
UCLA
UCLA Previously Published Works

Title
Adaptive partitioned indexes for efficient XML keyword search

Permalink
https://escholarship.org/uc/item/6zj575rn

Journal
Journal of Research and Practice in Information Technology, 39(3)

ISSN
1443-458X

Author
Kim, Sung Jin

Publication Date
2007-08-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6zj575rn
https://escholarship.org
http://www.cdlib.org/

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 2007 47

Adaptive Partitioned Indexes for Efficient XML Keyword
Search
Sung Jin Kim
Department of Computer Science, University of California Los Angeles (UCLA), Los Angeles, California, USA
sjkim@cs.ucla.edu

Hyungdong Lee
School of Computer Science and Engineering, Seoul National University, Seoul, Korea
hdlee@idb.snu.ac.kr

Hyoung-Joo Kim
School of Computer Science and Engineering, Seoul National University, Seoul, Korea
hjk@idb.snu.ac.kr

1. INTRODUCTION
Keyword search, which is extensively used for searches over flat HTML documents on the web, is a
simple and effective paradigm for information discovery. Many researchers (Carmel et al, 2003;
Cohen et al, 2003; Florescu et al, 2000; Fuhr and Grobjohann, 2004; Guo et al, 2003; Hritidis et al,
2003; Li et al, 2004; Xu and Papakonstantinou, 2005) have studied how to effectively apply this
useful paradigm to searches over XML documents. XML Keyword search makes it possible for users
to obtain relevant information without having to know complex query syntaxes (Robie et al, 1998;
Clark and DeRose, 1999; Deutsch et al, 1998) and structures (e.g., DTDs) of XML documents.

Manuscript received: 10 October 2005
Communicating Editor: John Yearwood

Copyright© 2007, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

A query result of an XML keyword search is usually defined as a set of the most specific elements
containing all query keywords. Search systems find the query result by considering the
combinations of all elements in the inverted indexes of the query keywords. However, we conclude
that it is not necessary to consider the combinations of all the elements, when an “effective result
depth” (which represents how deeply nested elements are eligible for the query result) is given.
This paper describes a way to construct partitioned indexes on the effective result depth,
guaranteeing that the combinations of elements in different partitions never produce result
elements. Therefore, search systems can find query results by considering only combinations of
elements in the same partitions. Partitioned indexes are adaptable; when an effective result depth
is changed, partitioned indexes constructed on the original depth can be used efficiently without
being reconstructed physically on the changed depth. The experimental results show that our
approach worked quite well in most cases.

ACM Classification: H.3.1 (Information Storage and Retrieval – Content Analysis and
Indexing – Indexing methods); I.7.2 (Document and Text Processing – Document Preparation –
Index generation); H.2.4 (Database Management – Systems – Textual databases); H.3.3
(Information Storage and Retrieval – Information Search and Retrieval – Information filtering)

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 200748

One of the main features of an XML keyword search is that a query result is a set of XML
elements, instead of entire documents. In general, the query result is composed of the most specific
elements containing all query keywords. For example, let us consider the XML document shown in
Figure 1, and suppose a query is composed of keywords “Schmidt” and “XML”. Then, the query
result is a set of the first <collection> element and the fifth <paper> element. The second
<collection> element cannot be a result element, even though it contains all query keywords,
because it is not the most specific (i.e., it includes the fifth <paper> element that already contains
both query keywords).

Using inverted indexes for efficient keyword searches are already a proven, accepted technique.
The granularity of inverted indexes for XML keyword searches is an element. There has been a lot
of research on how to efficiently handle element-based inverted indexes. Guo et al (2003) proposed
the DIL (Dewey Inverted List) index structure, where the elements are sorted by their identifiers,
called Dewey Identifier. They obtained query results by reading the elements in each of the indexes
sequentially. The indexes are never read more than once under the structure. Xu and
Papakonstantinou (2005) used a B-tree based index structure for XML elements, where the non-leaf
nodes are cached in main memory, and successfully reduced the number of disk accesses.

Previous research focused on how to efficiently organize element-based inverted indexes and
how to quickly obtain query results with their indexes. Search systems consider all elements
containing query keywords and find which combinations of the elements produce the least common
ancestors appropriate for their result elements. Search systems try to read all the elements
(thereafter, physical disk accesses can be reduced if elements are cached) in the inverted indexes of
the query keywords.

In this paper, we conclude that it is not necessary to consider the combinations of all elements
containing query keywords to obtain query results, when the “effective result depth” is given. An
“effective result depth” represents how deeply nested elements are eligible as query result elements.

Figure 1: An example of an XML document

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 2007 49

For example, in Figure 1, let us suppose that an administrator does not want <data> and <collection>
elements to be returned as query result elements, simply because those elements give too broad,
general information to users. Then, the “effective result depth” is 2 because the administrator wants
the result elements to be nested at least twice. Let e1 and e2 be the elements that are nested in
different <paper> elements. Then, for any query to the document, even though all of the query
keywords are contained in either e1 or e2, the least common ancestor of e1 and e2 never becomes a
result element. That is because it is certain that the least common ancestor is either a <data> or a
<collection> element. Therefore, we do not need to consider the combination of e1 and e2 for any
queries if the effective result depth is 2. Our research is motivated by this simple, yet promising idea.

Recently, Botev and Shanmugasundaram (2005) were interested in how to avoid reading
unnecessary elements while finding query results. Their search system first interpreted the context
of queries that users issue, and obtained query results by considering the combinations of only
elements belonging to the context. Our approach differs from theirs in terms of using only topology
information of elements, without the step of interpreting the context of a query.

