbosel2F _inVivo_ Liver acarbose inVivo  Liver GSE131754 RNAseq Mouse 12F
Acarbosel2M _inVivo_ Liver acarbose inVivo  Liver GSE131754 RNAseq Mouse 12M
Acarbose6F _inVivo_ Liver acarbose inVivo  Liver GSE131754 RNAseq  Mouse 6F
Acarbose6M _inVivo_ Liver acarbose inVivo  Liver GSE131754 RNAseq Mouse 6M
Estradiol6F _inVivo_ Liver estradiol inVivo  Liver GSE131754 RNAseq Mouse 6F
Estradiol6M _inVivo_ Liver estradiol inVivo  Liver GSE131754 RNAseq  Mouse 6M
Metformin_ inVivo_ Adipose metformin inVivo  Adipose GSE90755 RNAseq  Mouse
Metformin_inVivo_ Aorta metformin inVivo  Aorta GSE90755 RNAseq Mouse
Metformin_inVivo_Brain metformin inVivo  Brain GSE90755 RNAseq Mouse
Metformin_inVivo_ Eyeball metformin inVivo  Eyeball GSE90755 RNAseq Mouse
Metformin_inVivo_ Heart metformin inVivo  Heart GSE90755 RNAseq  Mouse
Metformin_inVivo_ Kidney metformin inVivo  Kidney GSE90755 RNAseq Mouse
Metformin_inVivo_ Liver metformin inVivo  Liver GSE90755 RNAseq Mouse
Metformin_ inVivo_ Muscle metformin inVivo  Muscle GSE90755 RNAseq  Mouse
Metformin_inVivo_ Stomach metformin inVivo  Stomach GSE90755 RNAseq  Mouse
Metformin _inVivo_ Testis metformin inVivo  Testis GSE90755 RNAseq Mouse
Resveratrol30M _inVivo_Heart resveratrol inVivo  Heart GSE11291 Array Mouse 30M
Resveratrol30M _inVivo_ Muscle resveratrol inVivo  Muscle GSE11291 Array Mouse 30M
ResveratrolM _inVivo_ Adipose resveratrol inVivo  Adipose GSE11845 Array Mouse M
ResveratrolM _inVivo_Heart2 resveratrol inVivo  Heart2 GSE11845 Array Mouse M
ResveratrolM _inVivo_ Liver resveratrol inVivo  Liver GSE11845 Array Mouse M
ResveratrolM _inVivo_ Muscle2 resveratrol inVivo  Muscle2 GSE11845 Array Mouse M
Sirolimus_inVivo_ Adipose sirolimus inVivo  Adipose GSE52825 Array Mouse
Sirolimus12F _inVivo_ Liver sirolimus inVivo  Liver GSE131754 RNAseq Mouse 12F
Sirolimus12M _inVivo_ Liver sirolimus inVivo  Liver GSE131754 RNAseq Mouse 12M
Sirolimus6F _inVivo_ Liver sirolimus inVivo  Liver GSE131754 RNAseq Mouse 6F
Sirolimus6M _inVivo_Liver sirolimus inVivo  Liver GSE131754 RNAseq Mouse 6M
Sirolimus8M _inVivo_ Liver sirolimus inVivo  Liver GSE40977 Array Mouse 8M
SirolimusChronicF _inVivo_ Liver sirolimus inVivo  Liver GSE48331 Array Mouse ChronicF
SirolimusChronicM _inVivo_ Liver sirolimus inVivo  Liver GSE48331 Array Mouse ChronicM
SirolimusF _inVivo_ Heart sirolimus inVivo  Heart GSE48043 RNAseq Mouse F
SirolimusF _inVivo_ Liver sirolimus inVivo  Liver GSE48331 Array Mouse F
SirolimusM _ inVivo_ Heart sirolimus inVivo  Heart GSE41018 Array Mouse M
SirolimusM _inVivo_ Kidney sirolimus inVivo  Kidney GSE41018 Array Mouse M
SirolimusM _inVivo_ Liver sirolimus inVivo  Liver GSE48331 Array Mouse M
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Table 3.5: The manually curated annotations for all of the prioritized DrugAge drugs (Pri-
oDA) in this project including drug description, tested assays, publications, etc. PCID:
PubChem CID. The elaborate information is at Table S16.

PrioDA Description species strain dosage avg lifespan change gender pubmed PCID
id

wortmannin fungal metabolite identified as a ~Caenorhabditis el- N2: Can- 1 uM: 5 uM -4.1; 5 Male 23543623; 312145
potent and selective inhibitor for ~egans; Drosophila ton S 24096697
PI3Ks melanogaster

cinnarizine antihistamine used for motion Caenorhabditis el- 33 uM 15 24134630 1547484
sickness egans

SU-4312 selective and potent VEGFR in-  Caenorhabditis el- 88 M 5 24134630 6450842
hibitor egans

arctigenin plant lignan with antioxidant, Caenorhabditisel- N2: N2 10 pM; 100 pM 6.7, 13.7 26141518; 64981
anti-inflammatory, ~anti-cancer egans 26141518
and antiviral activities

dihydroergocristine ergot alkaloid with partial ag- Caenorhabditis el- 176 pM 34 24134630 444034

onist activity on dopaminergic egans
and alpha-adrenergic receptors
and antagonist activity on sero-
tonin receptors. Approved by
FDA for treatment of dimentia
like Alzheimer’s
lonidamine interferes with energy  Caenorhabditis el- 5 pM 8 21932172 39562
metabolism of cancer cells, egans
inhibit aerobic glycolytic activ-
ity on mitochondrially-bound
hexokinase (HK)
quercetin plant pigment that belongs to Mus musculus; LACA; 10 mg/day; 100 pM; 200 -5.8;-14.2;-11.6; 19; 10; 10; FEMALE; 7140862; 5280343
flavonoids Caenorhabditis N2; Liv-  pM; 22 pg/mL; 250 pM; 50 9; H H MALE; 18024103;
elegans; Aedes ae- erpool; pM: 0.3uM; 0.5 pM: 1 pM; BOTH 18692520;

©

5: 30; -2.8; -1

gypti; Drosophila Canton 300 pM; 50 ppm; 100 ppm; 11; 10; H H 19043800;

melanogaster; Po- S 200 ppm -13.79; -5.09; -4.55; -10.2; 21563825;

dospora anserina; 13; 13; 10.2; 19.01; 20.88; 21776484;

Aedes albopictus 20.53; 15; 22155175;

22493606,

27732590;

28066251;

29780405;

34188892

geldanamycin antitumor antibiotic that po- Caenorhabditis e N2; 20 pM; 10 pM; 100 pM; 200 2; 3.51; 0.84; 0.22; 5.56 Female; 26676933; 5288382

tently inhibits the function of egans; Drosophila Canton-  pM Male 33008901

HSPI0 that play important roles  melanogaster S
in regulation of cell cycle, cell
growth, apoptosis, angiogenesis
and oncogenesis.
CGP-52411 selective inhibitor of EGFR, Caenorhabditis el- 13 M 15 24134630 1697
also inhibits and reverses forma- egans
tion of Abetad2 fibers associated
with Alzheimer’s

staurosporine alkaloid isolated from bacteria Drosophila Oregon 30-50 pM 34.8 22363408 44259
exhibiting anti-cancer activity. melanogaster R
Potent inhibitor of protein ki-
nases
caffeine methylxanthine alkaloid, acts Drosophila Oregon 0.01 mg/ml; 1 mg/ml; 0.1 -10.1; -3.3; 1.7; 86; -89.5; - Male; 8326745; 2519
primarily as an adenosine melanogaster; R; mg/ml; 0.2-0.4 mM; 100 82.8;-11.6;-24.4;-13.6; 7.7; FE- 18513215
receptor antagonist in the Saccharomyces BY4741;  mM; 75 mM; 7.5 mM; 30 8.7; 16.9; 17. 24764514;
central nervous system (CNS) cerevisiae; N2; mM; 5 mM; 0.5 mM; 10 40.9; 10.8; 36.7; 28.5; H 26696878;
with psychotropic and anti- Caenorhabditis el- Canton- mM; 2.5 mM; 20 mM; -92; -60; 0; 24; 8; 35; 65; 29093334;
inflammatory activities egans; Drosophila S 50 mM; 60 mM; 45 mM; -22.86; -17.14; 15.39; 31.9; 30061824;
melanogaster; 0.03%; 0.05%; 50 pg/mL; 1 16.42; 0.1; -4.64; -6.42; - 31432005;
Aedes albopictus mM; 50 ppm; 100 ppm; 200 11.6; -11.6 34188892
ppm
pyrazolanthrone anthrone derivative, inhibitor Drosophila Oregon 10 mM 23.5 22363408 8515

of c-Jun N-terminal kinases melanogaster R
(JNKs) (Bennett et al. 2001)
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related pathways (PI3K/AKT signaling in cancer, PIP3 activates AKT signaling, activated
NTRKS3 signals through PI3K, PI5P, PP2A, and TER3 regulate PI3K/AKT Signaling), sig-
naling by VEGF, regulation of PTEN gene transcription, regulation of TP53 degradation,
insulin receptor signaling cascade, immune system related pathways (signaling by inter-
leukins, interleukin-4 and interleukin-13 signaling), SUMOylation of intracellular receptors,
extra-nuclear estrogen signaling from sirolimus query. VEGFA-VEGFR2 (vascular endothe-
lial cell growth factor receptor) pathway, signaling by ERBB4, cytochrome P450 - arranged
by substrate type, post NMDA receptor activation events, extra-nuclear estrogen signaling,
MAP kinase activation, xenobiotics from acarbose query. Pathways like xenobiotics (com-
monly affected pathway for organisms treated with drugs), GPCR ligand binding, neuron
system related (neurotransmitter receptors and postsynaptic signal transmission, activation
of NMDA receptors and postsynaptic events, dopamine receptors), SUMOylation of intra-
cellular receptors, extra-nuclear estrogen signaling, intracellular signaling by second messen-
gers, PI3K/AKT signaling in cancer, VEGFA-VEGFR2 pathway, RAS signaling (CREB1
phosphorylation through NMDA receptor-mediated activation of RAS signaling, signaling
by RAS mutants), G alpha (i) signalling events, MAPK family signaling cascades, signaling
by RAF1 mutants are supported by multiple LADs. Reactome enrichment analysis was also
performed on the top 50 PDs from sirolimus query (Table S12) and compared with its top
50 PPs in Figure 3.6B. The top 50 ranking terms from the two Reactome pathway sets have
a very good consistency (32/50 overlapped pathways, Table 3.6), making the results more
robust and trustworthy. The overlapped Reactome pathways include PISK/AKT related

pathways (MET activates PI3K/AKT signaling, PIP3 activates AKT signaling), intracellu-
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lar signaling by second messengers, signaling by VEGF, diseases of signal transduction by
growth factor receptors and second messengers, signaling by PDGFRA extracellular domain
mutants, regulation of TP53 degradation, insulin receptor signalling cascade, RET signal-
ing, signaling by erythropoietin, and signaling by type 1 Insulin-like Growth Factor Receptor
(IGF1R).

In summary, the PPs are mainly involved in PI3K/AKT related pathways, estrogen
and steroid related pathways, neurotransmitter signaling, immune system, MAPK signaling,
RAS signaling, RAF1 signaling, AMPK signaling [20, 207, 222|, vascular endothelial growth
factor (VEGF) related signaling, insulin signaling, TP53 regulations, and G alpha (i) sig-
nalling. Many studies have demonstrated that the downregulation of signaling pathway of
insulin/insulin-like growth factor-1 (IGF-1)/phosphatidylinositol-3 kinase (PI3K)/Akt can
extend longevity as well as resistance to oxidative stress in the nematode Caenorhabditis
elegans (70, 139, 131, 113, 118, 98]. Akt negatively regulates the in vitro lifespan of human
endothelial cells via a p53/p21-dependent pathway, inhibition of Akt extends the lifespan
of endothelial cells [129]. G alpha (i) signalling is a ubiquitously expressed pathway that
makes up a broad class of signal transduction cascades involving interactions with G protein
coupled receptors (GPCR). They are assembled heterogeneously to regulate both cellular
and physiological functions. On the cellular level, G alpha (I) signaling regulates a variety
of functions including the regulation of K channels [141], as well as cell proliferation via
ERK and RAS signaling [64]. On the organismal level, G alpha (i) signalling has a neu-
ron, neuroendocrine, and platelet preferential expression pattern. Within this expression

profile, G alpha (I) functions downstream of beta2 adrenergic receptors thereby promoting
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parasympathetic tone, which may be important in the prevention of aging-related elevated
blood pressure |5, 210]. These pathways are promising for human healthy aging and may be
pharmacologically targeted to extend lifespan.

The signaling by VEGF (R-HSA-194138) pathway was then selected based on its
overall high rankings as well as its potential as a LAP and a drug-target (DT) interaction
network was created to resolve the relationships between the drugs in GESS results and their
molecular targets (Figure 3.6D, Table 3.7). Within this network, several well-known LADs
(sirolimus, wortmannin, caffeine, tanespimycin, everolimus) and LAGs (MTOR, PIK3CA,
PIK3R1, AKT, MAPK14, HSP90AA1, VEGFA) were identified. It also identifies new poten-
tial LADs including QL-X-138 (BTK/MNK Dual Inhibitor for Lymphoma and Leukemia
[218]), CGP-53353, perphenazine, crizotinib, purvalanol-a, GSK-1059615, lovastatin, KU-
0063794 (an MTOR inhibitor) and tamoxifen, new potential LAGs including PRKCA,
CALMI1, PAK3, PTK2, ROCK1, ITPR1, FLT1, RHOA, CDH5, PAK2 and PRKCZ. KU-
0063794 is also identified by Tyshkovskiy et al. (2019) [195] as new lifespan-extending

candidates, it adds convincing to the results.

