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Abstract

We present a guadrilateral finite element developed within the
framework of a shear deformable plate theory. The element takes
advantage of internal rotational degrees of freedom (through the use
of bubble functions) and a linked interpolation between the transverse
displacement and the rotations (which guarantees higher order inter-
polation for the transverse displacement than for the rotations). A
careful study of the element behavior is performed using an exten-
sive set of mixed patch tests; results from several numerical examples
also are presented. The element has proper rank and excellent inter-
polating capacity. Moreover, the element presents no locking effects
at all; in fact, the shear energy may be set equal to zero (in a weak
sense) without introducing any ill-conditioning in the problem, thus
recovering a proper thin plate limit.

1 INTRODUCTION

In the development of a planar beam element within the context of Euler-
Bernoulli (thin beam) theory, it 1s natural to introduce two degrees of freedom
at each node (one transverse displacement and one rotation). Thus, as ini-
tially pointed out by Fraeijs de Veubeke [17], the condition of vanishing shear
strain requires the rotation to be expressed as a derivative of the transverse
displacement. Accordingly, the interpolation of the transverse displacement
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must be of order higher than the one for the rotation. Such a condition may
be fulfilled, for example, if the nodal rotation parameters are included in the
approximation of the transverse displacement, i.e. if the transverse displace-
ment field is linked to the nodal rotations through interpolation functions of
order higher than the ones for the rotational field.

In the case of a thick beam independent interpolations for transverse
displacement and rotations are assumed and the use of a linked interpolation
leads to even more important properties, as presented in Reference [16, 36, 39]
and reviewed in References [2]: a constant shear strain within the beam may
be represented, hence avoiding locking effects in the limit thin case. Examples
of two dimensional theories in which the displacement field is linked to the
nodal rotational parameters can be found for the case of bending problems
in the work of Greimann and Lynn [21], Lynn and Dhillon [26], Tessler and
Hughes [40}, Crisfield [13, 14, 15, 16] Xu [43, 44], Papadopoulos and Taylor
[30].

While the use of a linked interpolation avoids locking in a thick beam
formulation, it is not sufficient for a two dimensional plate. To avoiding lock-
ing, or equivalently to satisfy the mixed patch test, it is necessary to enrich
the rotational field with extra modes, associated, for example, with internal
bubble functions. The use of bubble functions to avoid an analogous locking
in fluid-problems has also been recently investigated, as described in Refer-
ences [6, 11, 12]. Following this approach, several plate elements have already
been presented based on a non-discrete description of the shear stress field
[1, 2, 37, 53, 45]; however, as addressed in Reference [2], different patholo-
gies are present in most of the elements developed to date, such as spurious
modes or numerical sensitivity for the case of extremely thin plates. The
latter problem may be partially avoided using an energy balancing method
[18, 19].

In the present work we consider the interpolations for a four node quadri-
lateral element, which use internal modes for the rotations and linked in-
terpolation for the transverse displacement. These interpolations lead to an
element with none of the pathologies described previously. Thus, the element
has the following characteristics:

¢ has a minimum number of internal degrees of freedom and thus is com-
putationally efficient,

e passes all the patch tests,
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e shows excellent interpolating capacity,

s solve exactly the thin plate limit case in a weak sense .

The paper is organized as follow. We start with a brief overview of the lin-
ear elastic shear deformable plate theory adopted. After that, we introduce
a mixed finite element approximation together with the necessary interpola-
tion requirements. We discuss a complete series of mixed patch tests which
allows us to assess the quality of an interpolation scheme. We then describe
the new finite element and present results from several numerical tests.

2 A LINEAR THICK PLATE THEORY

The development of a thick plate theory, which includes both bending defor-
mation and the primary effects of transverse shear deformation, 1s commonly
attributed to Mindlin [27] and Reissner [31]. The theory presented here is a
simplification of the Mindlin-Reissner work and can be thought of a degen-
eration from the three-dimensional elasticity theory [52] or an example of a
direct approach [20, 28, 32, 33].

Geometry and load

With the term plate we refer to a flat thin body, occupying the domain:

Fg

Q= {(:r,y,::) ER® | z € [m;:};) —];] Ar,y) e AC 7?,21

L L < =l J
where the plane z = 0 coincides with the middle surface of the undeformed
plate and the transverse dimension, or thickness h, is small compared to
the other two dimensions. Furthermore, loading ¢(z,y) is restricted to the
direction normal to the middle surface.

In particular, as described later, the matrix from the shear energy may be set identi-
cally equal to zero without generating an ill-conditioned problem.
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Kinematics

Limiting the discussion to the realm of infinitesimal kinematics, we assume
that:

u(‘T’ayvz) = Zey(;'l?,y)
(2.1) v(z,y,z)= — z20.(z,y)
w(z,y,z)= w(z,y)

where u, v and w are the displacements along the z, y and z axes, respectively,
and 0, and 8, are the rotations of the transverse line elements (initially
perpendicular to the mid-surface) about the x and y axes. Accordingly, a
straight line element, normal to the plate mid-surface in the undeformed
configuration, remains straight, but not necessarily normal to the deformed
mid-surface, allowing for transverse shear deformation. The basic kinematic
ingredients are the curvature, K, and the shear strain, I', defined as:

Kzx Qy,x
K = Kyy = -0,
Kry Oyy — bz

r = Vrz _ gy W
Vyz —0: +w,

which can be expressed in terms of w and 8 as:

K=1L8 , T=[ed+ Vul

where:
i, . P
3 Jz 0
|9 _| 0 1 _ ) oz
L= 5y 0 , e= [ 10 } , V= 9
J 0 ;3—;;
dr Oy |

with L and V differential operators. As a consequence of the kinematic
assumptions, we may distinguish between in-plane bending strains (e;, ¢,
7ry) and transverse shearing strains (v,., 7,.). In the thin plate theory
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the transverse shearing strains are assumed to be zero, thus providing con-
straint equations, which permit #, and 8, to be expressed as derivatives of the
transverse displacement w. Conversely, in the thick plate theory we admit
non-zero shear deformations.

