
UCLA
Papers

Title
Efficient Exploration Without Localization

Permalink
https://escholarship.org/uc/item/6zj6j738

Authors
Batalin, Maxim
Sukhatme, Gaurav

Publication Date
2003-09-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6zj6j738
https://escholarship.org
http://www.cdlib.org/

Proerrdirw of the 1003 IEEE
loternational Conference on Robotics & AulomPtlon

Taipei, Taiwan, September 14-19, 2003

Efficient Exploration Without Localization
Maxim A. Batalin and Gaurav S. Sukhatme

Robotic Embedded Systems Laboratory
Center for Robotics and Embedded Systems

Computer Science Department
University of Southern California

Los Angeles, CA 90089, USA
maxim@robotics.usc.edu, gaurav@usc.edu

Abslract- We study the problem of exploring an unknown
environment using a single robot. The environment is large
enough (and possibly dynamic) that constant motion by
the robot is needed to cover the environment. We term
this the dynamic coverage problem. We present an efficient
minimalist algorithm which assumes that global information
is not available to the robot (neither a map, nor GPS).
Our algorithm uses markers which the robot drops off
as signposts to aid exploration. We conjecture that our
algorithm has a cover time better than O(nlogn), where the
n markers that are deployed form the vertices of a regular
graph. We provide experimental evidence in support of this
coMeeture. We show empirically that the performance of
our algorithm on graphs is similar to its performance in
simulation.

I. INTRODUCTION

The coverage problem [I] has been defined as the max-
imization of the total area covered by a robot’s sensors.
Coverage is important in many contexts such as tracking
unfriendly targets (e.g military operations), demining or
monitoring (e.g. security), and urban search and rescue
(USAR) in the aftermath of a natural or man-made disaster
(e.g. building rubble due to an earthquake or other causes).

The problem of coverage can be considered as a static
or more generally as a dynamic problem. The static
coverage problem is addressed by algorithms [2], [3],
[4] which are designed to deploy robot($ in a static
configuration, such that every point in the environment
is under the robots’ sensor shadow (i.e. covered) at every
instant of time. Clearly, for complete static coverage of
an environment the robot team should be larger than a
critical size (depending on environment size, complexity,
and robot sensor ranges). Determining the critical number
is difficult or impossible if the environment is unknown a
priori. Dynamic coverage, on the other hand, is addressed
by algorithms which explore and hence ’cover’ the en-
vironment with constant motion and neither settle to a
particular configuration [SI, nor necessarily to a particular
pattern of traversal.

In this paper we consider a single robot in an unknown,
planar environment. The environment is assumed to be
large enough, so that complete static coverage of the envi-
ronment is not possible. The robot must thus continually

0-7803-7736-2/03/$17.00 02003 IEEE 2714

move in order to observe all points in the environment
frequently. In other words we study the dynamic coverage
problem with a single robot.

Exploration, a problem closely related to coverage, has
been extensively studied [6], [7]. The frontier-based ap-
proach [6] concerns itself with incrementally constructing
a global occupancy map of the environment. The map is
analyzed to locate the ’frontiers’ between the free and
unknown space. Exploration proceeds in the direction of
the closest ’frontier’. The multi-robot version of the same
problem was addressed in [SI. The problem of coverage
was considered from the graph theoretic viewpoint in [9],
[IO]. In both cases the authors study the problem of dy-
namic single robot coverage on an environment consisting
of nodes and edges (a graph). The key result was that
the ability to tag a limited number of nodes (in some
cases only one node) with unique markers dramatically
improved the cover time. We note that [9], [lo] consider
the coverage problem, but in the process also create a
topological map of the graph being explored.