3.2.6 GESS/FEA Results for Longevity-based Phenotype Signature

In addition to drug induced GESs, the GESS/FEA workflow was also applied to a
human phenotype-based GES to discover candidate LADs and LAPs (Figure 3.1F). This was
done to both validate the results obtained from drug-based signatures above and identify
new ones that are unique to this query type. Peters et al. (2015) [145] identified 1,497 DEGs
associated with chronological age from whole-blood gene expression meta-analysis. The up-

and down-regulated 150 genes were chosen as the query GES for the GESS/FEA workflow
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Figure 3.6: FEA results summary. A: ranking positions of Reactome pathways meeting a
0.05 adjusted p-value cutoff from targets of the query LADs in their FEA results. Black
dots represent pathways in FEA results matching the direct pathways from the query LAD
targets. Grey bars indicate the total number of pathways in FEA results. B and C: Top 50
PPs from vote strategy on query LADs of sirolimus and acarbose, respectively. The columns
are query samples that are clustered by Euclidian distance of color key (rankings transformed
from adjusted p-values). Known LAPs are annotated in green in the binary color bar to
the right of the heatmap. The complete tables containing all Reactome pathway rankings
from voting strategy with scores and LAP annotation corresponding to the heatmaps are
stored in Synapse (syn27074585). D: DT network of the signaling by VEGF (R-HSA-194138)
reactome pathway. Symbols of drugs, targets and their relationship are available at Table
3.7.
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Figure 3.7: Combined PPs from LADI11 queries with at least 3 LADs support. The top 50
PPs from each LAD of LADI11 are combined into one final list ranked by the number of
query LADs that have the pathway in its top 50 PPs (Nsupport) and filtered by selecting
those that have at least 3 Nsupport. It results in 74 Reactome pathways in this list. The
corresponding table with no Nsupport cutoff is at Table S11.

88



Table 3.6: Overlapped Reactome pathways between top 50 enriched terms from Sirolimus
top 50 prioritized drug list and top 50 prioritized list in Sirolimus FEA results.

ID Description isLAP

R-HSA-8851907 MET activates PI3K/AKT signaling FALSE
R-HSA-9006925 Intracellular signaling by second messengers TRUE
R-HSA-2219528 PI3K/AKT Signaling in Cancer TRUE
R-HSA-194138  Signaling by VEGF TRUE
R-HSA-4420097 VEGFA-VEGFR2 Pathway TRUE
R-HSA-389356  CD28 co-stimulation TRUE
R-HSA-389357  CD28 dependent PI3K/Akt signaling TRUE
R-HSA-1257604 PIP3 activates AKT signaling TRUE
R-HSA-9027276 Erythropoietin activates Phosphoinositide-3-kinase (PI3K) TRUE
R-HSA-9603381 Activated NTRK3 signals through PI3K FALSE
R-HSA-199418  Negative regulation of the PI3K/AKT network TRUE
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3SK/AKT Signaling TRUE
R-HSA-5663202 Diseases of signal transduction by growth factor receptors TRUE

and second messengers
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer TRUE
R-HSA-9673767 Signaling by PDGFRA transmembrane, juxtamembrane TRUE
and kinase domain mutants

R-HSA-388841  Costimulation by the CD28 family TRUE
R-HSA-9673770 Signaling by PDGFRA extracellular domain mutants TRUE
R-HSA-1483255 PI Metabolism FALSE
R-HSA-6804757 Regulation of TP53 Degradation TRUE
R-HSA-5633007 Regulation of TP53 Activity TRUE
R-HSA-6806003 Regulation of TP53 Expression and Degradation TRUE
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer TRUE
R-HSA-74751 Insulin receptor signalling cascade TRUE
R-HSA-198203  PI3K/AKT activation FALSE
R-HSA-5218920 VEGFR2 mediated vascular permeability TRUE
R-HSA-8853659 RET signaling TRUE
R-HSA-9006335 Signaling by Erythropoietin TRUE
R-HSA-1660499 Synthesis of PIPs at the plasma membrane FALSE
R-HSA-912631  Regulation of signaling by CBL TRUE
R-HSA-2428928 IRS-related events triggered by IGF1R TRUE
R-HSA-2428924 IGF1R signaling cascade TRUE
R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor TRUE

(IGF1R)
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Table 3.7: Drugs and targets involved in the DT network of signaling by VEGF (R-HSA-
194138) in Figure 3.6D.

Drug Targets

sirolimus MTOR

wortmannin MTOR,; PIK3CA; PIK3R1
phorbol-12-myristate-13-acetate PRKCA

QL-X-138 MTOR

AZD-8055 MTOR

perphenazine CALM1; CALM2; CALM3
WYE-354 MTOR

BMS-754807 AKT1

torin-1 MTOR; PIK3CA

H-7 PRKACA

BX-795 KDR

NVP-TAE684 AXL; PAK3; PTK2; PTK2B; ROCK1
caffeine ITPR1; ITPR2; ITPR3; PIK3CA; PIK3CB
CGP-53353 PRKCB

JX-401 MAPK14

tanespimycin HSP90AA1

geldanamycin HSPI90AA1

NVP-AUY922 HSP90AA1

AS-605240 PIK3CA; PIK3CB
crizotinib AXL
RHO-kinase-inhibitor-III[rockout] ROCK1

purvalanol-a SRC

triciribine AKTI1; AKT2; AKT3
GSK-1059615 PIK3CA

PU-HT71 HSP90AA1

U-0126 AKT1; MAPK11; MAPK12; MAPK14; PRKCA; ROCK1
BMS-536924 AKT1; KDR

felodipine CALM1; CALM2; CALM3
KI-8751 KDR

cediranib FLT1; FLT4; KDR
atorvastatin RHOA

chlorpromazine CALM1; CALM2; CALM3
gedunin HSP90AA1

lovastatin RHOA

KU-0063794 MTOR

lenalidomide CDH5

cytochalasin-b ACTB

H-89 PRKACA

quizartinib FLT4

KU-0060648 PIK3CA; PIK3CB
SU-4312 KDR

TGX-221 PIK3CB

pimozide CALM1; CALM2; CALM3
motesanib FLT1; FLT4; KDR
nicardipine CALM1; CALM2; CALM3
quercetin ACTB; HSP90AA1
carvedilol VEGFA

bucladesine PRKACA

everolimus MTOR

minocycline VEGFA

SU-11652 FLT1; KDR

staurosporine FLT4; MAPKAPK?2; PAK2; PRKCB
cinchocaine CALM1; CALM2; CALM3
semaxanib FLT1; KDR

nifedipine CALM1; CALM2; CALM3
tamoxifen PRKCA; PRKCB; PRKCZ
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to identify drugs that induce GESs that are positively and/or negatively correlated with
this longevity-associated signature. The same GESS and FEA methods were used here as
the LAD11 queries. The NCS score distributions from Peters et al. (2015) query are more
significant when compared to a randomly generated signature (Figure 3.8A) but not when
compared to the GESS results from drug treatment (Figure 3.4A). Following GESS, RRSs
are calculated at 5, 10 and 15 percent randomization, ranked from largest to lowest by NCS
scores, and the top 10 positively connected drugs are shown in Table 3.8. Although RRSs for
this query are more moderate compared to the GESS results obtained from the drugs (Table
3.2), The most highly positively ranking and interesting drugs (with RRS > 0.5) include
BRD-K63954456 (PubChem CID 2202512, a macrophage migration inhibitory factor) and
erlotinib (PubChem CID 176871, kinase inhibitor that helps slow or stop the spread of can-
cer cells by blocking the action of an abnormal protein that signals cancer cells to multiply).
Out of the top 500 ranking drugs and small molecules in Peters GESS results, 52 drugs are
overlapped with the combined PDs from LAD11 (Table 3.9). It give more credibility to the
overlapped drugs that can be assume to be related to human longevity and healthy aging
including pravastatin, amsacrine, thioridazine, exemestane, rosuvastatin, chlorphenamine,
gemfibrozil, crizotinib, alprostadil, meloxicam, mepacrine, GW-501516 (also known as car-
darine, a PPAR receptor agonist that was developed as a drug candidate for metabolic and
cardiovascular diseases, but was abandoned in 2007 because animal testing showed that the
drug caused cancer to develop rapidly in several organs) that have therapeutic efficacy or
under FDA study. The known LADs or DrugAge drugs of sirolimus, simvastatin, KN-93,

phenformin, pyrazolanthrone, arctigenin, caffeine, wortmannin are also ranked among the
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top 500s in the Peters GESS results indicating that they induce similar GESs to Peters et
al. (2015) query (Figure 3.8B).

Next, FEA analysis was performed on the top 100 drugs in the Peters GESS result
using the dup hyperG method followed by computing RRSs to get the top ranking KEGG
and Reactome pathways (Table 3.10, Table S15). Three out of ten KEGG pathways have
RRS5 greater than 0.3, including EGFR tyrosine kinase inhibitor resistance (EGFR-TKIR),
ErbB signaling pathway and Glioma. The epidermal growth factor receptor (EGFR) is a
receptor that, when activated, promotes cell proliferation [204]. Genetic studies have iden-
tified several activating mutations within the EGFR coding sequence that are believed to
be causative to non small cell lung cancer (NSCLC) [121]. Although EGFR tyrosine kinase
inhibitors are effective at treating NSCLC, a number of tumors develop EGFR-TKIR and
are difficult to treat [105]. Yet, pharmacological studies suggest that treating EGFR-TKIR
with longevity promoting compounds including vorinostat, metformin, or resveratrol are
effective at reversing EGFR-TKIR suggesting that pharmacologically inhibiting EGFR or
its downstream signaling events may have longevity promoting effects [29, 230]. ErbB re-
ceptors are a class of receptor that also activate a number of cellular proliferation pathways
including those that, when inhibited, promote longevity such as the MAPK and AKT-
PISK-mTOR pathways [207, 222, 212]. The Reactome pathway results also include several
pathways related to longevity in the top 20 hits including diseases of signal transduction
by growth factor receptors and second messengers, PI3K/AKT signaling in cancer, neuro-
transmitter receptors and postsynaptic signal transmission (Table S15). Out of the top 100

ranking Reactome pathways in Peters FEA results, about half of them (52) are overlapped
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with the combined PPs from LADI11 (Table 3.11). It adds more evidence to the identi-
fied pathways that might be related to human longevity including growth factor receptor
related pathways (diseases of signal transduction by growth factor receptors and second
messengers, VEGFA-VEGFR2 pathway, signaling by VEGF, VEGFR2 mediated vascular
permeability), PI3K/AKT related signaling pathways, neuron system (neurotransmitter re-
ceptors and postsynaptic signal transmission, neuronal system), metabolism of steroids and
estrogen signaling, immune system (interleukin-4 and interleukin-13 signaling), regulation
of PTEN gene transcription, MAPK, ERBB4 and G alpha (q) signalling.

Next, a DT network was created for the EGFR-TKIR pathway in order to fur-
ther resolve the relationships between the selected drugs and their molecular targets (Fig-
ure 3.8C). Several well-studied drugs were identified within this target network including
sirolimus, a well-known LAD, as well as 10 additional drugs (erlotinib, PLX-4720, hispidin,
AG-957, mepacrine, vemurafenib, atorvastatin, GSK-3-inhibitor-IX, oxindole-I, gefitinib)
with comparable NCS scores to sirolimus that may be candidate LADs (Table 3.12). In
addition to putative LADs, a number of genes within the EGFR-TKIR pathway are in-
hibited by drugs that promote longevity including EGFR, MTOR, RAF1 and MAPK3
[159, 175, 207|. Thus, it is likely that the development of inhibitors that target additional
EGFR-TKIR pathway members may have lifespan extending effects. In summary, these
results identified a number of drugs, genes and pathways that promote longevity or prevent

aging related diseases.
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Figure 3.8: Peters et al. (2015) query results. A: NCS score distributions in the GESS
results from Peters et al. (2015) query and one random GES query as negative control after
setting count cutoff as 100, the left and right panels show the negative part and positive
part of NCS scores, respectively. The color key shows the P-values of the WTCS score for
the entries in the GESS results. B: Position of known LADs from DrugAge database in
Peters GESS result. Due to space limitation, it only shows the position of LADs in the top
500 drugs whose GESs are positively connected with the query GES out of 8140. C: DT
network for the EGFR tyrosine kinase inhibitor resistance (EGFR-TKIR) pathway. Symbols
of drugs, targets and their relationship are available at Table 3.12.

Table 3.8: Top 10 ranking positively connected drugs of Peters GESS result from LINCS
method. Cell: cell type, NEU: normal cell, PC3: prostate adenocarcinoma, VCAP: prostate
carcinoma, ASC: normal primary adipocyte stem cells; Targets: gene symbol of protein
targets; RRS5,10,15: rank robustness scores at 5, 10, 15 percent randomization. For detailed
description of the score columns for LINCS method, please consult to the vignette of the
signatureSearch package. The complete table is available at Table S13.

Drug Name Cell NCS  Tau Targets RRS5 RRS10 RRSI15

BRD-K63954456 NEU 1.93 99.96 0.97 0.90 0.82

pravastatin SKB 1.83 99.79 ABCC2; APOB; CCL2; CETP; CRP; 0.15 0.22 0.22
HMGCR; LCAT; SELP; SLCO1B1

erlotinib ASC 1.78 99.87 EGF; EGFR; GAK; MAP3K19; NR1I2; 0.61 0.44 0.31
SLK; STK10

calcitriol HL60  1.78 CDA; CYP24A1; CYP27B1; CYP3A5;  0.13 0.21 0.23
GC; HOXA10; VDR

BRD-A07614565 SKB 1.74 99.83 0.13 0.10 0.10

AG-957 VCAP 1.72 98.47 ABLI1; EGFR 0.02 0.04 0.03

BRD-K12411950 MCF7 1.72 99.92 0.19 0.12 0.09

SA-90377 NPC 1.72 99.64 0.05 0.07 0.10

BRD-K42021584 PC3 1.71 99.48 0.01 0.02 0.01

BRD-K37762845 ASC 1.71 99.91 0.18 0.11 0.09
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Table 3.9: Overlapped drugs between top 500 positively connected drugs in Peters GESS
results and combined PDs summarized from LAD11. Therapeutic: whether the drugs have
therapeutic effect. Max Phase: FDA max phase study.

