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Abstract: Non-stationary non-Gaussian random vibration problems of structures are 15 

challenging and drawing increasing attention. In the present study, firstly, an explicit 16 

time-domain method (ETDM) is proposed to determine the higher-order response statistics of 17 

linear systems subjected to non-stationary non-Gaussian random excitations, in which the first 18 

four orders of cumulants of dynamic responses are directly formulated through the cumulant 19 

operation rule based on the explicit expressions of responses. Secondly, an equivalent 20 

linearization – explicit time-domain method (EL-ETDM) is further developed to solve the 21 

non-stationary non-Gaussian random vibration problems of Duffing systems, in which the 22 

equivalent linear system is derived discarding the assumption of Gaussian response, and the 23 

corresponding higher-order cumulant analyses of the linearized system are accomplished by 24 

the efficient ETDM. The present approach can account for non-Gaussian random excitations 25 
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with arbitrary forms, and two specific applications to the Poisson white noise and the square 26 

form of Gaussian random process are investigated. Four numerical examples are presented to 27 

demonstrate the effectiveness of the proposed methods. 28 

Keywords: non-Gaussian; non-stationary; random vibration; Duffing system; equivalent 29 

linearization method; explicit time-domain method 30 

1 Introduction 31 

The external loads exerting on engineering structures may exhibit significant 32 

non-Gaussian random characteristics, such as the earthquake load [1], wind load [2] and wave 33 

load [3], among others. In most cases, the above external loads are assumed as Gaussian 34 

random processes for the convenience of statistical description and random vibration analysis. 35 

However, such approximation may lead to an underestimation of structural peak response and 36 

an overestimation of structural fatigue life [4-5], which will pose a potential threat to the 37 

structural safety. Therefore, random vibration analysis of structures should be conducted 38 

considering the non-Gaussian nature of random excitations and it is of great necessity to 39 

develop an effective method for non-Gaussian random vibration analysis. 40 

For random vibration analysis of linear systems under Gaussian excitations, extensive 41 

research has been done on this aspect and several analysis methods have been well developed 42 

[6-8]. By contrast, the research considering non-Gaussian random excitations relatively lags 43 

behind but also receives certain attention [9-15]. In particular, Grigoriu and Ariaratnam [10] 44 

investigated the higher-order moments and mean crossing rates of responses of linear 45 

oscillators under polynomials of stationary Gaussian processes by use of Ito's calculus. Hu [11] 46 

derived the analytical solutions to the higher-order moments and cumulants of responses of a 47 

linear oscillator excited by stationary Poisson white noise also via Ito's calculus. Settineri and 48 

Falsone [14] employed the probability transformation method to obtain the evolutionary 49 
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probability density functions of responses of linear systems subjected to the square form of a 50 

non-stationary Gaussian random process. The above methodologies were only developed for 51 

non-Gaussian random excitations with specific forms. Sheng et al. [15] extended the power 52 

spectrum method (PSM) to solve the random vibration problems of linear systems considering 53 

general non-Gaussian excitations, in which the higher-order spectra of responses can be 54 

determined once the higher-order spectra of the non-Gaussian random excitations are 55 

provided. However, to evaluate the time-varying higher-order spectra of responses under 56 

non-stationary non-Gaussian random excitations, a large number of linear time-history 57 

analyses need to be conducted at different frequency intervals, which will be very 58 

time-consuming for large-scale systems. 59 

Over the past few decades, significant research effort has been devoted to the random 60 

vibration analysis of nonlinear systems subjected to Gaussian excitations, and various 61 

nonlinear random vibration analysis methods have been developed [16-22]. In comparison, 62 

the research on non-Gaussian random vibration analysis of nonlinear systems has been limited 63 

and deserves more attention. Zeng and Zhu [23] and Zeng and Li [24] investigated the 64 

stationary responses of different kinds of nonlinear oscillators driven by Poisson white noise 65 

using the stochastic averaging method. Guo et al. [25] developed an exponential polynomial 66 

closure approximate method to analyze the non-stationary responses of Duffing oscillators 67 

excited by filtered Poisson white noise. Grigoriu [26], Sobiechowski and Socha [27] and Cai 68 

and Suzuki [28] addressed the stationary non-Gaussian random vibration problems of 69 

nonlinear oscillators via the statistical linearization technique, in which the non-Gaussian 70 

excitations are modelled by a Poisson white noise, a polynomial of a Gaussian process and an 71 

approach of nonlinear filter, respectively. It can be seen from the above literatures that the 72 

research on nonlinear random vibration under non-Gaussian excitations is mainly restricted to 73 

single-degree-of-freedom problems with specific non-Gaussian forms. 74 
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In view of the above limitations, the current study is dedicated to developing an effective 75 

method for non-stationary random vibration analysis of linear and nonlinear systems 76 

subjected to general non-Gaussian excitations. In recent years, an efficient explicit 77 

time-domain method (ETDM) [8] and a fast equivalent linearization – explicit time-domain 78 

method (EL-ETDM) [29-31] have been proposed for solving the non-stationary Gaussian 79 

random vibration problems of linear and nonlinear systems, respectively. In the present study, 80 

the ETDM is further extended for non-Gaussian random vibration analysis of linear systems, 81 

in which the first four orders of cumulants of dynamic responses are directly formulated by 82 

the cumulant operation rule based on the explicit expressions of responses. Thereafter, the 83 

EL-ETDM is further developed for non-Gaussian random vibration analysis of Duffing 84 

systems, in which the equivalent linear system is derived without introducing the traditional 85 

assumption of Gaussian response, and the numerous higher-order cumulant analyses of the 86 

linearized system involved in non-stationary problems are accomplished efficiently by ETDM. 87 

The present ETDM and EL-ETDM can be implemented given the first four orders of 88 

cumulant functions of the non-Gaussian random excitations, and the two methods are 89 

therefore applicable to arbitrary forms of non-Gaussian excitations. Four numerical examples 90 

including a linear oscillator with the stationary Poisson white noise, a 20-degree-of-freedom 91 

linear system with the square form of a non-stationary Gaussian random process, a Duffing 92 

oscillator with the square form of a non-stationary Gaussian random process and a 93 