Stresses and stress resultants

In the work presented here, for simplicity we assume that the normal stress
in the z direction is negligible compared to the other stresses; hence:

o, =0

Although this is inconsistent with a general three-dimensional theory and 1s
not present in the work by Reissner (where o, varies through the thickness),
it does not influence the development of a viable finite element formulation.
Consistent with the strain behavior, we may distinguish between in-plane
stresses (0,0, Tz ) and transverse shearing stresses (7..,7,.). Integration
through the thickness defines the plate stress resultants per unit length:

h h L3
2 2 2
M, = / . oyzdz , M, = / . oyzdz , My, = / i Toyzdz
-2 7 -7
A A
y p) , z
@M/hmm, @z/hmm
-7 -7

For notational convenience, we collect the resultants as follow:

M, .
M={ M, ,s:{y}
M,, Dy

Constitutive relation

Assuming the material to be homogeneous and lLinearly elastic, a plate con-
stitutive relation may be written in terms of the resultant stresses and the
kinematic variables as:

BRI
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where, for isotropy:

I v 0
ER
DB = W v 1 0
RO=v10 0 10—
*« O Yo E
Ds = kGh {0 1} T

with £ the Young ’s modulus and v the Poisson’s ratio. Finally, £ 1s a factor,
introduced to correct the inconsistency through the thickness between the
constant transverse shear strain, and the non-constant shear stress; k depends
on the plate properties and is often set equal to 5/6 for homogeneous plates.

3 MIXED FINITE ELEMENT SOLUTION

As a starting point for the development of a mixed finite element scheme, we
introduce the following functional, discussed in References [1, 2]:

T(w,8,S) 2/ (6)D5K (0)] dA

- ;3-/ [s7D 's] dA+/ [S7 (Vw + e8)] dA + Il
where Il..; describes the loads and the boundary effects. Following a mized
approach, we approximato the fields w, @ and S with independent inter-

~lad N . PN s g 211 it h 4ol
puulbu)u prlPulLb, ifl yauu irar we t:unuv 1 the t tahuuax €10 Wit Jil?x’ﬁcu

degrees of freedom and link the transverse displacement field to the discrete
rotational parameters. Accordingly we have:

w = NyW+ N0
(3.1) 8 = N8+ N,b,
S = NsS

where:
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are the degrees of freedom of the discretized system associated with the

boundary nodes, while:
8, , S

are respectively the internal rotational degrees of freedom and the shear stress
degrees of freedom, and:

Ny 3 Nw@ » Ny 3 Ni) 3 NS
are sets of shape functions. Note that on a four-node quadrilateral element:

e IN; is zero on the boundary of the element, i.e. the internal rotational
degrees of freedom are bubble modes,

e with an appropriate choice of the N,y shape functions we are able to
obtain a constant transverse shear strain along each side of the finite
element,

e we guarantee a higher order interpolation for the complete polynomial
in the transverse displacement than in the rotational field, as is required
for the thin plate situation, when the rotations are simply the derivative
of the displacements,

e we desire a transverse displacement interpolation with as few nodal
parameters as possible and a larger number of rotational parameters,
as required for the satisfaction of the mixed patch test.

After we introduce the interpolation scheme into II, the stationary condition
for the functional leads to the algebraic system:

0 0 0 K, w f.
(3.2) 0 Ky K, KI, 6| | f
) 0 Ky Ki K 9, 0
Ks, Ksi Ky Kss S 0
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[oh

wher eterms due to transverse load and boundary conditions,

while:
(Ng)T VN, dA

(LNg) D (LINg) dA

=
! l i
S~

(LIN,)" Dy (LNg) dA
Ke = /A (Ns)T [VN,s + eNo] dA
Ky = /A (LN,)" D (LNy) dA
Kus = L(er)TNSdA

Kes = —-«/AN:{JD?NSdA

If we first eliminate the internal rotational degrees of freedom and then
the shear parameters, we get the following stiffness matrix, in terms of the
external degrees of freedom:

ngwAg}‘?KSw WngA-S:SA“bH V:V — { fw
~AL A K, Ag — AL AGIAS 0 fy

where:
Ass = [Kss — K/ (Ky) ™ Kbs]
Agsy = [Kse ~Kis (Ku) ™' KM]
Ag = {Kee — K, (Ky) ™ be?]

Note that we are never required to invert Ksgs alone, but are required to invert
Ags; hence, we need only to guarantee its invertibility by an appropriate
choice of the N, interpolating functions. We desire Ags to be invertible
also for the case of Kss identically equal to zero (i.e., we neglect the shear
energy), which is a weak satisfaction of the thin plate limit. Accordingly, if
such judicious choice of the N, function is performed, then:

e we may always solve a sequence of problems converging to the thin
plate case,
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depefz g on the purposes 0

becoming ill- gondltloned,

® we may always recover the shear parameters S, even for the case in
which the shear energy is excluded.