Drug isLAD  Therapeutic Max Phase
pravastatin FALSE 0 0
quinoclamine FALSE 0 0
SA-1921085 FALSE

NU-7026 FALSE 0 0
mepacrine FALSE 0 2
sirolimus TRUE

atorvastatin FALSE

mevastatin FALSE

lovastatin FALSE 0 0
GW-9508 FALSE 0 0
SB-203186 FALSE 0 0
brazilin FALSE 0 0
amsacrine FALSE 1 4
simvastatin TRUE 1 4
thioridazine FALSE 1 4
biochanin-a FALSE 0 0
manumycin-a FALSE

exemestane FALSE 1 4
CHEMBL-374350 FALSE 0 0
rosuvastatin FALSE 1 4
ricinine FALSE 0 0
DY-44 FALSE

HG-5-88-01 FALSE 0 0
PD-407824 FALSE 0 0
QL-X-138 FALSE 0 0
SA-1921456 FALSE

CGS-12066B FALSE

alprenolol FALSE 0 0
fluperlapine FALSE 0 0
chlorphenamine FALSE 1 4
gemfibrozil FALSE 1 4
crizotinib FALSE 1 4
calcifediol FALSE

torin-1 FALSE 0 0
PP-3 FALSE 0 0
WZ-7043 FALSE

tubastatin-a FALSE 0 0
KUC111774N FALSE 0 0
arctigenin TRUE 0 0
norethisterone FALSE 0 0
GW-501516 FALSE 0 2
AS-605240 FALSE 0 0
STOCK1S-03920 FALSE 0 0
alprostadil FALSE 1 4
WH-4023 FALSE 0 0
meloxicam FALSE 1 4
chlorpromazine FALSE

LY-278584 FALSE 0 0
arvanil FALSE 0 0
wortmannin TRUE 0 0
prostaglandin FALSE

tremulacin FALSE 0 0
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Table 3.10: Top 10 ranking KEGG pathways from Peters et al. (2015) longevity-based query
GES. RRS5, 10, 15: rank robustness scores at 5, 10 and 15 percent randomization. The
complete table is available at Table S14.

ID Description GeneRatio BgRatio  pvalue RRS5 RRS10 RRS15
hsa01521 EGFR tyrosine kinase inhibitor resistance 20/168 79/7444  3.2¢-16 0.56 0.46 0.40
hsa05212 Pancreatic cancer 17/168 75/7444  4.3e-13 0.01 0.02 0.02
hsa05205 Proteoglycans in cancer 25/168 203/7444  2.6e-12 0.04 0.03 0.02
hsa04012 ErbB signaling pathway 17/168 85/7444  3.8e-12 0.35 0.36 0.35
hsa05210  Colorectal cancer 17/168 86/7444  4.7e-12 0.11 0.10 0.08
hsa04726  Serotonergic synapse 19/168 115/7444  7.0e-12 0.20 0.18 0.17
hsa04979  Cholesterol metabolism 12/168 50/7444  6.8e-10 0.20 0.16 0.14
hsa05214  Glioma 14/168 75/7444  8.8e-10 0.47 0.32 0.30
hsa04014 Ras signaling pathway 23/168 232/7444  1.7¢-09 0.21 0.21 0.18
hsa04270 Vascular smooth muscle contraction 17/168 127/7444  2.8e-09 0.13 0.12 0.10

3.3 Discussion

In this project, several longevity associated MOAs were found from GESs queries
of LAD87 and LAD11 (Figure 3.2B and 3.2C). It prioritized several MOAs that are func-
tionally related to healthy aging and longevity including chloride channel blocker, tricyclic
antidepressant, MAP kinase inhibitor, PPAR receptor agonist, RAF inhibitor, TGF beta
receptor inhibitor, glycogen synthase kinase inhibitor, anthelmintic, dopamine uptake in-
hibitor, retinoid receptor agonist, tachykinin antagonist, sigma receptor antagonist, casein
kinase inhibitor, PI3K inhibitor, tubulin inhibitor. The identified MOAs have a large scope
of affected biological systems and pathways, indicating that human longevity is a com-
plex phenotype and involved in a lot of pathways that maybe pharmacological targeted
to promote longevity and healthy aging. The target genes/proteins of LAD11 were mainly
mapped to Reactome pathways of SUMOylation (part of metabolism of proteins); activation
of AMPK downstream of NMDARs (part of neuronal system); activation of PPARGC1A and
mitochondrial biogenesis (part of organelle biogenesis and maintenance); MTOR signaling

and Extra-nuclear estrogen signaling (part of signal transduction); translocation of SLC2A4
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Table 3.11: Overlapped Reactome pathways between top 100 terms in Peters FEA results
and combined PPs summarized from LADI11.

1D Description isLAP

R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers  TRUE
R-HSA-375280  Amine ligand-binding receptors FALSE
R-HSA-8963899 Plasma lipoprotein remodeling TRUE
R-HSA-8848021 Signaling by PTK6 TRUE
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases TRUE
R-HSA-2219528 PI3K/AKT Signaling in Cancer TRUE
R-HSA-1257604 PIP3 activates AKT signaling TRUE
R-HSA-174824  Plasma lipoprotein assembly, remodeling, and clearance FALSE
R-HSA-9006925 Intracellular signaling by second messengers TRUE
R-HSA-112314  Neurotransmitter receptors and postsynaptic signal transmission FALSE
R-HSA-8964026 Chylomicron clearance FALSE
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling TRUE
R-HSA-199418  Negative regulation of the PI3K/AKT network TRUE
R-HSA-112315  Transmission across Chemical Synapses FALSE
R-HSA-8963888 Chylomicron assembly FALSE
R-HSA-8963901 Chylomicron remodeling FALSE
R-HSA-1227986  Signaling by ERBB2 TRUE
R-HSA-211897  Cytochrome P450 - arranged by substrate type FALSE
R-HSA-8957322 Metabolism of steroids FALSE
R-HSA-211981  Xenobiotics FALSE
R-HSA-390696  Adrenoceptors FALSE
R-HSA-211945  Phase I - Functionalization of compounds FALSE
R-HSA-76002 Platelet activation, signaling and aggregation TRUE
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer TRUE
R-HSA-8963898 Plasma lipoprotein assembly TRUE
R-HSA-9009391 Extra-nuclear estrogen signaling TRUE
R-HSA-8943724 Regulation of PTEN gene transcription TRUE
R-HSA-4420097 VEGFA-VEGFR2 Pathway TRUE
R-HSA-3000471 Scavenging by Class B Receptors FALSE
R-HSA-5674499 Negative feedback regulation of MAPK pathway FALSE
R-HSA-8857538 PTK6 promotes HIF1A stabilization FALSE
R-HSA-194138  Signaling by VEGF TRUE
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling TRUE
R-HSA-9006931 Signaling by Nuclear Receptors TRUE
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer TRUE
R-HSA-8866910 TFAP2 (AP-2) family regulates transcription of growth factors and their receptors TRUE
R-HSA-112316  Neuronal System FALSE
R-HSA-1236394 Signaling by ERBB4 TRUE

R-HSA-9018682 Biosynthesis of maresins FALSE
R-HSA-975634  Retinoid metabolism and transport FALSE
R-HSA-373076  Class A/1 (Rhodopsin-like receptors) FALSE
R-HSA-9018678 Biosynthesis of specialized proresolving mediators (SPMs) FALSE
R-HSA-6806667 Metabolism of fat-soluble vitamins FALSE
R-HSA-445144  Signal transduction by L1 TRUE
R-HSA-390648  Muscarinic acetylcholine receptors FALSE
R-HSA-416476 G alpha (q) signalling events TRUE
R-HSA-189483  Heme degradation FALSE
R-HSA-8939211 ESR-mediated signaling TRUE
R-HSA-1482788  Acyl chain remodelling of PC FALSE
R-HSA-5637812 Signaling by EGFRvVIII in Cancer TRUE
R-HSA-9027307 Biosynthesis of maresin-like SPMs FALSE
R-HSA-5218920 VEGFR2 mediated vascular permeability TRUE
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Table 3.12: Summary of the NCS scores, MOA, target gene symbols and targets in network

of the filtered 11 drugs in the EGFR-TKIR drug-target network.

Drug NCS MOA Targets Targets In Network
erlotinib 1.78 EGFR inhibitor EGF; EGFR,; GAK; EGF; EGFR
MAP3K19; NRI1I2; SLK;
STK10
PLX-4720 -1.78 RAF inhibitor BRAF; FGR; KDR; BRAF; KDR
MAP2K5; MLTK; PTKG6;
SRMS
hispidin -1.75  PKC inhibitor PREP; PRKCB PRKCB
AG-957 1.72  Protein tyrosine kinase ABL1; EGFR EGFR
inhibitor
mepacrine 1.63  Cytokine production AKT1; MTOR; NFKB1; AKT1; MTOR
inhibitor; NFkB path- PLA2G1B,; PLA2G2A;
way inhibitor; TP53 PLA2G2D; PLA2G4A;
activator PLA2G6; PLCL1; TP53
vemurafenib -1.60 RAF inhibitor BRAF; CYP3A4; BRAF; RAF1
CYP3A5; RAF1
sirolimus 1.60 MTOR inhibitor CCR5; FGF2; FKBP1A; FGF2; MTOR
MTOR
atorvastatin - 1.59  HMGCR inhibitor AHR; APOAI1; APOB; IL6
APOE; CCL2; CD40LG;
CETP; CRP; CYP3A5;
DPP4; FASLG; HMGCR;
IL6; LDLR; LPL; MTTP;
PONT1; RHOA; SER-
PINEL, SLCO1B1;
VCAM1
GSK-3- -1.59 Glycogen synthase ki- ALOX5; GSK3A; GSK3B GSK3B
inhibitor- nase inhibitor; Lipoxy-
X genase inhibitor
oxindole-I -1.58 VEGFR inhibitor AKT1; KDR; RET AKT1; KDR
gefitinib 1.57 EGFR inhibitor ABCG2; EGFR; EPHAG6; EGFR; ERBB3;

ERBB3; ERBB4; GAK;
IFI127L2; IRAK1; MAPKS3;
VEGFA

MAPKS3; VEGFA
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(GLUT4) for glucose transport (part of vesicle-mediated transport); and signaling by inter-
leukins (part of immune system). These pathways are targeted by the 11 well-characterized
LADs, many of them are known to be related to human longevity, the new ones can also be
assumed to be new potential pathways that are related to human longevity. The targets of
LAD11 and DrugAge drugs were significantly globally mapped to gene expression (transcrip-
tion) (descendant pathways are related to regulation of TP53 activity) and vesicle-mediated
transport compared to a broader targets of MOA drugs, suggesting that the genes/proteins
regulating gene transcription are the main target site for longevity-promoting drugs design.

Although many pharmaceutical agents have been identified that may extend lifes-
pan, the scope of available compounds eliciting life extending properties as well as the
pathways involved are currently unknown. In this study, databases of GEPs from cells
treated with compounds coupled with GESS approaches were leveraged to determine the
scope of available compounds that mimic lifespan extending GEPs and may be repurposed
for the extension of active living. From a more focused search results that were gener-
ated by querying LINCS with the GESs of LAD11, compounds of wortmannin, cinnarizine,
SU-4312, arctigenin, dihydroergocristine, lonidamine, quercetin, geldanamycin, CGP-52411,
and staurosporine were prioritized from the vote strategy. They share the same MOAs
and pathways with LADI11 and also exist in DrugAge database, indicating their ability
to elicit GESs similar to GESs of known high-confident LADs and whose mechanisms of
action and target pathways are promising to be related to longevity. They can be very
promising drugs in extending lifespans for drug repurposing. Furthermore, wortmannin,

geldanamycin, lonidamine, dihydroergocristine, SU-4312, staurosporine and quercetin are
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also highly ranked from other GESS result summary approaches, which also identify addi-
tional LAD candidates of caffeine and pyrazolanthrone, or the DT network of signaling by
VEGF pathway. The prioritized drug list for LAD11 also contains many drugs with thera-
peutic efficacy and unknown drugs or small molecules as novel findings that worth testing.
Users can choose from these drug lists according to there research interest. For example,
they can choose from the PDs from sirolimus query if sirolimus is more trusted in its effects
of promoting longevity. The candidate LADs can be tested in the following experimental
studies. For example, they can be first tested in mouse fibroblasts and then in living mice
with different dosages for their efficacy in extending life span. Wortmannin is a selective
inhibitor of PI3K and can be used to increase the median and maximal lifespan of the fruit
fly [132]|. Geldanamycin inhibits HSP90, a molecule that plays important roles in the regu-
lation of cell cycle, cell growth, cell survival and apoptosis [128, 65, 157]. KU-0063794 is a
small molecule filtered from the DT network of signaling of VEGF pathway. It is an mTOR
inhibitor, which is involved in a well known pathway related to longevity [60]. In addition
to the identification of new lead compounds, the GESS results may provide additional in-
formation about compound characteristics that may be optimized for in vivo therapeutics.
Geldanamycin, for example, was identified as a significant lead compound in the GESS re-
sults yet causes hepatotoxicity when administered in vivo [66]. Tanespimycin, however, is
a structural analogue of geldanamycin and was developed to overcome liver toxicity issues
[217].

To date, there are several well established pathways related to longevity yet the

scope of LAPs is not well characterized [124, 137]. Results in Figure 3.6B, 3.6C, 3.7 illustrate
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the prioritized enriched Reactome pathways performed on molecular targets of compounds
with similar GESs to known LADs. These results heavily overlap with known LAPs and
may, in part, partially redefine the scope of pathways that may be targeted pharmacologi-
cally in order to extend lifespan. Pathways in these results that are also enriched from genes
in GeneAge database include PI3K/AKT related pathways, signaling by VEGF, regula-
tion of PTEN gene transcription, regulation of TP53 degradation, insulin receptor signaling
cascade, immune system related pathways (signaling by interleukins), SUMOylation of in-
tracellular receptors, and extra-nuclear estrogen signaling from sirolimus query. Pathways of
VEGFA-VEGFR2 pathway, signaling by ERBB4, cytochrome P450 - arranged by substrate
type, post NMDA receptor activation events, extra-nuclear estrogen signaling, MAP kinase
activation, xenobiotics are identified from acarbose query. Pathways of xenobiotics, GPCR
ligand binding, neuron system related (Neurotransmitter receptors and postsynaptic signal
transmission, activation of NMDA receptors and postsynaptic events, dopamine receptors),
SUMOylation of intracellular receptors, extra-nuclear estrogen signaling, intracellular signal-
ing by second messengers, PI3K/AKT signaling in cancer, VEGFA-VEGFR2 pathway, RAS
signaling, G alpha (i) signalling events, MAPK family signaling cascades, signaling by RAF1
mutants are supported by multiple query LADs. The direct enrichment on the top 50 PDs
from sirolimus query have a very good consistency to the prioritized PPs in sirolimus’ FEA
results and the prioritized PPs across LAD11 also have a large overlap, making the results
more robust and trustworthy. The frequently discovered overall promising LAPs include
PI3SK/AKT related pathways, intracellular signaling by second messengers, insulin receptor

signalling cascade, estrogen and steroid related pathways, neurotransmitter signaling, im-
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mune system (signaling by interleukins), signaling pathways involved with VEGF, growth
factor receptors (IGF1R, VEGF), TP53, RET, MAPK, RAS, RAF1, AMPK. While many of
these pathways are attenuated in people administered LADs and are related to physiological
data related to disease prediction (glucose tolerance, hyperlipidemia, hypercholesterolemia),
or are associated with cellular phenotypes associated with disease (cell proliferation and
inflammation), many putative new LAPs have not been clinically ascribed with disease pre-
vention [84, 25, 73, 151, 106, 27|. Many studies have demonstrated that the downregulation
of signaling pathway of IGF-1/PI3K/Akt can extend longevity as well as resistance to ox-
idative stress in the nematode Caenorhabditis elegans |70, 139, 131, 113, 118, 98]. These
pathways are promising for human healthy aging and may be pharmacologically targeted to
extend lifespan.