5-degree-of-freedom Duffing system with the non-stationary Poisson white noise are 94 

presented to validate the feasibility of the proposed methods. 95 

2 Moment and cumulant functions of non-Gaussian random processes 96 

Through introducing the characteristic and log-characteristic function of a non-Gaussian 97 

process, the relationships between the moment and cumulant functions of the non-Gaussian 98 
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random process are established in this section. On this basis, the analytical cumulant functions 99 

of the Poisson white noise and the square form of a Gaussian random process are further 100 

presented. 101 

2.1 Moment and cumulant functions 102 

Suppose ( )X t  is a non-Gaussian random process, and the kth-order joint probability 103 

density function of ( )X t  can be denoted as 1 1 2 2( , ; , ; ; , )X k kp x t x t x t . Define the kth-order 104 

characteristic function of ( )X t  as the Fourier transform of the kth-order probability density 105 

function, i.e. 106 
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where ( ) ( 1, 2, , )j jX X t j k   ; E[ ]  denotes the mathematical expectation; and i  108 

denotes the imaginary unit. 109 

From Equation (1), one can derive the kth-order moment function of ( )X t  as follows: 110 
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Subsequently, define the kth-order cumulant function of ( )X t  as 112 
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where cum[ ]  is the cumulant operator; and 1 1 2 2ln ( , ; , ; ; , )X k kM t t t    is termed as the 114 

kth-order log-characteristic function of ( )X t . 115 

Based on Equations (2) and (3), the relationships between the moment and cumulant 116 

functions of the non-Gaussian random process ( )X t  can be determined [32]. For instance, 117 

the first four orders of cumulant functions can be expressed in terms of the first four orders of 118 

moment functions as follows: 119 
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Conversely, the first four orders of moment functions can also be written in terms of the first 121 

four orders of cumulant functions as follows: 122 
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Setting 1 2 3 4t t t t t    , Equations (4) and (5) become 124 
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and 126 
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respectively. 128 

It can be seen from Equations (4)-(7) that the moment and cumulant functions of a 129 

non-Gaussian random process are interconvertible, and both of them can be used for 130 

time-domain statistical description of the random process. The cumulant functions are 131 

typically preferred for a non-Gaussian white noise since the second-order cumulant function 132 



7 

and higher-order cumulant functions of the noise are in the form of impulse function, and the 133 

corresponding power spectrum and higher-order spectra via Fourier transform are flat [32]. 134 

Therefore, in the context of non-Gaussian random vibration, it is generally recommended that 135 

the cumulant functions be employed for description of the time-domain statistics of the 136 

non-Gaussian random excitation. 137 

It is noteworthy that the research on analytical models of cumulant functions of 138 

non-Gaussian random processes is limited, and to the best knowledge of the authors, only the 139 

cumulant functions of certain types of non-Gaussian random processes can be analytically 140 

derived, e.g., the non-Gaussian white noise and the polynomial form of a Gaussian random 141 

process. In what follows, the cumulant functions of the Poisson white noise, a special type of 142 

non-Gaussian white noise, and the square form of a Gaussian random process will be given. 143 

2.2 Poisson white noise 144 

Suppose ( )X t  is a non-stationary Poisson white noise and can be expressed as 145 

ˆ( ) ( ) ( )X t g t X t , in which ( )g t  is the modulation function and ˆ ( )X t  is a stationary 146 

Poisson white noise defined as [33] 147 
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where ( )   is the Dirac function; ( )N t  is a time homogeneous Poisson counting process 149 

with a mean arrival rate of  ;  ( 1,2, , ( ))jt j N t   are the arrival time instants of the 150 

random impulses; and  ( 1, 2, , ( ))jZ j N t   are the amplitudes of the random impulses, 151 

which are independent and identically distributed random variables. 152 

The kth-order cumulant function of the stationary Poisson white noise ˆ ( )X t  can be 153 

expressed as [33] 154 

 ˆ 1 2 2 1 3 1 1,
( , , , ) E[ ] ( ) ( ) ( )k

k kX k
t t t Z t t t t t t                           (9) 155 



8 

where E[ ]kZ  is the kth-order moment of an arbitrary jZ . Correspondingly, the kth-order 156 

cumulant function of the non-stationary Poisson white noise ( )X t  can be expressed as 157 

 ˆ, 1 2 1 2 1 2,
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It can be seen from Equations (9) and (10) that the cumulant functions of a Poisson white 159 

noise are equal to zeros as long as 1 2 kt t t    is not satisfied. Such delta-correlated 160 

property can significantly simplify the analysis of non-Gaussian random vibration problems, 161 

which will be demonstrated in Sections 3 and 4. 162 

2.3 Square form of Gaussian random process 163 

For fluid-structure interaction problems, the fluid-induced forces can be expressed in 164 

terms of the square form of the fluid velocities. Therefore, even though the fluid velocities, 165 

e.g., the wind velocity and the wave-particle velocity, can be modeled as Gaussian processes, 166 

the fluid-induced forces, e.g., the aerodynamic force and the hydrodynamic force, should be 167 

considered as non-Gaussian processes. To investigate this aspect, now suppose ( )X t  is of 168 

the square form of a non-stationary Gaussian random process ( )Y t , i.e., 2( ) ( )X t Y t . Then, 169 

based on the Gaussian closure technique [16], the moment functions of ( )X t  can be 170 

formulated only in terms of the second-order moment function of ( )Y t . For instance, the first 171 

four orders of moment functions of ( )X t  can be expressed as 172 
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Substitution of Equation (11) into Equation (4) yields the first four orders of cumulant 174 

functions of ( )X t  as follows: 175 
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It is implied from Equation (12) that, once the analytical model of the second-order 177 

moment function of the Gaussian process ( )Y t  is known, the first four orders of cumulant 178 

functions of the non-Gaussian process ( )X t  can then be analytically derived, which will 179 

greatly reduce the storage space required for the first four orders of cumulant functions of 180 