Our algorithm differs from the above mentioned ap-
proaches in a number of ways. We use neither a map, nor
localization in a shared frame of reference. Our algorithm
is based on deployment of static, communication-enahled,
markers into the environment by the robot. For purposes of
analysis in this paper we treat this collection of markers
as nodes of a graph even though no explicit adjacency
lists are maintained at each marker. There are four key
differences between our algorithm and the work reported
in [9], [lo]:

I) We do not assume the robot can navigate from one
marker to another (i.e. from one node to another in
the graph). The robot does not localize itself, nor has
a map of the environment (the structure of the graph
corresponding to the environment is not known to
the robot, nor does it construct it on the fly).

2) We assume the number of markers available for
drop-off is unlimited in [9], [lo] a limited number
of markers is used.

3) We assume that each marker being dropped off is
capable of simple computation and communication;
in [9], [IO], the markers are passive - they neither

mailto:maxim@robotics.usc.edu
mailto:gaurav@usc.edu

Sensors

Fig. 1. System Architecture showing Robot Behaviors

compute nor communicate.
4) We do not assume that markers need to be retrieved

in [9], [lo] retrieval and reuse of markers by the
robot is implied.

The markers we use, act as support infrastructure which
the mobile robot uses to solve the coverage problem
efficiently. The robot explores the environment, and based
on certain local criteria, drops a marker into the envi-
ronment, from time to time. Each marker is equipped
with a small processor and a radio of limited range. Our
algorithm performs the coverage task successfully using
only local sensing and local interactions between the robot
and markers.

We compare the performance of our algorithm with two
theoretical approaches - a random walk (RW), and a depth-
first search (DFS). We also compare our algorithm and the
limited marker-based graph algorithm given in [91. Our al-
gorithm performs significantly better than [9] and is close
to the performance of DFS (known to he optimal when the
graph is given). Our algorithm significantly outperforms a
random walk of the environment, as expected. We report
on trials with a simulator which show similar results.

11. SYSTEM ARCHITECTURE

Our algorithm uses two entities: the markers and the
mobile robot. The task of each marker is to recommend
a locally preferred direction of exploration for the robot
within its communication range. Thus each marker acts
as a local signpost telling the robot which direction to
go next. However, the robot treats this information as
a recommendation, and combines this advice with local
range sensing to make a decision about which direction
to actually pursue.

Each marker has a state associated with the four car-
dinal directions (South, East, North, West). The choice
of four directions is arbitrary. It implies that the marker
is equipped with a 2 bit compass. For each direction,
the marker maintains a state and a counter. A state can
be either OPEN or EXPLORED, signifying whether the

particular direction was explored by the robot previously.
A counter C is associated with each direction; it stores
the time since that particular direction was last explored.
When the robot is in the vicinity of a marker, the marker
emits a suggested direction the robot should take. This
implies that the robot’s compass and the marker’s compass
agree locally on their measurement of direction. Given the
coarse coding of direction we have chosen, this is not a
problem io realistic settings. The algorithm used by the
markers to compute the suggested direction is simple. All
OPEN directions are recommended first (in order from
South to West), followed by the EXPLORED directions
with largest last update value (largest value of C).

The mobile robot is programmed using a behavior-
based approach [1 I]. Arbitration [121 is used for behavior
coordination. Priorities are assigned to every behavior
a priori. As shown in Figure 1, there are four behav-
iors in the system: ObstacleAvoidance, AtBeacon,
DeployBeacon and SearchBeacon. In addition to
priority, every behavior has an activation level, which
decides, given the sensory input, whether the behavior
should be in an active or passive state (1 or 0 respectively).
Each behavior computes the product of its activation level
and corresponding priority and sends the result to the Con-
troller, which picks the maximum value, and assigns the
corresponding behavior to command the Motor Controller
for the next cycle.