The new drugs found by the longevity phenotype query GES from Peters et al.
(2015) that are highly ranked in GESS result and positively connected with the query GES
include BRD-K63954456 (PubChem CID 2202512, a macrophage migration inhibitory fac-
tor) and erlotinib. Drugs of pravastatin, amsacrine, thioridazine, exemestane, rosuvastatin,
chlorphenamine, gemfibrozil, crizotinib, alprostadil, meloxicam, mepacrine, GW-501516 that
have therapeutic efficacy or under FDA study are overlapped between the top 500 ranking
drugs in Peters GESS results and the PDs from LAD11 (Table 3.9). It gives more credibility
to the overlapped drugs that can be assume to be related to human longevity and healthy
aging. The Peters et al. (2015) phenotype query also identifies the known LADs or DrugAge
drugs of sirolimus, simvastatin, KN-93, phenformin, pyrazolanthrone, arctigenin, caffeine,

wortmannin in the top 500 rankings (Figure 3.8B). They can also be added to the candidate
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drug list if users are more interested in the human longevity phenotype query. Peters et al.
(2015) phenotype query also identifies a list of KEGG and Reactome pathways that might
be related to human longevity. The KEGG pathways include EGFR-TKIR, ErbB signaling
pathway, and glioma. The Reactome pathways that are also identified in the top rank-
ings from LADI11 queries include diseases of signal transduction by growth factor receptors
and second messengers, PI3K/AKT signaling in cancer, and neurotransmitter receptors and
postsynaptic signal transmission (Table S15). The DT network of EGFR-TKIR pathway
also filters a list drugs and target proteins/genes that are involved and can be hypothesized
to be related to human longevity. The drugs include sirolimus, erlotinib, PLX-4720, his-
pidin, AG-957, mepacrine, vemurafenib, atorvastatin, GSK-3-inhibitor-IX, oxindole-I, and
gefitinib. The genes include EGFR, MTOR, RAF1, and MAPK3 [159, 175, 207]. These
genes can be the targets for designing drug inhibitors to modulate the pathways and extend
lifespan.

Most molecular pathways are made up of multiple functional steps, each of which
can be subjected to regulations. Therefore, it is possible to identify drugs with different
molecular targets within a specific pathway. These drugs will have a similar therapeutic
effect. For example, sirolimus/rapamycin, and KU0063/KU-0063794 both inhibit the mTOR
pathway. While sirolimus allosterically binds to TOR complex 1 (TORC1), KU-0063794 can
suppress the activity of both TORC1 and TORC2 [60]. In addition, many other compounds
are under development that can bind to TORs ATP binding site. They can thus inhibit
both TORC1 and TORC2 but also target PI3K [11]. Although both TORC1 and TORC2

participate in the mTOR pathway, they have slightly different effects and inhibiting both
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of them with ATP competitive inhibitors may prevent tumor proliferation and have an
additional antineoplastic effect.

There is a large overlap between putative LADs and antineoplastic drugs, which
characteristically have a large number of side effects. Arguably, however, the ability of a drug
to act as both a LAD and an antineoplastic agent may in part be explained by its mechanism
of action overlap with a longevity pathway. For example, drugs such as rapamycin, that
promote cell senescence without directly impairing DNA replication, may have dual effects
as LADs and chemotherapeutic agents [16]. However, chemotherapeutic drugs developed
as cytotoxic agents or that directly impact DNA replication (gemcitabine) may elicit a
greater number of side effects, and have no effect or reduce lifespan in healthy individuals.
Another possibility is the level of reversibility a drug imparts on cellular proliferation. While
rapamycin drives the conversion from cellular quiescent to senescent states, it preserves the
ability of a cell to reenter a proliferative state, other chemotherapeutic agents that are not
also LADs may not preserve the ability of cellular re-entry into a proliferative state [16].

Established LADs have diverse mechanisms whereby they regulate organism phys-
iology. While some may directly target cellular receptors (statins), others may indirectly
affect cellular function via secondary paracrine or autocrine signaling or indirectly increase
longevity via promoting a confounding calorie restriction phenotype (acarbose) [90, 177].
Although some compounds may lack molecular targets in a specific cell type, they may have
a direct impact on gene expression that correlates to a longevity GES.

In addition, some pharmaceutical agents may elicit off-target Pleiotropic effects in

addition to their known molecular target. Although pathway analyses illustrated in Figure
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3.6B and 3.6C were based on known drug targets, the selection criteria for inclusion in the
pathway analysis was based on similarity between gene expression profiles and results indi-
cated a high likelihood of recalling drugs with similar MOAs (Figure 3.2). Taken together,
the results illustrated in Figure 3.4 and Figure 3.6 identified new potential compounds and
pharmacologically targetable pathways that may be involved in longevity as well as providing

important direction for pharmaceutical re-purposing and development.

3.4 Materials and Methods

3.4.1 Gene Expression Signature Searching

Gene expression signature (GES) searching (GESS) was performed in R using
the signatureSearch R/Bioconductor package as previously described by Duan et al. 2020
[45]. Among the GESS methods implemented in the signatureSearch, SPsub conducts GESS
correlation-based method (Spearman correlation) to quantify the similarity of a query GES
to the GESs in a reference database. Subramanian et al. (2017) introduced a gene set-
based GESS algorithm (here referred to LINCS method) that uses a bi-directional weighted
Kolmogorov-Smirnov enrichment statistic to compute weighted connectivity scores as com-
parable similarity measure for GESs [186]. In this project, the SPsub GESS method was
used for systematically testing the recall performance of LINCS drug GESs for known MOA
and longevity classifications. For these tests, the query GESs were drawn from LINCS and
defined as the top 150 up- and down- regulated genes with expression values for each drug
perturbation. The LINCS method was used in the more focused LAD discovery study on

GESs of LAD11 as well as one longevity phenotype query GES. Since the query GESs were
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obtained from different technologies and organisms instead of just drawing from the LINCS
database, the set-based LINCS GESS method was performed. It is well suited in this sit-
uation since as a set-based GESS algorithm, it only requires gene sets as input, which are
technology agnostic. The query GESs for the LINCS GESS method in this project were the
150 up- and down- regulated gene identifiers, the normalized connectivity score (NCS) was

used as a measure of the query GES similarity to GES entries in the LINCS database.

3.4.2 Functional Enrichment Analysis

Functional Enrichment Analysis (FEA) was used to functionally interpret the
GESS results as previously described [45]. Specifically, the top 100 unique ranking drug
set in the GESS results by |[NCS| scores were converted into target gene/protein set and
the modified hypergeometric test with duplication support (dup hyperG method) was per-
formed on the target set with duplications to get the enriched functional categories based
on the chosen annotation systems, such as Gene Ontology terms in Molecular Function,

Biological Process or KEGG, Reactome pathways.

3.4.3 Eleven LADs Selection

The 11 LADs (LADI11) were chosen based on their presence in both compounds
in testing (CIT) in longevity assays from the Interventions Testing Program (ITP) at the
National Institute on Aging [206], the LINCS and DrugAge databases. In addition, some ex-
pert choices were included. The commonly present drugs are: sirolimus, aspirin, simvastatin,
resveratrol, curcumin, acarbose, metformin, minocycline. The 3 other well-known drugs

from expert choices that can be used to extend lifespan in model organs are tanespimycin,
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alpha-estradiol and beta-estradiol. Fuentealba et. al. (2019) identifies tanespimycin as an
anti-ageing drug and experimentally validates in Caenorhabditis elegans [58|. The 17-alpha-
estradiol is tested in male mice and demonstrated that it can robustly extend both median
and maximal lifespan [184]. Beta-estradiol is epimer of the alpha-estradiol. It is tested in C.
elegans by Ye et al. (2014) and identified to increase longevity and resistance to oxidative
stress in C. elegans [225]. Table 3.1 and 3.4 list the detailed annotation information of the

selected LAD11 and their GES sample information including the cell types.

3.4.4 MOA Annotation and Size Cutoff

The full MOA annotations were obtained from the CLUE website at https://
clue.io. It contains 2,384 drugs in 701 MOA categories. The drugs with MOA annotations
(here referred as MOA drugs) were filtered by selecting those that have treatments in LINCS
expression database resulting in 2,271 drugs in 678 MOAs. They were used for getting the
MOA rankings from DrugAge LAD queries and LAD11 queries. The 334 MOAs with 2,050
unique drugs after size 2 cutoff were used for calculating the recall rates. Since the small
MOAs with size 1 or 2 tend to be enriched in the top rankings by their connectivity to
longevity, the results were further filtered by selecting MOAs that have 5 or more drugs.
This resulted in 1,644 unique drugs in 138 MOAs which was used for the plotting and result
discussion for both the recall performance analysis (‘Recall Performance of MOA Categories’
result section) and ranking by connectivity to longevity (‘MOAs Connected with Longevity’
result section). The suitability of a size cutoff of 5 was determined by confirming that
the remaining MOAs are representative for the full set. The need for this size filter was

that frequently MOAs are split into two where one category contains many drugs, while
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other only one or two drugs, e.g. Glucocorticoid receptor combined with modulator has one
member only, but the agonist version has 33 drugs. The result shows that 103/540 filtered
out MOAs have overlapping terms with larger size in the final 138 MOA set. Secondly, the
number of overlapped drugs in DrugAge or LAD11 before and after filtering was compared.
The result shows that there are 86 overlapped drugs between DrugAge and MOA drugs
before filtering and 70 overlapped drugs after filtering, indicating only 16 DrugAge drugs
were removed by implementing a size 5 cutoff. For the LAD11, 9 of them overlapped with
the MOA drugs before filtering, only one drug acarbose was removed after implementing the
size 5 cutoff. So removing the MOA categories that have less than 5 drugs will not result in
much information loss. Second, the full 678 MOA categories without size cutoff were ranked
by their connectivity to longevity, but the small MOAs with size 1 or 2 tend to rank in
the very top or bottom positions. It means that the MOA sizes have large impact on their
rankings. To eliminate the MOA size bias, the MOAs were ranked from lowest to largest
by their size and their original rankings were recorded. The moving average (MA) scores
with window size of 50 were calculated on MOA ranking values and plotted in Figure 3.9.
The results indicate that the MOA rankings have large fluctuations on MOAs with small
sizes.The fluctuations stabilize at MOA size of 5, meaning that the MOA size tend to have
little effect on their rankings. So the size 5 cutoff was applied on MOAs when analysing the

results.

3.4.5 Recall Performance of MOA Categories

The MOA recall rates were used as a metric to assess the ability of drugs within an

MOA to recall each other. The 334 MOAs with size 2 cutoff were used for calculating the
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Figure 3.9: Distribution of ranking moving average on MOA sizes using moving window
analysis. Ndrugs: number of drugs in MOAs, i.e. MOA size. RankMA: moving average
of MOA rankings where MOAs ranked from lowest to largest by their sizes. The moving
average of their rankings were calculate with a window size of 50. Since a lot of MOAs have
size less than 4 and the RankMA was calculated at each MOA, the dots at small Ndrugs
are vertical aligned.
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recall rates since it is not possible to calculate meaningful recall rates for MOAs that have
only one drug. Then a size 5 cutoff was applied to minimize the MOA size dependency in
the MOA performance rankings. First, the GESs of 2,050 drugs in 334 MOAs were queried
against the LINCS expression database using the SPsub method. PC3 (prostate tumor)
was selected because this cell type has been tested in LINCS with the largest number of
compounds. If PC3 cell treatment is not available for a drug, either the MCF7 (breast
tumor) cell line or one of the other available cell types were selected. In summary, 2,021
drugs have treatments in PC3 cells, 23 out of the 29 remaining drugs have treatments in
MCF7 cells. For the other 6 drugs, one of the available cell types were selected for each one.
The MOA recall rates were calculated as illustrated in Figure 3.10. Specifically, drug GESs
in one MOA category were iteratively queried against the LINCS expression database with
the SPsub GESS method. For each drug GES query, CORct scores were appended to the
SPsub GESS result, which is the correlation coefficient scores summarized across cell lines by
choosing the 67% or 33% quantile of the scores that have larger absolute value. It is similar
as the NCSct scores from LINCS method. The GESS results from each GES queries in
one MOA category were combined into one table. The column-wide median of the absolute
CORct scores for drugs in the query MOA across it drug GES queries were calculated as
ColMedianCORct and plotted as box plots in Figure 3.2. All MOA categories were ranked
from largest to lowest by median of absolute CORct of their drugs across drug GES queries
of the query MOA. The rank percentile of the query MOA was set as its recall rate. The

lower the MOA recall rate, the better the recall performance of the MOA category.
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Figure 3.10: Illustration of MOA recall method. Drug GESs of each MOA category were
iteratively queried against the LINCS expression database with the SPsub method. All
MOAs were ranked from largest to lowest by median absolute CORct of of their drugs
across drug GES queries of the query MOA. The rank percentile of the query MOA was set
as recall rate.

