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Abstract

Islands and Bridges of Language:

Bio-inspired Structural Analysis of Language Embedding Data

by

Hongwei (Henry) Zhou

In this thesis, I propose a method of applying an agent-based model named

Monte Carlo Physarum Machine (MCPM) to language embedding data. This method

has been previously applied in astronomy for inferring the quasi-fractal structure of

the cosmic web. In this thesis, I show that this model can provide a distinct scope to

understand, analyze and extract information from language embedding data. I assess the

novelty of the algorithm first by identifying the characteristics of the revealed structure

through visualization, and generate word similarity metrics in comparison with other

status quo similarity metrics. In addition, I propose a visualization tool to further

help explore the language embedding space in 3D. As a result, I argue that both the

MCPM method and the visualization tool can assist examining the structure of language

embedding in the reduced 3D space.
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Chapter 1

Introduction

Word embedding is a family of algorithms that transforms words into a set of

numbers that supposedly embed their semantic and syntactic content, where semantic

content correlates to meaning of the word, while syntactic content correlates to their

structural roles [34]. The algorithm imagines that word tokens’ content can be inter-

preted as points in a continuous space, and their distribution can be mathematically

produced through input data, by looking at the usage of each word. The key assump-

tion is that words used in similar context tend to have similar semantic and syntactic

content [26]. The word tokens with similar content are thus positioned closely in the

continuous space. The points with similar values can be interpreted as being used in

similar context. This process can be carried out in either frequency-based or prediction-

based methodologies [34]. The output of word embedding algorithms has been widely

useful for many downstream natural language processing tasks such as part of speech

tagging [14], named entity recognition [50] and machine translation [15].
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As mentioned, word embeddings are points distributed in a continuous space

with arbitrary dimensions. Each point refers to a word token. This naturally raises ques-

tions about the meaningfulness of many geometric properties in the continuous space

[41, 57]. Specifically, many studies of the geometric arrangement of word embedding fo-

cus on two main mathematical units for analysis: offset vectors and clusters [27]. Offset

vectors allow the linear translation from one point/word to another point/word, while

clusters focus on the spatial proximity between points [37, 31, 8]. Since the word em-

bedding algorithm itself presupposes that words positioned near each other are similar

semantically and syntactically, clusters become an important part of word embedding

examination [9]. Offset vectors, on the other hands, were discovered to embed human-

interpretable meaning such as gender switching (man - woman ≈ king - queen). Offset

vectors are also termed word analogies, and have become a wide-spread mathematical

unit to discover structures in word embedding [27]. Both mathematical units rely on

linear relations (translation and Euclidean distances) to understand the relationship

between words.

In this thesis, I present the preliminary work of applying Monte Carlo Physarum

Machine, MCPM for short, as a way to visualize, interpret and make sense of word em-

bedding. MCPM is an agent-based model inspired by the self-organizing characteristics

of slime mold, initially studied by Jeff Jones [32]. It was then modified by Burchett et

al. with an additional Monte Carlo decision-making process, and was shown to be em-

pirically accurate in predicting the pattern of cosmic web of the universe [10, 62], where

it has successfully recovered the theoretically predicted filamentary patterns over sparse
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galaxy data. MCPM can be understood as bio-inspired modeling of optimal transport

networks. The mathematics of optimal transport [69, 52] is based on the principle of

least effort, which applies to phenomena ranging from particle and light transport to

the behavior of living beings. As such, MCPM can be understood as an alternative way

to discover structures in word embedding. Specifically, the optimal transport network

is not constrained to linear relations like the aforementioned two mathematical units,

offset vectors and clusters, are. For this purpose, I seek to investigate the potential

application of MCPM or slime mold in the context of language embedding [22].

My method stands in contrast with the on-going investigations of language

embedding data in natural language processing communities. First of all, MCPM high-

lights non-linear and more global structural relations comparing to offset vectors and

clusters, which only consider local pair-wise relations or local neighborhood, this distinc-

tion will be further clarified in Section 2. Second of all, I do not conduct my research

with the motivation to find a specific linguistic phenomenon, or to apply MCPM to

improve performance of a specific downstream NLP tasks such as machine translation.

Rather, I am interested in a more structure-focused and exploratory approach: I de-

ploy my method, which has shown to discover a very specific structure, to language

embeddings, and see what linguistic properties this method reveals.

In order to apply MCPM and visualization methods, a dimensionality reduc-

tion technique called UMAP is used to reduce the original word embedding data to 3D.

This raises two concerns: 1) whether the structural pattern extracted in the reduced-

dimensionality space also exists in the original space, and 2) since UMAP is stochastic,

3



how can we understand what is invariant across multiple outputs. I address the first

concern by comparing the results from the reduced dimensions to the status quo mea-

surement in the original dimensions, and the second concern by generating two datasets

under the exact same condition, and try to discover structures that appear in both of

them using a visualization tool.

Thus, the contribution of this thesis is divided into two parts: information

retrieval with MCPM and a visualization tool for language embedding. For the infor-

mation retrieval aspect, I examine the behavior of MCPM probing through visualization

results. The behavior shows that MCPM does not only reveal structures based on prox-

imity, but also the connectivity of the dataset. I then interpret MCPM probing as a

way to retrieve word similarity lists in language embedding. MCPM probe method

reveals that both connectivity and euclidean distance embed salient structural informa-

tion in the reduced 3D dataset. For the visualization tool aspect, I demonstrate the

potential the tool affords by identifying salient structures in the reduced 3D language

embedding dataset. During this process, the observation using the visualization tool

also supports the hypothesis that data connectivity embeds salient information in the

reduced 3D dataset. The earlier version of this work was published in IEEE VIS4DH

2020 workshop [72]. It was a preliminary result on the information retrieval aspect of

this thesis.
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Chapter 2

Literature Review

To reiterate, this thesis focuses on a specific structure discovery algorithm,

namely optimal transport networks and Monte Carlo Physarum Machine, and investi-

gates its potential for contribution in existing natural language processing data, specif-

ically language embedding in this thesis. My approach rests on a foundation spanning

two fields: information retrieval and information visualization.