The robot remembers the identification of the marker
it heard most recently. If, during motion, a new marker
is heard, (i.e. the robot moved to the communication
zone of a different marker), AtBeacon is triggered. This
behavior analyzes the data messages received from the
current marker and orients the robot along the suggested
direction. In addition, the robot sends an update message
to the marker telling it to mark the direction from which
the robot approached the beacon as EXPLORED. This
ensures that the direction of recent approach will not
be recommended soon. We term this the last-neighbor-
update. After the robot has been oriented in a new
direction, it checks its range sensor for obstacles. If the
scan does not return any obstacles, the robot proceeds in
the suggested direction, while sending an update beacon
message (upon receiving this message the current marker
updates the state of corresponding direction to EXPLORED
and resets the corresponding C value). If, however, the
suggested direction is obstructed (something is in the
way), AtBeacon sends a broadcast message updating
the marker with this information and requests a new sug-
gested direction. ObstacleAvoidance is triggered if
an obstacle is detected in front of the robot, in which case
an avoidance maneuver takes place. SearchBeacon is
triggered after AtBeacon chooses and positions the robot
in a certain direction. The task of SearchBeacon is
to travel a predetermined distance. DeployBeacon is

271 5

, (a) Comparison of Cover 7ime n2 curve, nlnn curve. DFS,
RW and OUI algorithm

(b) A compuison between DFS and our algorithm. This graph
is a magnified view of (a)

Fig. 2. Comparison of Graph Coverage Algorithms. The nlnn curve is shown for reference

triggered if the robot does not receive a suggestion (i.e. a
recommended direction to traverse) from any beacon after
a certain timzout value. In this case the robot deploys a
new beacon into the environment. Note that the algorithm
and the architectures for the robot and marker are similar
to those presented in [SI. The major difference is the
addition of the last-neighbor-update rule, which reduces
redundant suggestions and hence, improves coverage per-
formance.

111. THE GRAPH MODEL

For purposes of analysis, we consider an open environ-
ment (with no obstacles). In this case, given our marker
deployment strategy described in the previous section, we
can model the steady state spatial configuration of the
markers as a regular square lattice. In the general case the
deployed nodes would form a graph G = (V ,E) , where
V is a set of vertices (e.g. non overlapping areas of the
environment) and E is a set of edges which connect areas
of the environment. The cover time [13], is the time it
takes a robot to visit every node in the graph. The problem
of coverage on the graph is to minimize the average cover
time, considering every element of V as a starting point.

In the most simple case where the environment is
unknown, and localization cannot be used, and there are no
markers available, the problem of coverage can be solved
by random walk (RW). It has been shown [13] that the
cover time of a random walk on a regular graph of n
nodes is bounded below by n In n and above by 2n2. If we
assume that passive markers can he used, and the graph
G = (V,E) is known (a topological map is available)
and the robot has markers of three independent colors,
then the problem of coverage can be solved optimally by
applying DFS which is linear in n. DFS assumes that all
resources are available - markers, map, localization and
perfect navigation.

In [91 the problem of coverage is considered in the
context of mapping a graph-like environment with n
vertices. Their algorithm explores the environment and
constructs a topological map on the fly. The assumptions
of the algorithm are that the robot has k(k < m) markers,
and perfect localization and navigation within the graph.
The cover time of their algorithm is bounded by O(n2).
It is important to note that the problem addressed in [9]
is more complex than simple coverage, since they build a
map while exploring.

We conducted experiments running RW, DFS and our
algorithm on graphs with n = 25,49 and 100 nodes.
For every experiment each vertex of the graph was tried
as the starting point. We conducted 50 experiments per
starting point. The average time over all experiments was
computed. The results of the experiments are presented in
Figure 2. The figure also shows the n l o g n curve and the
n2 curve for reference. These experiments lead us to

Conjecture 1: The asymptotic cover time of our algo-
rithm is less than O(nlogn).

While our algorithm is designed for coverage, it can be
applied to the problem of mapping as well. In order to con-
struct a complete map of a graph G under the assumption
that a robot executes our algorithm, a robot has to visit
every vertex of the graph and follow every direction of
every marker (which would guarantee that every edge is
traversed and mapped). Suppose our algorithm executes
on a graph G once. It is obvious that every vertex is
covered and at least one direction per marker is marked as
explored. Thus, after the first execution of the algorithm,
the number of unexplored directions at every vertex is
at most d - 1, where d is the maximum degree in G .
Note, that at a given vertex, while there are unexplored
directions, an algorithm will choose one in sequence.

