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Abslract- We study the problem of exploring an unknown 
environment using a single robot. The environment is large 
enough (and possibly dynamic) that constant motion by 
the robot is needed to cover the environment. We term 
this the dynamic coverage problem. We present an efficient 
minimalist algorithm which assumes that global information 
is not available to the robot (neither a map, nor GPS). 
Our algorithm uses markers which the robot drops off 
as signposts to aid exploration. We conjecture that our 
algorithm has a cover time better than O(nlogn), where the 
n markers that are deployed form the vertices of a regular 
graph. We provide experimental evidence in support of this 
coMeeture. We show empirically that the performance of 
our algorithm on graphs is similar to its performance in 
simulation. 

I. INTRODUCTION 

The coverage problem [I]  has been defined as the max- 
imization of the total area covered by a robot’s sensors. 
Coverage is important in many contexts such as tracking 
unfriendly targets (e.g military operations), demining or 
monitoring (e.g. security), and urban search and rescue 
(USAR) in the aftermath of a natural or man-made disaster 
(e.g. building rubble due to an earthquake or other causes). 

The problem of coverage can be considered as a static 
or more generally as a dynamic problem. The static 
coverage problem is addressed by algorithms [2], [3], 
[4] which are designed to deploy robot($ in a static 
configuration, such that every point in the environment 
is under the robots’ sensor shadow (i.e. covered) at every 
instant of time. Clearly, for complete static coverage of 
an environment the robot team should be larger than a 
critical size (depending on environment size, complexity, 
and robot sensor ranges). Determining the critical number 
is difficult or impossible if the environment is unknown a 
priori. Dynamic coverage, on the other hand, is addressed 
by algorithms which explore and hence ’cover’ the en- 
vironment with constant motion and neither settle to a 
particular configuration [SI, nor necessarily to a particular 
pattern of traversal. 

In this paper we consider a single robot in an unknown, 
planar environment. The environment is assumed to be 
large enough, so that complete static coverage of the envi- 
ronment is not possible. The robot must thus continually 
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move in order to observe all points in the environment 
frequently. In other words we study the dynamic coverage 
problem with a single robot. 

Exploration, a problem closely related to coverage, has 
been extensively studied [6], [7]. The frontier-based ap- 
proach [6] concerns itself with incrementally constructing 
a global occupancy map of the environment. The map is 
analyzed to locate the ’frontiers’ between the free and 
unknown space. Exploration proceeds in the direction of 
the closest ’frontier’. The multi-robot version of the same 
problem was addressed in [SI. The problem of coverage 
was considered from the graph theoretic viewpoint in [9], 
[IO]. In both cases the authors study the problem of dy- 
namic single robot coverage on an environment consisting 
of nodes and edges (a graph). The key result was that 
the ability to tag a limited number of nodes (in some 
cases only one node) with unique markers dramatically 
improved the cover time. We note that [9], [lo] consider 
the coverage problem, but in the process also create a 
topological map of the graph being explored. 

Our algorithm differs from the above mentioned ap- 
proaches in a number of ways. We use neither a map, nor 
localization in a shared frame of reference. Our algorithm 
is based on deployment of static, communication-enahled, 
markers into the environment by the robot. For purposes of 
analysis in this paper we treat this collection of markers 
as nodes of a graph even though no explicit adjacency 
lists are maintained at each marker. There are four key 
differences between our algorithm and the work reported 
in [9], [lo]: 

I )  We do not assume the robot can navigate from one 
marker to another (i.e. from one node to another in 
the graph). The robot does not localize itself, nor has 
a map of the environment (the structure of the graph 
corresponding to the environment is not known to 
the robot, nor does it construct it on the fly). 

2) We assume the number of markers available for 
drop-off is unlimited in [9], [lo] a limited number 
of markers is used. 

3) We assume that each marker being dropped off is 
capable of simple computation and communication; 
in [9], [IO], the markers are passive - they neither 
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Sensors 

Fig. 1. System Architecture showing Robot Behaviors 

compute nor communicate. 
4) We do not assume that markers need to be retrieved 

in [9], [lo] retrieval and reuse of markers by the 
robot is implied. 

The markers we use, act as support infrastructure which 
the mobile robot uses to solve the coverage problem 
efficiently. The robot explores the environment, and based 
on certain local criteria, drops a marker into the envi- 
ronment, from time to time. Each marker is equipped 
with a small processor and a radio of limited range. Our 
algorithm performs the coverage task successfully using 
only local sensing and local interactions between the robot 
and markers. 

We compare the performance of our algorithm with two 
theoretical approaches - a random walk (RW), and a depth- 
first search (DFS). We also compare our algorithm and the 
limited marker-based graph algorithm given in [91. Our al- 
gorithm performs significantly better than [9] and is close 
to the performance of DFS (known to he optimal when the 
graph is given). Our algorithm significantly outperforms a 
random walk of the environment, as expected. We report 
on trials with a simulator which show similar results. 

