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Summary

The El Niño-Southern Oscillation exerts a large influence on global climate regimes and on the global carbon cycle. 

Although El Niño is known to be associated with a reduction of the global total land carbon sink, results based on 

prognostic models or measurements disagree over the relative contribution of photosynthesis to the reduced sink. 

Here, we provide an independent remote sensing based analysis on the impact of the 2015-2016 El Niño on global 

photosynthesis using six global satellite-based photosynthesis products and a global solar-induced fluorescence (SIF) 

dataset.

An ensemble of satellite-based photosynthesis products showed a negative anomaly of -0.7 ± 1.2 PgC in 2015, but a 

slight positive anomaly of 0.05 ± 0.89 PgC in 2016, which when combined with observations of the growth rate of 

atmospheric carbon dioxide concentrations suggests that the reduction of the land residual sink was likely 

dominated by photosynthesis in 2015 but by respiration in 2016. The six satellite-based products unanimously 

identified a major photosynthesis reduction of -1.1 ± 0.52 PgC from savannas in 2015 and 2016, followed by a highly 

uncertain reduction of -0.22 ± 0.98 PgC from rainforests. Vegetation in the Northern Hemisphere enhanced 

photosynthesis before and after the peak El Niño, especially in grasslands (0.33 ± 0.13 PgC). The patterns of satellite-

based photosynthesis ensemble mean were corroborated by SIF, except in rainforests and South America, where the 

anomalies of satellite-based photosynthesis products also diverged the most. We found the inter-model variation of 

photosynthesis estimates was strongly related to the discrepancy between moisture forcings for models. These 

results highlight the importance of considering multiple photosynthesis proxies when assessing responses to climatic

anomalies.

Introduction

The biosphere of the earth currently functions as a net carbon sink that offsets around 30% of anthropogenic CO2 

emissions [1]. The ability to predict carbon sink dynamics is thus essential to understanding the future evolution of a 

changing climate. Multiple streams of evidence from atmospheric CO2 observations [2], ground biomass 

measurements [3,4], remote sensing [5,6] and Dynamic Global Vegetation Models (DGVMs) [1,7] unanimously 

suggest the terrestrial carbon sink has been increasing thanks to the effect of elevated CO2 [7,8] and prolonged 

vegetation growing seasons [9], meanwhile, their estimates of year-to-year variation of the terrestrial carbon sink 

differ markedly [10]. Since the land-atmosphere CO2 flux in tropics contributes the majority of the variability in the 

terrestrial carbon cycle [11–13], El Niño-South Oscillation (ENSO), a key mode that alternates the tropical climate 

between dry and wet states, provides a critical opportunity to study carbon cycle variability. El Niño impacts the 

tropical terrestrial carbon cycle through temperature [14] , droughts [15], fires [16] and tree mortality [17]. In 

*Author for correspondence (xzluo@lbl.gov; trevorkeenan@lbl.gov).
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addition, El Niño influences the global climate and places a large constraint on the carbon cycle of 

extratropical regions through teleconnections [18,19].

In the El Niño phase, tropical regions experience anomalously high temperatures and low 

precipitation. High temperatures can either suppress photosynthesis [20] or enhance respiration [21] 

to reduce the terrestrial carbon sink, while changes in hydroclimate can affect the local sensitivities of 

photosynthesis and respiration to temperature [22,23]. Though it is known that El Niño is linked to 

reduced net ecosystem productivity (NEP), attribution to specific carbon processes responsible 

remains challenging [24], particularly in terms of the relative contribution of changes in gross primary 

productivity (GPP), ecosystem respiration (Reco), autotrophic respiration of vegetation (Ra), 

heterotrophic respiration (Rh) and net primary productivity (NPP) (NEP = GPP - Reco = GPP - Ra - Rh = 

NPP – Rh).

At the global scale, Jones et al. [25] used a general circulation model HadCM3LC to find that El Niño 

reduced NEP by 1.8 Pg yr-1 per C rise in the tropical Pacific sea surface temperature, and GPP, Ra and 

Rh contributed 33%, 25% and 42% to the decrease, respectively. In comparison, Cavaleri et al. [26] 

reported that GPP, Ra and Rh contributed 55%, 11% and 34% to the NEP reduction in a tropical forest 

during the 1997-1998 El Niño, using multiple ground-based measurements. Some studies running a 

prognostic DGVM VEgetation-Global-Atmosphere-Soil (VEGAS) reported a NEP decrease of 4 Pg yr -1 in 

the tropics during El Niño [11], where NPP and Rh accounted for 68-75% and 25-32% of the decrease, 

respectively [11,27]. A recent study reported that El Niño not only reduced GPP in tropics but also 

enhanced GPP in temperate regions of South and North America, through analyzing the 

teleconnection between an ensemble of GPP of nine DGVMs and ENSO [18]. The ENSO - carbon 

response is also dependent on the distinct characteristics of each El Niño. For example, a recent study 

using the DGVM VEGAS and atmospheric inversions suggested that decreased GPP dominated the NEP

reduction during the 1997-1998 El Niño, but increased Reco dominated in 2015-2016; in 2015-2016, 

GPP of tropical Africa was reported to have increased and compensated the decrease of GPP over 

other tropical regions [28].