3.4.6 MOAs Connected with Longevity

To rank MOA categories by their connectivity to longevity, the GESs of known
LADs in the DrugAge [6] database were used to iteratively query the LINCS database with
SPsub GESS method. There are a total of 112 LADs that exist in both the DrugAge and
LINCS databases by matching their PubChem CIDs. Of the 112, 87 LADs (LADS87) have
GESs in normal cells in LINCS database. Since the LADS8T are tested in different numbers
of normal cell lines in LINCS, it results in a total number of 495 query GESs for LAD87 in
12 normal cells, instead of the multiplication of the drug and cell number. The latter were
used to query LINCS with the SPsub method. Similar to the recall performance analysis,
the SPsub GESS results from each of the LAD GES queries were cell type summarized by
CORct scores. The GESS results from all of the GES queries were then combined into
one table. The MOA categories were ranked from highest to lowest by median of absolute

CORct of their drugs across all 495 GES queries. The full MOA categories were used for the
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calculation, while applying a size cutoff of 5 to minimize the MOA size bias. The same MOA
ranking approach was also applied to the GESs of LAD11. The consistency of their MOA
rankings was compared by counting the number of overlapped MOAs in their top 20s as
well as calculating the Spearman correlation coefficiency of the global rankings. The MOA
recall rates obtained from the above ‘Recall Performance of MOA Categories’ section were
also appended to the result table as reference of their recall performance. The top ranking

MOAs were considered to be associated (connected) with human longevity.

3.4.7 Drug-Target Pathway Map Plotting

The targets of the LAD11 set were mapped to Reactome pathways and visualized
with firework plots. Since a local implementation does not exist, the fireworks plotting had
to be performed with Reactome’s [62] online service. The highest level human Reactome
pathways that are enriched in the target proteins of LADI11 were highlighted as colored
branches in the firework plot manually. To contrast the enrichment differences, the Reactome
enrichment results on each of the three drug sets (LAD11, DrugAge drugs and MOA drugs)
were obtained by the hypergeometric test on their unique target set. The top level Reactome
pathways in their enrichment results were subsetted and compared in a heatmap plot by
combining the enrichment results into one table. The adjusted p-values, normalized counts,

number of target genes in the test gene set and pathway size were also plotted in the heatmap.

3.4.8 Permutation Tests

The permutation test was used to compute a Rank Robustness Score (RRS) for

both the GESS and FEA results to test the robustness of the rankings obtained from the
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GESS and FEA results. The RRS was calculated for 5, 10 and 15 percent randomization. As
a result, RRS values decreased in the corresponding order. When the query GES consists
of up and down-regulated gene sets (e.g. LINCS method) permutation testing involves
randomly sampling 5%, 10% and 15% of the query genes and replacing them with other
genes in the reference database. When the query GES consists of expression intensity values
of up and down subsetted genes for the SPsub method, permutation testing also involves
randomly sampling 5% , 10% and 15% of the query genes and replacing them with expression
values of other genes drawn from the reference database. The randomization was repeated
100 or 1000 times. Then the GESS methods were applied to both the original query and
randomized queries. The dup hyperG method was used as the FEA method, where the
targets of the top 100 unique drugs in a ranked GESS result served as test set. The drug
rankings in the permutation GESS results were compared to their rankings in the original
result. The RRS values were expressed as the percent of the permutation times that the
drug rankings in the permutation result are within the +2 and -2 ranking windows of the
rankings in the non randomized GESS result. The same applies to pathways in the FEA

results. Figure 3.11 illustrates the processes of permutation testing.

3.4.9 Drug Prioritization Strategy

The GESS result from each query GES contains multiple NCS scores for LINCS
compounds across different cell types. In order to get the cell type summarized score for
each compounds, the GESS result can be summarized by three metrics: (1) NCSct scores.
They are the quantile based cell type summarized NCS scores obtained from the LINCS

method. The compounds’ NCS scores were summarized across cell lines by choosing the
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Figure 3.11: Permutation testing method. Query GESs were randomized at 5% , 10% or
15% of the GES query genes by iteratively replaced with randomly selected genes from the
reference database 1000 times prior to performing the GESS/FEA analysis. The permutation
results were compared to the original result rankings and the permutation/robustness scores
were calculated as the percent of permutation times that the drug/pathway rankings of the
permutation results within the +2 and -2 ranking windows of the non randomized query
GESS results.
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67% or 33% quantile of the scores that have larger absolute values; (2) NCSunique scores.
They are obtained by choosing the compounds’ largest NCS scores across cell types. It was
done by ranking the full GESS results from largest to lowest by NCS scores. The GESS
result table was then uniquified by the compound name column. (3) NCStissue scores. As
illustrated in Figure 3.12A, it first chose the compounds’ NCS score in primary/normal
cell type that match the query cell type/tissue. If the compound has no NCS score in the
matched primary cell, the NCS score in the immortal /tumor cell line of the query tissue
was chosen for that compound. If the compound is tested in cell types that do not match
either the primary nor the immortal cell line, the largest NCS score tested in other cell types
was chosen. The GESS results were then reduced to the compound level by including one
cell-type summarized NCS score for each compound.

The compounds in GESS results from multiple GES queries of one query LAD
(e.g. GESs of the query LAD treated in different cell types, from different technologies or
organisms) can be summarized by several methods including voting strategy, summarized
NCS scores (cell type quantile or maximum NCS scores) across multiple queries (mgNCSct,
mgNCSunique) or just using the compound rankings from one specific GES query. The
voting strategy uses frequency of how often compounds showed up at top of each individ-
ual GESS result where the compounds in each GESS result can be ranked by the above
introduced three metrics. The voting strategy on different cell type summarized NCS scores
results in three voting methods (voteNCSunique, voteNCStissue, voteNCSct). As illustrated
in Figure 3.12B, the cell type summarized GESS results from different GESs of one query

LAD were combined into one table. The rank-transformed table was turned into TRUE
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(1) or FALSE (0) values by setting the rank cutoff (e.g. 400 in this project). The LINCS
compounds in GESS results were then summarized across queries by ranking from largest
to lowest by row sums of cell type summarized NCS scores after cutoff. The re-ranked
compounds in GESS results can then be stratified/classified into 3 layers (Figure 3.12C).
Layer 1 contains drugs sharing MOAs with the combined MOA set of the 11 query LADs.
Layer 2 contains drugs targeting the same Reactome pathways as the query LADs. The
other compounds were stratified into layer 3. Compounds in each layer remain the rank-
ings summarized from voting strategy. The top ranking compounds in each layer (here 15
in layer 1 and 2, 20 in layer 3) were selected as the final prioritized drugs (PDs). Drugs
in layer 1 and layer 2 with known annotations can be hypothesized for drug repurposing.
Layer 3 contains many unknown compounds and small molecules, which can be redeemed
as new findings of unknown small molecules that worth testing. Their corresponding cell
type summarized NCS scores across GESs of the query LAD and annotations were plotted
in heatmaps. The top 50 PDs for each LAD11 were then summarized by ranking the drugs
from largest to lowest by the number of times that they were identified /supported by the

query LADI11 (Nsupport).

3.4.10 Voting Strategy on FEA Results

The Reactome pathways in FEA results from GESs of each query LAD were also
summarized with voting strategy in the similar way as the GESS results to get the prioritized
Reactome pathways (PPs) for each query LAD. Each of the FEA results from the in vitro
GESs of the query LAD was ranked from lowest to largest by the adjusted p-values. The

pathway rankings transformed from the adjusted p-values for different GES queries were
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Figure 3.12: Illustration of the NCStissue score (A), voting strategy (B) and classification
(C). The compounds’ NCS scores in cell lines that matches the query tissue (primary cell
has first priority and then immortal cell line) are selected. The NCS scores in other cell
lines are ignored. The maximum NCS scores are selected for compounds that do not have
treatments in the matched cell lines. The cell type summarized GESS results from different
GESs of one query LAD are combined into one table. The rank-transformed table is turned
into TRUE or FALSE values by setting the rank cutoff (e.g. 400). The compounds in GESS
results are then summarized across queries by ranking from largest to lowest by row sums
of cell type summarized NCS scores after cutoff. The drug rankings from voting strategy
are then classified into three layers (layer 1: drugs matching MOAs with query LADs; layer
2: drugs matching target pathways with query LADs; layer 3: others). Drugs in each layer
remain the original voting order. The top ranking drugs in each layer are selected as the
final prioritized drugs.
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combined into one table and the rank cutoff was applied (e.g. 100 in this project). The
Reactome pathways in FEA results were then summarized across queries by ranking from
lowest to largest by row means of rankings after cutoff multiplied with a size correction
factor. The latter was calculated by multiplying the total number of GES queries divided
by the number of supported queries after rank cutoff to give it a larger value to pathways
that are supported by fewer queries to make it rank lower, thus favor the pathways that
are supported by more queries (Figure 3.13). To visualize the result, the top 50 PPs were
plotted in form of a heatmap. The color key indicates the rankings. To indicate which of
the pathways are associated with longevity, the LAP annotation was obtained by applying
hypergeometric test on the longevity associated genes (LAGs) from the GeneAge database.
The enriched functional categories were filtered with the adjusted P-value cutoff of 0.05.
The top 50 PPs for each of the LAD11 were then summarized by ranking the pathways from
largest to lowest by the number of their query LADs support (Nsupport). The pathways

with more than or equal to 3 LAD supports were plotted in a heatmap.

3.5 Supplementary Material

3.5.1 Supplementary Methods
GESS Score Distributions

The GESS score (e.g. NCS) distributions in the GESS results from drug or pheno-
type GES queries were subsetted and plotted as histograms, which show the early enrichment
NCS scores (less than -1 or greater than +1) after setting count cutoff as 100 to better dis-

play and compare the NCS distributions at left and right extremes. The P-values of the
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Figure 3.13: Voting strategy on FEA results. Each of the FEA results from the GESs of
one query LAD was ranked from lowest to largest by the adjusted p-values and combined
into one table. The rank cutoff of 100 was applied. The pathways in FEA results were
summarized across queries by ranking from lowest to largest by row means of rankings after
cutoff multiplied with a size correction factor. The latter was calculated by multiplying the
total number of GES queries divided by the number of supported queries after rank cutoff
to give it a larger value to pathways that are supported by fewer queries to make it rank
lower, thus favoring the pathways that are supported by more queries.

weighted connectivity score (WTCS) from the LINCS algorithm were displayed as color key.
To compare the NCS distribution from a drug GES to a random GES query, one random
query GES was generated by randomly sampling of 150 up and down-regulated genes present
in the LINCS database as negative control. The first ranking drug term in GESS result from
itself query was removed to avoid giving advantages to the drug queries whose GESs were

drawn from the reference database.

Hierarchical Clustering of 11 LADs

The LADI11 were clustered by hierarchical clustering on Spearman correlation co-
efficients (SPcor) of their GESS results rankings. Specifically, the GESS results were ranked
from largest to lowest by |NCS| scores after filtering out zeros. The SPcor were calculated

on GESS rankings pairwise across LAD11. The 1 — SPcor was used as distance metrics for
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clustering, where the clustering method was set as complete. Since different queries have
different drug cell terms in GESS results after zero filtering, the correlation between each
pair of variables was computed using all complete pairs of observations on those variables.
It was done by setting the use argument of the cor function as pairwise.complete.obs.
The overlapped Reactome pathway for LADs in each cluster was obtained by mapping Re-
actome pathways for each LAD with dup hyperG method from the signatureSearch package
on their targets and the intersected Reactome pathways across LADs in each cluster were

obtained as the common pathways of each cluster.

Test of Drug Prioritization Methods

The drug prioritization methods (DPMs) described under ‘Methods and Materials’
section include voteNCSunique, voteNCStissue, voteNCSct, mqNCSct, mgNCSunique and
compounds ranked by NCSunique, NCStissue, NCSct scores on one selected query sample.
The DPMs are first tested on in vitro samples (GESs drawn from LINCS database in dif-
ferent human cell lines from L1000 technology) and in vivo samples (GESs from differential
expression analysis on samples of drug treatment in different mouse tissues from RNA-Seq or
Microarray technologies) for the 9 out of 11 LADs that have MOA annotations. Thus, each
query LAD has multiple query samples/GESs due to different cell types and technologies.
The DPMs can be used to get the summarized drug ranking list across multiple GESs for
each query LAD. The drugs can be ranked based on only in vitro samples or on all sam-
ples for the voting strategy to compare the performance difference of including only LINCS
samples or all samples to make a decision on which samples to use. Here only NCSct score

are used as cell type summarized score, resulting in methods of voteNCSct-LINCS on in
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vitro/LINCS samples or voteNCSct-all on all samples. The mgNCSct methods were also
applied on LINCS samples or all samples for 9 LADs to determine which type of samples is
better to be ranked on. The DPM performance is measured by the number of drugs sharing
the same MOAs as the query LAD that each methods can fish up/retrieve in their top 100
ranking drugs (Nretrieve). In other words, the methods are compared by showing which
method could retrieve more drugs sharing MOAs as the query LAD in their top 100s.

The DPM performance was further compared by applying on a larger number of
query drugs (57 in this case including the 9 LADs) and the methods were ranked from
largest to lowest by mean of the Nretrieve across 57 query drugs. The query drug set was
determined by selecting 5 drugs in each of the top 10 ranking MOAs by recall performance
that have at least 10 drugs in it. The selected drugs should also have at least 3 treatments in
normal cells in LINCS database. It results in 150 GES queries drawn from LINCS database
for 50 drugs, each have 3 normal cell treatments. Finally, 57 drugs including the 9 LADs
are selected for the systematic test of the PDMs. Each drug have 3 samples in normal cells,
resulting in a total number of 171 query GESs that are iteratively queried against LINCS

database with LINCS method.