It is interesting to observe that some of the elements presented in the
literature [1, 37, 45, 49] should be re-investigate, taking into consideration
the discussion of this section.

4 REQUIREMENTS FOR CONVERGENCE
OF A MIXED FORMULATION

Convergence 1s the property by which the approximate solution obtained
from a discrete scheme, such as a finite element model, approaches the ex-
act solution for successive mesh refinements. Consistency and stabilily are
sufficient requirements to imply convergence: consistency ensures that the
discrete model reproduces the exact model for the limiting case of infinite
number of degrees of freedom, while stability ensures that the solution of the
discrete system is unique and not ill-conditioned.

Within a standard displacement finite element approach, the stability
can be tested by checking that the stiffness matrix has appropriate rank,
while consistency is verified by the patch test. The original patch test was
introduced by Irons [9, 24] based on physical reasoning and established the
capacity of the discrete model to exactly reproduce constant strain (curva-
ture) states for simple patches of elements. Thereafter, other works have
elaborated on the importance of the test, see for example References [25, 29,
35, 38, 42].

The convergence of a mixed finite element scheme is however more com-
plex to verify and the mathematical conditions to be satisfied are embedded
in the work of Babuska [3, 4] and Brezzi [10]. In a more physical framework,
an extended version of the patch test viable for mixed formulations has been
presented and discussed [47, 48, 50]. The two approaches seek to establish
the stability of a mixed formulation.

In what follows, we describe a set of patch tests for a mixed finite element
formulation of the thick plate theory.
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e Constant strain. This is the original patch test and checks that the
discrete formulation is able to reproduce exactly constant states for all
the strain quantities involved in the functional. The satisfaction of this
test guarantees consistency of the formulation and at the same time
allows for a validation of the computer program. Accordingly, for a
thick plate problem, the following states should be reproduced:

— Constant bending curvature. The plate is clamped along one edge
and subjected to constant bending moment along the opposite
edge; all the rotations in the direction along which the bending
occurs must be set to zero, to obtain a simple curvature (cylindri-
cal) problem.

— (Clonstant twisting curvature. The plate is simply supported along
two orthogonal edges and subject to constant edge twisting mo-
ments along the other two edges.

— Constant shear strain. The plate is clamped along one edge and
subjected to constant shear force along the opposite edge; all the
rotations (including internal modes) are fixed in order to prevent
bending.

The patch test should be performed both on single element meshes and
simple patches, with regular and non-regular element geometry (e.g.,
as shown in Figures 1-2). To investigate the locking in the limiting
case of thin plates, 1t is important to perform all the described tests
for the cases of a thick and a thin plate. Moreover, during the analyses
it is convenient to keep the bending stiffness constant for the constant
curvature test and the shear stiffness constant for the constant shear
strain test ?, such that all cases return the same numerical results.

e Counts of the degrees of freedom. This part of the mixed patch
test consists in checking some simple algebraic inequalities involving the
number of unknowns. For the particular formulation presented here,
the requirements are:

(4.1) Mg+ 1y + Nw 2 Ne , Ty > Ty,

2To keep the bending stiffness constant the Young’s modulus must be scaled propor-
tional to 1/1%, while for keeping the shear stiffness constant it must be scaled by 1/t.
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where n,,, ng, N

iy TR s TG

: and n, stand for the number of degrees-of-freedom
for w, 8, 8, and S respectively. The count conditions represent a
necessary condition for the stability of the discrete problem, since they
are necessary conditions for the solvability of the system 3.2.

These relations should be satisfied for any generic finite element mesh
and usually are checked for different patches (including both single-
and multi-element meshes, with a maximum or a minimum number of
essential boundary conditions).

e Eigen-analysis of the stiffness matrix. The eigenvalues of the stiff-
ness matrix are computed and the presence of zero eigenvalues in excess
of the number of rigid body modes is assessed, since any excess modes
indicate rank-deficiency (or zero energy modes). Again the analysis
is performed for meshes (such as those shown in Figures 1-2) for the
thick and thin plate. We note particularly that an eigenvalue should
not tend to zero or infinity in the limiting thin case.

The importance of this test is related to the fact that solving more
general problems using rank-deficient elements can lead to instability
in the solution and may result in non converging solutions (such as
oscillations fluctuating around the exact solution) or occasionally in a
singular global stiffness matrix. The presence of spurious zero eigen-
values at a multi-element level must be considered as an indication of
ill-conditioned behavior and non-robustness of the formulation. If such
singularity exists only for a single element, the issue is not so clear but
still is not desirable.

5 A NEW THICK PLATE FINITE ELEMENT

We now describe a four node iso-parametric element and in the next section
we show that the element passes all the patch tests and presents high ac-
curacy for standard test problems. The bi-linear shape functions are used
to map the parent domain in natural coordinates ({,7) to the real domain
with coordinates (z,y); accordingly the quadrilateral region occupied by each
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element may be expressed by:

4
x =y Nx
=1
where: x = {z,y}7 is any point in the element and x* = {z2',y'}” are the
nodal coordinates; N* are the bi-linear shape function:

N = % (1 + fiﬁ) (l + T]iT/)

with £ and 7* being the values of the natural coordinates at node i (e.g., see
References {22, 51]).