11. SYSTEM ARCHITECTURE 

Our algorithm uses two entities: the markers and the 
mobile robot. The task of each marker is to recommend 
a locally preferred direction of exploration for the robot 
within its communication range. Thus each marker acts 
as a local signpost telling the robot which direction to 
go next. However, the robot treats this information as 
a recommendation, and combines this advice with local 
range sensing to make a decision about which direction 
to actually pursue. 

Each marker has a state associated with the four car- 
dinal directions (South, East, North, West). The choice 
of four directions is arbitrary. It implies that the marker 
is equipped with a 2 bit compass. For each direction, 
the marker maintains a state and a counter. A state can 
be either OPEN or EXPLORED, signifying whether the 

particular direction was explored by the robot previously. 
A counter C is associated with each direction; it stores 
the time since that particular direction was last explored. 
When the robot is in the vicinity of a marker, the marker 
emits a suggested direction the robot should take. This 
implies that the robot’s compass and the marker’s compass 
agree locally on their measurement of direction. Given the 
coarse coding of direction we have chosen, this is not a 
problem io realistic settings. The algorithm used by the 
markers to compute the suggested direction is simple. All 
OPEN directions are recommended first (in order from 
South to West), followed by the EXPLORED directions 
with largest last update value (largest value of C). 

The mobile robot is programmed using a behavior- 
based approach [ 1 I]. Arbitration [ 121 is used for behavior 
coordination. Priorities are assigned to every behavior 
a priori. As shown in Figure 1,  there are four behav- 
iors in the system: ObstacleAvoidance, AtBeacon, 
DeployBeacon and SearchBeacon. In addition to 
priority, every behavior has an activation level, which 
decides, given the sensory input, whether the behavior 
should be in an active or passive state (1 or 0 respectively). 
Each behavior computes the product of its activation level 
and corresponding priority and sends the result to the Con- 
troller, which picks the maximum value, and assigns the 
corresponding behavior to command the Motor Controller 
for the next cycle. 

The robot remembers the identification of the marker 
it heard most recently. If, during motion, a new marker 
is heard, (i.e. the robot moved to the communication 
zone of a different marker), AtBeacon is triggered. This 
behavior analyzes the data messages received from the 
current marker and orients the robot along the suggested 
direction. In addition, the robot sends an update message 
to the marker telling it to mark the direction from which 
the robot approached the beacon as EXPLORED. This 
ensures that the direction of recent approach will not 
be recommended soon. We term this the last-neighbor- 
update. After the robot has been oriented in a new 
direction, it checks its range sensor for obstacles. If the 
scan does not return any obstacles, the robot proceeds in 
the suggested direction, while sending an update beacon 
message (upon receiving this message the current marker 
updates the state of corresponding direction to EXPLORED 
and resets the corresponding C value). If, however, the 
suggested direction is obstructed (something is in the 
way), AtBeacon sends a broadcast message updating 
the marker with this information and requests a new sug- 
gested direction. ObstacleAvoidance is triggered if 
an obstacle is detected in front of the robot, in which case 
an avoidance maneuver takes place. SearchBeacon is 
triggered after AtBeacon chooses and positions the robot 
in a certain direction. The task of SearchBeacon is 
to travel a predetermined distance. DeployBeacon is 
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, (a) Comparison of Cover 7ime n2 curve, nlnn curve. DFS, 
RW and OUI algorithm 

(b) A compuison between DFS and our algorithm. This graph 
is a magnified view of (a) 

Fig. 2. Comparison of Graph Coverage Algorithms. The nlnn curve is shown for reference 

triggered if the robot does not receive a suggestion (i.e. a 
recommended direction to traverse) from any beacon after 
a certain timzout value. In this case the robot deploys a 
new beacon into the environment. Note that the algorithm 
and the architectures for the robot and marker are similar 
to those presented in [SI. The major difference is the 
addition of the last-neighbor-update rule, which reduces 
redundant suggestions and hence, improves coverage per- 
formance. 

111. THE GRAPH MODEL 

For purposes of analysis, we consider an open environ- 
ment (with no obstacles). In this case, given our marker 
deployment strategy described in the previous section, we 
can model the steady state spatial configuration of the 
markers as a regular square lattice. In the general case the 
deployed nodes would form a graph G = (V ,E) ,  where 
V is a set of vertices (e.g. non overlapping areas of the 
environment) and E is a set of edges which connect areas 
of the environment. The cover time [13], is the time it 
takes a robot to visit every node in the graph. The problem 
of coverage on the graph is to minimize the average cover 
time, considering every element of V as a starting point. 