While many studies rely on DGVMs and their ensemble to study the impact of El Niño, remote sensing

(RS) based proxies of GPP provide a potential independent constraint for impact assessment. RS 

indices, including Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index 

(EVI), and RS derived biophysical variables, including Leaf Area Index (LAI) and fraction of Absorbed 

Photosynthetic Active Radiation (fAPAR), have been extensively used to estimate NPP and GPP

[7,29,30]. Some studies have looked into the relationship between ENSO and satellite-based 

photosynthesis. Hashimoto et al. [31] found the interannual variability of NPP derived from an AVHRR 

light use efficiency (LUE) model was significantly related to ENSO during 1982 to 1999, particularly at 

low latitudes. Gonsamo et al. [19] further reported that ENSO strongly influenced NPP anomalies at 
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the continental scale but exerted a weak control at the global scale, using a 30 years NDVI sequence as

a proxy for NPP, while Ballantyne et al. [32] examined MODIS GPP and found that high temperatures in

El Niño years were more likely to enhance global Rh while GPP was relatively unaffected. Each of these

studies, however, derived their conclusions from only one GPP proxy, without considering how results 

were influenced by proxy choice.

Solar-induced Fluorescence (SIF) are photons in the wavelength around 660 nm to 800 nm that are 

emitted through the de-excitation of excited leaf chlorophyll molecules, which are simultaneously 

responsible for providing energy to photosynthesis [33]. SIF has spurred intense interest in the carbon 

research community in recent years, since several groups have found significant correlations between 

satellite-measured SIF and ground based estimates of GPP [34,35]. SIF is therefore regarded as 

another benchmark to evaluate the variability of terrestrial GPP. Currently, multiple global SIF 

observations are available, including the Global Ozone Monitoring-2 (GOME-2) sensor onboard the 

Meteorological Operational Satellites MetOp-A and MetOp-B, the Greenhouse Gases Observing 

Satellite (GOSAT) and the Orbiting Carbon Observatory-2 (OCO-2).  Some groups have exploited SIF for 

El Niño studies: Liu et al. [24] employed GOSAT SIF along with column CO2 fraction observed by GOSAT 

and OCO2 in tropical forests to find that the 2015-2016 El Niño reduced NEP in spatially different 

ways: the NEP reductions in Amazon, tropical Africa and tropical Asia were driven by decreased GPP, 

increased Reco and wild fires, respectively. A recent study found Amazon ecosystems experienced a 

8.2% decrease in photosynthesis during the drought of 2015-2016 El Niño, using GOME-2 SIF as an 

indicator for photosynthesis [36], though a later study suggested the SIF decrease is an artefact [37]. 

As a direct proxy of photosynthesis, SIF products can provide new understanding in respect to the 

impacts of El Niño at various scales. 

Here, we assess the impact of the 2015-2016 El Niño event on global photosynthesis using a suite of 

six different RS GPP products and four SIF datasets. Using an ensemble of RS GPP products can 

minimize the inherent uncertainty associated with an individual model which may or may not be an 

outlier of a community of models. The 2015-2016 El Niño was one of the strongest El Niño events on 

record since the late 20th century, with extreme heat and drought being reported in many tropical 

regions [38,39]. It lasted around 15 months from March 2015 to May 2016, with the peak appeared 

around October 2015 to February 2016 [40]. It provides a rare window where multiple satellite 

observations and RS GPP products overlapped with an El Niño event.

Materials and Methods

1. The MODerate Resolution Imaging Spectroradiometer (MODIS) GPP products (Collection 55 and 

6)
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The MODIS GPP product is the first operational, near-real-time estimate of GPP for the vegetated land 

surface. It adopts the light use efficiency (LUE) theory proposed by Monteith [41,42] to calculate GPP 

as a product of absorbed photosynthetic radiation (APAR) and a conversion efficiency, ε:

GPP= ε × APAR= ε × fAPAR × PAR

where ε is prescribed using a biome-specific lookup table and constrained by air temperature and 

vapor pressure deficit for suboptimal climatic conditions [43]. PAR is photosynthetic active radiation, 

and fAPAR is the fraction of absorbed PAR derived from MODIS NDVI. 

The Numerical Terradynamic Simulation Group (NTSG) at the University of Montana provides a version

of MODIS GPP (MOD17 collection 55) for ecological studies, which rectifies the underestimation of 

GPP incurred by cloud-contaminated fAPAR pixels in the near-real-time MODIS GPP product (MOD17 

collection 5) [29]. NTSG uses NCEP Reanalysis II 

(http://www.ntsg.umt.edu/project/modis/mod17.php) to drive the GPP algorithm and has been 

updated to 2015. This product is denoted as MODIS-c55 in this study. It is provided at a monthly step 

and 0.5° resolution.

We also used a new release of MODIS GPP (MOD17 collection 6) from 2001 to 2016, with an original 

resolution of 500 m and a time interval of 8 days. We upscaled the product to 0.5° resolution and a 

monthly step. This product is denoted as MODIS-c6 in this study. PAR and other surface 

meteorological variables provided by the Global Modeling and Assimilation Office (GMAO) are used to

simulate MODIS-c6 GPP. The MODIS-c6 GPP was generally 5-10 PgC yr-1 smaller than the MODIS-c55 

GPP, which was also noted in Zhang et al. [44]. The direct effect of CO2 fertilization on ε is not 

considered in MODIS-c55 and MODIS-c6 [45].

In order to extend the MODIS-c55 GPP to 2016, we used a simple ratio method to extrapolate 2016 

MODIS-c6 GPP into 2016 MODIS-c55 GPP pixel by pixel. The ratio for each pixel was acquired based on

the 2015 MODIS-c55 and MODIS-c6 GPP, assuming the systematic difference between the GPP of 

MODIS-c55 and MODIS-c6 in 2016 resembled that in 2015 the most. This method can cause an 

uncertainty of 1.6 PgC for the extrapolated 2016 MODIS-c55 GPP if choosing a different year to 

calculate the ratios.