The transverse displacement interpolation is bi-linear in the nodal pa-
rameters 1, enriched with linked quadratic functions expressed in terms of
the nodal rotations 8:

4 4

_ risi i orifpi _ G

w=> N~ N,L (On Hn)
1= =3

where L' is the i-j side length, HA; and 031 are the components of the rotations
of ¢ and j nodes in the direction normal to the -5 side (Figure 3). The N},
shape functions are:

‘Nvé,g 1 1 !
Nig
Nluﬁ - N3 = T”

The interpolation for the rotational field is bi-linear in the nodal param-

eters 91, with added internal degrees of freedom éb:
4 nd "

(5.1) 6 => NO + N8,
1=

where N, are internal bubble functions. To construct IN;, we adopt a back-
ward approach; in fact, indicating with I'; the contribution to the shear strain
from the internal rotational parameters, we first assume a convenient form
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for I'y and then from Ty we derive the form of N,. Accordingly, in natural
coordinates we choose:

0y
10 0], 0z
rb"{o 10 g}Mb 63
s
where éi (; = 1,..,4) are parameter local to each element and M, = (1 —

£%)(1 — 5?%) is a bubble function. Introducing the transformation discussed
in Reference [34], the interpolation field in the mapped element may be ex-
pressed as:
ek
J
where:

e I, is the jacobian of the iso-parametric mapping, evaluated at £ = 5 =
0: 5
i
Py =
( )12 an

AFO 1 TR y
( )21 85 i{:n:O

& j, is the jacobian determinant evaluated at £ = n = 0,

Ezmaz0

® j is the jacobian determinant.

Accordingly, we have:

[ r M P —Fé | &
22 —1'y3 227 126 b5
Ty = l ! J 8,

| —Fa Fu —Fan Pt J

such that:

; b

Nbéb — 6_1‘75 — I: 21 ;

—Fi Fon — € M, .
oy “"Flz F2277 ”Fmé

For the shear interpolation in natural coordinates we choose:

g1
{1 01 o0 52
E“"[o 10 g} 5?
G4
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where S7 (5 = 1,..,4) are parameter local to each element. Again, follow-
ing Reference [34], the mterpoldtlon field in the mapped element may be
computed as:

S=F,%

and we get:
C’l

Fll 1731 FIOIT] fﬂzolé C»E
Flg F22 Floz'f] F’:;zé :53
54

Summarizing, the element has three external (global) degrees-of-freedom
at each vertex 2: the transverse displacement w; and the two components
of the rotation along the x-y coordinate axes, 6, and 6, respectively. In

addition, it has four internal rotational degrees-of-freedom 6, and four shear
parameters S. Due to the fact that 8, and S are quantities local to each
element, the matrix condensation presented in Section 4 may be performed
at the element level. In the following we will refer to this new element as Q4-
LIM (Quadrilateral with 4 nodes, based on LInked interpolation and Mixed
approach).

We note that, due to the particular form of N, and Ng, the matrix Kyg
may be integrated in closed form, is diagonal and given by:

1 0 0
10 0
6 1 "
Kis=<100 - 0] Jo
9 5
1
0 0 -
J J

The integration for all the other stiffness matrices is performed numerically,
using three integration points in each direction. For the results reported in
the next section, the finite element load is consistent with the transverse
displacement interpolation.

In closing the Section, we wish to note that a finite element with only
two internal degrees of freedom has also been developed and presented in
Reference [2]. This element has performances similar to the one presented
here for thick plates. However, since only two internal rotations are intro-
duced, ny, < n,; thus, the thin plate case can be obtained only as a result of
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a limiting process in which & goes to infinity and not directly as discussed

in Section 3 and, thus, it does not possess an exact thin plate limit.

6 NUMERICAL EXAMPLES

The element described in Section 5 has been implemented into the Finite
Element Analysis Program (FEAP) [51, 52] and its performance has been
checked on the patch tests discussed in Section 4 and on several standard
test problems.

The solutions obtained are compared with those from other elements
available in the literature. In particular, we choose the triangular T3L [37],
the quadrilateral Q4L [53] (both based on the use of internal rotational de-
grees of freedom and a linked interpolation for the transverse displacement),
the quadrilateral T1 [22, 23] ® and the quadrilateral DKQ [8]; the results
reported for such elements are always obtained running the finest mesh for
which results from the Q4-LIM element are presented. When available, an-
alytical or series solutions are also reported.

6.1 Patch test: stability assessment

The Q4-LIM element has four internal rotational degrees of freedom and four
shear parameters, accordingly ng = ng and equation 4.1y is a-priori satisfied.
The second algebraic requirement, i.e. equation 4.1,, is checked on different
meshes (including both single- and multi-element meshes, with a maximum
or a minimum number of essential boundary conditions) and it is also always
satisfied.

Since the constraint count is just a necessary condition for the stability of
the formulation, an eigen-analysis on the stiffness matrix after condensation
for patches of one or more elements (Figures 1-2) is performed, as described
in Section 4. We consider a thick (L/h = 10), a thin (L/h = 1000) and a
very thin plate (L/h = 100000); for the case of irregular meshes, the skewness
parameter z/L is set equal to 0.2 (refer to Figures 1 and 2). The element
always has the correct number of zero eigenvalues and no eigenvalue tends
to zero or to infinity in the limit thin case.