This paper describes a way to construct partitioned inverted indexes on an effective result depth.
The partitioned indexes are composed of a number of partitions, and guarantee that the combi-
nations of elements in different partitions never produce least common ancestors eligible for result
elements. Therefore, we only need to selectively read the elements in the same partitions and try to
find which least common ancestors of those elements are eligible as result elements. In our
approach, the number of disk accesses can be reduced significantly because we often do not read
whole inverted indexes of query keywords. When there is no element in a partition of an index, the
elements belonging to the same partitions of the other indexes are not read.

An effective result depth is sometimes apparent. For example, the DBLP site (DBLP, 2005)
provides users with an XML keyword search service to find either paper or author information. The
nodes containing paper or author information are nested in other elements at least once. Therefore,
the effective result depth is certainly 1. On the other hand, when an effective result depth is unclear,
administrators may use a possible best value for the effective result depth. Even though the
partitioned indexes on the value have been constructed, the value can be changed to another value
if necessary. The partitioned indexes are adaptable, which means that partitioned indexes
constructed on the original value can be used efficiently without being reconstructed physically on
the changed value.

Our approach was experimentally tested in two collections of XML documents. The first
collection is composed of one XML document that has been used practically in the DBLP site. The
second collection is composed of the XML documents that were provided by the INEX2003 (INEX,
2003), which was established for the purpose of testing XML search systems. The experimental
results showed that our approach worked quite well in most cases.

The paper is organized as follows. Section 2 presents basic concepts and requirements of the
partitioned index structure. Section 3 presents a way to organize partitioned indexes and search
query results. Section 4 shows evaluation results in two test collections. Finally, Section 5 contains
the conclusion.

2. PRELIMINARY
An XML document is regarded as an ordered, node labeled tree. Figure 2 represents the tree for the
document shown in Figure 1. XML elements correspond with tree nodes. The relation between the
child and parent nodes is denoted as a directed line. Attributes of an element can be regarded as
child elements of the element. For simplicity of our explanation, attributes will be ignored in this

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 200750

paper. Data strings nested in an element are linked to each other by a straight line. Node identifiers
are denoted in parentheses. The depth of the root node (n1) is zero. When the depth of a node is d,
the depths of its child nodes are (d+1).

Consider a query composed of several keywords. There are two possible semantics for keyword
search queries: conjunctive and disjunctive keyword query semantics. In the query result, the
former semantic returns nodes that contain all of the query keywords, and the latter semantic returns
nodes that contain any of the query keywords. In this paper, we have chosen to use the conjunctive
keyword query semantic. For example, when a user wants to find papers written by Schmidt on
XML-related topics, the user can issue two keywords “XML” and “Schmidt”, simultaneously, as a
query.

Definition 1. Let us suppose that there is an XML tree. The effective result depth of the tree is a
depth of d. For any query to the tree, depths of the result nodes should be greater than or equal to d.

For example, given the XML tree in Figure 2, let us suppose that an administrator wants result
nodes to be composed of <paper>, <author>, and <title> nodes, simply because she thinks <data>
and <collection> nodes give too broad information to users. Then, the effective result depth of the
tree is 2. For another example, the DBLP site provides users with an XML keyword search service
to find either paper or author information. The depths of the nodes containing paper information are
1. The depths of the nodes containing author information are 2. That is, the depths of result nodes
are either 1 or 2, and the effective result depth is 1.

Definition 2. Let there be a node in an XML tree. If the depth of the node is greater than or equal
to the effective result depth of the tree, then the node is called an effective node to the depth (and
we also say that the node is effective to the depth).

Figure 2: An XML tree of the document shown in Figure 1

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 2007 51

The search result of a query is defined as the set of the nodes satisfying the two conditions. First,
the nodes should be effective. Second, the nodes should contain at least one occurrence of all of the
query keywords, after excluding the occurrences of the keywords in child nodes that already contain
all of the query keywords. The second condition is the same as the query result condition of Guo et
al (2003). For example, let us suppose that the query keywords are “XML” and “Schmidt”, and the
effective result depth is 2. Then, n8 is a query result node because it is effective, contains all the
query keywords, and does not have any child node containing all the query keywords. On the other
hand, n2 is not a query result node because it is not effective, although it satisfies the second
condition.

A partition of a keyword is an inverted index that indexes all or some of the nodes containing
the keyword. A partitioned index of a keyword is a set of partitions of the keyword, where there is
no node indexed in more than one partition. Let us suppose there are keywords x and y. A
partitioned index of x on a depth d, composed of M partitions xP0, xP1, …, xPM-1, and a partitioned
index of y on the depth d, composed of M partitions yP1, …, yPM-1, should satisfy the following
partitioning and merging requirements, where ∈ means that the left side node is indexed in the right
side partition; ∪ produces a partition that indexes all the nodes indexed in the partitions of both the
sides; = means that the nodes indexed in the left side partition are the same as those indexed in the
right side partition.

• Partitioning requirement:
Let us suppose that the effective result depth is d. Let us suppose nx ∈ xPi (0 ≤ i < M) and ny ∈

yPj (0 ≤ j < M). If the least common ancestor of nx and ny is effective to d, then i is equal to j.