2. Vegetation Photosynthesis Model (VPM)

Similar to the MODIS GPP model, the VPM model is developed based on LUE theory [46]. The VPM 

model updates the biome-specific lookup table used by the MODIS model and uses EVI as a proxy to 

calculate fAPAR, in an attempt to account for the effect of leaf chlorophyll rather than just leaf 

quantity [46]. Like most LUE-based models, VPM does not explicitly consider the effect CO2 
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fertilization in the model [45]. VPM uses air temperature from the NCEP Reanalysis II [44] gridded 

meteorological dataset and a satellite derived Land Surface Water Index (LSWI) [47] to constrain ε. 

VPM GPP is available from 1980 to 2016 at 0.5° and a monthly resolution.

3. Breathing Earth System Simulator (BESS) 

BESS is a satellite-driven diagnostic model built on the enzyme kinetic framework designed by 

Farquhar et al. [48], to estimate global GPP and evapotranspiration [49,50]. BESS integrates algorithms

for atmospheric radiative transfer, two-leaf canopy radiative transfer, photosynthesis and surface 

energy balance with a wide range of MODIS products, including physical variables (i.e. MODIS aerosol, 

cloud, atmospheric profile and land surface temperature (LST)) and biophysical variables (i.e. LAI and 

clumping index). BESS considers the effect of CO2 fertilization by using spatially and temporally varying

atmospheric CO2 in the model. In this study, the BESS model used air temperature acquired from ERA 

Interim (ERAI). Two snapshot estimates (Terra and Aqua) of GPP were upscaled to daily sums using a 

simple cosine function [51]. We used the BESS GPP products from 2000 to 2016 at a monthly and 0.5° 

resolution (http://environment.snu.ac.kr/bess_flux/).

4. Photosynthesis-respiration model (PR model)

The PR model is a LUE model developed from first principles of photosynthetic theory [52]. It applies 

the least cost and the coordination hypotheses to convert the popular biochemical photosynthesis 

model [48] into a LUE form [7,53]. The effect of CO2 fertilization on GPP is explicitly considered in the 

PR model. In this study, the PR model uses fAPAR derived from AVHRR 3rd generation NDVI by Global 

Inventory Modeling and Mapping Studies (GIMMS) [54], following Keenan et al. [7]. The 

meteorological forcings for the PR model, including total photosynthetic active radiation, air 

temperature and water vapor potential, were provided by the Climate Research Unit (CRU) at a 

monthly and 0.5° resolution [55]. 

5. Boreal Ecosystem Productivity Simulator (BEPS)

BEPS is a terrestrial biosphere model built on the enzyme kinetic framework designed by Farquhar et 

al. [48], to estimate global carbon fluxes and evapotranspiration [56,57]. BEPS integrates algorithms 

for two-leaf canopy radiative transfer, photosynthesis, surface energy balance and soil water regime 

with satellite-derived biophysical variables (i.e. LAI and clumping index) [58]. The effect of CO2 

fertilization on GPP is explicitly considered in BEPS. In this study, we used a version of BEPS run at daily

step [56]. The meteorological forcings for the BEPS model are daily maximum temperature, minimum 

temperature, precipitation, radiation and relative humidity acquired from CRU-NCEP. We used the 

BESS GPP estimation from 2000 to 2016 at a monthly and 0.5° resolution.

6. Solar-induced fluorescence 
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We used four SIF datasets in this study, namely, GOME-2 onboard MetOp-A (GOMEA) and onboard 

MetOp-B (GOMEB), GOSAT and OCO2. GOMEA ranges from 01/2007 to 12/2016, GOMEB ranges from 

03/2013 to 12/2016, GOSAT ranges from 04/2009 to 05/2016 and OCO2 ranges from 09/2014 to 

12/2016. OCO2 SIF was processed from OCO2_L2_Lite_SIF (V8r) and GOSAT SIF was processed from 

ACOS_L2_Lite_FP (V7.3). Monthly SIF 0.5° gridded data were generated by averaging observations in 

its latitude and latitude bounds for each 0.5° pixel for both OCO2 and GOSAT. All flags were applied 

before processing the gridded data for quality control. GOMEA and GOMEB SIF was processed from 

GOME-2 version 2 (V27) 740 nm terrestrial chlorophyll fluorescence data from MetOp-A and MetOp-

B. Its monthly SIF data products were then generated by cropping land area and pixel values were 

capped between 0-3 mW m-2 nm-1 sr-1 for quality control. 

7. Gridded meteorological datasets 

RS GPP models were driven by gridded meteorological datasets of different types, including CRU, 

NCEP Reanalysis II and ERAI. Along with these datasets, we also assessed the temperature and 

precipitation records from CRU-NCEP, the Modern-Era Retrospective analysis for Research and 

Applications (Version 2; MERRA2), and the Tropical Rainfall Measuring Mission (TRMM), to support an 

attribution analysis of the potential difference between RS GPP estimates. Among these gridded 

datasets, NCEP, ERAI, MERRA2 are reanalysis, CRU is based on in-situ observations, TRMM is a remote 

sensing product, and CRU-NCEP is a combination of reanalysis and observations. ERAI and CRU were 

downloaded at 0.5°; TRMM was at 0.25 x 0.25° and we downscaled it using average values within each

0.5° cell; MERRA2 was at around 0.5° x 0.6° and was converted to 0.5° x 0.5° using nearest neighbor 

interpolation. NCEP and CRU-NCEP were interpolated from 1.875° x 1.875° to 0.5° x 0.5° using linear 

interpolation. All meteorological datasets are temporally aggregated to the monthly step.