3We recall that the T1 is identical to the Bathe-Dvorkin element described in Reference
[7] for rectangular geometry.
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In Tables 1-6 we report the eigenvalues for a single element test, both for
the case with shear energy (Q4-LIMy) and for the case without shear energy
(Q4-LIMn). Recalling that we keep the bending stiffness constant while
reducing the thickness (going from the thick to the thin plate), it is noted that
T1 has four eigenvalues which grow as the thickness is progressively reduced:
these are the eigenvalues associated with the shear constraints imposed in
the element. The presence of such growing eigenvalues indicates an inability
of the T1 element to model the thin limit case, i.e. for a very thin plate
numerical round-off dominates and the solution cannot be computed. On
the other side, Q4-LIM has no growing eigenvalues; thus, as the thickness is
reduced, the eigenvalues progressively tend to those obtained excluding the
shear energy from the computation (Q4-LIMn).

6.2 Patch test: consistency assessment

To assess consistency, the ability to exactly reproduce constant strain states
is tested on the meshes of Figures 1 and 2, for a thick and a thin case
(L/h = 10 and L/h = 1000). To investigate possible pathologies in the
limiting thin case, the bending stiffness is kept constant during the constant
curvature test, while the shear stiffness is kept constant during the constant
shear strain test.

The Q4-LIM element passes all the above consistency tests. To highlight
other possible pathologies and to assess sensitivity to thickness and distorted
shapes, we also perform eigen-analyses on patches. The Q4-LIM element is
superior to other quadrilateral elements both for very thin plates and for
distorted geometries.

6.3 Simply supported beam

In this example we test the ability of the element to perform analysis includ-
ing or excluding the shear energy from the problem. We consider a very thick
simply supported beam of length L/h = 1 with material properties given by:

£=1000 , v=20

The beam is constrained to produce cylindrical bending and 1s loaded in the
middle of the span with a concentrated force F' = 400 per unit length of



Thick plate FFE with exact thin limit F.Auricchio and R.L.Taylor 17

the cross section. Accordingly, denoting by D = ER*/[12(1 — v*)] the plate

]

1
bending stiffness and by G = FE/[2(1 4 v)] the shear stiffness, the vertical
displacements due to bending and shear are given by:

04 (”Ii) = 'FLS = 0.10
2 48D
w ([i) = E—«jié = ().24
A2 10Gh '

for a total displacement of wy,; = wy + w, = 0.34. In Table 7, we report the
numerical response of the Q4-LIM element in terms of vertical displacement,
moment and shear for the case with and without shear energy, all quantities
computed at the middle span of the beam. In Figure 4, we also plot the
vertical displacement of the beam for both cases. It is noted that the element
is able to converge either to the solution of the shear deformable theory or
to the solution of the shear rigid theory, according to the inclusion or the
exclusion of the shear energy, as discussed in Section 3. Again, we wish
to stress that the thin plate solution is obtained without any numerical ill-
conditioning of the system, contrary to the behavior of previously published

work (e.g. [22, 23, 52]).

6.4 Square plate

A square plate is modeled using meshes of the type presented in Figure 5.
Both a thick (L/h = 10) and a thin plate (L/h = 1000) are considered,
where L is the side length and h the thickness, with load ¢ = 1 and material
properties:

E=1092 ., v =03

The numerical results for the simply supported square plate are presented in
Tables 8, together with the Navier series solution [41]. Both the SS-1 and the
SS-2 boundary conditions are considered for the thick plate (as discussed in
References [22, 52]). To highlight the influence of the boundary condition on
the plate response, contours for the twist moment M,, are shown in Figures
6 and 7 for the thick plate with SS-1 and SS-2 boundary, respectively.

For a plate with no shear energy, we plot in Figure 8 the contour of
the shear S, obtained from a finite element analysis (left side) and from a
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series solution (right side). It is evident that high accuracy for shears can be
attained using the Q4-LIM element.

In Figure 9 we plot the vertical displacement for the S5-2 boundary con-
dition for a wide range of thickness versus side length values. The results
from the T1 element are also reported for comparison. The ability of the
new element to analyze very thin plates is clearly evident.

The numerical results for the case of a clamped square plate are presented
in Tables 9, together with series solutions for the thick case [46] and for the
thin case. To compute the result for the thin plate, we performed an energy
solution using:

w o= Zamn {1 — COos (n'z;r:r)} {1 — COS (%@)]

and a large number of terms.

6.5 Clamped circular plate

Also for the circular geometry (Figure 10) * two values of diameter D versus
thickness h are considered to simulate a thick and a thin plate (D/h = 10
and D/h = 100). The load i1s ¢ = 1.0 and the material properties are:

£F=1092 , v=203

The numerical results are presented in Table 10 and compared also with an
analytical solution.

6.6 Simply supported skew plate

We consider a highly skewed plate (8 = 60°), simply supported along all
boundaries. The plate has unit load ¢, side length L = 100 and two thick-
nesses are considered, e.g. h = 1 and h = 0.1. The material properties
are:

E=1092 |, v=03
The displacement and the two principal bending moments at the center of
the plate are reported in Table 11. In addition, in Table 12 we compare

*The mesh is generated using three blocks of elements and the central node has coor-
dinate (2.1R,2.1R), where R is the radius of the plate.
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E =307 , v=203

with thickness ¢ = 0.01, side length L = 1 and unit uniform load.
The excellent performance of our element on the skew plate problem is
particularly noted.