For this purpose, I break down this section into three sections. Section 2.1 first

introduces the general background of word embedding and its influence on the natural

language processing community today. Section 2.2 focuses on the information retrieval

aspect of language embedding, where I highlight the distinction between extrinsic and

intrinsic evaluation, as well as the desire for more complex evaluation. Section 2.3 fo-

cuses on the relevant visualization tools used to evaluate word embedding, and mentions

particular tools from which I take direct inspiration for my own visualization tool.
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2.1 Word Embeddings

Much work extracting meaning from text has relied on relational structures

that can be represented (and visualized) as graphs. Phrase Nets [66], for instance, uses

nodes to represent words (‘tokens’) and edges for the user-defined relations between

them. Depending on the interpretation of the working data, higher-level entities can be

mapped to graph visualization, such as documents [51], stories [64], or even ideas [46]

with suitable relational axioms applied to them. At a more granular level, syntactic

relations in linguistics are often represented as graph diagrams [49], as are the onto-

logical relationships between words [24]. While such relational structures have proven

incredibly valuable, they are difficult to automatically generate from text, a problem

since there are often countless relations one might wish to extract from a text.

In recent years, word embeddings, such as Word2Vec, GloVe, and ELMo, have

gained remarkable traction as representations of word-level information. Their key com-

putational idea is to transform topological information contained in a relational graph to

geometric information encoded in a D-dimensional vector (‘embedding’) space by using

a deep learning model. Embeddings have a number of interesting algebraic properties:

most importantly, the contextual similarity of the embedded tokens is transformed into

geometric proximity in the embedding [40, 12]. Because they explicitly consider the to-

ken’s context [18, 54], it has been shown that embeddings contain information that can

be processed to extract a range of useful properties: clustering by token usage [57, 71]

as well as different kinds of syntactic information [57, 35, 28]. Thus, there is the promise
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Figure 2.1: Linguistic regularities shown through vector offsets, credit to
Mikolov et al. [41].

that this kind of method could provide high-dimensional representations that encode a

large manner of relations implicitly without having to hand-code them in advance.

Consequently, encoding language using vectors provides affordance to analyze

linguistic regularities within language embedding data. Most notably, Mikolov et al.

discover that an offsetted vector can be used to describe syntactic and semantic prop-

erties in the embedding [41]. One such example is shown in Figure 2.1. The left sub-

figure shows similarity among vectors that describe binary gender relation (masculine-

feminine) between two words. The right figure demonstrates how two vectors, one

describing singular-plural relation and the other binary gender relation, can be used

to navigate within the word embedding space from “Kings” to “Queens.” Fundamen-

tally, this specific phenomenon discover that analogies (word pairs) embed regularities

in natural language.

To enable similar discoveries through word analogy, tools aimed to help ex-

ploring word relations are proposed for literary experts and natural language processing

researchers [37, 27]. These focus on exploring linear relationships between word embed-
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dings, identifying concepts and experimenting with attribute vectors. Notably, Heimerl

et al. conduct a survey on the usage of word embeddings and identify key tasks and

applications. As a result, Heimerl et al. find that, in addition to word pairs as basic

units of analysis, grouping words based on spatial proximity can be another way to

analyze word embedding [27]. My proposal of the MCPM probe method follows this

line of inquiry of finding structural regularity within language embedding. The main

innovation is that MCPM, comparing to both word pairs and spatial proximity, goes

beyond the limit of euclidean distances and linear transformations. It is sensitive to the

connectivity within the data itself, which is not necessarily linear.

Most notably, Vaswani et al. propose a novel model named transformers to

generate word embeddings. The main innovation of the transformer model is to replace

the traditional sequence modeling, which linearly processes through the text, to atten-

tion mechanism, which creates word embeddings by looking at context of the entire

sentence [68]. In short, transformer models have the advantage of global information

tracking instead of local processing algorithms. Transformer models gained much at-

tention for its state-of-the-art performance in many domains. Surprisingly, when used

in self-supervised pretraining methods, transformers have shown superior performance

than many directly supervised models in downstream natural language processing tasks

such as question answering, machine translation, reading comprehension, and summa-

rization [54]. Similar discoveries were also made in image representation [11]. Because

transformers can also be used as generative models, many studies and applications have

used it for creative tasks. For example, AI Dungeon and AI Dungeon 2 utilize BERT
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to create a choose-your-own-adventure games that respond to arbitrary player text

prompts and generate unexpected and oftentimes hilarious responses [1]. Jukebox also

utilizes transformer architecture to generate many song samples based on lyrics, music

genre and artist style [19]. Most recently, DALL·E utilizes GPT 3, the most advanced

transformer model, to develop a decoder-only architecture to allow text-to-image gen-

eration [55]. The resulting images are found to be surprisingly coherent even when the

input text combines unrelated concepts. Word embedding generated by transformers is

examined lightly in my thesis, particularly in section 4.1. The majority of the thesis is

devoted to studying the applicability of MCPM to global (context-independent) word

embedding methods such as Word2Vec, rather than contextualized word embedding

methods such as transformers.

2.2 Evaluation of Word Embeddings

As word embedding algorithms are adopted and utilized, the notion of quality

naturally develops to guide researchers to improve and evaluate word embedding algo-

rithms. The distinction between intrinsic and extrinsic evaluation methods is used to

differentiate the two families of quality assessment [59, 6].

Extrinsic evaluation methods binds the quality of the word embedding to its

utility to a specific downstream language processing task, such as name entity recogni-

tion, sentiment analysis and semantic role labeling [59]. By this definition, any natural

language processing task that can integrate with word embedding is an extrinsic evalu-
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ation method. This naturally raises the problem on the narrowness of each evaluation

method and the incommensurability among different extrinsic evaluation scores, as dif-

ferent language tasks highlight different features in the word embeddings. In their survey

of language embedding evaluation methods, Barakov argues that no global evaluation

score exists through extrinsic evaluation due to “the lack of performance correlation on

different downstream tasks” [6].

In contrast, intrinsic evaluation method binds the notion of quality to its close-

ness to human cognition: embeddings are measured against human judgements. Most

notably, datasets such as SimLex-999 [29] are created by human subjects, in the for-

mat as a list of words considered semantically proximate to a given word. However,

Gladkova et al. express concern on the vagueness of semantic proximity as it conflates

different linguistic features such as semantic similarity, relatedness, morphological re-

lations (plural, tense) and collocations [25]. Barakov also complicates the datasets as

different datasets are generated from different cognitive processes. As a result, they

separate intrinsic evaluation datasets to conscious and subconscious evaluations [6]. In

addition to testing against a dataset, another category of intrinsic evaluation uses hu-

man as direct judgement of word embeddings. For example, the subjects compare two

word embeddings to see which similarity list is more intuitive. The consistency of word

embeddings can also be evaluated by how fast a human subject can pick out a randomly

inserted word in a similarity list [25].