8. Plant Functional Types 

In order to explore the ecoregion-specific response to El Niño, we used the plant functional types 

(PFTs) classified by the MODIS Land Cover maps [59] curated at 0.5°. For each 0.5° grid cell, we used 

the PFT that was most prevalent during the period 2000–2012. The acronyms for PFTs used in this 

study are EBF (evergreen broadleaf forest), DF (deciduous broadleaf forest and deciduous needleleaf 

forest), ENF (evergreen needleleaf forest), MF (mixed forest), CRO (cropland), SAV (savanna and 

woody savanna), GRA (grassland), SH (closed shrubland and open shrubland) and WET (wetland).

9. Global Carbon Budget

We used global carbon budget data from the Global Carbon Project [1] to quantify the total carbon 

sink reductions in 2015 and 2016. The Global Carbon Project data set is a compilation of estimates of 

all major components of the global carbon budget, based on the combination of observations, 

statistics and model estimates. In this study, NEP was estimated from the residual of fossil fuel 

emission, land use change, atmospheric CO2 growth and the ocean sink. 
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10. Statistical Analysis

Anomalies of RS GPP and SIF were calculated using the mean GPP or SIF of the available years of each 

dataset as the baseline, except for the OCO2 SIF which only has two years of record. We further 

detrended each dataset to remove the effects of factors other than climate (i.e. CO2 fertilization and 

growing season changes) on carbon uptake, using background linear trend of the dataset as the 

baseline. Detrended SIF also removed the artefact degradation in SIF signals from GOME-2 [37]. Note 

that the detrended anomaly is relative to the linear trend, and therefore is sensitive to the period 

chosen to define the trend. Here we used all available records (< 18 years) of each product to quantify 

its respective linear trend, but acknowledge that the use of a longer timescale could potentially affect 

the results. In addition, using an ensemble of RS GPP products allows for the quantification of 

uncertainties and identification of mean behavior of RS products.

We used one-tailed student’s t test to quantify the significance of GPP changes during the El Niño 

event, by detecting whether the ensemble of detrended RS GPP anomalies (n=6) is statistically larger 

or smaller than 0 (p < 0.05). If the null hypothesis is rejected, then we regard the model ensemble 

identifies a significant GPP anomaly, and the members of the ensemble are consistent with each other

because their anomalies are likely in one direction. Based on the detrended anomalies of GPP and SIF, 

we further calculated the Z score for each product using the equation: z = (x – μ) / σ, where x is a 

variable, μ and σ are the mean and the standard deviation of the variable. We used the Z score to 

evaluate the consistency and inconsistency between models.

Results

1. The Impact of El Niño on global GPP

In order to assess the extent of the response in an individual time period, it is necessary to 

characterize background variability and baseline GPP. All RS GPP products except MODIS-c55 

demonstrated continuously increasing trends from 2000 to 2016 (p < 0.05) (Figure 1a). The slopes of 

the trends were 0.41 ± 0.11, 0.48 ± 0.16, 0.62 ± 0.10, 0.06 ± 0.09, 0.30 ± 0.13 and 0.41 ± 0.09 PgC yr-2 

for the PR model, BESS, BEPS, MODIS-c55, MODIS-c6 and VPM, respectively. Meanwhile, GOMEA and 

GOMEB SIF showed negative trends, due to a known issue of the degradation of instrument onboard 

the GOME-2 [60]. GOSAT SIF did not show a statistically significant trend during 2007 to 2015. OCO2 

has been operating for a short period since late 2014, but it captured an increase in global SIF from 

2015 to 2016 (Figure 1a).
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Figure 1. (a) The RS GPP and SIF anomalies from 2000 to 2016, relative to the time-average baseline 

GPP or SIF, for six RS GPP products and four SIF products; (b) The variability of detrended RS anomalies

from 2000 to 2016, using the linear trend of RS GPP as the baselines. The anomalies of the two El Niño

years 2015 and 2016 are labelled by vertical lines of different styles. The inset indicates the long-term 

variability of detrended GOMEA SIF, and the detrended anomalies of GOMEA SIF in 2015 and 2016.

To explore the impact of El Niño on GPP, we detrended the annual GPP to remove the impact of CO2 

fertilization, lengthening growing seasons and the long-term climate trend. The six RS GPP products 

displayed different magnitudes of background variability (Figure 1b): the standard deviation of 

detrended GPP anomalies from the largest to the smallest was 1.41 PgC yr-1 for BESS, 1.02 PgC yr-1 for 

the PR model, 1.01 PgC yr-1 for MODIS-c6, 0.95 PgC yr-1 for BEPS, 0.75 PgC yr-1 for MODIS-c55 and 0.85 

PgC yr-1 for VPM. GOMEA SIF, the only long-term SIF product available during El Niño, had a 

background variability of 0.063 mW m-2 nm-1 sr-1. The detrended GPP anomalies of the six RS products 

and the detrended SIF anomaly of GOMEA followed a Gaussian distribution (p < 0.05, Shapiro-Wilk 

test [61]). 
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We found large discrepancies between model estimates on the global impact of El Niño at the annual 

scale (Figure 1b; Figure S1). In 2015, the detrended GPP anomalies from different models ranged 

between -1.98 and -0.43 PgC, with the exception of the VPM model which showed a strong positive 

detrended anomaly of 1.51 PgC. In 2015, the model ensemble was -0.7 ± 1.2 PgC. In 2016, GPP 

estimated from different models distributed in a wider range from – 1.00 to 1.15 PgC, with the 

ensemble mean of 0.05 ± 0.89 PgC. In 2016, The PR model and the VPM model showed negative 

detrended GPP anomalies, BESS and MODIS-c6 showed positive anomalies and BEPS and MODIS-c55 

showed almost neutral anomalies (Figure 1b). 