( )X t . 181 

It should be noted that, given the covariance function of the non-Gaussian random 182 

process and the corresponding non-Gaussian marginal distribution, the covariance function of 183 

the underlying Gaussian random process needs to be determined based on the translation 184 

process theory. In this case, certain compatibility conditions of the non-Gaussian random 185 

process need to be satisfied to ensure that the covariance function of the underlying Gaussian 186 

random process is obtainable [34-35], from which the non-Gaussian random process can be 187 

generated in a more general sense. 188 

3 Non-stationary non-Gaussian random vibration analysis of linear 189 

systems by ETDM 190 

In this section, the ETDM [8] originally proposed for non-stationary random vibration 191 

analysis of linear systems under Gaussian excitations is extended to the case considering 192 

non-Gaussian excitations. The explicit expressions of dynamic responses are first derived for 193 

the linear system based on the Newmark kinematic assumptions, and the first four orders of 194 

cumulants of an arbitrary critical response are then explicitly formulated through the cumulant 195 



10 

operation rule with non-Gaussian random excitations. 196 

3.1 Explicit expressions of dynamic responses 197 

The equation of motion for a linear system can be expressed as 198 

 ( ) ( ) ( ) ( )t t t X t  MU CU KU L                                  (13) 199 

where M , C  and K  are the mass, damping and stiffness matrix of the system, 200 

respectively; ( )tU , ( )tU  and ( )tU  are the displacement, velocity and acceleration vector 201 

of the system, respectively; ( )X t  is the external excitation assumed to be a non-stationary 202 

non-Gaussian random process; and L  is the orientation vector of the external excitation. 203 

Equation (13) can be recast in the form of state equation as follows: 204 

 ( ) ( ) ( )t t X t V HV W                                       (14) 205 

where T T T( ) [ ( ) ( )]t t tV U U  is the state vector of the system; and H  and W  are 206 

expressed as 207 

 
1 1 1

,    
  

   
        

0 I 0
H W

M K M C M L
                            (15) 208 

in which 0  and I  are the zero matrix and the unit matrix, respectively. 209 

Suppose the system is initially at rest. Then, solving Equation (14) by the use of 210 

Newmark kinematic assumptions [36], one can derive the explicit expression of the state 211 

vector as 212 

 ,1 1 ,2 2 , 1 1 ,    ( 1,2, , )i i i i i i i i iX X X X i n      V A A A A                 (16) 213 

where n  is the number of time steps for time-history analysis; ( )i itV V  with it i t   214 

and t  being the time step; ( )j jX X t  with  ( 1,2, , )jt j t j i    ; and 215 

,  ( 1,2, , )i j j iA   are the coefficient vectors with regard to the state vector iV , which can be 216 

expressed in closed form as 217 
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1,1 2 2,1 2 1 ,1 1,1

, 1, 1

,   ,    (3 )

 (2 )

i i

i j i j

i n

j i n



 

     


   

A Q A TQ Q A TA

A A
                  (17) 218 

where T , 1Q  and 2Q  are expressed as [37] 219 

 

1 1 1
1 1 2 1 1 2 2 1

3 4 5

1 2

0 1 2

0 1 2 3 4 52

( ) ( ), ( ) , ( )

,

1 1 1
, , 1, , 1, ( 2)

2 2

a a a

a a a

t
a a a a a a

t t t

  

     

              


          
   


              
   

T H R R R H  Q H R R W  Q H R W

I 0 I I
R R

I 0 I I        (18) 220 

where 0.5   and 0.25   are adopted for unconditionally stable integration scheme. 221 

It can be observed from Equation (17) that only the coefficient vectors 222 

,1  ( 1,2, , )i i nA   shown in the first row need to be calculated and stored, and based on the 223 

recursive relation shown in the second row, the other coefficient vectors can be directly 224 

obtained from ,1  ( 1,2, , )i i nA  . From the physical point of view, when the external 225 

excitation ( )X t  takes the form of an impulse excitation applied at time 1t , as shown in Figure 226 

1, one can easily obtain ,1i iV A  from Equation (16). This indicates that the coefficient vector 227 

,1iA  actually represents the state vector at time it  induced by the aforementioned impulse 228 

excitation. Therefore, the computational cost for the coefficient vectors ,1  ( 1,2, , )i i nA   is 229 

equal to that required by only one time-history analysis of the linear system. 230 

( )X t

0 1t 2t 3t 1nt  nt t…

1

2nt 

 231 
Figure 1  The impulse excitation ( )X t  232 

3.2 Higher-order cumulant analysis 233 

As the explicit expression of the state vector has been established in Equation (16), one 234 

can focus on any structural responses of interest for higher-order cumulant analysis, which 235 

implies that dimension-reduced statistical analysis can now be easily conducted. Suppose 236 
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( )r r t  is an arbitrary critical response of the system. Then, from Equation (16), the explicit 237 

expression of the critical response ( )i ir r t  can be obtained as 238 

 ,1 1 ,2 2 , 1 1 ,    ( 1,2, , )r r r r r
i i i i i i i i i ir a X a X a X a X i n       q V              (19) 239 

where rq  is the response transfer row vector for the critical response r ; and 240 

, ,  ( 1, 2, , )r r
i j i ja j i q A   are the coefficients with regard to ir . 241 

Suppose the first four orders of cumulants are of interest for description of the statistical 242 

characteristics of a non-Gaussian response. Based on the cumulant operation rule [32], the 243 

first four orders of cumulants of the critical response ir  can be directly formulated from 244 

Equation (19) as follows: 245 

 

,1 ,
1

,2 , ,
1 1

,3 , , ,
1 1 1

,4 , , , ,

( ) cum( ) cum( )

( ) cum( , ) cum( , )

( ) cum( , , ) cum( , , )

( ) cum( , , , ) cum(

i
r

r i i i j j
j

i i
r r

r i i i i j i m j m
j m

i i i
r r r

r i i i i i j i m i p j m p
j m p

r r r r
r i i i i i i j i m i p i q

t r a X

t r r a a X X

t r r r a a a X X X

t r r r r a a a a











 

  

 

 

 

 







1 1 1 1

   ( 1,2, , )

, , , )
i i i i

j m p q
j m p q

i n

X X X X
   


















  (20) 246 

where cum( )jX , cum( , )j mX X , cum( , , )j m pX X X  and cum( , , , )j m p qX X X X  247 

( , , , 1, 2, , )j m p q i   can be determined from the first four orders of cumulant functions of 248 

the non-Gaussian random excitation ( )X t , i.e., ,1 1( )X t , ,2 1 2( , )X t t , ,3 1 2 3( , , )X t t t  and 249 