• Merging requirements:
For any non-negative integer d’ less than d (0 ≤ d’ < d), let us suppose that the effective result
depth is changed from d to d’. Let us suppose a partitioned index of keyword x on depth d’, is
composed of M’ partitions xP’0, xP’1, …, xP’M’-1, and a partitioned index of keyword y on depth
d’, is composed of M’ partitions yP’0, yP’1, …, yP’M’-1 (both the partitioned indexes on depth d’
satisfy the partitioning requirement). Then,

(1) xP0 ∪ xP1 ∪ … xPM-1 = xP’0 ∪ xP’1 ∪ … xP’M’-1, and yP0 ∪ yP1 ∪ … yPM-1 = yP’0 ∪ yP’1 ∪
… yP’M’-1

(2) ∀nx ∈ xPm (0 ≤ m < M), nx ∈ xP’m’ (0 ≤ m’ < M’), and ∀ny ∈ yPm, ny ∈ yP’m’

The partitioning requirement calls for the elements whose least common ancestor is effective to
be indexed in the partitions with the same partition number. The partitions with the same partition
number are said to be the same partitions. For example, xP1 and yP1 are the same partition. The
partitioning requirement makes it possible that a search system can obtain query results by
considering the combinations of elements in the same partition. Let us suppose that the query
keywords are “XML” and “Schmidt”, and the effective result depth is 2. Because n19, containing
“XML” and n18, containing “Schmidt” have an effective least common ancestor, n19 and n18 are
indexed in the same partitions. On the other hand, the partitioning requirement does not necessitate
that the nodes whose least common ancestor is not effective should be indexed in different
partitions. Therefore, n12 containing “Schmidt” and n19 could be indexed in the same partitions even
though their least common ancestor is not effective. Search systems need to find which
combinations of the elements in the same partitions of query keywords produce least common
ancestors satisfying both the query result conditions. However, it is certain that search systems do
not need to consider the combinations of the elements in the different partitions.

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 200752

When the effective result depth is changed from d to d’, there are two cases: d < d’ and d > d’.
The first case, i.e., d < d’, means that administrators give users more specific query result elements.
The solution for the first case is very simple. After obtaining query result nodes that are effective to
depth d, with the partitioned index on depth d, search systems give users only the nodes that are
effective to d’. The second case, i.e., d > d’, means that administrators allow more general nodes to
be included in the query result if the nodes satisfy the second query result condition. The problem
with the second case is the fact that the combinations of two nodes in different partitions of
partitioned indexes on depth d should be considered for the new effective result depth d’. That is
because nodes whose least common ancestor is effective to d’ not d could be indexed in different
partitions of partitioned indexes on d. The solution for the second case is to construct the partitioned
indexes on the depth d’ virtually without reconstructing partitioned indexes on depth d’ physically.

Merging requirements are established to make it efficient for search systems to obtain query
result nodes that are effective to d’ (d’ < d) with the partitioned indexes on depth d. The merging
requirement (1) requires that all nodes indexed in partitioned indexes on d’ should be indexed in
partitioned indexes on d. If a node is not effective to a depth d, then the combinations of the node
and any other nodes will not produce the effective least common ancestor. However, the node could
be effective to a depth d’ and join the combinations producing the query result nodes effective to
d’. If we do not index the node in the partitioned index on depth d, then we lose the node that is
necessary for constructing partitioned indexes on depth d’ virtually.

The merging requirement (2) requires that all nodes in a partition (i.e., xPm or yPm) of the
partitioned index on d should be indexed in only one partition (i.e., xP’m’ or yP’m’) of the partitioned
index on d’. If two nodes in a partition of the index on depth d are indexed in two partitions of the
index on d’, then reading two virtual partitions could require the search systems to read the same
physical partition twice. The merging requirement (2) makes it possible that all physical partitions
are read only once while search systems scan all partitions of the virtual indexes.

3. CONSTRUCTING PARTITIONED INDEXES AND SEARCHING QUERY RESULTS
In this section, we describe a way to organize partitioned indexes satisfying the partitioning and the
merging requirements, suggested in the previous section, with a partition function. We also describe
how to search query results with the partitioned indexes.

3.1 Partition Function
A partition function receives an effective result depth and a node to be indexed, and returns a
partition number indicating the partition where the node should be indexed. Through using the
partition function, search systems can promptly determine an appropriate partition for a node while
reading XML documents sequentially. We will first explain a basic idea of how to design a partition
function. In this subsection, let us assume that there are two sibling nodes nα and nβ whose depths
are d, and let us assume that there is also a node nχ, the least common ancestor of nα and nβ, whose
depth is d’.

For the partitioning requirement, with an effective result depth of d, a partition function must
return the same partition numbers for nα (or nβ) and all its descendents because the least common
ancestors produced by the combinations of some (or all) of those nodes, i.e., nα and all its
descendents, are always effective. When the effective result depth is d’, the partition function must
return the same partition numbers for nχ and its descendants, as before. On the other hand, we may
force descendants of nα and nβ not to be indexed in the same partitions, because any combinations
of nα’s descendants and nβ’s descendants do not produce the least common ancestors effective to

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 2007 53

depth d. However, given thousands or millions of sibling nodes of nα, indexing all sibling nodes in
different partitions could result in large management costs.

A partition factor δ is the number of partitions allowed to the sibling nodes of nα. When the
number of the sibling nodes is greater than δ, we allow the indexing of nα and nβ, as well as their
descendants, in the same partition. Note that the partitioning requirement does not demand the two
nodes that have no least common ancestor to be indexed in different partitions. When the total
number of the sibling nodes is 0 or less than δ, as many as δ partitions are also created for the sibling
nodes. Suppose the effective result depth is (d+1). Then, the child nodes of nα, which are indexed
in the same partition when the effective result depth is d, could be divided into as many as δ
partitions. If nα and nβ are indexed in the same partitions of the partitioned indexes on d, only δ (not
2δ) partitions are allowed for the child nodes of both nα and nβ.