Drug-Target Network Creation

If one pathway was supported by several LADs queries, the top 100 drugs in the
GESS results from each LAD query were combined to build the DT network by depicting the

drug-target interactions of the combined drug set to genes/proteins in the selected pathway.
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3.5.2 Supplementary Sections

Proof-of-Concept with Three Well-Characterized Drugs

The feasibility of GESS/FEA workflow was tested in advance by querying GESs of
WCD3 (vorinostat, alvocidib and chlorpromazine) with permutation tests. It was used as
a proof-of-concept that the GESS/FEA workflow using the LINCS and dup hyperG algo-
rithms can retrieve similar drugs and target pathways of query drugs. First, the significance
of the GESS results from drug GES queries was explored by comparing to a random GES
query to demonstrate a substantial difference from random. The distributions of the GESS
scores from WCD3 GESs were compared with random queries and the result shows that drug
GESs queries have more extreme and significant early enrichment GESS results compared
by a random query (Figure S2A). To demonstrate the feasibility of GESS/FEA workflow
in retrieving similar drugs and target pathways, the distributions/positions of drugs in the
same MOAs as query drugs in their GESS results and pathways directly targeted by the
query drug in their FEA results were shown in Figure S2B and C, respectively. The result
shows that many ‘correct’ drugs or pathways are enriched in the top ranking positions above
the red line in the GESS and FEA results for all of WCD3. Even though some drugs target
a wide spread of pathways, many of them matched in the top ranking pathways in FEA
results. These results indicate the feasibility of LINCS GESS method in identifying known
drugs or unknown compounds that share similar targets/MOAs as the query drugs and the

chosen GESS/FEA workflow can discover the correct target pathways of the query drugs.
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LAD11 Clustering

The LADI11 was clustered by Spearman correlation of their GESS result rankings
(Figure S3A, GESS SP), structural similarity (Figure S3B, Structure), Jaccard index of
overlapped targets (Figure S3C, Targets), and enriched GO BP terms (Figure S3D, BP).
Estradiol and alpha-estradiol are clustered together by all of the above 4 metrics. Drugs
of curcumin, resveratrol, aspirin tend to be clustered together by Targets and Structure
similarity (Figure S3E). Drugs of simvastatin and sirolimus, minocycline and tanespimycin
tend to be clustered together by GESS SP and Structure similarity (Figure S3F). The tree
diagrams comparison results suggest that the most similarity exists between GESS SP and
Targets with an entanglement score of 0.25, the next is GESS SP and Structure (0.33), the

next is Structure and Targets (0.41), and the last is Targets and BP (0.43).

Drug Prioritization Methods Tests

In order to get prioritized drugs (PDs) in GESS results for each query LAD summa-
rized across different cell types and technologies, several drug prioritization methods (DPMs)
are proposed including voting strategy that uses frequency of how often drugs show up at
top of each individual GESS result where compounds in GESS result are ranked by cell type
summarized NCS scores (NCSunique, NCStissue, NCSct), the rank transformed table is
turned into binary table by setting rank cutoff and summarized across queries by row sums
of three cell type summarized NCS scores resulting in three vote methods (voteNCSunique,
voteNCStissue, voteNCSct). The drugs can also be prioritized by NCSct or NCSunique

scores across multiple queries (mgqNCSct, mgNCSunique) and compounds rankings simply

123



based on one selected query sample for each query LAD ranked by NCSunique, NCStissue
or NCSct scores. The detail description of the three cell-type summarized scores and DPMs
are available at the ‘Materials and Methods’ section. The proposed DPMs are first tested
on 9 out of 11 LADs that have MOA annotations (Table S6). The voteNCSct and mqNC-
Sct methods are also applied on only in vitro/LINCS query samples (voteNCSct-LINCS)
compared to all (in vitro and in vivo) samples (voteNCSct-all) for the 5 LADs that have
both in vitro and in vivo samples to determine which type of query samples are better to
be used for ranking. The methods performance is measured by the number of drugs sharing
the same MOAs as the query LAD that each methods can fish up/retrieve in their top 100
ranking drugs (Nretrieve). The details of the methods testing is available at the ‘Supple-
mentary Methods’ section. The test result shows that even though different DPMs perform
best for different query LADs, overall the voteNCSunique method has the best performance
(maximum mean Nretrieve of 3.8). It also shows that summarizing the GESS results on
only in vitro query samples is better than from all queries by including in vivo samples.
The DPMs were then tested on 57 drugs that were selected from 10 MOAs with top recall
performance (Table S7 and Figure S4). The methods rankings on 57 drugs have a very good
consistency with the test result on 9 LADs. It further demonstrates that the vote strategy
has the best performance (largest mean Nretrieve of 5.0) compared to others. As to the cell
type summarized scores for ranking compounds in GESS result, NCSunique is better than
NCStissue and NCSct. So, the voteNCSunique method is chosen as the final choice with
drug stratification to prioritize drugs in GESS results from LAD11 queries individually for

known and novel LADs discovery.
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GESS Results Summary Across LAD11

In addition to applying voting strategy on each of the LAD11, the GESS results
from all of the in vitro LAD11 GES queries in starred cell types were summarized with
row sums of [NCS| scores after applying strict cutoff on individual GESS results to arrive
at a combined drug ranking list. Two types of cutoffs were applied, one is filtering the
compounds in GESS result that have RRS5 >= 0.6 and NCS! = 0 (Figure S8A), the
other one is filtering drugs in the GESS result from each LAD query that sharing similar
targets as the query LAD and also with NC'S! = 0 (Figure S8B). The drugs in GESS results
across LAD11 GES queries were then ranked from largest to lowest by row sums of |[NCS|
scores. As the query LADs have different target sites and structures, they fish up different
drugs. For example, lonidamine is only identified in the top rankings from the aspirin
query. Among the top 50 combined ranking drugs and unknown small molecules, several
drugs in DrugAge database are identified. They are lonidamine, galdanamycin, wortmannin
and caffeine (a methylxanthine alkaloid, acts primarily as an adenosine receptor antagonist
in the central nervous system (CNS) with psychotropic and anti-inflammatory activities.
It inhibits the adenosine-mediated downregulation of CNS activity, thus, stimulating the
activity of brain. This agent also promotes neurotransmitter release that further stimulates
the CNS) (panel A), geldanamycin, wortmannin, pyrazolanthrone (a derivative of anthrone.
It is used in biochemical studies as an inhibitor of c-Jun N-terminal kinases (JNKs) [13]),
dihydroergocristine and caffeine (panel B). They can also be promising LADs that worth

testing. Table S9 shows their MOA and target annotations.
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3.5.3 Supplementary Figures

3.5.4 Supplementary Tables

Table S1: Additional annotation information of the 14 query drugs (LAD11 and WCD3) such
as up and down-regulated gene sets of query GESs drawn from LINCS database, enriched

functional terms (GO MF, BP, Reactome) from their targets with adjusted p-value cutoff
of 0.05.

3.6 Data Availability

The source code generated and used by this project is hosted on GitHub. Larger re-
sult sets (e.g. larger Supplementary tables) are available on Synapse (10.7303 /syn27069757).
The full GESS/FEA result tables from LAD11 and WCD3 queries with RRS are available un-
der syn27074478. For example, the GESS and FEA results (Reactome annotation) with RRS
for the sirolimus query in SKB cell are shown in tables named as sirolimus_gess_tb.tsv,
sirolimus_dup_reactome_tb.tsv, respectively. The prioritized GESS result tables for
LAD11 from VoteNCSunique method are organized under syn27074560. The prioritized Re-

actome pathway result tables for LAD11 from voting strategy are hosted under syn27074585.

Table S2: Complete table of recall rates and other metrics for the 334 MOA categories with
size 2 cutoff.
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Table S3: Complete table of MOA rankings with no size cutoff from DrugAge LAD87 queries.

Table 54: Complete table of MOA rankings with no size cutoff from LAD11 queries.

Table 55: Combination table of Reactome enrichment results from the unique target set
of LAD11, DrugAge drugs, and MOA drugs with the hypergeometric test for all of the
Reactome pathways with top-level pathway information.

Table S6: Performance test of drug prioritization methods on 9 LADs. The numbers next to
drug names indicate the number of drugs sharing the same MOAs as the LAD from the drug
MOA annotations obtained from CLUE website. The numbers in the table body indicate
the number of drugs sharing MOAs as query drug retrieved by different methods in their
top 100 rankings (Nretrieve). The value is NA when the query samples are not available
for some LADs. The numbers in the parenthesis indicate the number of query samples for
the methods used to rank compounds in GESS results. The columns in this table is ordered
from largest to lowest by mean of Nretrieve across 9 LADs.

& ®n
2 = 3 % % = —
5 = g 'g g 5 i 5 ?_E
e £8 & 38 & . O o
s A g =z 2 & A g
sirolimus 18 14 (5) 9 10(5) 9(5) 6 14 (5) 13 (5) 11 11 (18) 7 (18)
metformin 8 1(2) 1 2(2) 1(2) 2 0(2) 0(2) 0 0(12) 0 (12)
resveratrol 22 2 (3) 2 1(3) 2(3) 1 2(3) 2(3) 1 1(9) 0(9)
simvastatin 9 6 (1) 6 3(1) 6() 3 7(Q1) 7(1) 7 NA (1) NA(1)
acarbose 4 1 (2) 1 1(2) 112 1 02 0(©2 0 0(6) 0 (6)
curcumin 84 2 (1) 2 3(1) 2(1) 3 0(1) 0(1) 0 NA(1) NA (1)
aspirin 58 2(1) 2 6(1) 2(1) 6 1(1) 1(1) 1 NA(1) NA(1)
alpha-estradiol 27 3 (1) 3 2(1) 3(1) 2 1(1) 1(1 1 NA (1) NA(1)
estradiol 27 3 (3) 4 13) 13) 2 03) 13 1 0(5) 0 (5)
Table 57: Performance test of drug prioritization methods on 57 drugs. The numbers next

to drug names indicate the number of drugs sharing the same MOAs as the query drug from
the drug MOA annotations obtained from CLUE website. The numbers in the table body
indicate the number of drugs sharing MOAs as query drug retrieved by different methods
in their top 100 rankings (Nretrieve). The columns in this table are ordered from largest to
lowest by mean of Nretrieve across 57 drugs. The numbers next to the NCSunique, NCStis-
sue and NCSct methods indicate the method is applied on sample/cell 1, 2, 3, respectively
for the query drug. Their mean numbers are mean of the 3 columns.
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Table S8 Combined PDs across LAD11 queries from their individual top 50 PDs. The
numbers in the LAD columns indicate layer information.

Table S9: MOA and targets annotation of the identified LADs in Figure S8.

Drug Name Targets MOA

caffeine ADORAL; ADORA2A; ADORAZ2B; Adenosine receptor antagonist; Di-
ADORA3; ATM,; ... uretic; Phosphodiesterase inhibitor

lonidamine CFTR; GCK; HK1 Glucokinase inhibitor

wortmannin ATM; ATR; MTOR; MYLK; PI4KA; ... PI3K inhibitor

geldanamycin HSP90AA1; HSP90AB1; HSP90B1 HSP inhibitor

pyrazolanthrone LRRK2; MAPK10; MAPKS; MAPKS8IP1; JNK inhibitor
MAPKO; ...

dihydroergocristine ADRA1A; ADRA1B; ADRA1D; ADRA2B; Adrenergic receptor antagonist; Pro-
ADRA2C; ... lactin inhibitor

Table S10: GO MF, BP, KEGG and Reactome pathway enrichment results from genes in
GeneAge database with hypergeometric test after setting adjusted p-value cutoff as 0.05.

Table S11: Combined Reactome pathways across LAD11 queries from their individual top
50 prioritized pathways (PPs). The numbers in the LAD columns indicate that the pathway
shows up in the top 50 PPs of the query LAD.

Table S12: Reactome enrichment results on top 50 prioritized drugs from sirolimus. The
Reactome pathways are enriched from the dup hyperG method on the target set of drugs
with an adjusted p-value cutoff of 0.05.

Table 513: Complete table of Peters GESS result from LINCS method.

Table S14: Complete table of Peters FEA result on KEGG pathways from dup hyperG
method.

Table S15: Complete table of Peters FEA result on Reactome pathways from dup hyperG
method.

Table S16: The elaborate annotations for all of the prioritized DrugAge drugs in this project
including drug description, tested assays, publications, etc.
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Figure S1: MOA recall rates for all of the 138 MOAs with size 5 cutoff. ColMedianCORct:
distribution of column-wise median absolute CORct for MOA drugs from its iterative GES

queries. The complete table of recall rates and other metrics for the 334 MOAs with size 2
cutoff is at Table S1.