,4 1 2 3 4( , , , )X t t t t , respectively. 250 

Thus far, the explicit formulation of the first four orders of cumulants of the response ir  251 

has been achieved. Given the first four orders of cumulant functions of the non-Gaussian 252 

random excitation ( )X t , the first four orders of cumulants of the response ir  can be directly 253 

calculated using Equation (20). In this sense, the present approach is applicable to arbitrary 254 

forms of non-Gaussian random excitations. Moreover, if the first four orders of response 255 

moments are desired, they can be easily determined by Equation (7) based on the first four 256 
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orders of response cumulants obtained by Equation (20). Note that, as the explicit expression 257 

of response shown in Equation (19) holds for different time instants, one can also compute the 258 

cross cumulants/moments of responses with respect to different time instants using the 259 

cumulant/moment operation rule, which will certainly require more computational cost where 260 

necessary. 261 

In particular, suppose ( )X t  is a non-stationary Poisson white noise. Then, based on the 262 

delta-correlated property shown in Equations (9) and (10), Equation (20) can be simplified as 263 

 

,1 ,
1

2
,2 ,

1

3
,3 ,

1

4
,4 ,

1

( ) cum( ) cum( )

( ) cum( , ) ( ) cum( , )

   (

( ) cum( , , ) ( ) cum( , , )

( ) cum( , , , ) ( ) cum( , , , )

i
r

r i i i j j
j

i
r

r i i i i j j j
j

i
r

r i i i i i j j j j
j

i
r

r i i i i i i j j j j j
j

t r a X

t r r a X X

i

t r r r a X X X

t r r r r a X X X X
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
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

  










1,2, , )n       (21) 264 

where cum( )jX , cum( , )j jX X , cum( , , )j j jX X X  and cum( , , , ) ( 1, 2, , )j j j jX X X X j i   265 

can be determined from ,1( )X t , ,2 ( )X t , ,3 ( )X t  and ,4 ( )X t , respectively, which are 266 

presented in Equation (10). 267 

Suppose ( )X t  is of the square form of a non-stationary Gaussian random process ( )Y t , 268 

i.e., 2( ) ( )X t Y t . Then, based on Equation (12), Equation (20) can be further derived as 269 

 

2
,1 ,
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1 1

,3 , , ,
1 1 1
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















  (22) 270 

where the second-order moments involved can be completely determined from the 271 

second-order moment function of the non-stationary Gaussian random process ( )Y t . 272 
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It is worth noting that, in general, the response cumulants are slowly varying functions, 273 

and one can calculate these response statistics at a larger time interval, i.e., N t    with 274 

N  being the times of t , by focusing on the specific time instants using the explicit 275 

formulations shown in Equations (20)-(22), which can further enhance the computational 276 

efficiency of ETDM for higher-order cumulant analysis. 277 

From the above formulation of ETDM, it can be seen that there exist two advantages of 278 

the present approach over PSM. First, only the higher-order cumulant functions of excitations 279 

are required in ETDM, which are generally more easily obtained from the time-domain 280 

records of excitations, and in contrast, it is still a tough task to establish the evolutionary 281 

higher-order spectra of non-stationary non-Gaussian random excitations required by PSM. 282 

Second, as can be seen from the discussion on the physical meanings of the coefficient 283 

vectors shown in Equation (16), only one single impulse response time-history analysis of the 284 

system is involved in ETDM for constructing the explicit expressions of dynamic responses, 285 

while for PSM, a large number of time-history analyses need to be conducted at different 286 

frequency intervals for obtaining the evolutionary power spectra, bi-spectra and tri-spectra of 287 

non-stationary non-Gaussian responses, leading to much more computational time than 288 

ETDM. 289 

4 Non-stationary non-Gaussian random vibration analysis of Duffing 290 

systems by EL-ETDM 291 

In this section, the EL-ETDM [29-31] originally developed for non-stationary random 292 

vibration analysis of nonlinear systems subjected to Gaussian excitations is extended to the 293 

case considering non-Gaussian excitations for Duffing systems by combining the equivalent 294 

linearization (EL) method and the ETDM. Owing to the influence of non-Gaussian excitations, 295 

the traditional assumption of Gaussian response can no longer be adopted in the EL method, 296 
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and a series of higher-order cumulant analyses of the linearized system need to be conducted, 297 

which can be accomplished by the efficient ETDM presented in Section 3. 298 

4.1 Equivalent linear system 299 

For a Duffing system with hardening springs, the nonlinear equation of motion can be 300 

expressed as 301 

 NE( ) ( ) ( ) ( ) ( )t t t t X t   MU CU KU F L                            (23) 302 

where M , C  and K  are the mass, damping and linear elastic stiffness matrix of the 303 

Duffing system, respectively; ( )tU , ( )tU  and ( )tU  are the displacement, velocity and 304 

acceleration vector of the Duffing system, respectively; ( )X t  is the non-stationary 305 

non-Gaussian random excitation and L  is the corresponding orientation vector; and NE ( )tF  306 

is the nonlinear elastic force vector of the Duffing system, which can be expressed as 307 

 
s sNE 1 NE,1 2 NE,2 NE,( ) ( ) ( ) ( )n nt f t f t f t   F E E E                        (24) 308 

 
3

NE, s( ) ( )   ( 1, 2, , )i i i if t k d t i n                                 (25) 309 

where sn  is the number of hardening springs; NE, s( ) ( 1, 2, , )if t i n   is the nonlinear elastic 310 

force of the ith hardening spring and iE  is the corresponding orientation vector; ik  and i  311 

are the linear elastic stiffness and the coefficient reflecting the nonlinearity of the ith 312 

hardening spring, respectively; and ( )id t  is the nodal relative displacement of the ith 313 

hardening spring. 314 

For a specific time instant  , Equation (25) can be replaced by the following equivalent 315 

linear equation as 316 

 NE, e, s( ) ( ) ( )   (0 ;  1,2, , )i i if t k d t t i n                            (26) 317 

where e, ( )ik   is the equivalent stiffness of the ith hardening spring, which can be determined 318 

by minimizing the mean square of the difference between Equations (25) and (26) at time 319 

instant   and can be expressed as 320 
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4

e, s2

E[ ( )]
( )    ( 1,2, , )

E[ ( )]
i

i i i

i

d
k k i n

d


 