Given the partition factor δ and the effective result depth d, the total number of partitions of an
index is δd. When d is 0, there is only one partition because the root node and its all descendants are
indexed in the same partition. The total number of partitions is δ itself when d is 1, because all nodes
on depth d are the siblings that have the same parent (i.e., the root). When d is 2, the total number
of partitions is δ2, because each of the δ partitions is divided to as many as δ partitions. As a partition
factor δ becomes smaller, the total number of partitions decreases and descendants of nα and
descendants of nβ are likely to be indexed in the same partition. On the other hand, as the partition
factor δ becomes bigger, the total number of partitions increases, and descendants of both nα and
nβ tend to be indexed in different partitions.

For the merging requirement (1), nχ should be indexed in partitioned indexes on d even though
nχ never joins the combinations producing result nodes effective to d. For the merging requirement
(2), a partition function assigns nχ into the partition where nχ’s first descendant node on depth d is
indexed. If the indexes on d’ satisfy the partitioning requirement, nχ and all its descendants
(including nα and nβ) are indexed in the same partitions of the indexes. Then, all nodes of the
partition, where nα (or nβ) is indexed, of the index on depth d are indexed in the partition, where nχ
is indexed, of the index on depth d’.

ORd(n) is defined by equation (1). OR(n) is a function that returns the order of node n among
its siblings. The order starts with zero. For example, in Figure 2, OR(n8) is 3 because n8 is indexed
in the fourth position among the siblings (i.e., n5, n6, n7, and n8). Ad(n) is defined for only the nodes
whose depths are greater than d. Ad(n) returns the ancestor node of n on depth d. For example,
A2(n14) returns n7, and OR2(n14) is OR(A2(n14)) = OR(n7) = 2. Dd(n) is defined for only the nodes
whose depths are less than d. Dd(n) returns the first descendant node of n on depth d. For example,
D2(n2) returns n5. OR2(n2) is OR(D2(n2)) = OR(n5) = 0. If there is no descendant node of node n on
depth d, Dd(n) returns a virtual node assuming that the virtual node is the first node among the
siblings on depth d. For example, OR2(n4) is OR(D2(n4)) = 0. ORd(n) always returns 0 if the depth
of n is smaller than d.

ORd(n) = OR(Ad(n)) (when the depth of n > d)
= OR(n) (when the depth of n = d) (1)
= OR(Dd(n)) = 0 (when the depth of n < d)

PFd(n) is a partition function that returns the number of partition where node n should be
indexed, when the effective result depth is d. PFd(n) is defined by equation (2). When the depth of
n is greater than d, ORd(n) returns the same partition numbers for the ancestor node of n on depth d.
Therefore, a node whose depth is d and all its descendants have the same partition number. (ORd(n)
mod δ) makes the siblings on depth d are divided into as many as δ partitions.

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 200754

PFd(n) = (ORd(n) mod δ) + (PFd-1(n) * δ) (when d > 0)
= 0 (when d = 0)

(2)

PFd(n) can be expressed as the right side of equation (3).

PF0(n) = 0
PF1(n) = (OR1(n) mod δ)
PF2(n) = (OR2(n) mod δ) + (OR1(n) mod δ) * δ
PF3(n) = (OR3(n) mod δ) + (OR2(n) mod δ) * δ + (OR1(n) mod δ) * δ2

… = …

PFd(n) = (3)

Theorem 1. Suppose that the effective result depth is d. If all nodes having the same partition
number by PFd(n) are indexed in the same partitions of partitioned indexes, then the indexes satisfy
the partitioning requirement.

Proof. Let us suppose that we select some nodes from the nodes having the same partition number.
First, if the least common ancestor of the selected nodes is not effective, it is orthogonal to the
partitioning requirement whether PFd(n) returns the same partition numbers for the selected nodes
or not. That is because the partitioning requirement does not put any constraints on the nodes whose
least common ancestor is not effective. Second, when the least common ancestor of the selected
nodes is effective, we will prove that PFd(n) always returns the same partition numbers for the
selected nodes. Let nx and ny be the selected nodes. Let ne be the least common ancestor of nx and
ny. Let nΕ be an ancestor node of ne on depth d (nΕ and ne are identical when the depth of ne is d).
Then, PFd(nx) = PFd(nΕ) because ORi(nx) is always the same as ORi(nΕ) for i values between 1 and
d, in equation (3). PFd(ny) = PFd(nΕ) as before. As a result, PFd(nx) = PFd(ny)

Lemma 1. Let us suppose two nodes na and nb. If PFd(na) = PFd(nb), then (ORi(na) mod δ) =
(ORi(nb) mod δ) for any i value that is an integer between 1 and d.

Proof. We prove Lemma 1 with mathematical induction. First, we show that the proposition holds
for a base case (i.e., d = 0) as follows:

PF0(na) = PF0(nb) ➔ (OR0(na) mod δ) = (OR0(nb) mod δ)

When d = 0, only 0 is considered as the value of i. PF0(na), PF0(nb), OR0(na), and OR0(nb) are 0.
Second, we show that whenever the proposition holds for some value of d, it must hold for the next
number as well. So, we’ll start with the original formula and show that when it is true for some
(d - 1), then the formula must also work for d. We can consider the value of i as 1, 2, …, (d -1).

PFd-1(na) = PFd-1(nb) ➔ (OR1(na) mod δ) = (OR1(nb) mod δ),
➔ (OR2(na) mod δ) = (OR2(nb) mod δ),

…
➔ (ORd-1(na) mod δ) = (ORd-1(nb) mod δ)

Now, we do an expansion on PFd(na) and PFd(nb).