In the most simple case where the environment is 
unknown, and localization cannot be used, and there are no 
markers available, the problem of coverage can be solved 
by random walk (RW). It has been shown [13] that the 
cover time of a random walk on a regular graph of n 
nodes is bounded below by n In n and above by 2n2. If we 
assume that passive markers can he used, and the graph 
G = (V,E)  is known (a topological map is available) 
and the robot has markers of three independent colors, 
then the problem of coverage can be solved optimally by 
applying DFS which is linear in n. DFS assumes that all 
resources are available - markers, map, localization and 
perfect navigation. 

In [91 the problem of coverage is considered in the 
context of mapping a graph-like environment with n 
vertices. Their algorithm explores the environment and 
constructs a topological map on the fly. The assumptions 
of the algorithm are that the robot has k(k < m) markers, 
and perfect localization and navigation within the graph. 
The cover time of their algorithm is bounded by O(n2). 
It is important to note that the problem addressed in [9] 
is more complex than simple coverage, since they build a 
map while exploring. 

We conducted experiments running RW, DFS and our 
algorithm on graphs with n = 25,49 and 100 nodes. 
For every experiment each vertex of the graph was tried 
as the starting point. We conducted 50 experiments per 
starting point. The average time over all experiments was 
computed. The results of the experiments are presented in 
Figure 2. The figure also shows the n l o g n  curve and the 
n2 curve for reference. These experiments lead us to 

Conjecture 1: The asymptotic cover time of our algo- 
rithm is less than O(nlogn).  

While our algorithm is designed for coverage, it can be 
applied to the problem of mapping as well. In order to con- 
struct a complete map of a graph G under the assumption 
that a robot executes our algorithm, a robot has to visit 
every vertex of the graph and follow every direction of 
every marker (which would guarantee that every edge is 
traversed and mapped). Suppose our algorithm executes 
on a graph G once. It is obvious that every vertex is 
covered and at least one direction per marker is marked as 
explored. Thus, after the first execution of the algorithm, 
the number of unexplored directions at every vertex is 
at most d - 1, where d is the maximum degree in G .  
Note, that at a given vertex, while there are unexplored 
directions, an algorithm will choose one in sequence. 

271 6 



(4 25m2 (b) 49m2 (C) loom2 

Fig. 3. 
magnitude. 

Sirnulalion results for different environment sizes acro6s 50 Uials. Our algorithm consislently outperforms a random we& by an order of 

Hence, after at most d executions of the algorithm every 
vertex would be covered and every direction would be 
marked as explored, implying that every edge is covered 
as well. Thus, the mapping time M T  can be bounded by: 

M T  5 d x m+x(CT;) (1) 

where d is the largest vertex degree (4 in our case) and 
CTi is the i - th  cover time. This leads us to 

Conjecture 2 Our algorithm produces a map of the 
environment in asymptotic time faster than O(n  log n). 

Let us consider different tradeoffs between the above 
mentioned techniques. As mentioned earlier, the clear 
performance boundaries for coverage task are given by 
RW (upper) and DFS (lower). The more interesting com- 
parisons are between our algorithm and DFS and our 
algorithm and an algorithm with a limited number of 
passive markers [9]. 

Figure 2b shows that the asymptotic performance of 
our algorithm is similar to DFS. Note that in order 
to determine the color of neighboring vertices and to 
navigate perfectly from node to node, DFS assumes that 
the map of the environment is available and the robot 
is localized. Our algorithm, on the other hand, does not 
have access to global information and the robot does not 
localize itself. The markers used in our algorithm are more 
complicated than those used in DFS, and the cover times 
are asymptotically somewhat larger than the cover times 
of DFS. 

In [9] the algorithm builds a topological map of the 
environment and assumes perfect navigation (and thus, 
localization) on the graph within constructed map. The 
markers are very simple (the only function is to mark the 
vertex) and the robot cannot differentiate between them. 
In addition to markers the algorithm assumes that there 
exists a local enumeration of edges. The cover time of this 
algorithm, however, is bounded by O(n2).  Our algorithm, 

on the other hand, does not have a map and the robot does 
not localize itself. Another important difference is that we 
assume that the number of markers available to us is equal 
to the number of vertices. In addition, the markers used in 
our algorithm are more complex, since they keep a certain 
state per direction. and are uniquely identifiable. The cover 
time of our algorithm, however, is conjectured to be less 
than n logn .  Thus, the apparent trade off is using a large 
number of "smart" markers (and no global information 
or localization) vs. a limited number of simple markers 
(with mapping and partial localization within the graph). 
The cover time achieved by our algorithm is clearly better. 
However, if the markers are a precious resource, the 
algorithm described in [9] would be preferred. 