271 6

(4 25m2 (b) 49m2 (C) loom2

Fig. 3.
magnitude.

Sirnulalion results for different environment sizes acro6s 50 Uials. Our algorithm consislently outperforms a random we& by an order of

Hence, after at most d executions of the algorithm every
vertex would be covered and every direction would be
marked as explored, implying that every edge is covered
as well. Thus, the mapping time M T can be bounded by:

M T 5 d x m+x(CT;) (1)

where d is the largest vertex degree (4 in our case) and
CTi is the i - th cover time. This leads us to

Conjecture 2 Our algorithm produces a map of the
environment in asymptotic time faster than O(n log n).

Let us consider different tradeoffs between the above
mentioned techniques. As mentioned earlier, the clear
performance boundaries for coverage task are given by
RW (upper) and DFS (lower). The more interesting com-
parisons are between our algorithm and DFS and our
algorithm and an algorithm with a limited number of
passive markers [9].

Figure 2b shows that the asymptotic performance of
our algorithm is similar to DFS. Note that in order
to determine the color of neighboring vertices and to
navigate perfectly from node to node, DFS assumes that
the map of the environment is available and the robot
is localized. Our algorithm, on the other hand, does not
have access to global information and the robot does not
localize itself. The markers used in our algorithm are more
complicated than those used in DFS, and the cover times
are asymptotically somewhat larger than the cover times
of DFS.

In [9] the algorithm builds a topological map of the
environment and assumes perfect navigation (and thus,
localization) on the graph within constructed map. The
markers are very simple (the only function is to mark the
vertex) and the robot cannot differentiate between them.
In addition to markers the algorithm assumes that there
exists a local enumeration of edges. The cover time of this
algorithm, however, is bounded by O(n2). Our algorithm,

on the other hand, does not have a map and the robot does
not localize itself. Another important difference is that we
assume that the number of markers available to us is equal
to the number of vertices. In addition, the markers used in
our algorithm are more complex, since they keep a certain
state per direction. and are uniquely identifiable. The cover
time of our algorithm, however, is conjectured to be less
than n logn . Thus, the apparent trade off is using a large
number of "smart" markers (and no global information
or localization) vs. a limited number of simple markers
(with mapping and partial localization within the graph).
The cover time achieved by our algorithm is clearly better.
However, if the markers are a precious resource, the
algorithm described in [9] would be preferred.

IV. SIMULATION EXPERIMENTS
In our experiments we used the Player/Stage [14], [I51

simulation engine populated with a simulated Pioneer
2DX mobile robot equipped with two 180" field-of-view
planar laser range finders positioned back-to-back (equiv-
alent to a 2D omnidirectional laser range finder), wireless
communication and a set of markers. The implementation
of the algorithm in simulation proceeds as follows. The
robot explores the environment in a direction suggested by
the last heard marker until it does not receive a message
from any of the markers. In this case a new marker
is deployed into the environment, The robot continues
to explore as long as there are OPEN directions left.
If all regions are EXPLORED, then the robot picks the
direction which was least recently explored. As discussed
in Section 11, decisions of which direction to explore next
are made by the markers. The robots, however, may alter
those decisions if real world observations (through laser
data analysis) of obstacles are made. In addition, the last-
neighbor-update rule prevents the robot from going back
in the direction from which it came recently. Values for
communication radius and range of the laser were set to
1500mm in the simulations. Figure 3 shows the cover

271 7

Fig. 4. Average cover times for three different Cd 4 z e s in simulation.
Environment sizes are 25m2, 49mZ and lOOm B .

times for the RW and our algorithm on environments of
different sizes: 25m2, 49m2 and 100mZ. For every grid
size 50 experiments were conducted for both algorithms.
The experiments show that OUI algorithm outperforms UW
and is more stable. In addition, Figure 4 shows the average
cover times for three different grid sizes. Note the direct
correspondence between the results obtained on the graph
world (Figure 3) and the results of the simulation. Both
suppolt our conjecture that the cover time of our algorithm
is less than O(nlogn).