129



(A) (B) ©)

vorinostat vorinostat

(=23
0 0 £
alvocidib. alvocidib S
100~ 100 4
- wrcs_pval 7o wrcs_pval &
E}
50- (-0.00016,0.03] 50- (-0.00027,0.044] §
25- 25-
= ‘o I 0030059 = od I ©0.044,0.089) .
c c
© 100~ I ©os9012) © 100- B 013018
75- 75- - = =
50- (0.12,0.15) 50- (0.18,0.22] =Y o 0 © ~ N
3 b S
25- (0.150.18] 25- (0:22027] < 2 S IS 2 °
0 0 8 5 c 17} 2 <
0 = N o o N
o Q c 1<}
random random c S E = > g
100 100- 5 = 5 S © s
75 75~ E 5 5
50- 50- S S
23 g ‘ il 23: | 5 b=
-18-16-14-1.2-1.0 10 15 20 25
NCs NCs

Figure S2: NCS score distributions from WCD3 GES queries compared to random query
(A), Rankings of drugs in the same MOAs as query drugs in their GESS results (B) and
enriched pathways from target set in DrugBank and CLUE resources of query drugs in their
FEA results (C) for the WCD3. The GESS results are ranked from highest to lowest by
absolute NCS scores, the FEA results are ranked from lowest to highest by adjusted P-
values. The numbers next to the drug names indicate the number of dots. The red line is
used as a cutoff showing that the above part should be focused and indicating whether the
GESS/FEA results could retrieve similar drugs or pathways in the top rankings.
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(A) GESS SP (B) Fingerprint Structure Similarity (E) Targets v.s. Structure (F) GESS SP v.s. Structure

(©) Jaccard Index of Targets (D)
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Figure S3: 11 LADs clustered from different approaches. 11 LAD clustered by Spearman
correlation of NCS scores in GESS results (A), structural similarity of fingerprints (B),
Jaccard index of their targets (C) and enriched GO BP terms (D). (E-H) Comparisons of
cluster dendrograms in panels A-D. The Jaccard index was calculated by dividing the number
of intersecting targets or enriched functional categories by the number of union terms. The
11 LADs were then clustered by the 1 - Jaccard index as distance. NCS scores equal to zeros
were removed prior to performing Spearman correlation analyses (A, F, G). The similarity
between the two trees was measured by entanglement score, which is a measure between
0 (no entanglement) and 1 (full entanglement), lower values mean better similarity. The
entanglement scores for E-H are 0.41, 0.33, 0.25, 0.43, respectively.
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Figure S4: Violin plot of the test result of drug prioritization methods on 57 drugs. The
blue dots indicate the number of retrieved drugs sharing MOAs as query drug by methods
in their top 100 rankings (N Overlap). The black dot is mean of the numbers. The methods
are ordered from largest to lowest by mean values. The numbers next to the NCSunique,
NCStissue and NCSct methods indicate the method is applied on sample/cell 1, 2, 3, re-
spectively for the drug query. their mean value is calculated by mean of the numbers across
3 samples. The corresponding table is at Table S7
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Figure S5: Top 50 PDs from voteNCSunique method with stratification on 4 query LADs

of curcumin, simvastatin, aspirin, tanespimycin individually. The legends are the same as
Figure 3.4E and 3.4F.
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Figure S6: Top 50 PDs from voteNCSunique method with stratification on 2 query LADs of
metformin and resveratrol individually. The legends are the same as Figure 3.4E and 3.4F.
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Figure S7: Top 50 PDs from voteNCSunique method with stratification on 3 query LADs
of minocycline, alpha-estradiol, estradiol individually. The legends are the same as Figure
3.4E and 3.4F.
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Figure S8: Heatmap summary of top 50 ranking drugs

selected cells from RRS cutoffs or target match filtering.

from LADI11 in vitro queries in
(A) Heatmap of top 50 ranking

drugs by filtering the GESS results with a minimum RRS5 of 0.6 and NCS score not equal
to zero. (B) Heatmap of top 50 ranking drugs by filtering the GESS results with an NCS
score not equal to 0 and selecting drugs that share at least one target with the query LAD
in its GESS result. Known LADs are annotated in blue in the binary color bar to the right
of the heatmap. The MOA and targets annotations of the identified known LADs are shown

in Table S9.
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Figure S11: Top 50 PPs from vote strategy on 3 query LADs of minocycline, alpha-estradiol,
estradiol individually. The legends are the same as Figure 3.6B and Figure 3.6C.
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Chapter 4

Annotation Packages

4.1 Abstract

To enhance the GESS results generated by signatureSearch with detailed functional
annotation data of both drugs and targets, I developed several affiliated data packages. The
required annotations were collected from DrugBank, DrugAge, CMAP2 and LINCS. As
user-friendly query interface I developed for this purpose another R/Bioconductor package
called customCMPdb. An important feature of this package is support for custom compound
collections. It supports querying the annotations across the pre-built or custom annotation
database by providing any type of query compound IDs. I also developed the drugbankR
package for drug-target interaction annotations from DrugBank database. It also provides
utility to show whether the drugs are FDA approved. A Shiny web application named as
geneTargetAnno was also built to support getting the drug-target annotations from com-
munity databases including DrugBank and STITCH online. This web service allows to get

targeted drugs with structures for the query genes with Ensembl gene IDs, which also in-
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cludes the target protein/gene IDs of the result drugs. The uniform resource locator (URL)
links to this web application with query gene IDs can be easily added to users’ existing
gene tables as an extension of their drug-target annotations. For example, the gene table
could be the differential expressed genes that are affected by the biological state of interest.
In addition to the signatureSearch package, it serve as a complementary way to identify

candidate drugs and potential treatments for diseases.

4.2 Materials and Methods

4.2.1 Implementation

The R/Bioconductor packages such as drugbankR and custom CMPdb have been im-
plemented as an open-source Bioconductor package using the R programming language for
drug-target interaction, compounds and structures annotations. The pre-built compound
annotation and structure databases are hosted on Bioconductor’s AnnotationHub. Both
packages are freely available for all common operating systems. To optimize reusability and
performance, their functions and data containers are designed based on existing Bioconduc-
tor S4 core classes. The up-to-date source locations and versions of data sets are provided
in the vignettes and help files of the two packages.

The Shiny web application was built straightly from R package as the backend
of the application. The Shiny app was first created by developing the User Interface (UI),
which is achieved by adapting the structure of the code to the requirements of the Shiny app
structure. The Shiny environment was used to make the frontend communicate with the

functions and objects in the backend environments. This can be done with the shinyApp ()
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function which takes the object defining the UI interface and the function that takes the
input and delivers the output. The Shiny application can be easily launched locally by
executing the runApp () code or clicking the ‘Run App’ button at the top of users Shiny app
code in the RStudio environment. The local application was then deployed and hosted on

the shinyapps.io server as an online web service.

4.2.2 Software Design

Integrating compound annotations including drug-target interactions and struc-
tural information in DrugBank, STITCH, DrugAge, CMAP2 and LINCS databases in a
single environment as R/Bioconductor packages has several advantages. First, Bioconduc-
tor provides access to a large number of compound analysis tools that are interoperable by
sharing the same data structures and S4 classes optimized for compound analysis. Second,
it consolidates an expandable number of community compound annotations and structure
information into a single environment along with options to add customized compound an-
notations. It also allows users to easily query the compound annotations across any selected
databases by providing any type of the query compound IDs. Third, the usage of generic
data objects and classes improves maintainability and reproducibility of the provided func-
tionalities, while the integration with the existing R/Bioconductor ecosystem, such as the
widely used SDFset S4 object in ChemmineR package, maximizes their extensibility and

reusability for other compound analysis applications.
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4.3 Results

4.3.1 drugbankR Package

The drugbankR package was created to get the drug annotations (mainly drug-
target annotation) in DrugBank database through R. The source code is shared at GitHub,
the package can be directly installed from GitHub and loaded into R session by running

devtools::install_github ( / )

library (drugbankR)

This package can be used to query any downloadable version of the DrugBank
database in R. The latest version at the time of writing this thesis is 5.1.8. The downloaded
and unzipped DrugBank database in XML file format can be loaded into R session as a
data.frame object by passing the xmlfile argument of the dbxml12df function the path to
the downloaded XML file, and running code in R session as

“dbdf <- dbxml2df (xmlfile= _ , version= )

This process may take about 20 minutes. The version argument is a character
indicating the version of the downloaded DrugBank database. Users need to create a free
DrugBank account and log in to download the data. The generated dbdf data.frame object
can be stored into an SQLite database by running

H df2SQLite (dbdf=dbdf, version= )

The generated DrugBank SQLite database in the specified version is stored under
user’s current working directory of R session named as drugbank_5.1.8.db. Users can check
their current R working directory by running getwd() in R. The SQLite database can be

queried by the queryDB function. One can get the entire DrugBank data frame by running
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“dbdf <- queryDB(type= , db_path= _ )

The returned dbdf object is a data.frame with 14,315 rows and 55 columns. Each
row represents a drug entry in DrugBank with DrugBank ID. The columns are drug annota-
tions such as name, description, CAS number, state, groups, indication, pharmacodynamics,
mechanism of action, toxicity, half life, protein binding, classification, international brands,
manufacturers, prices, dosages, FDA label, external identifiers, pathways, targets. Table 4.1
shows the six drug entries with several selected annotations as an example. One can also
retrieve all the valid DrugBank ids by running

ids <- queryDB(type= , db_path=

The output ids variable is a character vector of DrugBank IDs with drug names
in the names slot. There are a total of 14,315 valid DrugBank IDs/entries in the 5.1.8
version. One can also determine whether the drugs are FDA approved by inputting the
query DrugBank IDs and running
queryDB (ids=c( , , ), type= , db_
path=
The three drugs passed to the ids argument are used as an example. The output
is a data.frame object indicating the name of the query IDs and whether they are FEA
approved with logic values as shown in Table 4.2. Finally, one can get the gene/protein
target ID systems including DrugBank id, UniProt id, UniProt name and gene symbol of
the query drugs by running

queryDB (ids=c( , , ), type= ,

db_path=
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The output is shown in Table 4.3. For queries that have many targets, only three
out of them are shown here and the others are deleted and replaced with three dots for

better display.

Table 4.1: Six drug entries in DrugBank database with several selected column annotations
as an example.

drugbank-id name cas-number state  groups manufacturers

DB00001 Lepirudin 138068-37-8 liquid approved Bayer healthcare phar-
maceuticals inc

DB00002 Cetuximab 205923-56-4 liquid approved

DB00003 Dornase alfa 143831-71-4 liquid approved Genentech, Inc

DB00004 Denileukin diftitox 173146-27-5 liquid approvedinvestigational

DB00005 Etanercept 185243-69-0 liquid approvedinvestigational Amgen Inc. + Wyeth
+ Takeda

DB00006 Bivalirudin 128270-60-0 solid  approvedinvestigational The medicines co

Table 4.2: Annotation table of the name of the query DrugBank IDs and whether they are
FDA approved with logic values.

DrugBank ID name whichFDA
DB00001 Lepirudin TRUE
DB00002 Cetuximab  TRUE
DB00111 Daclizumab FALSE

4.3.2 Shiny Web Application for Gene Target Annotation

To get drug-target annotations for query genes conveniently online, a Shiny web
application named geneTargetAnno was developed. This application can be used to get the
targeted drugs for the query Ensembl gene IDs. It also shows the structures and target
protein/gene IDs of the result drugs. The URL links to this web application with specified
query gene IDs can be easily added to users’ existing gene tables as an extension of their
drug-target annotations, such as the gene list that are affected by human longevity associated
SNPs. The gene target annotation web service serves as a complementary way to identify

candidate drugs for genes associated with a biological state of interest. The source code
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Table 4.3: Target annotation table of the query drugs. The queries are DrugBank IDs
(Q-DBID). Their gene/protein targets have four ID systems including DrugBank target ID
(T-DBID), UniProt ID (T-UnipID), UniProt name (T-UnipName) and gene symbol (T-
Gene). For queries that have many targets, only three out of them are shown. The others
are deleted and replaced with three dots for better display.

Q-DBID T-DBID T-UnipID T-UnipName T-Gene
DB00001 BE0000048 P00734 Prothrombin F2
DB00002 BE0000767; P00533; Epidermal growth factor receptor; Low affin- EGFR;
BE0000901; O75015; ity immunoglobulin gamma Fc region receptor FCGR3B;
BE0002094 P00736 ... III-B; Complement Clr subcomponent ... CIR ...
DBO00111 BE0000658; P01589; Interleukin-2  receptor  subunit alpha; IL2RA;

BE0000651; P14784; Interleukin-2 receptor subunit beta; Low IL2RB;
BE0000901 075015 affinity immunoglobulin gamma Fc region FCGR3B
receptor III-B ...

of the geneTargetAnno application is shared at GitHub. It can be deployed locally by the
runApp function from the shiny R/Bioconductor package.

Figure 4.1 is the screenshot of the geneTargetAnno web interface that shows the
gene target annotation results in DrugBank database for the query Ensembl gene ID. The
main utilities of this web application are marked in red symbols. The input Ensembl gene
ID can be in the URL address by specifying the value of database and symbol in the format
of ?database=DrugBank&symbol= ENSG00000124275 that is appended to
https://tgirke.shinyapps.io/geneTargetAnno/ (input 1) and then refreshing the page.
It can also be typed in the submission text box (input 2) and users can hit the Submit
button to submit the gene id. The gene-target annotation result tables in DrugBank and
STITCH databases will be shown under the two navigation tabs (Figure 4.2). Users can
switch between them by clicking the tab. The DrugBank annotation table include the
UniProt ID of the query gene. It also includes the drugs that target the query gene, as

well as the structures and targets of the drugs. The STITCH annotation table (Figure 4.2)
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<« C @& tgirke.shinyapps.io/geneTargetAnno/?database=DrugBank&symbol$ENSG00000124275 Yo

Drugs and Target Protein 1. Input
Ensembl Gene ID \ STITCH
\

Drugs and target proteins for ENSG00000124275
Show entries

Ui nipvo&id target_drugs structure drug_targets

Submit 2. Input

7" Q99707 [ Homo sapiens (Human) ] P22033 [ Homo sapiens (Humar

9UBK8 DB00115
! K=l Q9Y4U1 [ Homo sapiens (Human) ] P42898 [ Homo sapiens (Humal

S Q9UBK8 [ Homo sapiens (Human) ] Q99707 [ Homo sapiens (Hume
e
2 QoUBKS DB00134 H,C \/ﬁ)J\OH Q9H2M3 [ Homo sapiens (Human) |

Figure 4.1: Screenshot of the geneTargetAnno web interface that shows the gene target an-
notation results in DrugBank database for the query Ensembl gene ID. The main utilities
were marked in red symbols. The check marks (number 4) show the columns in the Drug-
Bank annotation table including UniProt ID of the query gene (Uniprot id), DrugBank IDs
of the target drugs (target drugs), drug structures (structure) and UniProt IDs of the drug
targets (drug targets). The brackets in the drug_ targets column also include the supported
species of the drug-target interaction.

include the Ensembl protein IDs of the input Ensembl gene ID, PubChem CIDs of the target
drugs, drug structures, and Ensembl protein IDs of drug targets. Every genes, drugs and
proteins in the website are clickable and can be linked to the corresponding entries from the
official website. For example, the Ensembl gene IDs can be linked to the gene card page in
the official Ensembl website at http://www.ensembl.org/. The full gene-target annotation
result table for the DrugBank database is shown in Figure 4.3. It can be searched at the
search box. Each column can be ranked alphabetically or searched. The full table can be

downloaded as csv, Excel or pdf file.
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Figure 4.2: Screenshot of the geneTargetAnno web interface that shows the gene target an-
notation results in the STITCH database. The columns in the STITCH annotation table
include the Ensembl protein IDs of the input Ensembl gene ID (ensembl protein id), Pub-
Chem CIDs of the target drugs (target drugs), drug structures (structure) and Ensembl
protein IDs of drug targets (drug_targets)

4.3.3 customCMPdb package

I also built an R/Bioconductor package named customCMPdb to integrate the
community and custom compound collections. This package serves as a query interface for
important community collections of small molecules, while also allowing users to include
custom compound collections. Both annotation and structure information is provided. The
annotation data is stored in an SQLite database, while the structure information is stored in
Structure Definition Files (SDF). Both are hosted on Bioconductor’s AnnotationHub. This

package has been already published and is available on Bioconductor at here.
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Figure 4.3: Full gene-target annotation result table for the DrugBank database. It can be
searched at the search box (number 1). Each column can be ranked alphabetically (number
2) or searched (number 3). The full table can be downloaded as csv, Excel or pdf file via
the buttons at number 4.