PFd(na) = PFd(nb)

(ORd(na) mod δ) + (PFd-1(na) * δ) = (ORd(nb) mod δ) + (PFd-1(nb) * δ)

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 2007 55

where (ORd(na) mod δ) = (ORd(nb) mod δ) because (PFd-1(na) * δ) = (PFd-1(nb) * δ). Therefore, the
proposition will still hold for d as follows:

PFd(na) = PFd(nb) ➔ (OR1(na) mod δ) = (OR1(nb) mod δ),
➔ (OR2(na) mod δ) = (OR2(nb) mod δ),

…
➔ (ORd-1(na) mod δ) = (ORd-1(nb) mod δ)
➔ (ORd(na) mod δ) = (ORd(nb) mod δ)

Theorem 2. Suppose that the effective result depth is changed from d to d’ and that d’ is smaller
than d. There is a partitioned index where the nodes that have the same partition number from
PFd(n) are indexed in the same partition. There is another partitioned index where the nodes that
have the same partition number from PFd’(n) are indexed in the same partition. Both the indexes
satisfy the merging requirements.

Proof. It is trivial that both the indexes satisfy the first merging requirement because all nodes have
partition numbers for PFd(n) and PFd’(n). Now, to show both the indexes satisfy the second merging
requirement, we prove the proposition that if PFd(na) = PFd(nb) for any two nodes na and nb, then
PFd’(na) = PFd’(nb). PFd(na) and PFd(nb) can be expressed as follows.

PFd(na) =

=

PFd(nb) =

=

PFd(na) = PFd(nb) can be expressed as follows:

according to Lemma 1. Therefore, if PFd(na) = PFd(nb), then PFd’(na) = PFd’(nb).

Figure 3 shows partition numbers for each node of the tree shown in Figure 2 according to
changes in d and δ. The dotted lines represent the effective result depths. When δ=1 or d=0, partition
numbers for all nodes are zero and all nodes are indexed in only one partition, which means that
indexes are not partitioned at all.

Let us see the case where δ is 3 and d=2. Three partitions are allowed for the sibling nodes (i.e.,
n5, n6, n7, and n8) whose parent node is n2. PF2(n5) = PF2(n8) = 0, PF2(n6) = 1, and PF2(n7) = 2.
Nodes n5, n6, and n7 are indexed in the partitions 0, 1, and 2, respectively. Node n8 is indexed in the
partition 0 where node n5 is indexed. Descendants of n5, n6, n7, and n8 are indexed in the same
partition where n5, n6, n7, and n8 are indexed, respectively. Nodes n1 and n2 are indexed in the
partition 0 where their first descendant node (n5) on depth 2 is indexed. Three additional partitions

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 200756

are allowed for the sibling nodes whose parent is n3. Node n9 is indexed in partition 4. There is no
node indexed in partitions 5 and 6. Node n3 is indexed in partition 4, where its first descendant (n9)
on depth 2 is indexed. The other three partitions (partitions 6, 7, and 8) are allowed for the siblings
whose parent is n4. Node n4 is indexed in partition 6 because the first descendant node of n4 (if the
descendant existed) is indexed in partition 6. There is no node indexed in partitions 7 and 8.

Figure 4 conceptually shows partitioned indexes of keywords “XML” and “Schmidt”. A
partition indexing no nodes is referred to as an empty partition. Empty partitions are not represented
in Figure 4. Figure 4(a) shows the indexes that are not partitioned. When users issue “Schmidt” and
“XML” as a query, search systems might need to consider the eight combinations between the four
nodes containing “XML” and the two nodes containing “Schmidt”. Note that the DIL index
structure makes it possible for search systems to read the nodes in each of the indexes sequentially
to obtain query results. If the indexes were organized with the DIL structure, there would be five
required combinations, namely n11 and n12, n15 and n12, n15 and n18, n17 and n18, and n19 and n18.

Figure 4(b) shows the indexes on depth 2 with partition factor 3. Partitions 0, 2, and 3 of
keyword “XML” include two, one, and one node(s), respectively. The partitions 1, 4, 5, 6, 7, and 8
are empty partitions. There are two nodes containing keyword “Schmidt”, one of which is indexed
in partition 0; the other is indexed in partition 3. Let us suppose that an effective result depth is 1.
With the partitioned indexes in Figure 4(b), search systems only need to consider three
combinations, namely n11 and n12, n17 and n12, and n19 and n18. In addition, since partition 2 of the
keyword “Schmidt” is an empty partition, we can avoid reading partition 2 of keyword “XML”.
However, if using the conventional indexes as in Figure 4(a), search systems still have to consider
the five combinations.

Figure 4(c) shows the partitioned indexes on depth 2 with partition factor 4. As the partition
factor is greater than that of Figure 4(b) by one, the indexes have 16 partitions. Since only partitions

Figure 3: Partition number computed by PFd(n) for each node of the tree shown in Figure 2

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 2007 57

4 of both the indexes are not empty partitions, we consider one combination between nodes n19 and
n18 in order to obtain query results. It is unnecessary to continue to search for query results if the
combination does not produce the least common ancestor corresponding to the search result
definition.

Figure 4(d) shows the partitioned indexes on depth 1 with partition factor 3. Suppose that an
effective result depth is 1. Then, we can use the partitioned indexes on depth 1 as in Figure 4(d),
and obtain query results by considering four combinations, namely n11 and n12, n15 and n12, and n17
and n12 in partitions 0, and n19 and n18 in partitions 1. If we have already constructed the partitioned
indexes on depth 2 as in Figure 4(b), we can also use those indexes without physically
reconstructing the indexes on depth 1. The union of partitions 0, 1, and 2 in Figure 4(b) is the same
as the partition 0 in Figure 4(d). That is, considering the combinations between the nodes in the
partition 0 in Figure 4(d) is the same as considering the combinations between the nodes in the
partitions 0, 1, and 2 in Figure 4(b).