CLOSURE

In the present paper we present a quadrilateral finite element developed
within the framework of a shear deformable plate theory. The element takes
advantage of internal degrees of freedom (for the rotational field) and linked
interpolation, i.e. an explicit dependence of the transverse displacement on
the discrete rotational field, to permit an exact (weak) thin plate limit with-
out any locking behavior. The advantages of this interpolation can be sum-
marized as follow:

e with an appropriate choice of the N4 shape functions we are able to
obtain a constant shear strain along each side of an element,

e we guarantee a higher order complete interpolation for the transverse
displacement than for the rotational field, as is required for the thin
plate situation, where the latter are simply the derivative of the former,

e we have a transverse displacement interpolation with as few nodal pa-
rameters as possible and we have a larger number of rotational param-
eters, as required for the satisfaction of the mixed patch test.

We present a careful evaluation of the element behavior, based on an exten-
sive set of mixed patch tests. Moreover, the results for a group of standard
numerical test problems are presented, together with the results from three
other elements available in literature. The new element has proper rank, ex-
cellent accuracy and no locking effects in the limiting case of a thin plate; in
fact, due to the particular order adopted for the condensation of the internal
parameters, it is possible to include or exclude from the analysis the shear
energy, recovering in the latter case a proper thin plate result.
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Q4-LIMy | 5.8593E400 | 5.8593E400 | 4.2448E400 | 2.2601E+00 | 1.3000E400 | 7.0000E-01
2.9671E-01 | 2.9671E-01 | 4.3837E-02 | 8.8113E-16 1.5694E-16 | -2.6733E-17
Q4-LIMn | 6.1808E+00 | 6.1808E+00 | 4.7054E+00 | 2.4500E400 | 1.3000E4-00 | 7.0000E-01
2.9690E-01 2.9690E-01 4 4630F-02 | -7.3144E-16 | 3.6991E-16 | -9.0807E-17
T1 9.1000E+01 | 9.1000E+01 | 3.2149E401 | 2.9167E+01 | 1.3000E+00 | 7.0000E-01
4.5000E-01 | 4.5000E-01 | 5.0805E-02 | 8.2750E-15 | -5.3812E-15 | 3.3604E-16
DKQ 3.1546E+00 | 3.1546E+00 | 1.4839E+00 | 1.3000E+00 | 7.7000E-01 | 7.0000E-01
4.1539E-01 | 4.1539E-01 5.1702E-02 | -4.2142E-16 | -1.6669E-16 | -7.2268E-17

Table 1: Figenvalues for thick regular mesh (L/t = 10)
Q4-LIMy | 6.5198E+400 | 5.4670E-+00 | 4.3822E400 | 2.3472E+00 | 1.3300E+00 | 6.8829E-01
3.1870E-01 | 2.7508E-01 | 4.03911E-02 | -9.0475E-16 | -3.2150E-16 | -3.2966E-17
Q4-LIMn | 6.8726E+00 | 5.7288E+400 | 4.8333E4-00 | 2.5300E-+00 | 1.3302E4+00 | 6.8858E-01
3.1890E-01 | 2.7524E-01 | 4.1066E-02 | -6.5560E-16 | 5.6487E-16 | 1.3975E-17
T1 1.0118E+402 | 9.9528 E+01 | 3.5361E+01 | 3.2498E401 | 1.3282E+00 | 6.8962E-01
4.8377E-01 | 4.2317E-01 | 4.6886E-02 | 3.4031E-15 | 2.4513E-15 | -2.0133E-15
DKQ 3.5401E+00 | 2.7958E+00 | 1.4726E+400 | 1.3258E+00 | 7.6551E-01 | 6.8640E-01
4.3544E-01 3.9889E-01 4.7468E-02 | 2.0612E-16 | -1.7057E-16 | -2.7072E-17

Table 2: Eigenvalues for thick irregular mesh (L/t = 10)
O4-LIMy | 6.18085100 | 6.1808E400 | 4.7053E400 | 2.4500E400 | 1.3000E400 | 7.0000E-01
2 9690E-01 | 2.9690E-01 | 4.4630E-02 | 3.1852E-16 | -1.8473E-16 | -6.2348E-17
Q4-LIMu | 6.1808F400 | 6.1808E+00 | 4.7054E400 | 2.4500E+00 | 1.30008+00 | 7.0000E-01
2.9690E-01 | 2.9690E-01 | 4.4630E-02 | -7.3144E-16 | 3.6991E-16 | -9.0807E-17
T1 9.1000E+405 | 9.1000E+05 | 3.15600E405 | 2.9167E+05 | 1.3000E4-00 | 7.0000E-01
4 5000E-01 | 4.5000E-01 | 5.1852E-02 | -4.4830E-11 | -2.2291E-11 | 3.7136E-12
DKQ 3.1546E+400 | 3.1546E+00 | 1.4839E+00 | 1.3000E+00 | 7.7000E-01 | 7.0000E-01
4.1539E-01 | 4.1539E-01 | 5.1702E-02 | -4.2142F-16 | -1.6669E-16 | -7.2268E-17