                            (27) 321 

The nodal relative displacement of the ith hardening spring can be written in terms of the 322 

nodal displacement vector of the Duffing system as follows: 323 

 
T

s( ) ( )   ( 1,2, , )i id t t i n E U                               (28) 324 

where iE  is the orientation vector for NE, s( ) ( 1, 2, , )if t i n   shown in Equation (24). 325 

Substitution of Equations (24), (26) and (28) into Equation (23) yields the equation of 326 

motion for the equivalent linear system of the Duffing system corresponding to the time 327 

instant   as follows: 328 

 e( ) ( ) [ ( )] ( ) ( )   (0 )t t t X t t      MU CU K K U L                   (29) 329 

where e ( )K  is the equivalent stiffness matrix expressed as 330 

 
s s s

T T T
e 1 e,1 1 2 e,2 2 e,( ) ( ) ( ) ( )n n nk k k      K E E E E E E                  (30) 331 

It can be seen from Equations (27) and (30) that, for the specific time instant  , the 332 

equivalent stiffness matrix e ( )K  depends on the second-order and fourth-order moments of 333 

responses, i.e., 2E[ ( )]id   and 4E[ ( )]id  s( 1, 2, , )i n  , which, in turn, need to be determined 334 

via the higher-order cumulant analysis of the linearized system shown in Equation (29). 335 

Therefore, an iterative process involving a series of non-stationary non-Gaussian linear 336 

random vibration analyses is required for obtaining the equivalent linear system and the 337 

corresponding response statistics, which will be elaborated in Section 4.2. 338 

It should be noted that, for the case of Gaussian excitations, the Gaussian assumption of 339 

( )id   is acceptable provided that the Duffing system is not heavily nonlinear, and thus 340 

Equation (27) can be reduced to 2
e, s( ) 3 E[ ( )] ( 1,2, , )i i i ik k d i n      [29], in which only 341 

the second-order moment of ( )id   is required. However, under non-Gaussian excitations, 342 

the response of the Duffing system is no doubt non-Gaussian regardless of the degree of 343 
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system nonlinearity. Therefore, for non-Gaussian random vibration analysis of nonlinear 344 

systems within the framework of the EL method, the assumption of Gaussian response is by 345 

no means feasible and should be abandoned, leading to the requirement of higher-order 346 

moment analysis for determination of the equivalent stiffness. 347 

4.2 Higher-order cumulant analysis of the linearized system 348 

For the linearized system shown in Equation (29), the explicit expression of the state 349 

vector at the specific time instant   can be obtained from Equation (16) as 350 

 ,1 1 ,2 2 , 1 1 ,( ) n n n n n n n n nX X X X       V V A A A A                   (31) 351 

where /n t   with t  being the time step; ( )j jX X t  with  ( 1,2, , )jt j t j n    ; 352 

and ,  ( 1,2, , )n j j nA   are the coefficient vectors with regard to the state vector nV , which, 353 

from Equation (17), can be expressed in closed form as 354 

 , , 1 , 1 2 1 , 2 ( 1, 2, , 2),   ,   n j n j n n n nj n      A TA A TQ Q A Q             (32) 355 

where T , 1Q  and 2Q  can be determined using Equations (15) and (18) with K  being 356 

replaced by e ( )K K . Note that, to determine e ( )K  using Equations (27) and (30), the 357 

initial values of 2E[ ( )]id   and 4E[ ( )]id  s( 1, 2, , )i n   can be taken as the convergent 358 

results at the previous time instant. 359 

From Equation (31), the explicit expression of the nodal relative displacement of the ith 360 

hardening spring, ( )id  , can be readily obtained as 361 

 ,1 1 ,2 2 , 1 1 , s( ) ( )    ( 1, 2, , )i i i i id d d d d
i n n n n n n n nd a X a X a X a X i n         q V          (33) 362 

where , ,  ( 1,2, , )i id d
n j n ja j n q A   are the coefficients with regard to ( )id  ; and idq  is the 363 

corresponding response transfer row vector. 364 

Similar to Equation (20), the first four orders of cumulants of ( )id   can be directly 365 

formulated from Equation (33) as follows: 366 
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In particular, when ( )X t  is a non-stationary Poisson white noise, similar to Equation 368 

(21), Equation (34) can be reduced to 369 
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When ( )X t  is of the square form of a non-stationary Gaussian random process ( )Y t , 371 

i.e., 2( ) ( )X t Y t , similar to Equation (22), Equation (34) can be further derived as 372 
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Once the first four orders of cumulants cum[ ( )]id  , cum[ ( ), ( )]i id d  , 374 

cum[ ( ), ( ), ( )]i i id d d    and scum[ ( ), ( ), ( ), ( )] ( 1,2, , )i i i id d d d i n       are obtained, they 375 

can be directly converted to the second-order and fourth-order moments of responses, 376 

2E[ ( )]id   and 4
sE[ ( )] ( 1,2, , )id i n   , as shown in Equation (7), and the equivalent 377 

stiffness matrix e ( )K  can then be updated through Equations (27) and (30). Repeat the 378 
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calculation process until the above response statistics are convergent. By now, the equivalent 379 

linear system of the Duffing system corresponding to the time instant   has been obtained 380 

considering non-Gaussian random excitation, and the first four orders of cumulants of the 381 

other concerned responses can be calculated in the same way as those shown in Equation (34), 382 

which, if required, can be further utilized to determine the first four orders of moments of 383 

these concerned responses using Equation (7). Thereafter, one can move on to the next 384 

specified time instant     and repeat the above calculation process until all the concerned 385 

time instants have been considered. It should be noted that the value of   should be set to 386 

meet the requirement of describing the evolutionary higher-order statistics adequately, and in 387 

general,   can be taken as certain times of t  provided that the higher-order statistics are 388 

slowly varying functions. 389 

Calculate the first four orders of cumulants/moments of other responses

4
sE[ ( )] ( 1, 2, , )id i n  

2E[ ( )]id 

2E[ ( )]id  4
sE[ ( )] ( 1, 2, , )id i n  

1( ) 

e ( )K

Stop

Convergent？
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,1 ,2 , 1 ,, , ,  ,  n n n n n nA A A A
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Is  τ the last 
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No
    