To put our calculation of GPP anomalies into the context of global carbon cycle, we calculated the 

anomalies of NEP as the residual of anthropogenic emissions, atmospheric growth and ocean sink [1] 

and detrended the NEP anomalies from 2000 to 2016 to remove the long-term trend of increasing 

uptake. In 2015 and 2016, the detrended NEP anomalies were -1.16 ± 0.47 PgC and -1.38 ± 0.87 PgC, 

respectively (Figure S2). Using the ensemble mean of detrended GPP and NEP anomalies, we found 

that the GPP accounted for 60% of the NEP reduction in 2015, but made no contribution to the NEP 

reduction in 2016. This implies that an increase in Reco and biomass burning likely dominated the 

reduction in the carbon sink in 2016.

2.  Regional distribution of GPP anomalies in the El Niño years

Although the detrended anomalies of the RS GPP products differed at the global scale, significant 

anomalies were evident using the ensemble of GPP products at some regions (Figure 2). The ensemble

of RS GPP identified significant changes in photosynthesis (one-tailed t-test, p < 0.05) over 53% and 

52% of the vegetated land surface in 2015 and 2016, respectively (Figure 2 c-d). The RS GPP ensemble 

mean identified significant photosynthesis changes over large areas in the southern Africa, Australia, 

temperate Eurasia and North America and small parts of the eastern Amazon. Meanwhile, the 

ensemble of RS GPP products cannot provide reliable estimates over some key carbon sink regions 

such as the rainforests in west Amazon and tropical Asia. If we only consider the pixels that show 

significant GPP anomalies, the ensemble means of global GPP detrended anomaly were -0.76 ± 0.45 

and 0.51 ± 0.61 PgC in 2015 and 2016, respectively, compared to -0.7 ± 1.2 and 0.05 ± 0.89 PgC when 

considering all regions. 
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Figure 2. (a-b) Mean detrended GPP anomalies (g C m-2 yr-1) from the ensemble of RS models in 2015 

(a) and 2016 (b), usig the linear trends of RS GPP from 2000 to 2016 as the baselines. Only the pixels 

where all six RS products have values are shown; (c-d) significance level of the consistency between 

members of the RS GPP ensemble; (e-f) Detrended SIF anomalies from GOMEA in 2015 (e) and 2016 

(f), using the linear trend of GOMEA SIF from 2007 to 2016 as the baseline.

The map of GOMEA SIF anomalies identified hotspots of GPP anomalies that are similar to the 

ensemble mean of RS estimates (Figure 2). Both SIF and the ensemble mean of RS estimates indicated 

that southern Africa, eastern Australia and central Europe in 2015 and western Australia, India and 

central Africa in 2016 experienced reductions in photosynthesis. However, for some regions, such as 

tropical America, SIF demonstrated a rather different landscape of anomaly than the RS ensemble 

mean. Overall, the global distribution of SIF detrended anomalies (Figure 2 e-f) was significantly 

correlated to the detrended anomalies of GPP ensemble, with spatial correlation coefficients of 0.26 

and 0.27 in 2015 and 2016 (p < 0.05), respectively. 

At the regional scale, our results showed marked GPP reductions in Africa and savannas (SAV) during 

the 2015-2016 El Niño, which was unanimously supported by all RS models and SIF (Figure 3). In 2015,

all continents except North America and Asia showed negative GPP anomalies. With the evolution of 

the El Niño event, global photosynthesis increased in 2016 except a persistent large drop in Africa. The

total GPP decrease contributed by Africa was around -1.24 ± 0.33 PgC, more than double of South 

America GPP decrease (-0.55 ± 0.72 PgC). In both years of El Niño, we found that majority of GPP 
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decrease came from savannas, whose contribution (-1.1 ± 0.52 PgC) surpassed the highly uncertain 

GPP reduction of evergreen broadleaf forests (EBF) (-0.22 ± 0.98 PgC).  Meanwhile, GPP of grasslands 

(GRA) and croplands (CRO) increased considerably by 0.33 ± 0.13 PgC and 0.14 ± 0.17 PgC in 2015-

2016. PFTs other than SAV, EBF, GRA and CRO showed almost neutral changes in GPP during the El 

Niño event (Figure 3). 

Figure 3. Detrended GPP anomalies (PgC yr-1) and detrended SIF anomalies (PJ yr-1nm-1 sr-1) for each 

continent and PFT in 2015 (a-b) and 2016 (c-d). Dark red bars and whiskers respectively indicate the 

mean and the standard deviation of detrended GPP anomalies for each region. Light red bars and 

whiskers respectively indicate the mean and the standard deviation of detrended GPP anomalies of 

the consistent pixels in each region. Green solid lines represent the detrended anomalies of SIF from 

GOMEA. Grey dash lines indicate the percentage of pixels showing significant GPP anomalies 

(student’s test p<0.05) for each region. Acronyms for continents are SA (South America), AF (Africa), 

AU (Australia), NA (North America), EU(Europe) and AS (Asia). Acronyms for PFTs are Evergreen 

needleleaf forests (ENF), mixed forests (MF), deciduous forests (DF), evergreen broadleaf forests (EBF),

savannas (SAV), grasslands (GRA), shrublands (SH) and croplands (CRO).

EBF showed the largest uncertainty in estimated GPP and the least percentage of consistent pixels 

(34%) between the RS models (Figure 4). In contrast, the anomalies from the ensemble of RS models 

were consistent on over 50% of the area for other PFTs, especially for SAV, GRA and CRO where the 

consistent percentage was around 60%. Therefore, using the ensemble of RS models is more robust 
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for SAV, GRA and CRO than for EBF. By only considering the consistent pixels, the ensemble means of 

RS models for each region or PFT showed similar magnitude and direction of anomalies to their 

counterparts of all pixels, but with substantially smaller uncertainty (Figure 4). It indicates that the 

influence of inconsistence pixels was muted in our analysis by using ensemble means. In addition, the 

detrended anomalies of SIF also tracked the ensemble mean of RS models, corroborating the GPP 

changes identified by the ensemble mean of RS models.