The two mathematical units have dominated the interpretive work in word

embeddings: analogies through word pairs (offset vectors) and grouping based on prox-
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imity (clusters). They have become essential to describe the underlying structure of

word embedding. So much so that dimensionality reduction methods have come under

scrutiny in terms of its ability to preserve word analogies. Liu et al. propose modifica-

tion to existing dimensionality reduction method in order to highlight the two features

in visualization [36]. The local neighborhood is emphasized as a major comparative de-

terminant of embedding quality in Embedding Comparator [9]. Heimerl et al., based on

their identification of these two basic units for embedding analysis, develop visualization

techniques to better compare and measure qualities based on local neighborhood and

concept axis (a vector from one neighborhood to the other) [27]. We also see this in the

intrinsic evaluation listed above, where the most prominent evaluation is around the

concept of word similarity, a measurement defined based on spatial proximity. Many

of the information extraction also focus on human-identifiable linguistic traits: a vec-

tor that codes the transformation from singular to plural, or a cluster that designates

animal names. This leads to Gladkova et al. to call for a more sophisticated way to

interpret word embeddings: “...the most perfect word embedding is unlikely to have

exactly the same ‘concepts’ as us...by focusing on the structures that we expect the

word embeddings to have, we might be missing the structures that they actually have.”

[25].

Going beyond simple mathematical units, Hewitt et al. manage to identify

that syntactic tree information can be extracted by linearly transforming contextual-

ized embeddings [28]. Coenen et al. also show evidence that BERT encodes semantic

and syntactic information in its sub-spaces representation [12]. I see these two studies as
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more sophisticated ways to probe embedding structure as they do not assume the primi-

tives in the space have any interpretable meaning. Rather, they can claim such meaning

is embedded somehow that needs to be extracted through linear transformation.

I see my thesis as being similar to works that try to go beyond understand-

ing the structure of language embedding with either offset vectors or proximity-based

clustering. MCPM probing method strictly tries to discover structure based on not

only distance, but also connectivity of the datasets. Since there is no standard way to

evaluate its extrinsic utility, I will not be making any claim about its applicability to

downstream tasks. However, I do extract word tokens and argue about the quality of

word similarity ranking in later chapters. Therefore, from the perspective of word em-

bedding evaluation, this thesis proposes an intrinsic evaluation method based on MCPM

probing, which goes beyond linear relations as basic structural units.

2.3 Visualization of Word Embeddings

As word vectors are points in continuous space, visualization is a natural ex-

tension to comprehend word embedding. But the task is complicated due to the their

high dimensionality. While parallel coordinates are suitable for high dimensional data

[20, 13], they do not capture the spatial relationships critical in embeddings. Therefore,

the standard way to visualize embeddings is currently to project the token data to 2D

or 3D using PCA, UMAP and other dimensionality reduction techniques [38, 5], option-

ally with additional semantic annotations [12]. In that process, two different distortions
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Figure 2.2: BERT embeddings of “die” are clustered into different senses,
credit to Coenen et al. [12].

happen to the data: distortion of high-level structure, and induction of relations that

are not part of the original embedding. The inclusion of explicit referencing information

between the tokens [8] and identification of salient dimensions [30] does seem to alleviate

some of these issues.

There are many tools designed to explore the reduced word embedding data.

Most of which take the form of scatter plots. For contextualized embeddings such

as BERT, Coenen et al. visualize the distribution of embeddings of a single word and

discover that the clusters and spans of the clusters have human-interpretable meaning to

them, meaning that they can identify the general semantic seperation between clusters,

as well as from one end to the other end of the cluster as demonstrated in Figure 2.2

[12]. Another notable embedding visualization to directly visualize points in space is

the Embedding Projector developed by Tensorflow, it allows the user to visualized word
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embeddings in interactive 3D space, and the user can choose different dimensionality

reduction techniques to see the difference in the final result [2].

Many language embedding tools attempt to innovate on tasks relevant to em-

bedding exploration. For example, Heimerl et al. identify tasks to extract learned

information in language embedding, such as inspecting local neighborhoods (around

one single point) or analyze vector relations (the relationship between two points), and

develop several different views to facilitate these tasks [27]. To address the specific con-

cern with the stochastic nature of language embedding, as well as various embedding

algorithms that can generate vastly different outputs, Boggust et al. propose Embedding

Comparator [9]. The tool allows multiple scatter plot views, with some views localizing

around a single point for neighborhood inspection, as well as some views taking a more

global view with other information such as similarity distribution. The design allows

the researchers to gain a better understanding of the difference between two embedding

data. The visualization tool in this thesis allows a simple 3D navigation, which is shown

to be sufficient for my tasks without the need for multiple views.

Some studies see the potential unreliability in existing dimensionality reduc-

tion schemes for studying language embedding and intend to develop new methods in

order to preserve the relevant structures in the embedding data. Liu et al. propose a

dimensionality reduction method that designed specifically to preserve local neighbor-

hood clusters as well as word analogy vectors [36]. Molino et al. from Uber AI lab

propose a simple tool named Parallax to allow users to interactively choose the axes of

projection through algebraic formulae [42].
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Figure 2.3: Structure of philosophy visualization by Noichl [45]. UMAP is
used to reduce the scatter plot to two-dimensional representation (distri-
bution of points at the center), which allows the author to identify distinct
clusters of specialization within philosophy (the text around the central scat-
ter plot).
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For many embedding visualizations, scatter plots with UMAP are fairly effec-

tive to conduct studies and learning insights from the data. It has been used to process

through philosophical text to understand the association between different traditions

of philosophy [45], as shown in Figure 2.3, as well as the general network of academic

papers through citations [8]. The visualization tool proposed in this thesis takes direct

inspiration from Embedding Projector. It allows users to examine word embeddings by

allowing the users to navigate the 3D scatter plot, with additional features to expose

not only MCPM probe results as well as relevant linguistic information such as part of

speech. For concerns regarding the reliability of preserving structures in dimensionality

reduction, I dedicate section 4.3 to examine structures persistent between two datasets

produced under the same hyperparameter for dimensionality reduction.
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Chapter 3

Method

3.1 Dataset

The original word embeddings used in this thesis are high-dimensional: same as

the base model BERT in [18], our BERT embeddings are 768-dimensional. Our Gensim

Continuous Skipgram [39] embeddings are 300-dimensional. To make visualization and

analysis feasible, we rely on UMAP (neighborhood size of 15) to project the data to 3D

space. The dimensionality reduction is necessary, due to the high memory requirements

of our simulation of MCPM.