Table 3: Eigenvalues for thin regular mesh (L/{ = 1000)
Q4-LIMy | 6.8725E400 | 5.7287E+00 | 4.8332E+00 | 2.5300E+00 | 1.3302E+00 | 6.8858E-01
3.1890E-01 | 2.7524E-01 | 4.1066E-02 | -4.8957TE-16 | -2.9995E-16 | 5.6809E-17
Q4-LIMn | 6.8726E400 | 5.7288E+00 { 4.8333E4+00 | 2.5300E400 | 1.330ZE+00 | 6.8858E-01
3.1800E-01 | 2.7524E-01 | 4.1066E-02 | -6.5560E-16 | 5.6487E-16 | 1.3975E-17
T1 1.011TE406 | 9.9527TE+05 | 3.4712E4+05 | 3.2484E+05 | 1.3284E+00 | 6.8979E-01
4.8383E-01 | 4.2318E-01 | 4.7761E-02 | 9.9054E-11 45190E-12 | 3.5108E-12
DKQ 3.5401E400 | 2.7958E4+00 | 1.4726E+00 | 1.3258k4-00 | 7.6551E-01 | 6.8640E-01
4.3544E-01 | 3.9889E-01 | 4.7468E-02 | 2.0612E-16 | -1.7057E-16 | -2.7072E-17

Table 4: Eigenvalues for thin irregular mesh (L/t = 1000)
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QJ4-LIMy | 6.1808E+00 | 6.1808E+00 | 4.7054E+00 | 2.4500E4-00 | 1.3000E+00 | 7.0000E-01
2.9690E-01 | 2.9690E-01 | 4.4630E-02 | -6.1035E-16 | 1.7055E-16 | 1.9840E-17
Q4-LIMn | 6.1808E+00 | 6.1808E400 | 4.7054E+00 | 2.4500E+00 | 1.3000E4-00 | 7.0000E-01
2.9690E-01 | 2.9690E-01 | 4.4630E-02 | -7.3144E-16 | 3.6991E-16 | -9.0807E-17
T1 9.1000E409 | 9.1000E+09 | 3.1500E+09 | 2.9167E+09 | 1.3000E400 | 7.0000E-01
4.5000E-01 | 4.5000E-01 | 5.1852E-02 | -1.4452E-07 | 1.4444E-07 | 1.1585E-07
DKQ 3.1546E-+00 | 3.1546E+400 | 1.4839E+00 | 1.3000E+00 | 7.7000E-01 | 7.0000E-01
4.1539E-01 | 4.1539E-01 | 5.1702E-02 | 4.5723E-16 | 9.6889E-17 | -6.7714E-17

Table 5: Eigenvalues for extremely-thin regular mesh (L /t = 100000)

Q4-LIMy | 6.8726E+00 | 5.7288E+00 | 4.8333E+00 | 2.5300E+00 | 1.3302E+00 | 6.8858E-01
3.1890E-01 | 2.7524E-01 | 4.1066E-02 | -8.6204E-16 | -7.5921E-16 | 1.3324E-17
Q4-LIMn | 6.8726E400 | 5.7288E+00 | 4.8333E+00 | 2.5300E+00 | 1.3302E+400 | 6.8858E-01
3.1890E-01 | 2.7524E-01 | 4.1066E-02 | -6.5560E-16 | 5.6487E-16 | 1.3975E-17
T1 1.0117E+10 | 9.9527TE+09 | 3.4712E409 | 3.2484E409 | 1.3284E400 | 6.8979E-01
4.8383E-01 | 4.2318E-01 | 4.7761E-02 | 6.3630E-07 | -1.4301E-07 | -7.5890E-08
DKQ 3.5401E+00 | 2.7958E+00 | 1.4726E4-00 | 1.3258E+00 | 7.6551E-01 | 6.8640B-01
4.3544E-01 | 3.9889E-01 | 4.7468E-02 | 5.3399E-16 | 1.0328E-16 | 5.7238L-17
Table 6: Eigenvalues for extremely-thin irregular mesh (L/t = 100000)
Q4-LIM Ti
Mesh wp W, Wior M S Wi ot M
1x10 | 0.99889 | 2.40001 | 3.3989 | 950 | 200 | 3.3975 [ 950
1 x50 | 0.99993 | 2.39997 | 3.3999 | 990 | 200 | 3.3999 | 990
1 x 100 | 1.00000 | 2.40000 | 3.4000 | 995 | 200 | 3.4000 | 995
Ex.sol. | 1.00000 | 2.40000 | 3.4000 | 995 | 200 | 3.4000 | 995

Table 7: Simply supported beam.
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THICK (551) THICK (352) THIN (552)

qL4 qLQ ijL4 qLQ qL4 qL"Z

Mesh | w / (3550 | M/ G |/ () | M/ G | Y/ Gan! | M/ Gg)
7% 2 0.43261 46805 0.42626 1.4686 0.40365 14675
4% 4 0.45629 4.9597 0.42720 4.7099 0.40586 4.7103
8 x 8 0.45883 5.0484 0.42727 4.7690 0.40616 4.7690
16 x 16 | 0.46077 5.0821 0.42728 4.7837 0.40622 4.7837
39x 32 | 0.46144 5.0922 0.42728 4.7874 0.40623 4.7874
T3L 0.46084 5.0900 042718 17892 0.40615 17875
Q4L 0.46179 5.0963 0.42729 4.7884 0.40623 47884
T1 0.46127 5.0904 0.42726 4.7868 0.40621 4.7868
Series - - 0.42728 4.7886 0.40624 17886

Table 8: Simply supported square plate: displacement and moment at the

center. Thick plate: L/h = 10. Thin plate: L/h = 1000.
THICK THIN
qL? qL* qL? qL*
Mesh | w/ (7ap) | M/ Gg) | ¥/ Goop) [ M7 G
2x 2 0.14211 1.8108 0.11469 1.7311
4x4 0.14858 2.1968 0.12362 2.1629
8x8 0.14997 2.2889 0.12584 2.2590
16 x 16 0.15034 2.3122 0.12637 2.2827
32 x 32 0.15043 2.3180 0.12649 2.2886
T3L 0.15038 2.3173 0.12643 2.2880
Q4L 0.15044 2.3195 0.12650 2.2900
T1 0.15044 2.3191 0.12651 2.2897
Series 0.1499 2.31 0.12653 2.2905

Table 9: Clamped square plate: displacement and moment at the center.