3. Seasonal variation of RS GPP anomalies 

The 2015-2016 El Niño lasted 15 months and gradually modulated global climate regimes. The 

photosynthesis activities of different PFTs were therefore subjected to the developmental stages of El 

Niño and showed temporally varying anomalies (Figure 3). 
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Figure 4. Seasonal variations of detrended GPP anomalies for 8 PFTs (rows) on 6 continents (columns) 

in 2015-2016, using the linear trends of seasonal RS GPP from 2000 to 2016 as the baselines. Every 

three months from January 2015 are counted as one season. Red lines and whiskers indicate the 

average and the standard deviation of RS GPP, respectively. Green lines represent the detrended 

anomalies of SIF from GOMEA. Blue circles are where the six RS GPP models show coherent GPP 

anomalies (one-tailed t-test p < 0.05). Red shading highlights the peak El Niño period. Grey shading 

represents the natural variability of GPP, calculated as one standard deviation of detrended GPP 

anomalies from all RS GPPs for the years 2000-2014. In each panel, the number at the bottom left 

refers to the total GPP anomaly (unit: PgC) during 2015-2016, the number at the bottom right refers to

the correlation coefficient between detrended anomalies of SIF and the ensemble mean of detrended 
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anomalies of RS GPP (unit: unit less). Acronyms for continents are SA (South America), AF (Africa), AU 

(Australia), NA (North America), EU(Europe) and AS (Asia). 

In the early stage of El Niño (March 2015 to September 2015), we found that SAV and GRA in the 

Southern Hemisphere showed GPP drops while forests in the Northern Hemisphere demonstrated 

some increases of GPP (Figure 3). Entering the peak of El Niño (October 2015 to February 2016), more 

PFTs in the Southern Hemisphere decreased GPP, with EBF and SAV having the largest GPP drops. 

Meanwhile, the Northern Hemisphere photosynthesis was almost neutral except slight drops from 

some regions (i.e. CRO in Asia and EBF in North America). After the peak El Niño (February 2016 and 

after), the Southern Hemisphere photosynthesis gradually recovered to the baseline, except the 

persisting GPP decreases in SAV and SH. At the same time, the Northern Hemisphere vegetation 

experienced large GPP increases, spanning most PFTs. Overall, photosynthesis of the Southern 

Hemisphere decreased during the whole period, primarily contributed by SAV and EBF, while 

photosynthesis of the Northern Hemisphere increased, mainly before and after the peak of El Niño. 

In most regions, GOMEA SIF corroborated the seasonal patterns of RS GPP ensemble mean (Figure 4). 

The most consistent temporal patterns between SIF and RS GPP ensemble mean were found in SAV 

(0.79 ± 0.11), SH (0.78 ± 0.11) and ENF (0.77 ± 0.17), and Australia (0.82 ± 0.11), while the least 

consistent temporal patterns were found in South America (0.51 ± 0.17) and EBF (0.30 ± 0.32). 

4. Drivers for the difference between RS GPP

While we used the ensemble mean of RS estimates to detect the impact of El Niño, we noticed that 

large inter-model variation of GPP products limited the detectability of GPP anomalies at some regions

or PFTs (i.e. EBF). Inter-model variation for EBF GPP (18 g C m-2 yr-1) was almost the same magnitude as

the natural variability of EBF GPP (22 g C m-2 yr-1). Our result showed that the large variation in the 

ensemble was usually driven by some unique simulations from one or two models, such as VPM for 

EBF and CRO, BEPS for SH and PR for ENF (Figure 5). Models tended to show convergent performance 

in some regions, particularly in SAV, GRA and Australia. The detrended SIF was not significantly 

(p<0.05) different than the detrended anomalies of most RS models (Figure 5). 
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Figure 5. Z scores of the six RS GPP estimates and the GOMEA SIF for each continent and PFT in 2015 

(a-b) and 2016 (c-d). “*” indicates that a model is significantly (p<0.05) different than others. 

Acronyms for continents are SA (South America), AF (Africa), AU (Australia), NA (North America), 

EU(Europe) and AS (Asia). Acronyms for PFTs are Evergreen needleleaf forests (ENF), mixed forests 

(MF), deciduous forests (DF), evergreen broadleaf forests (EBF), savannas (SAV), grasslands (GRA), 

shrublands (SH) and croplands (CRO).

The six RS models assessed used different meteorological datasets and RS inputs to simulate GPP, the 

variations of which can propagate into the inter-model variation of annual GPP (σGPP). We found that 

σGPP tended to increase with the inter-dataset variations of annual precipitation (σPP; p<0.01, r=0.94)

and annual mean PAR (σPAR; p<0.05, r=0.71) (Figure 6), suggesting the choices of precipitation and 

PAR sources contributed to the difference between GPP estimates of different models. Even though 

precipitation demonstrated the strongest explanatory power for σGPP among all variables, we noticed

that only one model (BEPS) in our ensemble explicitly used precipitation as an input. Meanwhile, four 

members of our ensemble, including MODIS-c55, MODIS-c6, the PR model and BEPS explicitly used 

vapor pressure deficit (VPD) or relative humidity in the models. However, we found a much weaker 

correlation between the inter-data variation of VPD (σVPD) and σGPP (p>0.1, r=0.32) than between 

σPP and σGPP, suggesting that precipitation impacts GPP not only by VPD but also by other terms 

related to precipitation (i.e. soil moisture, cloudiness). In addition, we found the choice of vegetation 

indices for the RS models played a positive but non-significant role in explaining σGPP (p>0.1, r=0.56), 

suggesting the different proxies used for fAPAR resulted in smaller changes in GPP than moisture 

conditions and PAR in the RS models examined.
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Figure 6. Comparison of the inter-model variation of the annual GPP estimated by the six RS models 

(σGPP) to the inter-dataset variation of multiple climate datasets used to drive RS GPP models in 2015.