Calculate            by Eqs. (27) and (30)

Calculate                                        by Eq. (32) 

Update                and                                      by Eqs. (34)-(36)

Assign initial values to                and  

ETDM

EL

Start

 390 
Figure 2  Solution procedure of EL-ETDM 391 

For clarity, the procedure for the present EL-ETDM is illustrated in Figure 2, from which 392 

it can be seen that, although a series of higher-order cumulant/moment analyses of the 393 

linearized system need to be conducted, they can be accomplished by the efficient ETDM, 394 
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making the EL method feasible for non-Gaussian problems. This will be validated in Section 395 

5. 396 

5 Numerical examples 397 

In this section, two numerical examples including a linear oscillator subjected to 398 

stationary Poisson white noise and a 20-degree-of-freedom linear system under the square 399 

form of a non-stationary Gaussian random process are analyzed to validate the efficacy of the 400 

present ETDM for solving non-Gaussian random vibration problems of linear systems. 401 

Furthermore, the other two numerical examples involving a Duffing oscillator under the 402 

square form of a non-stationary Gaussian random process and a 5-degree-of-freedom Duffing 403 

system subjected to non-stationary Poisson white noise are investigated to demonstrate the 404 

feasibility of the present EL-ETDM for non-Gaussian random vibration analysis of nonlinear 405 

systems. 406 

5.1 A linear oscillator 407 

The equation of motion for a linear oscillator can be expressed as 408 

 
2 ˆ( ) 2 ( ) ( ) ( )u t u t u t X t                                      (37) 409 

where 10rad/s   and 0.05   are the natural frequency and damping ratio of the linear 410 

oscillator, respectively; and ˆ ( )X t  is the stationary Poisson white noise shown in Equation 411 

(8), in which the mean arrival rate is taken as 12s  , and the amplitudes of random 412 

impulses are set to be mutually independent standard Gaussian random variables. The first 413 

four orders of cumulant functions of ˆ ( )X t  can then be readily determined using Equation 414 

(9). 415 

The ETDM presented in Section 3 is utilized to conduct the non-Gaussian random 416 

vibration analysis of the linear oscillator, and the Monte Carlo simulation (MCS) with 5×104 417 

samples is employed for obtaining the reference solutions to the response statistics. In the 418 
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above analysis, the time duration and time step are taken as 10sT   and 0.002st  , 419 

respectively. Note that, for a linear oscillator under stationary Poisson white noise, the 420 

analytical solutions to the response cumulants and moments can be derived [27], which will 421 

also be used as the reference solutions. 422 

The second-order and fourth-order cumulants of the displacement are shown in Figure 3 423 

and Figure 4, respectively, and the second-order and fourth-order moments of the 424 

displacement are presented in Figure 5 and Figure 6, respectively. It can be observed from the 425 

above figures that the results obtained by ETDM agree well with those obtained by MCS, and 426 

the ETDM results are identical to the analytical solutions after they enter the stationary state, 427 

indicating the good accuracy of the present approach. Note that, for this example, as the 428 

amplitudes of random impulses involving in the Poisson white noise are mutually independent 429 

standard Gaussian random variables, the first-order and third-order cumulants and moments 430 

of the response are zeros, and the second-order cumulant is equal to the second-order moment 431 

of the response, as shown in Figure 3 and Figure 5. Furthermore, for the results of MCS, the 432 

higher-order cumulants of response generally require much more sample analyses to achieve 433 

the convergent results than the higher-order moments of response. In view of this, in the 434 

following examples, only the results of the response moments are presented for comparison. 435 

  
Figure 3  Second-order cumulant of 

displacement 
Figure 4  Fourth-order cumulant of  

displacement 
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Figure 5  Second-order moment of displacement Figure 6  Fourth-order moment of displacement 

5.2 A 20-degree-of-freedom linear system 436 

For a 20-degree-of-freedom shear-type linear system, as shown in Figure 7, the mass and 437 

lateral stiffness of each storey are taken as 41.8 10 kgim    and 58.9 10 kN/mik    438 

( 1, 2, , 20)i   , respectively, and the Rayleigh damping model is adopted with the damping 439 

ratio 0.05  . The system is subjected to a non-Gaussian random excitation 2( ) ( )X t Y t , 440 

and ˆ( ) ( ) ( )Y t g t Y t  is a uniformly modulated non-stationary Gaussian random process, in 441 

which ( )g t  is the modulation function expressed as 442 

 
0.1 0.2( ) 4.0(e e )t tg t                                            (38) 443 

and ˆ( )Y t  is a zero-mean stationary band-limited white noise. 444 

The second-order moment function of ( )Y t  can be expressed as [38] 445 

 ˆ,2 1 2 1 2 1 2,2
( , ) ( ) ( ) ( , )Y Y

m t t g t g t m t t                                   (39) 446 

 0
ˆ 1 2 b 1 2,2

1 2

2
( , ) sin[ ( )]

Y

S
m t t t t

t t
 


                                  (40) 447 

where 3
0 5 10 N sS     is the spectral density; and b 100rad/s   is the half-width of the 448 

frequency range. Based on the second-order moment function of ( )Y t  shown in Equations 449 

(39) and (40), the first four orders of cumulant functions of ( )X t  can be easily obtained 450 

using Equation (12). 451 
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 452 
Figure 7  A 20-degree-of-freedom shear-type linear system 453 

 454 

The ETDM and the MCS with 5×104 samples are utilized to solve the non-Gaussian 455 

random vibration problem of the linear system, in which the time duration and time step are 456 

taken as 15sT   and 0.02st  , respectively. The first four orders of moments of the 457 

top-storey lateral displacement of the system are depicted in Figures 8 to 11, from which it 458 

can be seen that the results obtained by ETDM and MCS are in good agreement, further 459 

demonstrating the good accuracy of the present approach. 460 

It can be seen from Section 3.2 that the ETDM can achieve dimension-reduced analysis 461 

of higher-order statistics focusing on any arbitrary responses of interest. Furthermore, it can 462 

be observed from Figures 8 to 11 that the response moments are slowly varying with time, 463 

and thus it is not necessary to calculate the moments at so small a time interval as that used in 464 

establishing the explicit expression of the state vector shown in Equation (16). To validate the 465 

influence of the above considerations on the computational efficiency, the elapsed time of 466 