It is important to consider to what extent the discovered structure is inherent

to the embeddings. It has been shown that non-linear methods such as t-SNE and

UMAP distort pairwise relationships between embeddings, while PCA can introduce

false positive parallel pairs in its result [37]. I chose UMAP because it has been shown

to strike a balance between preserving global and local structures. This is in contrast
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to PCA and t-SNE, which are known to destroy both global and local structures.

To assess the applicability of MCPM and the visualization tool in language

embedding data in general, I first select two datasets generated by different language

models. The first dataset is generated by Gensim Continuous Skipgram—a variation of

Word2Vec—fed with English Wikipedia Dump of February 2017, with approximately

300k word tokens. A token includes two pieces of information: the word and its part of

speech. For example, wind NOUN and wind VERB are considered separate tokens and

occupy different positions. In the majority of section 4, I focus on this dataset unless

otherwise specified. Since the UMAP algorithm is somewhat stochastic, I generated two

different result with the same dataset and the same parameter. I’ll refer to these two

datasets as “W2V-300k-1” and “W2V-300k-2”.

The second dataset is generated by BERT fed with Wikipedia text corpus.

Different from Word2Vec, BERT generates multiple datasets. Each generated dataset

is particular to a single word, and defines the context relative to that word – typically

resulting in 1000s of tokens. Each token in the space is a single instance of a particular

word being used in a sentence. Different from W2V-300k, the part of speech information

is not included in the data, which is a built-in design of most BERT implementations.

I generated the BERT embedding dataset with the word back, which I will call ”BERT-

back”.
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3.2 MCPM Probing and Similarity

MCPM is a hybrid method, in which a swarm (106–107) of discrete agents

explores a domain represented by a continuous 3D lattice. This lattice stores the spatial

footprint of the input data, which then acts as an attractor for the agents. As a result,

the agents interconnect the input data in a single continuous transport network. This

emergent network is represented by another lattice referred to as trace, effectively storing

the scalar spatio-temporal density of the model’s agents. To put it simply, the trace

is stored as a density field in a 3D grid, where the value of each cell represents the

thoroughput of the MCPM agents during simulation. This representation of trace is

advantageous for my further analysis, serving as a guidance mechanism for exploring

the connections between different embedding tokens or, generally, distinct regions in the

embedding.

Having extracted the trace field representing the transport network over the

embedded tokens, I deploy an agent-based algorithm inspired by MCPM, but signifi-

cantly simplified. I will refer to the agents of this process as MCPM probe agents. The

main difference is that MCPM probe agents traverse the already detected trace field

without modifying it. In addition, their geometric behavior is more basic in comparison

to MCPM agents.

Each step of the MCPM probe agents consists of two phases: sensing and

steering. The process is illustrated in Figure 3.1. In the sensing step, an agent samples

values p0 and p1 from the trace. The sample distance sense distance is determined
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Figure 3.1: Illustration of the probe agent behavior. The values p0 and p1
are sampled from the trace field. Both sense distance and sense angle are
determined prior to simulation. More detailed description of MCPM is
provided in [10].

20



prior to the simulation. The value p0 lies along the agent’s current movement direction,

while p1 is sampled from a cone determined by a constant sense angle. Then in the

steering step, the agent makes a decision whether to turn or not based on the probability

proportional to p0 and p1. If the agent turns, its new movement direction is then changed

by 0 < random angle < sense angle towards the sensing direction, with random angle

sampled uniformly in the given interval.

Each MCPM probe agent’s behavior is a random walk process. Due to the

probabilistic steering step, the trace guides the agents so that they effectively follow the

transport network structure. I consider a token ‘discovered’ if any of the agents passes

around it within a small distance, usually between 1/400 and 1/200 of the domain size.

This probing process is designed from the perspective of one particular data

point, or the anchor point. More specifically, the probing agents are spawned on one

single anchor point with randomized directions. They explore the trace and mark down

discovered points around the anchor. In addition to discovering the point, each data

point excluding the anchor point holds a counter, which is incremented every time the

agent discovers the point. The result is similar to a sparse graph, where the edge can be

denoted as [anchor, data point, count ]. The anchor and data point are the two nodes

at the end of each edge, while the count is the number of times agents manage to

discover the data point. The result is a sparse graph because the edge only connects

the anchor point to other data points without consideration of connection among non-

anchor points. Figure 3.2 demonstrates this sparse graph representation. The counter

can be used to calculate the likelihood of traversing from the anchor point to the data
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Figure 3.2: A simplified illustration of MCPM probing results. Edges are
built from a chosen anchor point to other data points. The number on the
edge denotes how many times MCPM probe agents discover the data point.

point. Hypothetically, the closer and the more connected a data point is to the anchor

point, the higher its counter is.

To apply our method to applications in Natural Language Processing (NLP),

I interpret the MCPM probing results as similarity metrics for word embeddings, which

I term MCPM similarity. Word similarity is a way to measure similarity of tokens

geometrically. One standard practice of measuring word similarity in NLP is Cosine

Similarity (dcos(v1, v2) = v1 · v2). Cosine similarity assumes that two words represent

directions on an N-dimensional hypersphere: the closer the directions, the more similar

the words. The implication of this metric is that the spatial distance between two

data points matters less than their direction from the origin. We also compare our

similarity metric to Euclidean similarity (deuclid(v1, v2) = ||v1−v2||) to assess how much

spatial distance matters in similarity metrics. For MCPM similarity, the data point thus

becomes a candidate that is similar to the anchor. The count becomes a metric for how
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similar the data point is to the anchor ; the higher the count, the more similar the pair

is.

3.3 Visualization Tool

To enable easier examination of the word embedding and the MCPM output,

I develop a visualization tool in Three.js [3]. The tool is designed to help freely explore

the dimensionally reduced 3D word embedding space, identify significant structures in

the word embedding visible through the dimensionality reduction progress or the alter-

nate similarities suggested by MCPM. The visualization tool is broken down to three

aspects: 3D word embedding examination, MCPM-based examination and linguistic-

based examination.

3.3.1 3D Word Embedding Examination

When the application first launches, the user is presented with the interface

as shown in Figure 3.3. The most prominent view is the 3D scatter plot view, where

the exploration of word embedding data takes place, with a panel on the top right to

provide various options that change the main scatter plot. The 3D scatter plot, mouse

navigation and mouse pointer content examination constitute the main interactions

given to visually explore the word embedding dataset.