3.2 Searching Query Results with Partitioned Indexes
The process of searching query results with the partitioned indexes is described in Figure 5. M is the
number of partitions including empty partitions, and K is the number of query keywords that users
issue. On the 2nd line, a two-dimensional array of “pheaders” is defined. “pheaders” holds the
addresses of all partitions of query keywords. If there is at least one node indexed in the ith partition
of the kth query keyword, then pheader[k][i] contains the physical address of the partition. If there is
no node indexed in the partition, the value of pheader[k][i] is null. On the 3rd line, “load_pheaders”
function loads physical addresses of all partitions. On the 5th line, the “check_empty_partitions”
function returns “true” if there is an empty partition among the ith partitions. If the function returns
“true”, we do not try to search for query results for the ith partitions, and do not read all nodes in the
ith partitions. If all ith partitions have at least one node, we try to find query results from the ith

partitions. On the 8th line, the “find_results” function finds query result nodes. Note that each
partition of a partitioned index can be regarded as a non-partitioned index. After obtaining the nodes
satisfying the second search result condition with the existing efficient methods (Guo et al, 2003;
Xu and Papakonstantinou, 2005), we checked if obtained nodes are effective or not to d.

Figure 4: Inverted indexes of keywords “XML” and “Schmidt”

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 200758

Figure 6 shows an algorithm for searching query result nodes that are effective to d’ with the
partitioned indexes on d. We make a virtual partitioned index on d’ and search query result by
considering only the combinations of the nodes in the same virtual partitions. N represents the
number of physical partitions to be merged to a virtual partition. N is δ(d-d’), because as many as δ
partitions are merged into a partition as the effective result depth decrease by one. On the 4th line,
the “vpheaders” is a two-dimensional array containing the addresses of physical partitions to be
merged. On the 7th line, the “get_partitions_to_merge” function returns the addresses of physical
partitions to be merged for the ith virtual partition. The “check_empty_virtual_partitions” function
returns “true” if there is an empty virtual partition (in other words, if all physical partitions
consisting of the virtual partition are empty partitions). The “find_results_in_virtual_partitions”
function finds query result nodes with the virtual indexes.

1 : // M: number of partitions, K: number of query keywords

2 : Declare pheaders [K][M];
3 : pheaders = load_pheaders(keywords);

4 : for i = 0 to M
5 : if check_empty_partitions (pheaders, i) then
6 : continue;
7 : else
8 : find_results_in_partitions (pheaders, i, d);
9 : end loop

Figure 5: Keyword search with partitioned indexes I

1 : // M: number of partitions, K: number of query keywords
2 : // N: number of partitions to merge, M’: number of virtual partitions

3 : Declare pheaders[K][M];
4 : Declare vpheaders[K][N];
5 : pheaders = load_pheaders (keywords);

6 : for i = 0 to M’
7 : vpheaders = get_partitions_to_merge(pheaders, i);
8 : if check_empty_virtual_partitions (vpheaders) then
9 : continue;
10 : else
11 : find_results_in_virtual_partitions (vpheaders, d);
12 : End loop;

Figure 6: Keyword search with partitioned indexes II

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 2007 59

4. EVALUATION
The goal of our experiment is to show how much time can be saved in searching for query results,
when the effective result depth is given and partitioned indexes are used. We implemented an XML
keyword search system in C++. BerkelyDB (BerkelyDB, 2005) was used for storing partitioned
indexes. Each partition was constructed in the structure of the DIL. A partitioned index had a header
that includes offsets of the partitions to access each of the partitions directly. The experiments were
performed on a PentiumIII 993MHz PC machine with 1GB memory. We used the DBLP XML
document and the INEX test collection (INEX, 2003) for the experiments.

The DBLP XML document included more than half a million titles of papers. The volume of the
document was approximately 210 mega bytes. The height of the XML tree was 2. When we
consider the search for paper information or author information, the effective result depth was 1.
The testing query was composed of four keywords “computer”, “system”, “architecture”, and
“2002”. Figure 7 shows the times for searching query results with non-partitioned indexes and
partitioned indexes. The total number of partitions of the partitioned indexes is the same as the
partition factor δ because the effective result depth is 1. When we used the partitioned indexes with
δ=5,000 and δ=10,000, the times for searching query results were reduced by 25% and 45%. Even
though we conducted the experiment with larger delta values, such as 20,000, 30,000, and so on,
there was no further reduction in time.. That was because, for the query, increasing the partition
factor simply increased the number of empty partitions, and did not reduce the number of the same
partitions to be considered.

The INEX evaluation initiative is part of a large-scale effort to encourage research in
information retrieval and digital libraries. The main goal of INEX is to promote the evaluation of
content-oriented XML retrieval. They provide 125 XML documents, each of which contains papers
published in IEEE journals. The volume of total documents is approximately 500 mega bytes. In
our study, we assumed that the averages of the effective result depths were 2, 4, and 6, respectively.
The testing queries were classified into two parts: CO (content only) and CAS (content and
structure). Because CAS queries had been made for testing how efficiently search systems can
handle structural queries, we selected six testing queries (called Q1 to Q6) from the CO part. The
testing queries are shown in Table 1.