ETDM for different numbers of responses, i.e., 1, 10 and 20, and different time intervals, i.e., 467 

10 0.2st  , 20 0.4st   and 30 0.6st  , is presented in Table 1. It can be seen from 468 

Table 1 that, by taking advantage of the unique feature of dimension-reduced analysis just 469 
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regarding the critical responses as well as the concerned time instants, the ETDM can achieve 470 

even higher efficiency in the process of statistical analysis. 471 

 472 

Table 1  Elapsed time of ETDM 473 

Number of responses 
Time interval   

0.2s 0.4s 0.6s 

1 214.4s 102.0s 75.4s 

10 2135.6s 1011.3s 745.9s 

20 4108.7s 2022.8s 1490.4s 
Note: All the above computations were done on a laptop PC with an Intel Core i7-3632QM processor and 8 474 
GB RAM. 475 

 476 

To further demonstrate the efficiency of ETDM, the PSM is also employed to calculate 477 

the second- and third-order moments of the top-storey lateral displacement of the system, 478 

which are also depicted in Figures 9 and 10, respectively. It can be seen from Figures 9 and 10 479 

that the results obtained by ETDM and PSM are both in good agreement with those obtained 480 

by MCS. However, for execution of PSM, the frequency domain of interest is discretized into 481 

250 intervals, and a total of 250×2=500 time-history analyses of the system are required to 482 

obtain the evolutionary bi-spectra and third-order cumulants of responses, leading to much 483 

more computational cost than ETDM, in which only one single impulse response time-history 484 

analysis of the system is required. Furthermore, for obtaining the evolutionary tri-spectra and 485 

fourth-order cumulants of responses, the number of frequency intervals should be set much 486 

larger to ensure the accuracy due to the fast-varying property of the response tri-spectra, 487 

resulting in huge computational cost that has not been affordable in practice thus far, and 488 

therefore the fourth-order moment of the top-storey lateral displacement by PSM is not 489 

available in Figure 11. 490 

 491 
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Figure 8  First-order moment of  
top-storey lateral displacement 

Figure 9  Second-order moment of  
top-storey lateral displacement 

  
Figure 10  Third-order moment of  

top-storey lateral displacement 
Figure 11  Fourth-order moment of 

top-storey lateral displacement 

 492 

5.3 A Duffing oscillator 493 

The equation of motion for a Duffing oscillator can be expressed as 494 

 
2 2 3( ) 2 ( ) ( ) ( ) ( )u t u t u t u t X t                               (41) 495 

where 10rad/s   and 0.05   are respectively the natural frequency and damping ratio 496 

of the Duffing oscillator at the initial state;   is the coefficient reflecting the nonlinearity of 497 

the Duffing oscillator, which is taken as 20.5m   and 21.5m   for different levels of 498 

nonlinearity; and 2( ) ( )X t Y t  is the non-Gaussian random acceleration excitation with 499 

( )Y t  being a zero-mean non-stationary Gaussian random process. The second-order moment 500 

function of ( )Y t  is shown in Equations (39) and (40), in which 0 0.05m/sS   and 501 
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b 100rad/s   are adopted, and on this basis, the first four orders of cumulant functions of 502 

( )X t  can be determined accordingly using Equation (12). 503 

The EL-ETDM presented in Section 4 is employed for the non-Gaussian random 504 

vibration analysis of the Duffing oscillator, in which the time step is taken to be 0.02st   505 

for explicit formulation of the response of the linearized systems, while the time step for EL 506 

analysis shown in Figure 2 is set to be 0.2s   with the duration 15sT  . For comparison, 507 

the MCS with 5×104 samples is also utilized to obtain the reference solutions to the response 508 

statistics, in which the duration and time step for time-history analysis are set to be 15sT   509 

and 0.02st  , respectively. 510 

The first four orders of moments of the displacement corresponding to 20.5m   and 511 

21.5m   are presented in Figure 12 and Figure 13, respectively. It can be observed that the 512 

results obtained by EL-ETDM are in good agreement with those obtained by MCS, showing 513 

that the present approach is of good accuracy. Furthermore, by comparing the results shown in 514 

Figure 12 and Figure 13, it can be found that the accuracy of the statistical linearization 515 

technique decreases to a certain degree when the Duffing oscillator undergoes stronger 516 

nonlinearity, and the relative error of EL-ETDM may reach 6.1% for the fourth-order moment 517 

of displacement under the case of 21.5m  . 518 

 519 

  
(a) First-order moment (b) Second-order moment 
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(c) Third-order moment (d) Fourth-order moment 

Figure 12  First four orders of moments of displacement ( 20.5m  ) 

 520 

  
(a) First-order moment (b) Second-order moment 

  
(c) Third-order moment (d) Fourth-order moment 

Figure 13  First four orders of moments of displacement ( 21.5m  ) 

 521 

5.4 A 5-degree-of-freedom Duffing system 522 

For a 5-degree-of-freedom shear-type Duffing system, as shown in Figure 14, the mass 523 
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and stiffness of each storey are taken as 33 10 kgim    and 43 10 kN/m ( 1,2, ,5)ik i    , 524 

respectively, and the Rayleigh damping model with the damping ratio 0.05   is adopted to 525 

define the damping matrix C . To reflect different levels of nonlinearity, three cases are 526 

considered for the nonlinear coefficients, i.e., 210mi
 , 230mi

  and 250mi
  527 

( 1, 2, ,5)i   . 528 

 529 

1 1,k 

1m

3m

5 5,k 

5m

3 3,k 

( )X t

( )X t

( )X t

( )X t

( )X t 4m

4 4,k 

2 2,k 

2m

 530 
Figure 14  A 5-degree-of-freedom shear-type Duffing system 531 

 532 

The Duffing system is subjected to a uniformly modulated non-stationary Poisson white 533 

noise ˆ( ) ( ) ( )X t g t X t , in which ( )g t  is the modulation function shown in Equation (38), 534 

and ˆ ( )X t  is the stationary Poisson white noise shown in Equation (8). For the Poisson white 535 

noise, the mean arrival rate is set to be 10.5s  , and the amplitudes of random impulses are 536 

taken as mutually independent Gaussian random variables with the mean and standard 537 

deviation being 0 and 10kN s , respectively. The first four orders of cumulant functions of 538 