The main scatter plot view is a 3D scatter plot. The user mainly uses the

mouse input to navigate the space. The camera view is always pointing towards a focal

point. The mouse wheel controls the distance to that focal point, allowing the user to
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Figure 3.3: An overview of the slime mold visualization tool. Each dot rep-
resents a word embedding. Their coloring, from red to blue, indicates their
connected-ness to the focused anchor point. Each yellow point is a possible
anchor point to examine.

zoom in and out between a view on the larger structure and on the local neighborhood.

Left mouse button controls the rotation of the camera around the focal point. Right

mouse button controls the position of the focal point.

Each point in the scatter plot view represents a single word in the word em-

bedding. To view its content, the user simply hovers the mouse pointer over the point.

The content of the point appears in a tooltip next to the point as illustrated in the left

figure in Figure 3.4. By default, the point closest to the camera is selected. The user

can turn on the Show More Tokens, which will show content of all points intersected by

the ray cast from the mouse pointer, which is shown in the middle figure of 3.4.
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Figure 3.4: Left: The tool tip displays the word of the point that is hovered
over, and is closest to the camera. Center: When Show More Tokens is
checked, the tool tip displays multiple tokens on the mouse pointer. Right:
When left shift is pressed, all non-anchor points are dimmed, and only anchor
points (yellow) and focused anchor point (pink) are selectable.

3.3.2 MCPM-based Examination

Since MCPM simulation is rather demanding of computational resource, I

choose to pre-generate the MCPM data for examination. Since there are too many

points in the word embedding, I decide to only include a number of points as anchor

points - points that we generate MCPM probing results for. The selection criteria is:

1) The top 200 most frequently used words in English, 2) 200 randomly selected words

with multiple part-of-speech and 3) 100 randomly selected words based on their position

in the data in order to evenly cover the space. Number 2 is done to approximate a list

of polysemous words, or words with multiple meanings. Number 3 is done by randomly

sample a point in the 3D space and find a word that is closest to it. The MCPM result

is mainly presented through the anchor point examination in the visualization tool. To

examine the MCPM result, only one anchor point can be focused on at a time. Each

anchor point is color-coded as yellow as shown in Figures 3.3 and 3.4.

To switch anchor points, the user simply needs to double left click on the
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selected anchor point. The tool will load the MCPM result and re-color all the points.

Some areas can have high density of points, which makes selecting anchor points difficult.

By pressing left shift, the user can switch between anchor points while non-anchor points

are dimmed and cannot be selected, as shown in right of Figure 3.4. In addition to

switching anchor points in the main scatter plot view, the user can also use the select

anchor tab in the top-right panel to quickly navigate between anchor points based on

their IDs and word string. The list is sorted by IDs in ascending order to allow quick

selection.

Each point is color coded, from red to blue, to indicate its connected-ness to

the focused anchor point. We can see how it looks in Figure 3.3. There’s a small area

of red points, which are the most salient points discovered by the slime mold agents.

They typically are the closest points to the focused anchor points. The most un-salient

points are coded in blue, some are undiscovered by the agents during simulation. The

intermediate points are coded in the pink to purple spectrum. These are the most

interesting points as they reveal how the MCPM agents explore the surrounding area.

Since there are many points in high density, it can be hard to visually examine

the result because of cluttering. To allow better examination, the user can control the

Lowest Connect value in the top-right panel. Since each point stores a value, a counter

indicating how many times MCPM agents discover the point. If Lowest Connect value

is zero, all words are displayed in the scatter plot view. If the value is non-zero, all

words with counter values under the set value are invisible and un-selectable. This

is demonstrated in Figure 3.5, where Lowest Connect changes from high to low value,
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showing a pattern of how MCPM agents travel for the focused anchor point tour VERB.

3.3.3 Linguistic-based Examination

In addition to the MCPM result, the word embedding also includes the part-

of-speech tag for each word. The visualization tool implements the functionality to

color code word embeddings based on their part-of-speech tag. Each part-of-speech is

assigned a color to visually identify their distribution pattern. This is closely examined

in the next chapter, section 4.3. Specifically, Figure 4.4 provides a visual overview of

W2V-300k-1 and W2V-300k-2.

The embedding examination, MCPM examination and tag-of-speech exami-

nation constitute the three main functionalities of the visualization tool. I find that

MCPM and tag-of-speech look at the dataset in different granularity. MCPM focus

more on the local neighborhood, where the interesting results are typically highlighted

on the couple hundred to thousands of points surrounding a given anchor point, while

part-of-speech examination concerns with the makeup of the entire dataset.

27



Figure 3.5: Visualization results with different Lowest Connect values for the
anchor word tour VERB, the yellow point in the center of each figure, sur-
rounded by red points. A number is generated and stored in each point,
which is the counter designating the connected-ness to the anchor word
tour VERB. During slime mold simulation, the slime agent increments the
counter when sufficiently close to it. Lowest Connect filters out points whose
counters are below the given Lowest Connect value. When the Lowest Con-
nect is zero, all points in the data are displayed.
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Chapter 4

Result and Discussion

4.1 Trace-guided Exploration

A

B

Figure 4.1: MCPM agent exploration results for token class NOUN in W2V-
300k-1 comparing unguided (left) and trace-guided traversal (right).

In this section, I mainly try to explore the behavior of MCPM probe through

visualization. I apply MCPM probing to two language embedding datasets: W2V-300k-

1 and BERT-Back. The main observation is that MCPM probe agents are not only
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sensitive to distance during its exploration, but also connectivity within the dataset.

In W2V-300k-1, MCPM agent exploration results for token class NOUN are

shown in Figure 4.1. The left shows the exploration path for unguided agents, while

the right shows the path while agents are guided by trace. The agents are spawned at

the same starting position (blue dot) and their trajectories are marked in grey. They

are set out to discover the green data points (tokens), which are marked in red when

discovered. To avoid cluttering, we only draw a subset of the token data (within a

narrow slice centered around the starting point), but still draw all the agent trajectories

to emphasize the patterns of their movement.

One can see the impact of the trace guiding, in comparison to unguided, purely

random search. With trace guiding, most agents follow a few distinct paths to discover

the surrounding token clusters. Without guiding, the random-walk process ends up be-

ing equivalent to the nearest neighbor search: the likelihood of a token being discovered

decreases as a square of distance from the origin, as the agents become more spread-out.

The two marked regions A and B in Figure 4.1-right, illustrate this contrast: from the

random walk density we see that region A is more thoroughly explored than B in spite

of both having a similar Euclidean distance from the source. This translates to A being

closer within the paradigm of optimal transport.