V. DISCUSSION
We presented an algorithm for the dynamic coverage

problem using a robot. We examined the trade offs that
should be considered in choosing one algorithm over
the other to solve this problem. The hounds for the
coverage task are given by random walk (the robot has no
information and explores randomly) and depth first search
(a map of the environment is available in the form of a
graph) which solves the problem optimally.

The data shown in Figure 2, suggest strongly that
our algorithm asymptotically outperforms the k marker
algorithm presented in [Yl. This is due to two reasons.
In [Y] it is assumed that the number of markers is limited
and that the localization is perfect within the topological
map. Because of the limitation imposed on the number
of markers, their approach assumes that the robot is
capable of not only detecting the markers, but also of
retrieving them. Our algorithm, on the contrary, assumes
that the number of markers is not limited'. In addition we
restrict our solution to the case where neither a map nor
localization is used.

In addition, it is shown in [YJ that if the number k
of available markers reduces, the cover time increases
rapidly. Therefore, in dynamic environments the perfor-
mance of the algorithm decreases drastically even if one
marker is destroyed. Whereas in our algorithm such a

' l k s assumption might be reasonable in the light of modern technol-
ow U61

Fig. 6.
markm

Screen shots of a preliminary experiment with a robor and

problem does not exist, since a new marker will be
deployed in place of the destroyed one automatically.

We verified the performance of our algorithm and its
asymptotic behavior in simulation. There exists a direct
correspondence between the results obtained from the
theoretical analysis (coverage on the graph) and the data
from simulation experiments. Note also, that even though
the latlice grid was considered as a graph environment
for the theoretical analysis, in practice the network of
deployed markers is not required to be a perfect grid.
Figure 5 shows a series of screen shots taken from one of
the trials of the simulation in the 49m2 environment. Note
also that the performance of our algorithm is not affected,
since it does not rely on localization or mapping.

VI. CONCLUSION AND FUTURE WORK

The theoretical analysis on graphs and verification in
simulation shows that trade offs in the assumptions can
affect cover time significantly. Simple algorithms l i e UW
or DFS can be used for coverage, hut only in the extreme
cases as described above. In case, where mapping and
localization are not available, but the number of available
markers is unlimited, our algorithm appears to outperform
others.

Currently we are conducting thorough real-robot exper-
iments to validate our algorithm. Figure 6 shows snapshots
from an early trial with a physical robot deploying mark-
ers.

In future work, we will investigate a formal bound on
the performance of our algorithm. In addition, we plan
to exploit the deployed markers for other behaviors. One
example is recovery, when after being deployed, every
robot uses the network to return to "home base". We have
made some progress towards this goal [17]. The propaga-
tion of information though the network of markers could
also dramatically increase performance of the coverage
algorithm itself (e.g. by dynamically adjusting the marker
drop-off distance, optimally guide the robot towards less
explored parts of the environment, etc.).

271 8

. . . m .

(b)

I _ . : : ~ .

Fig. 5.
perfectly square lattice

Deployment of marken in a remsenative simulation trial. Note that due to noise added in simulation, the deployed nodes do not form a

VII. ACKNOWLEDGMENTS

This work is supported in part by DARPA grant
DABT63-99-1-0015 under the Mobile Autonomous Robot
Software (MARS) program and NSF grants ANI-0082498,
11s-0133947. and EIA-0121141.

VIII. REFERENCES

[I] D. W. Gage, “Command control for many-robot
systems,” in the Nineteenth Annual AUVS Technical
Symposium, Huntsville, Alabama, USA, 1992, pp.
22-24.