Figure 7: Elapsed times for searching query results on the DBLP XML document

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 200760

Figure 8 shows the elapsed times for searching query results when we used non-partitioned
indexes and partitioned indexes with partition factors 2, 3, 5, and 10, respectively. Figure 8(a) shows
the elapsed times, when the effective result depth was 2 and the partitioned indexes on depth 2 were
used. The elapsed times under the partitioned index structures were less than those under the non-
partitioned ones. Under the non-partitioned index structure, all combinations of the nodes in each
of the indexes for the query keywords were candidates for query results. Under the partitioned index
structure, only combinations of the nodes indexed in the same partitions became candidates for
query results. A number of partitions of partitioned indexes were not read, which reduced the times
significantly. When partitioned indexes with δ=10 were used, the elapsed times for processing
queries with non-partitioned indexes were reduced by at least 77% (Q2) and by at most 92% (Q6).
On average, 81% of the elapsed time was reduced. When the partitioned indexes with δ=5, δ=3, and
δ=2 were used, the average elapsed times were reduced by 67%, 44%, and 22%, respectively. As
partition factors increased, the elapsed times for searching query results decreased, because the
probability that the nodes having no effective least common ancestor are indexed in the same
partitions decreased.

Figure 8(b) shows the elapsed times for searching query results, when the effective result depth
was 4 and when the partitioned indexes on depth 4 were used. Similar to the above case, searching
with partitioned indexes was faster than searching with non-partitioned indexes for all the testing
queries. Furthermore, searching with partitioned indexes with a large partition factor was faster than
searching with the partitioned indexes with small partition factors. When we used partitioned
indexes with δ=10, the elapsed times for searching query results with non-partitioned indexes were
reduced by at least 70% (Q2), at most 88% (Q6), and 79% on average. When the partitioned indexes
with δ=5, δ=3, and δ=2 were used, the average elapsed times, on average, were reduced by 81%,
67%, and 43%, respectively.

Figure 8(c) shows the elapsed times when the effective result depth was 6 and we used the
partitioned indexes on depth 6. When we used partitioned indexes with δ=10, δ=5, δ=3, and δ=2,
the elapsed times for searching query results with non-partitioned indexes were reduced by 59%,
66%, 75%, and 60%, respectively. Searching with the partitioned indexes with δ=10 was slower
than that with the partitioned indexes with δ=5. Also, searching with the partitioned indexes with
δ=5 was slower than that with the partitioned indexes with δ=3. When the effective result depth was
deep (which requires a high δ value), a partition factor δ with a high value could degrade the system

Query Keywords Query Keywords

Q1 singular value decomposition Q4 information data visualization
technique hierarchy space

Q2 wireless security application Q5 concurrency control semantic
transaction management
application performance benefit

Q3 recommender system agent Q6 machine learning adaptive
algorithm probabilistic model
neural network support vector
machine

Table 1: Selected queries

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 2007 61

performance more than that with a low value. That was because high partition factor increased the
total number of partitions significantly when the effective result depth is deep. Given d=2, d=3, d=5,
and d=10, the total number of partitions are 62=36, 63 = 216, 65=7,776, and 610=60,466,176,

(a) d = 2

(b) d = 4

(c) d = 6

Figure 8: Elapsed times for searching query results I

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 200762

respectively. When there were too many partitions, the number of indexed nodes in a partition was
too small. Therefore, the number of nodes that were read by one disk access was also too small.

Now, we show the elapsed times for searching query result nodes that is effective to d’, with the
partitioned indexes physically constructed on d. We constructed non-partitioned indexes and
partitioned indexes on depths 2, 4, and 6 with partition factors 2 and 5, respectively (that is, seven
indexes were constructed physically). We assumed that the changed effective result depth is 4.

Figure 9(a) shows the elapsed times when we used the non-partitioned indexes and partitioned
indexes on depth 2, 4, and 6, with δ=2. When the non-partitioned indexes were used, our system
searched candidates for query results by considering all combinations of the nodes in each index of
query keywords, and returned only the nodes that are effective to 4 among the candidates. When the
partitioned indexes on depth 2 and 4 were used, the systems searched candidates for query results
by considering only the combinations of the nodes belonging to the same partition. The elapsed
times for searching query results with non-partitioned indexes were reduced by 22% (indexes on
depth 2) and 47% (indexes on depth 4). Note that the effective result depth was 4. The number of
combinations to be considered for query results was the smallest when partitioned indexes on depth
4 were used.

Figure 9: Elapsed times for searching query results II

(a) δ = 2

(b) δ = 5

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 2007 63

While finding query result nodes that are effective to depth 4 with the partitioned indexes on
depth 6, our search system virtually constructed partitioned indexes on depth 4. One virtual partition
is composed of 4, i.e., 2(6-4), partitions of the physical indexes on depth 6. Compared with the
partitioned indexes on depth 4, partitioned indexes on depth 6 caused the searching times to increase
by 46%, 58%, 25%, 31%, 19%, and 19% (Q1 to Q6), respectively. Nevertheless, when our system
used the partitioned indexes on depth 6, the searching times with non-partitioned indexes were
reduced by 23%, 10%, 29%, 0%, 26%, and 39%, respectively.

Figure 9(b) shows the searching times when we used the non-partitioned indexes and partitioned
indexes on depth 2, 4, and 6, with δ=5. The searching times with the indexes on depth 6 were greater
than those with partitioned indexes on depth 4 by 3.8 times, on average. However, the time for
merging and searching query results was faster than searching with non-partitioned indexes. As the
partition factor increases, the number of physical partitions to be merged into a virtual partition
increases. Therefore, when we used the partitioned indexes with δ=5, the time for merging was
more burdensome.

5. CONCLUSION
The effective result depths of XML documents are useful information. Under the conventional non-
partitioned index structures, the information has not been utilized at all. We presented how to
construct partitioned indexes on the effective result depths with a partition function. We also
presented the specific partition function PFd(n). Search systems can obtain query results by
considering only the combinations of the nodes in the same partitions of query keywords.