Pre-configured Databases

The following is the description of the four annotation tables stored in the pre-
built SQLite Database. The DrugAge database was downloaded from here as a CSV file.
The downloaded drugage.csv file contains annotation columns such as compound name,
species, strain, dosage, average lifespan change, gender, significance, and pubmed id. Since
the DrugAge database only contains the drug name as identifiers, it is necessary to map
the drug name to other uniform drug identifiers, such as ChEMBL IDs. In the custom-
CMPdb package, the drug names have been mapped to ChEMBL [61], PubChem [101]

and DrugBank IDs semi-manually and stored under the inst/extdata directory named as
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drugage_id_mapping.tsv. Part of the id mappings in the drugage_id_mapping.tsv table
was generated by the processDrugage function by strict matching of the compound name
in DrugAge to the pref name in the ChEMBL database (version 24). The missing IDs
were added manually. A semi-manual approach was to use this web service by entering
the compound name as Chemical Name and choosing to convert to ChEMBL IDs. After
the semi-manual process, the left ones were manually mapped to ChEMBL, PubChem and
DrugBank ids. The mixture entries such as green tee extract or peptide (e.g. Bacitracin)
were commented. The drugage_id_mapping table was then built into the annotation SQLite
database named as compoundCollection_0.1.db by the buildDrugAgeDB function.

The DrugBank annotation table was transformed from the downloaded DrugBank
database in xml file. The extracted xml file was processed by the dbxml2df function in
the drugbankR package. The dbxml12df and df2SQLite functions in the package were used
to load the xml file into R as a data.frame R object and then store the data.frame in the
SQLite database named as compoundCollection_0.1.db. The DrugBank table has the
comprehensive annotation columns, such as drugbank id, name, description, CAS number,
indication, pharmacodynamics, mechanism of action, toxicity, metabolism, half life, protein
binding, classification, synonyms, international brands, packagers, manufacturers, prices,
dosages, FDA label, pathways, and targets. The DrugBank ID to ChEMBL ID mappings
were obtained from UniChem.

The CMAP2 annotation table was downloaded from the instance table at Broad
Institute and processed by the buildCMAPdb function in the customCMPdb package. The

CMAP2 instance table contains the drug annotation columns, such as instance id, batch

149
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id, cmap name, concentration (Molar), duration (hour), cell, array, perturbation scan id,
vehicle scan id, scanner, vehicle, vendor, and catalog number. The buildCMAPdb function
maps the drug names to external drug IDs including UniProt [192], PubChem, DrugBank
and ChemBank [166]. It also adds additional annotation columns such as directionality, ATC
codes, and SMILES string. The generated cmap.db SQLite database from the buildCMAPdb
function contains both the compound annotation table and structure information. The
ChEMBL id mappings were further added to the annotation table via the PubChem CID
to ChEMBL id mappings from UniChem. The CMAP2 annotation table was stored in the
compoundCollection SQLite annotation database.

The LINCS compound annotation table was downloaded from GEO where only
compound treatment type was selected. The annotation columns include lincs id, pertur-
bation name, is touchstone, inchi key, canonical SMILES, and pubchem cid. The annota-
tion table was stored in the compoundCollection SQLite database. Since the annotation
only contains LINCS id to PubChem CID mapping, the LINCS IDs were also mapped to
ChEMBL IDs via inchi key. At the time of writing, the following community databases were
included in the package: DrugAge [6], DrugBank [215], CMAP2 [109], and LINCS [186].

In addition to providing access to the above pre-built collection of compound an-
notations and structures, the package also supports the integration of custom collections of
compounds, which will be automatically stored for the user in the same data structure as the
pre-configured databases. Both custom collections and those provided by this package can
be queried in a uniform manner, and then further analyzed with cheminformatics packages

such as ChemmineR, where SDF files are imported into R as flexible S4 containers [23].
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The compounds annotation tables for the pre-configured four databases (DrugAge,
DrugBank, CMAP2 and LINCS) are stored in an cached SQLite database via Annotation-
Hub. The cached SQLite database can be loaded into a user’s R session by running code

of

conn <- loadAnnot ()

The annotation tables can be queried by running dbReadTable function on the
SQLite connection and selecting the corresponding table name. For example the DrugAge
annotation table is named as drugAgeAnnot. Table 4.4 shows the top six rows of the DrugAge
annotation table with several selected columns as an example.

The compound structures in the above four databases can be obtained by loading
their corresponding SDF files into R as an SDFset object. Each database has its correspond-
ing SDF files stored in AnnotationHub where the files can be downloaded in the cached folder
of user’s local computer. The path to the cached DrugAge SDF file can be obtained via the
AnnotationHub ID of AH79564. The read.SDFset function from the ChemmineR package
can be used to read the SDF file into R as an SDFset object. Utilities from the ChemmineR
package including the plotting can be used on the loaded DrugAge SDFset object. Instruc-
tions on how to work with SDFset objects are provided in the ChemmineR vignette. For
instance, one can plot any of the loaded structures with the plot function. The structures
of three out of six compounds in Table 4.4 that have the corresponding SDF instances are
plotted in Figure 4.4.

The SDF file for drugs in the DrugBank database can be loaded into R in the

same way. The corresponding AnnotationHub ID of the DrugBank SDF file is AH79565.
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Table 4.4: Top six rows of the DrugAge annotation table with several selected columns.
Avg: average lifespan change, PCID: PubChem CID, DBID: DrugBank ID.

DrugAge ID Drug Name Species Strain Dosage Avg Gender PCID DBID
ida00001 Vitexin Caenorhabditis N2 50 pM 8 5280441
elegans
ida00002 Cyclosporin A Caenorhabditis 88 uM 18 DB00091
elegans
ida00003 Histidine Caenorhabditis N2 5 mM 10 6274, DB00117
elegans 6971009
ida00004 SRT1720 Mus musculus C57BL/6J 100 8.8
mg/kg
body
weight
ida00005 Cordyceps sinen- Drosophila Oregon-K  0.20 32 Male
sis oral liquid melanogaster mg/ml
ida00006 Lysine Caenorhabditis N2 5 mM 8 5962, DB00123,
elegans 122198194 DB11101
ida00001 ida00003 ida00006
Ao 9 H\N,H H ¥
N H - N o) - H
Ho o) H=O
HO o) oH
o N
H 0 I
HO  On H H=N~H

Figure 4.4: Structures of the three out of six compounds in Table 4.4 that have the corre-
sponding SDF instances.

The SDF file was obtained by downloading from the DrugBank website. During the import

into R, ChemmineR checks the validity of the imported compounds. The AnnotationHub

IDs of the cached CMAP2 and LINCS SDF files are AH79566 and AH79567, respectively.

The import of the SDF files works the same way. For reproducibility, the R code for

generating the SQLite annotation database and the above four SDF files is included in the

inst/scripts/make-data.R file of the customCMPdb package. The file location on a user’s

system can be obtained with R code of

system.file(

>
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https://www.drugbank.ca/releases/latest#structures

Custom Annotation Database

As previously mentioned, the pre-configured SQLite annotation database is hosted
on Bioconductor’s AnnotationHub. Users can download it to a local AnnotationHub cache
directory. The path to the cached database can be obtained by running

ah <- AnnotationHub ()

annot_path <- ahl[[ 1]

Users can also add their custom compound annotation tables to the cached SQLite
database via the addCustomAnnot function in this package. The following introduces how
users can import to the SQLite database their own compound annotation tables. In this
case, the custom annotation data needs to be a data.frame related object and the ChEMBL
IDs need to be included under the column named chembl_id. The name of the custom
data table is case-insensitive and can be specified under the annot_name argument of the
addCustomAnnot function. The custom annotation tables can also be deleted by referencing
their names via the deleteAnnot function. The listAnnot function can be used to obtain a
list of the existing annotation tables in the SQLite database. The SQLite database can also
be set back to the pre-built version via the defaultAnnot function. This is achieved by delet-
ing the existing SQLite database and re-downloading a fresh instance from AnnotationHub.

The queryAnnotDB function can be used to query the compound annotations from
the default resources as well as the custom resources stored in the SQLite database. The
query input can be a set of ChEMBL IDs. In this case it returns a data.frame object con-
taining the annotations of the matching compounds from the selected annotation resources

specified under the annot argument. The 1listAnnot function returns the names that can
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be assigned to the annot argument. Table 4.5 shows the annotation table of the five query
compounds with ChEMBL IDs in LINCS and custom databases. Since the supported com-
pound databases use different identifiers, a ChEMBL ID mapping table is used to connect
identical entries across databases as well as to link out to other resources such as ChEMBL
itself or PubChem. For custom compounds, where ChEMBL IDs are not available yet, users
can use alternative and/or custom identifiers. For example, users can use LINCS IDs to

query the LINCS annotation data.

Table 4.5: Annotation table of the five query compounds with ChEMBL IDs in LINCS
and custom databases. isTS: whether the compounds are in Touchstone database, PCID:
PubChem CID, featurel, 2: two columns in the custom annotation table added by user.

ChEMBL ID LINCS ID Drug Name isTS PCID  featurel feature2
CHEMBL10 BRD-A37704979 SB-203580 0 176155 f3 -1.88
CHEMBL1004 BRD-A44008656 doxylamine 1 -666 f2 1.56
CHEMBL1064 BRD-K22134346 simvastatin 0 -666

CHEMBL113 BRD-K02404261 caffeine 1 -666

CHEMBL31574 f5 0.01

4.4 Discussion

The compound annotations from different resources are usually independent from
each other. Integrating or collecting drug or small molecule annotations from different
sources into a single R/Bioconductor package has not been done before and it provides sev-
eral unique advantages. First, the customCMPdb packages I developed serves as a query
interface and makes it more convenient and accessable to get compound annotations from
importance community platforms in a single environment. It supports getting the drug an-
notations across the pre-built or custom annotation databases by providing any type of the

query IDs. The annotation tables from different resources were consolidated into a single
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well-designed SQLite database with a master compound ID mapping table, which supports
adding an extendable number of other annotation tables with reasonable sizes. Users can
get compound annotations of their query compounds in both the pre-built databases and the
added customized ones. Moreover, Both annotation and structure information are provided
in this package and hosted on Bioconductor’s AnnotationHub. Finally, the usage of generic
data objects and classes improves maintainability and reproducibility of the provided func-
tionalities, while the integration with the existing R/Bioconductor ecosystem maximizes
their extensibility and reusability for other cheminformatic tools.

Two assistant tools were also developed mainly for drug-target interaction an-
notations in DrugBank and STITCH databases. The drugbankR package was developed
specifically for compound annotations in DrugBank database. It fills the blank that cur-
rently no Application Programming Interface (API) available for drug-target annotations on
the DrugBank website, no local tools (e.g. R packages) to access drug annotations locally
in batch. It also provides utility to indicate whether the drugs are FDA approved from
the DrugBank annotation. In addition to local tools, I also developed a Shiny web service
named as geneTargetAnno to get drug-gene interaction annotations for both the DrugBank
and STITCH databases online. This Shiny web application accepts an Ensembl gene ID
as input either at the URL or in the input box to get its targeted drugs with structures.
The query results also contain the target protein/gene IDs of the result drugs. The URL
address containing the query gene IDs can be easily added to users’ existing gene tables
as an extension of drug-target annotations. It serves as a complementary way to identify

candidate drugs and potential treatments for diseases.
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In total, the three cheminformatic tools I developed contribute to the compound
annotation field of cheminformatics. More annotation sources can be added if they have
reasonable size that can be stored locally, such as the ChEMBL database. The latter can be
accessed via the web-interface. It also supports data downloads with many database formats

including Oracle, MySQL, PostgreSQL, and SQLite to query it locally.
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Chapter 5

Conclusion

This thesis is divided into three main components: (1) development of efficient
GESS and FEA methods, and their implementation in reusable community software; (2)
application of the resulting GESS and FEA workflow to the discovery of novel healthy
aging drugs; and (3) development of helper software and data packages that extend the
functionalities of the GESS software.

The signatureSearch R/Bioconductor package provides an integrated environment
for identifying similar GESs in reference databases and guiding the downstream functional
interpretation of the discovered connections. The package is unique in that it includes several
novel search and enrichment methods in a single environment with efficient data structures
and access to pre-built GES databases. It also allows users to work with custom databases.
Subsequently, I tested the performance of different GESS methods. These are the first
systematic performance tests of GES search methods reported so far. The signatureSearch

software paves the way for discovering biologically relevant connections and gain insights
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into the applied biological researches, such as studies on improving treatments for diseases
or identifying novel target site candidates for drugs.

The signatureSearch environment was then applied to the human longevity and
healthy aging research filed to discover LADs, LAGs and LAPs by searching the LINCS
database. I identified a list of known drugs that are currently mainly used in treating
cancers and diseases. They can be used for drug repurposing as healthy aging drugs in the
human longevity field. I also identified a list of small molecules under experimental studies
that can induce longevity GESs. Some of them have been tested in model organisms. A list
of proteins and pathways that are related to longevity and can be targeted by pharmaceutical
drugs for lifespan extension strategies were also identified.

To facilitate the signatureSearch package to annotate the compounds from differ-
ent sources, I developed several data packages that incorporate detailed annotations and
structures of drugs from different community databases. The customCMPdb is the first
package that integrates the compound collections from different communities into a single
well-designed SQLite database. It also has a user-friendly query interface and supports
adding custom compound collections. The drugbankR package is built to obtain the drug
annotations from the DrugBank database locally. It addresses the limitation that currently
the DrugBank annotations can only be queried online with one drug at a time. The local
tool supports getting the drug annotations in batch. To obtain drug-target annotations
from a web interface for any gene or protein list provided by users, I developed the Shiny
web application geneTargetAnno. The web application URLs with query gene IDs can be

easily added to users’ existing gene tables as an extension of drug-target annotations. In
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addition to the signatureSearch package, these several affiliated data packages serve as a

complementary way to identify candidate drugs and potential treatments for diseases.
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