[2] J. O’Rourke, A n Gallery Theorems and Algorithms,
Oxford University Press, New York, 1987.

131 A. Howard, M. J. Mataric, and G. S. Sukhatme,
“Mobile sensor network deployment using potential
fields: A distributed, scalable solution to tbe area
coverage problem,” in Pmc. of 6th International
Symposium on Distributed Autonomous Robotic Sys-
tems, Fukuoka, Japan, 2002, pp. 299-308.

“Spreading
out: A local approach to multi-robot coverage,” in
Proc. of 6th International Symposium on Distributed
Autonomous Robotic Systems, Fukuoka, Japan, 2002,
pp. 373-382.

[5] M. A. Batalin and G. S . Sukhatme, “Sensor cover-
age using mobile robots and stationary nodes,’’ in
SPIE2002,2002, vol. 4868, pp. 269-276.

[6] B. Yamauchi, “Frontier-based approach for au-
tonomous exploration,” in In Proceedings of the
IEEE International Symposium on Computational
Intelligence, Robotics and Automation, 1997, pp.
146151.

[7] A. Zelinsky, “A mobile robot exploration algorithm:’
in IEEE Transactions on Robotics and Automation,

[8] W. Burgard, D. Fox, M. Moors, R. Simmons, and
S. Thrun, “Collaborative multirobot exploration:’ in
Pmc. of IEEE International Conferenceon Robotics
andAuzomation (ICRAj, 2000, vol. 1, pp, 476-481.

[4] M. A. Batalin and G. S. Sukhatme,

1992, V O ~ . 8, pp. 707-717.

[91 G . Dudek, M. Jenkin, E. Milios, and D. Wilkes,
“Robotic exploration as graph construction,” in IEEE
Transactions on Robotics and Automation, 7-6, 1991.

[IO] M. A. Bender, A. Femandez, D. Ron, A. Sahai,
and S. Vadhan, “The power of a pebble: Exploring
and mapping directed graphs,” in Annual ACM
Symposium on Theory of Computing (STOC ’98j,

[111 M. J. Mataric, “Behavior-based control: Exam-
ples from navigation, learning, and group behavior,”
Journal of Experimental and Theoretical Artificial
Intelligence, special issue on Sofhyare Architectures
f o r Physical Agents, vol. 9, no. 2-3, pp. 323-336,
1997.

[121 P. Pirjanian, “Behavior coordination mechanisms -
state-of-the-art,” Tech. Rep. IRIS-99-375, Institute
for Robotics and Intelligent Systems, University of
Southern California, October 1999.

U31 L. Lovasz, Random Walks on Graphs: A Survey,
vol. 2 of Combinatorics, Paul Erdos is Eighty, pp.
1 4 6 , Kcsrthely, Hungary, 1993.

[141 B. P. Gerkey, R.T. Vaughan, K. Stay, A. Howard,
G.S. Sukhatme, and M.J. Mataric, “Most valuable
player: A robot device server for distributed control,”
in IEEWRSJ Intl. Con$ On Intelligent Robots and
Sysfems UROSJ, Wailea, Hawaii, 2001.

[15] R.T. Vaughan, “Stage: a multiple robot simulator,”
Tech. Rep. IRIS-00.393, Institute for Robotics and
Intelligent Systems, University of Southern Califor-
nia, 2000.

[161 K. S. J. Pister, J. M. Kahn, and B. E. Boser, “Smart
dust: Wireless networks of millimeter-scale sensor
nodes,” Electmnics Research Laboratory Research
Summary, 1999.

“Coverage,
exploration and deployment by a mobile robot and
communication network,” in The 2nd International
Workshop on Information Processing in Sensor Net-
works (IPSN ’031, Palo Alto, 2003.

1998.

Cl71 M. A. Batalin and G. S. Sukhatme,

271 9