Thick plate: L/h = 10. Thin plate: L/h = 1000.
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THICK THIN

Mesh W M w M
1 42.191 | 4.8010 | 40576 | 4.7980
2 41.760 | 5.0682 | 40027 | 5.0670
4 41.641 | 5.1337 | 39881 | 5.1335
8 41.610 { 5.1505 | 39844 | 5.1505
16 41.602 | 5.1548 | 39835 | 5.1548
T3L 41.597 | 5.1545 | 39829 | 5.1549
Q4L 41.602 | 5.1548 | 39835 | 5.1548
T1 41.586 | 5.1540 | 39819 | 5.1540
Exsol. | 41.599 | 5.1563 | 39831 | 5.1563

displacement and moment at the

center. Thick plate: D/h = 10. Thin plate: D/h = 100.

THICK THIN
, qL? qL? qL? gL? glL? qL?
Mesh | w/ (JO()D) M, / ('I'dﬁ) M, / (m) w / (W)—B) M /(166) Ms / (m
2x 2 0.55685 1.1805 0.5400 0.55530 1.1809 0.5376
4x4 0.43840 1.8141 0.8898 0.43670 1.8052 0.8864
8x 8 0.42499 1.9181 1.0555 0.42064 1.9105 1.0494
16 x 16 0.42124 1.9355 1.1072 0.41560 1.9203 1.0916
32 x 32 0.42178 1.9440 1.1263 0.41363 1.9209 1.1008
T3L 0.41959 1.9366 1.1212 0.41273 1.9178 1.0100
Q4L 0.42695 1.9618 1.1488 0.42352 1.9528 1.1402
T1 0.40383 1.8897 1.0701 0.36156 1.7689 0.9153

Table 11: Simply supported skew plate (soft boundary): displacement and
moments at the center. Thick plate: L/h = 100. Thin plate: L/h = 1000.

Energy

Mesh Q4-LIM T3L Q4L T1

2x2 | 0.378061 | 0.383241 | 0.285103 | 0.115755
4x4 | 0.264296 | 0.267398 | 0.256943 | 0.199369

8 x 8 | 0.258060 | 0.261721 | 0.261289 | 0.218921
16 x 16 | 0.261022 | 0.262122 | 0.262455 | 0.239899
32 x 32 | 0.262519 | 0.262921 | 0.262708 | 0.252967
Ref. [5] | 0.265868 | 0.265868 | 0.265868 | 0.265868

Table 12: Simply supported skew plate: energy test

ary).

. L/h = 100 (soft bound-
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& External dofs

Figure 1: Single element patch test: regular and irregular meshes.
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& External dofs

Figure 2: Multi element patch test: regular and irregular meshes.
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# bExternal dofs

Figure 3: Linked shape function N, along the -5 side.
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0.35 i i i 1 i 1 i i i
0 1 2 3 4 5 6 7 8 9 10

X-coordinate

Figure 4: Simply supported beam. Vertical displacement for the beam with
shear energy (continuous line) and without shear energy (dotted line).
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DISPLACEMENT 1
Min = 0.00E+00
Max = 1.26E-03

1.80E-04
3.60E-04
5.39E-04
7.19E-04
8.99E-04
1.08E-03

N .
w ~

Current View
Min = 0.00E+00
X = 5.00E-01
Y = 0.00E+00

Max = 1.26E-03
X = 0.00E+00

FEAP

Figure 5: 8 x 8 mesh for square plate. Only one quarter of the plate (upper
right) is considered; the contour of the vertical displacement for the case of

clamped boundary condition 1s plotted.
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STRESS 2
Min = -2.78E-02
Max = 4.31E-05

-2.38E-02
-1.98E-02
-1.58E-02
-1.19E-02
-7.90E-03
-3.93E-03

S

-

SRR
Y

Current View
Min = -2.78E-02
X = 4.06E-01
Y = 4.06E-01
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Figure 6: Thick simply supported (S5-1) plate: M., moment. Only one
quarter of the plate (upper right) is considered.
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Figure 7: Thick simply supported (55-2) plate: M,, moment. Only one

quarter of the plate (upper right) is considered.
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Sx : Finite Element Series Solution
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Figure 8 Thin simply supported (55-2) plate: S, shear. Finite element
solution (left side) versus series solution (right side). The whole plate is

plotted.
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Figure 9: Simply supported (SS-2) plate: displacement versus i/L. The
results from the Q4-LIM element are represented with a continuous line; the
results from the T1 element are represented with a dotted line.
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Figure 10: 16-element mesh for simply supported circular plate. Only one
quarter of the plate (upper right) is considered and the contour of the vertical

displacement is plotted.
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Figure 11: 8 x 8 mesh for simply supported skew plate. The contour of the
vertical displacement is plotted.
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