(a) σGPP versus the inter-dataset variation of annual mean air temperature (σTair) acquired from CRU, 

CRU-NCEP, NCEP Reanalysis II, ERAI and MERRA2; (b) σGPP versus the inter-dataset variation of annual

precipitation (σPP) acquired from CRU, CRU-NCEP, NCEP Reanalysis II, ERAI, MERRA2 and TRMM; (c) 

σGPP versus the inter-dataset variation of annual mean PAR (σPAR) acquired from CRU, CRU-NCEP and

ERAI; (d) σGPP versus the inter-dataset variation of annual mean vegetation indices (σVI), including 

MODIS NDVI, MODIS EVI and AVHRR fAPAR. (e) σGPP versus the inter-dataset variation of annual 

mean vapor pressure deficit (σVPD) acquired from CRU, CRU-NCEP and ERAI.  Error bars indicate the 

spatial variations of investigated variables within each PFT. Acronyms for PFTs are Evergreen 

needleleaf forests (ENF), mixed forests (MF), deciduous forests (DF), evergreen broadleaf forests (EBF),

savannas (SAV), grasslands (GRA), shrublands (SH) and croplands (CRO).

Discussion

El Niño influences the natural variability of the terrestrial carbon sink through modulating global 

climate regimes. The impact of El Niño on photosynthesis and the contribution of the changing 

photosynthesis to the known reduction of the terrestrial carbon sink are highly uncertain. Using six RS 

photosynthesis products and a SIF dataset, this study found that the 2015-2016 El Niño drove a 

negative GPP anomaly of -0.70 ± 1.20 PgC in 2015 and a slight positive anomaly of 0.05 ± 0.88 PgC in 

2016. According to the ensemble mean of RS models, the GPP reduction accounted for 60% of the 

NEP reduction in 2015, but also implies a dominant role of increasing Reco and potentially wild fires in

reducing NEP in 2016 [16,24]. Savannas photosynthesis decreased the most by -1.1 ± 0.52 PgC, 

followed by a very uncertain GPP reduction of -0.22 ± 0.98 PgC from evergreen broadleaf forests. The 
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Northern Hemisphere GPP increased before and after the peak El Niño, contributed mostly by 

grasslands (0.33 ± 0.13 PgC) . RS GPP ensemble showed consistent anomalies over about 60% of 

savannas, grasslands and croplands regions, but models diverged over key ecoregions like tropical 

forests. SIF datasets corroborated the temporal patterns of the ensemble mean GPP in most regions 

except EBF.

Our results show that the RS GPP products unanimously identified a strong reduction of GPP in Africa 

during the 2015-2016 El Niño. African biomes contributed a negative anomaly of -1.24 ± 0.33 PgC in 

2015 and 2016, surpassing the GPP anomalies of other regions. However, this result contradicts a 

recent study that suggested an increase of respiration and fires drove down NEP in the tropical Africa 

(15°N-15°S) during the 2015-2016 El Niño, with GPP remained unchanged [24]. Differences in the 

choice of baselines may explain the contrasting results: in this study, we used the linear trend of 17-

year period from 2000 to 2016 as the baseline to calculate the natural variability of GPP; Liu et al. [24] 

used one year, 2011 (a strong La Niña year), as the baseline to calculate the anomaly of GPP. We also 

found a limited contribution of African tropical ecosystem GPP when using 2011 as a baseline (Figure 

7). By using 2011 as the baseline, the positive impact of the GPP increasing trend can offset the 

negative impact of El Niño on GPP, and affected the interpretation of El Niño impacts. We suggest that 

El Niño impact assessment studies should be done using a well-characterized long-term baseline 

estimate of GPP, instead of one representative year. This result also highlights a large impact of the 

2015-2016 El Niño on savanna ecosystems (Figure 3, 4) and echoes the reported dominating role of 

arid and semi-arid regions in influencing the inter-annual variability of the land carbon sink [13,62].

Figure 7. Detrended GPP anomalies (PgC) in tropics (15°N-15°S) in 2015 (a) and 2016 (b), using either 

a La Niña year (2011) or the long-term trend as the baseline. Acronyms for continents are SA (South 

America), AF (Africa) and AS (Asia).

Even though our results provided an ensemble mean that can be used to detect regional anomalies of 

GPP, the large divergence between remote sensing GPP models or between models and SIF over EBF 

points out the complexity of this PFT. In this study, we found that the divergence between RS GPP 

models was significantly related to the divergence between precipitation datasets of various sources, 
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as the impact of precipitation on GPP was either explicitly (e.g. BEPS) or implicitly considered in 

models via VPD (e.g. MODIS), soil moisture (e.g. VPM) or cloudiness (e.g. BESS). Precipitation datasets 

disagreed the most in the tropics during the 2015-2016 El Niño event (Figure 6, S3), consequently 

leading to the largest uncertainty of GPP estimates in tropical regions. A recent site-level study [63] 

and a global-scale study [64] echoed our results by suggesting that the different representation of 

water stress in seven LUE GPP models explained most of the inter-model variation, whether water 

stress was represented by VPD, evapotranspiration or a proxy of soil water content in those models. 