In BERT-back (BERT dataset generated for token back), the contextual em-

beddings visualized in Figure 4.2 show a clear separation of clusters. MCPM acts as a

robust clustering method here, in spite of their highly irregular shape. We identify these

clusters visually as components (sub-networks) interconnected by MCPM. Specifically,
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Table 4.1: Three samples from each of the three major clusters detected in
BERT-back. See Figure 4.2 for the corresponding visualization.

Top cluster (spatial relation)

Partition walls constructed from fibre cement backer board are popular as bases for

tiling in kitchens or in wet areas like bathrooms.

At one time a firm called Submarine Products sold a sport air scuba set with three

manifolded back-mounted cylinders.

Bottom-left cluster (back in time)

Mono Lake is believed to have formed at least 760,000 years ago, dating back to the

Long Valley eruption.

Other settlements were Toro, in the extreme south, 1827, and Noble, in the north

portion, dating back to the 1830s.

Bottom-right cluster (direction of communication)

Decisions must be unanimous: any divided decision sends the question back to the

House at large.

He ends by saying that, if he does not hear back from Romani, he will not write to him

again.
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Figure 4.2: Visualization of intra-cluster exploration for BERT-back, starting
in locations inside each respective cluster. We observe distinct topologies
within each cluster, corresponding to the different contexts of word back
captured by the embedding (see Table 4.1).

two tokens belong to the same cluster if one can be reached from the other by following

the MCPM trace network. To explore the contents of these clusters, we sample several

sample locations inside the embedding BERT-back, and then visualize the resulting

searches in Table 4.1.

The samples found within each cluster demonstrate clear differences in the

word usage patterns (see Table 4.1). The irregular top cluster usages of back as an

indication of spatial relation. Both bottom-left and bottom-right clusters demonstrate

back as verbal particles used in phrasal verbs. The smaller cluster in the bottom-left

shows usages of back as a movement in time. Finally, the large bottom-right cluster
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indicates directionality of communication.

The separation of clusters as seen for polysemous words like back indicates

clear boundaries of these volumes and hints on the number of distinct contexts in which

these words occur. MCPM similarity is useful here to not only identify the clusters,

but to allow for their efficient exploration starting at arbitrary seed points within the

clusters.

Both visualization results in Figure 4.1 and 4.2 demonstrate clear distinction

between MCPM probing and purely distance-based probing. While, MCPM agents are

still sensitive to euclidean distances, they are also sensitive to the connectivity of the

dataset by following throughput of the trace. The result of this additional consideration

is that the clustering and pattern finding is a lot more flexible comparing to other

distance-based clustering methods such as K-Means.

4.2 Word Similarity

By interpreting MCPM probing results as finding similar word tokens in lan-

guage embedding data, I can compare the MCPM results to other similarity measure-

ments: Cosine similarity and Euclidean similarity. These similarity metrics emphasize

different mathematical relations. Cosine similarity measures orientation with respect to

origin, while Euclidean similarity measures geodesic distance in a homogeneous space,

and MCPM similarity builds on the optimal-transport throughput. For this section,

I queried the word wind NOUN in W2V-300k-1 and generated five different similarity
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Figure 4.3: Word clouds of top 50 most similar words for wind NOUN in the
W2V-300k according to five similarity metrics. The bigger the word, the
more similar it is to wind NOUN.

rankings for each metrics, as shown in Figure 4.3. Two similarity rankings: Cosine Raw

and Euclid Raw are cosine and euclidean similarities in the original 300 dimensions,

while Cosine, Euclidean and MCPM are the three measurements in the reduced three

dimensions. The Cos Raw similarity is considered as the benchmark: it is often used in

downstream tasks such as machine translation and sentimental analysis.

Immediately, one can observe that Euclid Raw, or the Euclidean similarity in

the original 300 dimension, does not provide useful similarity lists for wind NOUN. Top

words such as formula, doctrine and withdrawal are not related to wind in any sense.

However, Euclidean, or the euclidean similarity list in the reduced dimension, does yield

more salient results with some common words to the benchmark Cosine Raw similarity

list. One can conclude that geodesic distance does not embed semantic information in
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the original word embedding. However, distance is embedded with information during

the process of dimensionality reduction. Based on this observation, Euclid Raw will not

be included in the rest of this section.

Turning attention to Cosine similarity, one can see that, while containing

some common words such as Noreaster and gust, a large portion of the list contains

out-of-place words such as diplomate, fiscal and statistics. Considering the observation

that distance contains semantic information in the reduced dimension, one can conclude

that cosine similarity becomes a less precise measurement as a result. Therefore, Cosine

similarity is also not included in the rest of the section. I mainly focus on Cosine Raw,

Euclidean and MCPM similarity lists for the next comparison.

Euclidean and MCPM rankings have much more agreeable candidates in higher

ranks such as gust, hurricane-force and anemometer. There are still disagreement among

the similarity lists. For example, coldcore appears in both Euclidean and MCPM but

not in Cosine Raw, while lowpressure appears in MCPM but not in the other two lists.

But one can see how these words relate to wind NOUN, unlike Cosine similarity, where

some obviously irrelevant entries appear. At this point, word cloud visualization is

inefficient in comparing the three similarity rankings. Since all the words seem rele-

vant to wind NOUN, I want to focus on the difference of rankings between Euclidean

and MCPM similarities, with Cosine Raw as the benchmark. Word cloud does not

allow enough space for comparing many words and does not make visualizing ranking

differences easy.

To further compare Euclidean and MCPM rankings, I extract the the top 5000
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Table 4.2: Ranking difference Cosine Raw, Euclidean and MCPM. The entries
are ordered in descending order of their ranking difference. 20000+ indicates
that the word is not found within the most 20000 similar words in Cosine
Raw Ranking.

Word Cosine Raw Rank Euclidean Rank MCPM Rank

cumulonimbus NOUN 178 454 4944

sedimentology NOUN 20000+ 399 4660

Wash PROPN 20000+ 363 4610

surge NOUN 666 110 4350

landlocked ADJ 20000+ 474 4700

post-katrina ADJ 20000+ 748 4869

stalagmite NOUN 17878 956 4953

massif NOUN 20000+ 782 4747

words in both similarity lists. I compare their difference by sorting them in descending

order of their ranking differences, as shown in Table 4.2. In other words, the top

word cumulonimbus NOUN has the greatest difference between Euclidean and MCPM

rankings. The Cosine Raw ranking is then used as benchmark to see which ranking is

closer to it. I choose the top 5000 words for Euclidean and MCPM ranking because it

strikes a good balance where the ranking difference is significant, but not big enough to

include words completely irrelevant to wind NOUN. For Cosine Raw Rank, any ranking

that is higher than 20000 is marked as 20000+, as the specific ranking past that number

is no longer relevant for comparison.