IV. SIMULATION EXPERIMENTS 
In our experiments we used the Player/Stage [14], [I51 

simulation engine populated with a simulated Pioneer 
2DX mobile robot equipped with two 180" field-of-view 
planar laser range finders positioned back-to-back (equiv- 
alent to a 2D omnidirectional laser range finder), wireless 
communication and a set of markers. The implementation 
of the algorithm in simulation proceeds as follows. The 
robot explores the environment in a direction suggested by 
the last heard marker until it does not receive a message 
from any of the markers. In this case a new marker 
is deployed into the environment, The robot continues 
to explore as long as there are OPEN directions left. 
If all regions are EXPLORED, then the robot picks the 
direction which was least recently explored. As discussed 
in Section 11, decisions of which direction to explore next 
are made by the markers. The robots, however, may alter 
those decisions if real world observations (through laser 
data analysis) of obstacles are made. In addition, the last- 
neighbor-update rule prevents the robot from going back 
in the direction from which it came recently. Values for 
communication radius and range of the laser were set to 
1500mm in the simulations. Figure 3 shows the cover 
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Fig. 4. Average cover times for three different Cd 4 z e s  in simulation. 
Environment sizes are 25m2, 49mZ and lOOm B . 

times for the RW and our algorithm on environments of 
different sizes: 25m2, 49m2 and 100mZ. For every grid 
size 50 experiments were conducted for both algorithms. 
The experiments show that OUI algorithm outperforms UW 
and is more stable. In addition, Figure 4 shows the average 
cover times for three different grid sizes. Note the direct 
correspondence between the results obtained on the graph 
world (Figure 3) and the results of the simulation. Both 
suppolt our conjecture that the cover time of our algorithm 
is less than O(nlogn). 

V. DISCUSSION 
We presented an algorithm for the dynamic coverage 

problem using a robot. We examined the trade offs that 
should be considered in choosing one algorithm over 
the other to solve this problem. The hounds for the 
coverage task are given by random walk (the robot has no 
information and explores randomly) and depth first search 
(a map of the environment is available in the form of a 
graph) which solves the problem optimally. 

The data shown in Figure 2, suggest strongly that 
our algorithm asymptotically outperforms the k marker 
algorithm presented in [Yl. This is due to two reasons. 
In [Y] it is assumed that the number of markers is limited 
and that the localization is perfect within the topological 
map. Because of the limitation imposed on the number 
of markers, their approach assumes that the robot is 
capable of not only detecting the markers, but also of 
retrieving them. Our algorithm, on the contrary, assumes 
that the number of markers is not limited'. In addition we 
restrict our solution to the case where neither a map nor 
localization is used. 

In addition, it is shown in [YJ that if the number k 
of available markers reduces, the cover time increases 
rapidly. Therefore, in dynamic environments the perfor- 
mance of the algorithm decreases drastically even if one 
marker is destroyed. Whereas in our algorithm such a 

' l k s  assumption might be reasonable in the light of modern technol- 
ow U61 

Fig. 6. 
markm 

Screen shots of a preliminary experiment with a robor and 

problem does not exist, since a new marker will be 
deployed in place of the destroyed one automatically. 

We verified the performance of our algorithm and its 
asymptotic behavior in simulation. There exists a direct 
correspondence between the results obtained from the 
theoretical analysis (coverage on the graph) and the data 
from simulation experiments. Note also, that even though 
the latlice grid was considered as a graph environment 
for the theoretical analysis, in practice the network of 
deployed markers is not required to be a perfect grid. 
Figure 5 shows a series of screen shots taken from one of 
the trials of the simulation in the 49m2 environment. Note 
also that the performance of our algorithm is not affected, 
since it does not rely on localization or mapping. 

VI. CONCLUSION AND FUTURE WORK 

The theoretical analysis on graphs and verification in 
simulation shows that trade offs in the assumptions can 
affect cover time significantly. Simple algorithms l i e  UW 
or DFS can be used for coverage, hut only in the extreme 
cases as described above. In case, where mapping and 
localization are not available, but the number of available 
markers is unlimited, our algorithm appears to outperform 
others. 

Currently we are conducting thorough real-robot exper- 
iments to validate our algorithm. Figure 6 shows snapshots 
from an early trial with a physical robot deploying mark- 
ers. 

In future work, we will investigate a formal bound on 
the performance of our algorithm. In addition, we plan 
to exploit the deployed markers for other behaviors. One 
example is recovery, when after being deployed, every 
robot uses the network to return to "home base". We have 
made some progress towards this goal [17]. The propaga- 
tion of information though the network of markers could 
also dramatically increase performance of the coverage 
algorithm itself (e.g. by dynamically adjusting the marker 
drop-off distance, optimally guide the robot towards less 
explored parts of the environment, etc.). 
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Deployment of marken in a remsenative simulation trial. Note that due to noise added in simulation, the deployed nodes do not form a 
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