We acknowledge that a comprehensive analysis on σGPP and the inter-dataset variation of climate 

variables requires a complete archive of original inputs of all models, which was beyond the scope of 

this study. The incompleteness of the original inputs may affect the σPAR-σGPP and σVPD-σGPP 

relationships we investigated (Figure 6). Nevertheless, the large σGPP emphasizes the importance of 

considering an ensemble of multiple RS models in order to account for the inherent uncertainty 

associated with individual model projections. We also suggest further studies test whether members 

of the ensemble provide equally valid estimates, as we found several models differed significantly (i.e. 

the VPM model in EBF; Figure 5). The difference between the model abilities emphasizes the need for 

a better proxy for an ensemble than the simple arithmetic mean. 

  

In addition, we found SIF was only weakly correlated with the ensemble mean of GPP in EBF (Figure 

4), which seems consistent with a recent study reporting a decoupling of decreasing SIF and increasing

NDVI over the Amazon rainforest [36]. However, several results of this study project doubts on the so-

called decoupling issue. First, the weak correlation between SIF and ensemble mean GPP was likely 

caused by the unique performances of just one or two models, while the GPP anomalies of most 

models actually varied in the same direction of SIF anomalies (Figure 5). Secondly, after removing the 

long-term trend of vegetation indices (VIs; i.e. NDVI, EVI and fAPAR), we found the anomalies of VIs 

were actually negative in tropics in 2015 and 2016 (Figure S3), in contrast to what was previously 

reported [36]. The degradation of GOMEA SIF may also confound the anomalies of SIF detected [37], 

but we found the negative anomalies of GOMEA SIF persisted even after we removed the artefact 

(Figure 5). Overall, we found SIF, VIs and GPP estimates in most cases demonstrated negative 

anomalies in tropics, calling into questions a decoupling of SIF and GPP or decoupling of SIF and VIs. 

We acknowledge that our method to remove the artefact of SIF, though statistically robust (Figure S4), 

is not a complete solution to filter noise and degradation of SIF signals. Further studies on the 

processing pipeline of SIF data [65] and the mechanisms underlying SIF [66] are essential to our 

correct interpretation of the relationship between SIF and GPP.

Conclusions

The 2015-2016 El Niño is one of the strongest El Niño events in the modern record, rivalling the 

magnitude of the large 1997-1998 event [16,38]. It provides a unique chance to study the impact of El 
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Niño on the terrestrial carbon sink in the satellite-era. Using six RS GPP products and the GOME-2 SIF 

dataset, we assessed the response of global photosynthesis to the 2015-2016 El Niño, as well as the 

spatial and temporal variations of the response. 

At the global scale, our results show that global photosynthesis decreased by 0.70 ± 1.20 PgC in 2015 

based on an ensemble of six RS models. The decrease in GPP accounted for 60% of the NEP reduction. 

In 2016, however, GPP demonstrated a slight positive detrended anomaly of 0.05 ± 0.88, which 

implies that the large reduction in the terrestrial carbon sink in 2016 was likely due to increased 

respiration and biomass burning. 

At the regional scale, the ensemble of RS GPP products identified significant GPP changes over 50% of 

the vegetated land surface. All RS GPP products found that savanna ecosystems decreased 

photosynthesis severely in response to El Niño, followed by evergreen broadleaf forests. The Northern

Hemisphere GPP increased before and after the peak El Niño period, especially for grasslands. Despite 

the consistency for many regions, tropical rainforests estimates showed large variations between the 

ensemble members, likely driven by discrepancies between the moisture forcings for models. The 

temporal patterns of SIF and the RS GPP ensemble mean agreed well except in EBF. Further research 

on the consistency and inconsistency between various RS GPP products, on the relationships between 

SIF and different RS GPP, and on techniques for estimating tropical forest photosynthesis from space, 

is needed to reduce the uncertainty associated with global GPP products reported here. 
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Supplementary Information

Figure S1. The detrended RS GPP and SIF anomalies from 2000 to 2016, using the detrended time-

average GPP(SIF) of the same period as the baseline.

Figure S2. The NEP anomalies and the detrended NEP anomalies from 2000 to 2016. NEP is calculated 

as the net residual land CO2 sink, estimated by the Global Carbon Project (GCP).
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Figure S3. Latitudinal distribution of ensembles of air temperature (Tair), precipitation (PP), 

photosynthetic active radiation (PAR), vegetation indices (VI) and vapor pressure deficit (VPD) in 2015 

and 2016, using the linear trends of variables from 2000 to 2016 as the baselines. The ensemble of 

Tair is consisted of CRU, CRU-NCEP, NCEP Reanalysis II, ERAI and MERRA2; the ensemble of PP is 

consisted of CRU, CRU-NCEP, NCEP Reanalysis II, ERAI, MERRA2 and TRMM; the ensemble of PAR is 

consisted of CRU, CRU-NCEP and ERAI; the ensemble of VI is consisted of MODIS NDVI, MODIS EVI 

(only 2015) and AVHRR fAPAR; the ensemble of VPD is consisted of CRU, CRU-NCEP and ERAI. The 

shadings indicate the inter-dataset variations of each variable. 
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Figure S4. Uncertainty of GOMEA SIF trend. Blue line is the baseline of GOMEA SIF we used in this 
study. (a) first two data points were dropped to fit the line; (b) the last two data points were dropped 
to fit the line; (c) the first and the last data points were dropped to fit the line; (d) One or two data 
points were randomly dropped in 400 tests to fit the line. In 98.3% of the tests there was a negative 
detrended SIF anomaly in 2015 and a positive detrended SIF anomaly in 2016.
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