As one can observe, excluding two words cumulonimbus NOUN and surge NOUN,
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most words are much further down the ranking than both Euclidean and MCPM rank-

ings suggest. However, their MCPM rankings are much further down the list than

Euclidean rankings. In this sense, one can say that MCPM ranking agrees with Co-

sine Raw more, as it considers these words to be far less important than Euclidean

ranking does. I agree with many of the rankings in Cosine Raw. Words like sedi-

mentology NOUN, stalagmite NOUN and massif NOUN are more relevant to geology

and rock formations than anything directly related to wind and storms. The disparity

between Euclidean and MCPM rankings can be explained by how these rankings are

generated. Since MCPM ranking is also sensitive to connectivity in addition to distance,

one can conclude that not only distance is embedded information in the process of di-

mensionality reduction, but the relative distance between words also embeds similarity

information. This is also supported by the observation in the next section. Using the

visualization tool, I observe that similar words are often clustered in filaments rather

than semi-uniformly distributed clusters, as shown in Figure 4.10. Nevertheless, the

conclusion is preliminary. It needs to be verified by a broader, quantitative study in the

future.

It is also important to realize that the definition of similarity as such is rather

vague semantically. Computational linguistics distinguishes between the concept of

association and similarity. While one would agree that tropical is more similar to wind

than statistics, we can only claim they are more similar because it’s easier to associate

the word tropical to wind. At the same time, the word gust and squall can be said to

be associated with, but also similar to wind [29]. It remains an open question whether
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there is a way to extract the distinction between associated and similar words in word

embeddings.

4.3 Global Structure of W2V-300k

In this section, I mainly focus on the contribution of the word embedding

visualization tool without considering its capability to examine MCPM fitting results.

To recap, I generated two different datasets of W2V-300k with the exact same UMAP

hyperparameters, in order to identify any consistent pattern between the two datasets.

The only variability within these two datasets is caused by the stochasticity of UMAP

dimensionality reduction process. Identifying consistent patterns between the two allows

me to argue that certain patterns are intrinsic within the data rather than an artifact

created by UMAP. I’m going to mostly examine the structure by visualizing the global

structure through parts of speech color filter.

Figure 4.4: Overview of W2V-300k-1 and W2V-300k-2. Different color rep-
resents different part-of-speech tag of words.

Both W2V-300k-1 and W2V-300k-2 are visualized in Figure 4.4. Different
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part-of-speech tags are indicated by their colors. We can already discern some features

from the this view: 1) Majority of the points are distributed in the central cluster. 2)

There are scattered filaments outside the main cluster. 3) The main cluster is split into

two sections based on color, one is mainly occupied by orange points (Proper Nouns),

the other mainly by green points (Nouns). In the rest of the section, I will discuss

the global structure shared across the two datasets in more detail. First, I break down

the entire dataset into three different zones based on the prominence of part-of-speech

tags: Mixed (no prominence of part-of-speech), Proper Nouns and Numbers. Second, I

further break down the Mixed zone - one with mixed part-of-speech tags, to look at the

difference in distribution across different part-of-speech tags. Third, informed by the

spatial division of zones, I look at the whether there’s any distinguishing feature in the

actual content of words: specifically, cultural, scientific and general.

The first consistent global pattern is visualized in Figure 4.5. I find that the

datasets can be separated into three distinct zones: the first zone (Mixed in the figure)

contains mixed parts of speech - mostly nouns, verbs, adjective and adverbs, the second

zone (Proper Noun) contains mostly proper nouns, and the last zone (Numbers) contains

mostly numbers. When visualized separately from the exact same view position, we can

see that the three zones occupy distinctly different area of the dataset, with Mixed zone

and Proper Noun zone being complement to each other forming the large cluster in the

middle, while Numbers zone consists of loose filaments outside the main cluster.

Shifting attention to the Mixed zone - the zone containing a mixture of noun,

verb, adjective and adverb, I visualize the part-of-speech separately as shown in Figure
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Figure 4.5: Visualization of three zones of W2V-300k-1 and W2V-300k-2
based on prominence of part-of-speech tags. Mixed mode includes noun,
verb, adjective and adverb. We can see that three different modes cover dis-
tinctly different areas of the datasets, with Numbers consistently cover the
outer loose filaments. Only original visualization of W2V-300k-1 is included.

4.6. Interestingly, the noun-adj and verb-adv form two separate pairs with similar

distributions within them. For both datasets, the nouns are quite spread out, with

many points bleeding into Proper Noun zone. While there are a lot less adjectives than

nouns, we can see that they are distributed quite similarly in terms of spread. Similar

visual correlation can be seen between verbs and adverbs, only there are a lot less data

points. The verb-adv pair is more concentrated in a particular area. We can make sense

of this correlation as noun-adj pair and verb-adv pair are intrinsically defined to be used
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together.

Figure 4.6: Noun, verb, adjective, adverb visualization of global embeddings.
One can see that Noun-Adj pair, as well as Verb-Adv pair, have similar
spread and center of gravity. This might point to the relatedness of the part-
of-speech pairs. Namely, adjectives and nouns are used together, similar to
adverbs and verbs.

Additionally, we can see that all four part-of-speech tags have a high density in

a concentrated area, which can be spotted by the brighter area in adjectives, verbs and

adverbs visualizations. There’s also an extension of nouns next to the concentrated area

that is not covered by verbs and adverbs (bottom right in W2V-300K-1, top mid-left

in W2V-300-2). This is shown in Figure 4.7. We’re going to explore those areas in the

next paragraph.

To further examine the nature of the concentrated area as well as the extension

of nouns next to it, I visualize the embedding by only displaying nouns and verbs

in Figure 4.8. The purpose of displaying verbs next to nouns is to show where the

concentrated area is, as seen by the white concentration in the figure. I mark down

three distinct areas in both datasets. I find that, in Concentration area, where there
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Figure 4.7: Illustration of the extended noun area, compared to concentrated
area.

are high density and evenly spread out words with a mixture of nouns, adjectives and

adverbs, the words are more commonly used than in Noun Extension area, where the

nouns are more distinctively specialized, many times pertaining to scientific uses. I

mark down 16 words in each dataset as a path traveling from the Concentration area

into the Noun Extension area to demonstrate this change.