( )X t  can be easily determined using Equations (9) and (10). 539 

The EL-ETDM and the MCS with 5×104 samples are utilized to solve the non-Gaussian 540 

random vibration problem of the Duffing system. For EL-ETDM, the time step is taken to be 541 
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0.02st   for explicit formulation of the responses of the linearized systems, and the time 542 

step for EL analysis shown in Figure 2 is set to be 0.2s   with the duration 15sT  . For 543 

MCS, the duration and time step for time-history analysis are set to be 15sT   and 544 

0.02st  , respectively. To investigate the effects of the assumption of Gaussian response on 545 

the results of statistical linearization technique considering non-Gaussian random excitation, 546 

the EL-ETDM with Gaussian assumption is also adopted for the non-Gaussian random 547 

vibration analysis of the Duffing system, in which, instead of the formula shown in Equation 548 

(27), the equivalent stiffness of the ith hardening spring is expressed as 549 

2
e, ( ) 3 E[ ( )]i i i ik k d   s( 1, 2, , )i n   [29]. 550 

The second-order and fourth-order moments of the top-storey lateral displacement 551 

corresponding to 210mi
 , 230mi

  and 250mi
  are presented in Figures 15 to 17, 552 

respectively. It can be seen from the above figures that, although the accuracy of EL-ETDM 553 

(no Gaussian assumption) may decrease to a certain extent with the increase of the degree of 554 

system nonlinearity, the results obtained by EL-ETDM (no Gaussian assumption) are 555 

basically in good agreement with those obtained by MCS, validating the feasibility of the 556 

present approach. It can be further observed from Figures 15 to 17 that, if the assumption of 557 

Gaussian response is adopted, the accuracy of the statistical linearization technique 558 

deteriorates significantly and the results become unacceptable when stronger nonlinearity 559 

exists in the Duffing system. This is due to the fact that the response distribution of the 560 

Duffing system under Poisson white noise is never Gaussian regardless of the degree of 561 

system nonlinearity, and the error caused by the Gaussian assumption may increase as the 562 

degree of nonlinearity of the system increases. 563 

Finally, in view of the fact that the Monte Carlo solutions may not be available for 564 

comparison when the problem becomes more complex, it is of great importance to have an 565 

estimate of the level of accuracy of the proposed EL-ETDM for nonlinear random vibration 566 



30 

analysis. For this purpose, besides the comparisons shown in Figures 15 to 17, a series of 567 

nonlinear coefficients, i.e., 2 2 210m ,15m , ,50m    i , have been investigated with 568 

EL-ETDM (Gaussian assumption), EL-ETDM (no Gaussian assumption) and MCS. The 569 

relative discrepancy between the results of EL-ETDM (Gaussian assumption) and EL-ETDM 570 

(no Gaussian assumption) as well as that between the results of EL-ETDM (no Gaussian 571 

assumption) and MCS are depicted in Figure 18. It can be observed from Figure 18 that the 572 

relative discrepancy between the results of EL-ETDM (Gaussian assumption) and EL-ETDM 573 

(no Gaussian assumption) is considerably larger than that between the results of EL-ETDM 574 

(no Gaussian assumption) and MCS, in particular for the second-order moments, indicating 575 

the error induced by the assumption of Gaussian response is the major error compared with 576 

that induced by the linearization criterion in the EL method. This implies that the relative 577 

discrepancy between the results of EL-ETDM (Gaussian assumption) and EL-ETDM (no 578 

Gaussian assumption) can be regarded as an upper bound for the error of the results of 579 

EL-ETDM (no Gaussian assumption). In this sense, one can have an estimate of the level of 580 

accuracy of the present EL-ETDM (no Gaussian assumption) without resort to the execution 581 

of MCS. 582 

 583 

  
(a) Second-order moment (b) Fourth-order moment 

Figure 15  Second-order and fourth-order moments of top-storey lateral displacement ( 210m i ) 
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(a) Second-order moment (b) Fourth-order moment 

Figure 16  Second-order and fourth-order moments of top-storey lateral displacement ( 230m i ) 

 584 

  
(a) Second-order moment (b) Fourth-order moment 

Figure 17  Second-order and fourth-order moments of top-storey lateral displacement ( 250m i ) 

 585 

  
(a) Second-order moment (b) Fourth-order moment 

Figure 18  Relative discrepancies among different methods for maximum values of 586 

second-order and fourth-order moments of top-storey lateral displacement 587 
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6 Conclusions 588 

There exist two challenges involved in extending ETDM and EL-ETDM from Gaussian 589 

to non-Gaussian problems. The first challenge lies in the explicit formulation of the 590 

higher-order cumulants of non-Gaussian responses with much more concise forms compared 591 

with the traditional moment-based formulation adopted in ETDM for Gaussian problems, and 592 

such explicit formulation can significantly reduce the computational cost for evolutionary 593 

higher-order statistics of non-Gaussian responses compared with the existing PSM. The 594 

second challenge is to extend the EL method for nonlinear non-Gaussian problems without 595 

the use of the assumption of Gaussian responses, which can be readily accomplished by the 596 

present ETDM with high-efficient calculation of higher-order moments of non-Gaussian 597 

responses for the series of linearized systems involved in the linearization process. 598 

The present approach is applicable to arbitrary forms of non-Gaussian random excitation 599 

since the only prerequisite for the approach is that the cumulant functions of the non-Gaussian 600 

random excitation are known. Four numerical examples considering two kinds of 601 

non-Gaussian random excitations, i.e., the Poisson white noise and the square form of 602 

Gaussian random process, have been investigated to demonstrate the effectiveness of the 603 

present approach. 604 

It should be noted that, only uniform random excitations are considered in the present 605 

study, whereas the wind load and wave load that exert on a real structure are usually modelled 606 

as non-uniform random excitations. Therefore, the present approach needs to be further 607 

developed to account for the spatial correlation effects of non-uniform non-Gaussian random 608 

excitations in future study. Moreover, in this study, only Duffing systems are investigated in 609 

the nonlinear analysis, and the more general nonlinear systems, e.g., the nonlinear hysteretic 610 

systems and the nonlinear viscously damped systems, need to be further considered in the 611 
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context of the present approach. 612 
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