The times for searching query results were reduced significantly when the effective result depths
were greater than 0 and partitioned indexes were used. From our experiments, we learned the
following. First, as the number of partitions increased (within a limited level), the searching time
was reduced more. Second, as the number of query keywords increased, the searching time
increased under the non-partitioned index structure, but the time often decreased under our
partitioned index structure. That was because an empty partition of one partitioned index caused the
same partitions of many other indexes not to be read. Finally, when an effective result depth was
changed, using the partitioned indexes virtually constructed on the depth was less efficient using the
partitioned indexes physically constructed on the depth. However, using the partitioned indexes
virtually constructed on the depth is more efficient than using conventional non-partitioned indexes.

ACKNOWLEDGEMENTS
This research was supported by the Ministry of Information and Communication, Korea, under the
College Information Technology Research Center Support Program, grant number IITA-2005-
C1090-0502-0016.

This work was supported by the Brain Korea 21 Project in 2006.

REFERENCES
ANH, V., KRESTER, O. and MOFFAT, A. (2001): Vector-space ranking with effective early termination. In Proceedings of

the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval: 35–42.
BERKELYDB. (2005): The BerkelyDB System. http://www.sleepycat.com.
BOTEV, C. and SHANMUGASUNDARAM, J. (2005): Context-sensitive keyword search and ranking for XML. In

Proceedings of International Workshop on the Web and Databases: 115–120.
CARMEL, D., MAAREK, Y.S., MANDELBROD, M., MASS, Y. and SOFFER, A. (2003): Searching XML documents via

XML fragments. In Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in information retrieval: 151–158.

Adaptive Partitioned Indexes for Efficient XML Keyword Search

Journal of Research and Practice in Information Technology, Vol. 39, No. 3, August 200764

CLARK, J. and DEROSE, S. (1999): XML path language (XPATH) Version 1.0, http://www.w3.org/TR/1999/REC-xpath-
19991116.

COHEN, S., MAMON, J., KANZA, Y. and SAGIV, Y. (2003): XSEarch: A semantic search engine for XML. In
Proceedings of 29th International Conference on Very Large Data Bases: 45–46.

DBLP (2006): Computer Science Bibliography, http://www.informatik.uni-trier.de/~ley/db.
DEUTSCH, A., FERNANDEZ, M., FLORESCU, D., LEVY, A. and SUCIU, D. (1998): XML-QL: A query language for

XML, http://www.w3.org/TR/NOTE-xml-ql/
FLORESCU, D., KOSSMANN, D. and MANOLESCU, L. (2000): Integrating keyword search into XML Query

Processing. Computer Networks 33(1–6): 119–135.
FUHR, N. and GROBJOHANN, K. (2004): XIRQL: An XML query language based on information retrieval concepts.

ACM Transactions on Information Systems 22(2):313–356.
GUO, L., SHAO, F., BOTEV, C. and SHANMUGASUNDARAM, J. (2003): XRANK: Ranked keyword search over XML

documents. In Proceedings of the ACM SIGMOD International Conference on Management of Data: 16–27.
HRITIDIS, V., PAPAKONSTANTINOU, P. and BALMIN, A. (2003): Keyword proximity search on XML graph. In

Proceedings of the 19th International Conference on Data Engineering: 367–378.
INEX (2003): INitiative for the evaluation of XML retrieval, http://inex.is.informatik.uni-duisburg.de:2003/.
LI, Y., YU, C. and JAGADISH, H.V. (2004): Schema-free XQuery. In Proceedings of the 30th International Conference on

Very Large Data Bases: 72–83.
MOFFAT, A. and ZOBEL, J. (1996): Self-indexing inverted files for fast text retrieval. ACM Transactions on Database

Systems 14(4): 349–379.
ROBIE, J., LAPP, J. and SCHACH, D. (1998): XML query language (XQL), http://www.w3.org/TandS/QL/QL98

/pp/xql.html.
THEOBALD, A. and WEIKUM, G. (2002): The index-based XXL search engine for querying XML data with relevance

ranking. In Proceedings of the 8th International Conference on Extending Database Technology: 477–495.
XU, Y. and PAPAKONSTANTINOU, Y. (2005): Efficient keyword search for smallest LCAs in XML databases. In

Proceedings of the ACM SIGMOD international conference on Management of data: 527–538.

BIOGRAPHICAL NOTES
Sung Jin Kim is a post doctoral research fellow in the Department of
Computer Science at the University of California, Los Angeles, USA. He
received a PhD degree in computer science from Soongsil University, Korea,
in 2004. The title of his PhD thesis is “Efficient construction and
maintenance of web databases”. He was a post doctoral research fellow in
the Department of Computer Engineering at Seoul National University,
Korea (2004–2006). So far, he has developed a number of applications, such
as a web robot, a meta-search engine, an XML keyword search system, and
so on. His research interests include web databases, XML, and information
retrieval.

Hyungdong Lee is a senior engineer at Samsung Electronics in Korea. He
received a PhD degree in computer engineering from Seoul National
University, Korea, in 2005. His research interests include XML data
processing, knowledge discovery, information retrieval, and databases.

Hyoung-Joo Kim is a professor in the Department of Computer
Engineering at Seoul National University, Korea. He received a PhD degree
in computer science from the University of Texas at Austin, USA. During his
research, he has studied the object-oriented database. Currently, his research
interests include XML, semantic web, and bioinformatics.

Sung Jin Kim

Hyungdong Lee

Hyoung-Joo Kim

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