Closely examining the Proper Noun zone, where proper nouns dominate the

data points, we can immediately see the connection within each small local section.

Some specific examples are shown in Figure 4.9. For example, a section includes proper

nouns that directly relate to geographical names in China, or proper nouns that include

English names.

When examining Num area, we find the word content to be less predictable, as

shown in Figure 4.10. Some loose filaments represent specific location names as opposed

to numbers as shown on the left side of the figure. We also find commonly used word

such as regional ADJ, which should belong to the Mixed zone. This suggests that some

loose filaments might be an artifact created by UMAP. Despite this, large portion of the
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Figure 4.8: View of two datasets marked with Proper Noun, Concentration,
Noun Extension zones. Each dataset has 16 words marked down from the
concentration area to the noun extension area. The 16 words show a shift
from common words to more specialized, scientific words.

loose elements still concerns with numbers. The right side of the figure shows that the

word’s part-of-speech tag does not need to be NUM in order to be grouped together,

this makes us hypothesize that the number are represented in the loose filament area

because of its context rather than the word content itself. In the middle we identified

both 1962-1963 and 1960-1964. Looking these words up on Google, we find that most

Wikipedia entries with these words do no use them in the context of a sentence, such

as Uganda (1962-1963), List of avant-garde films of the 1960s: 1960–1964 or Kerala

MLAs 1960–1964.

In this section, I have shown some interesting patterns in the global structure

that appear in both datasets. This serves three purposes:
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Figure 4.9: Examples of Proper Noun sections. The left shows a filament of
geographical Chinese proper nouns. The right shows a filament of English
names.

• By finding and showing consistent visual patterns across two datasets, I demon-

strate that the embedding visualization tool, along with the speech-of-tags vi-

sualization, provides researchers and interested users opportunities to discover

patterns and to generate hypotheses in the word embedding data.

• It strengthens the observations in section 4.2. The word similarity results provided

by MCPM and Euclidean measurements in the reduced dimension have a degree of

consistency that I argue is present in the original dimension, rather than artifacts

created by dimensionality reduction.

• Some observations in this section also support the observation in section 4.2.

Specifically, I observe that, for word similarity in reduced three-dimensional em-

beddings, semantic information is not only embedded in euclidean distances, but

also connectivity of the points. The most clear demonstration of this can be seen
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Figure 4.10: Examples of Number loose filaments. The left shows a filament
consists of not number words. The center and the right sub-figures concern
with numbers, but the right figure consists of a mixture of part-of-speech
tags.

in both Figure 4.9 and 4.10, where similar words are clustered in filament-like

structures.
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Chapter 5

Conclusion and Future Work

In this thesis, I propose a novel method that makes use of the MCPM algorithm

to discover the structure of language embedding data. The main innovation of this

method is to introduce non-linear structural discovery into embedding evaluation, which

has been dominated by offset vectors and proximity-based clusters. The contribution is

broken into two aspects: information retrieval and a data visualization tool.

For the information retrieval aspect, I first visually examine the structural

probing through visualising travel path of the agent. The trace-guided probe is shown

to be superior to purely unguided probe (random walk). While unguided probe is similar

to the nearest neighbor search, the trace-guided probe shows that the probe agents tend

to follow salient structures in the data regardless of its distance from the emission point.

The second observation is that MCPM acts as a robust clustering method that allows

random sampling within each cluster. Purely distance-based methods, on the other

hand, might fluctuate on their reliablity based on distance between clusters and where
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the sampling point is located. I posit that these two properties are mainly due to

MCPM’s sensitivity to both spatial distance as well as connectivity of the data.

Then, I interpret the MCPM probe as finding word similarity in word em-

bedding. By comparing Cosine and Euclidean-based measurement in both original

dimension and reduced dimension, I find that euclidean distance embeds relevant se-

mantic information only in the reduced dimension. By comparing MCPM ranking and

Euclidean ranking in the reduced dimension to the benchmark (the Cosine ranking in

the original dimension) I find that MCPM ranking agrees with Cosine ranking more

than Euclidean. I suggest that this shows that UMAP utilizes both euclidean distance

as well as connectivity between data to conduct dimensionality reduction, both of which

MCPM is sensitive to.

For the visualization tool aspect, I demonstrate the potential of the tool by

identifying consistent structures between W2V-300k-1 and W2V-300k-2, both generated

under the same condition. I managed to identify different sections of the dataset and

how each section houses different types of words: cultural-related proper nouns, common

words and specialized words. This exercise also helps strengthening the observation in

the information retrieval part, because it shows that there is consistent structure in the

W2V-300k data that is preserved through the dimensionality reduction process. It also

supports the observation that UMAP utilizes both distance and connectivity to produce

the data in the reduced dimension. Overall, this thesis shows that MCPM is a notable

information retrieval method for certain 3D scatter plots where euclidean distance and

connectivity between data points are known to contribute to their structure.
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There are many directions one can take for future projects. The first direction

is fully exploring the potential of MCPM in language embedding evaluation. One can

compare MCPM evaluation to SIMLEX-99 to see if its similarity method correlate with

human intuition. The troubling aspect, however, is that currently MCPM results are

still applied in the reduced dimension. The main result of this thesis shows that MCPM

is useful in reduced dimension because of how UMAP structures the data. For this

reason, MCPM can perhaps never compete with the Cosine similarity result in the

original dimension.

This opens up two lines of research questions, one concerned with MCPM, the

other with language embedding algorithms. On the side of MCPM, the next step is to

extend MCPM to arbitrary dimensions. Because of curse of dimensionality, it is perhaps

impossible to preserve the exact simulation steps in higher dimensions. Therefore, more

computer science work needs to be done in order to make this goal possible. But as I’ve

shown in section 4.2, euclidean distance does not embed explicit meaning in the original

dimension for Word2Vec. So applying high-dimensional MCPM to the same algorithm

is not a fruitful task. This brings us to the other line of research question, which is

on the side of language embedding algorithm. Further research has to dive deeper

into the language embedding algorithms themselves. This thesis starts out with rather

little motivation from the inner working of specific algorithms. The main motivation

is that the result data is in a format (scatter plot) that allows MCPM exploration.

It is not enough to simply seek correlation and to blindly follow empirical processes.

A truly rigorous work needs to make informed arguments about the mechanisms of
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data production below the surface that connects the nature of MCPM to the nature of

language embedding algorithm.
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