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Abstract: Dispersal is a key force in the assembly of fungal communities and the air is the 

dominant route of dispersal for most fungi. Understanding the dynamics of airborne fungi is 

important for determining their source and for helping to prevent fungal disease. This 

understanding is important in the San Joaquin Valley of California, which is home to 4.2 million 

people and where the airborne fungus Coccidioides is responsible for the most important fungal 

disease of otherwise healthy humans, coccidioidomycosis. The San Joaquin Valley is the most 

productive agricultural region in the United States, with the principal crops grown therein 

susceptible to fungal pathogens. Here, we characterize the fungal community in soil and air on 

undeveloped and agricultural land in the San Joaquin Valley using metabarcoding of the internal 

transcribed spacer 2 variable region of fungal rDNA. Using 1002 individual samples, we report 

one of the most extensive studies of fungi sampled simultaneously from air and soil using 

modern sequencing techniques. We find that the air mycobiome in the San Joaquin Valley is 

distinct from the soil mycobiome, and that the assemblages of airborne fungi from sites as far 

apart as 160km are far more similar to one another than to the fungal communities in nearby 

soils. Additionally, we present evidence that airborne fungi in the San Joaquin Valley are subject

to dispersal limitation and cyclical intra-annual patterns of community composition. Our findings

are broadly applicable to understanding the dispersal of airborne fungi and the taxonomic 

structure of airborne fungal assemblages.

Keywords: fungi, soil, air, mycobiome, dispersal, Coccidioides
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Introduction: It has been known that the air harbors microorganisms following Eherenberg’s 

discovery of “infusoria” in dust samples collected off the coast of Africa nearly 200 years ago

(Ehrenberg, 1830). Subsequent research has provided the foundation for our understanding of 

airborne microbial dispersal (Darwin, 1846; Pasteur, 1860), a fundamental process in community

assembly (Nemergut et al., 2013; Vellend, 2010). Of particular interest are fungi because they 

primarily disperse through the air (Magyar et al., 2016; Talbot, 1997), can travel vast distances

(Brown & Hovmøller, 2002), and have many dormancy mechanisms at their disposal (Lennon & 

Jones, 2011; Locey, 2010) which confer protections from damaging environmental conditions 

during transport (Dijksterhuis, 2019; Wyatt et al., 2013). Fungi provide many important 

ecosystem services such as establishing mutually beneficial relationships with plant species, 

breaking down leaf and woody material and cycling carbon and nitrogen in soils (Baldrian, 2017;

Becquer et al., 2019; Lustenhouwer et al., 2020; Read & Perez-Moreno, 2003; Stuart & Plett, 

2020). Many fungal species, especially airborne fungi, are associated with diseases affecting 

humans, crops and wild plants and animals (Fisher et al., 2012). Modern studies using high-

throughput sequencing to describe the outdoor air microbiome are rare, and those focusing on 

fungi (the air mycobiome) rarer still, despite the outdoor air medium harboring diverse, spatially 

and temporally variable fungal populations (Barberán et al., 2015; Fierer et al., 2008; Frohlich-

Nowoisky et al., 2009; Núñez et al., 2019; A. C. Woo et al., 2013).
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Fungal disease in the San Joaquin Valley (SJV) in California, which is home to 4.2 million 

people (US Census Bureau, 2019), is illustrative of the need to better understand airborne fungal 

dispersal. The fungus Coccidioides is a virulent airborne respiratory pathogen that is endemic to 

the SJV (Dixon, 2001; Egeberg & Ely, 1956; Kollath, Miller, et al., 2019; C. Nguyen et al., 

2013; Ophüls, 1905) and is responsible for nearly 200 deaths and $3.9 billion in costs per year in 

the United States (Centers for Disease Control and Prevention, 2018; Gorris et al., 2021; Huang 

et al., 2012). Found primarily in California and Arizona, it remains unclear on what 

environmental medium Coccidioides primarily grows, its source of nutrition (Barker et al., 2012;

Emmons, 1942; Kollath, Teixeira, et al., 2019; J. W. Taylor & Barker, 2019) or its precise means

and range of dispersal (de Perio et al., 2019; Nicas, 2018; Pappagianis & Einstein, 1978; 

Schneider et al., 1997; Wilken et al., 2015). Agriculturally, the SJV is the most productive region

in the United States (Food & Agriculture (CDFA), 2018), and plant pathogenic and parasitic 

fungi are responsible for significant losses in many of the chief crops grown therein

(Baumgartner et al., 2019; Baumgartner & Rizzo, 2002; Camiletti et al., 2022; Holland et al., 

2021). Determining the source and dispersal characteristics of airborne fungi can aid in 

preventing or mitigating fungal disease in humans and crops as well as offering a better 

understanding of fungal community ecology.

In what is still the most extensive modern outdoor air mycobiome work, significant differences in

the distribution of fungi in settled dust have been demonstrated between regions at the 

continental scale (Barberán et al., 2015) despite a documented capacity amongst airborne fungi 

for long distance transport (Brown & Hovmøller, 2002; Prospero et al., 2005). The sampling of 

settled dust by Barberán et al. (2015) was largely focused in population centers and samples were
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broadly collected across North America, each at a single timepoint, including one sample from 

the SJV. A further analyses of the same data that focused on plant pathogens illustrated an 

association between certain pathogenic fungal taxa and geographic regions of the United States

(Dietzel et al., 2019). Few high-throughput sequencing studies, however, have paired 

aerobiology investigations of outdoor fungal communities with simultaneous sampling of the 

substrates on which they grow. Abrego et al. (2018) showed that the air mycobiomes of two 

individual samples taken at a single site were more similar to the air mycobiomes in sites 

>100km away than to the soil mycobiomes at the same site collected several years prior (Abrego 

et al., 2018; Mäkipää et al., 2017). Their 2020 follow up publication reported less variation in the

air mycobiome than the soil mycobiome, at distances up to 20km, and also across a shift in land 

use from natural to urban (Abrego et al., 2020). Similarly, Kivlin et. al (2014) showed that the air

mycobiomes from five sites, stretching approximately 115km from Irvine, California to the 

vicinity of Mt San Jacinto, California, did not differ from one another, changed little over a 

seventeen month sampling period and were distinct from the soil mycobiome (Kivlin et al., 

2014). Recently, Schiro et al. (2022) found fungi in dust more closely resembles the soil fungal 

community nearby than airborne fungi from distant sites, though the dust collected in this study 

consisted of surface soil that had been suspended using a portable wind tunnel (Schiro et al., 

2022).

Here we report the most extensive community-level, high-throughput sequencing study of fungi 

collected simultaneously from air and soil to date. Many studies have explored the air 

mycobiome in recent years, though to our knowledge only four other works have investigated 

both air and soil using high-throughput sequencing, each with an order of magnitude fewer 
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samples than we present here (Table S1). With just over 1000 samples, we characterized the 

fungal communities within soils and inferred the assemblage of airborne fungi above these soils 

via settled dust from both undeveloped land and actively cultivated agricultural land within the 

SJV in California. Our expectation that fungi in settled dust would most closely resemble the 

local soil fungal community was surprisingly shown to be false. Instead, assemblages of fungi in 

settled dust more closely resembled fungi in settled dust from distant sites rather than resembling

soil communities collected beneath our dust samplers. Principally, our community level 

investigation allowed us to discern patterns of fungal dispersal between the soil and airborne 

mycobiomes in the SJV and generate hypotheses regarding fungal pathogens in the region. By 

sampling in the SJV, we complement previous work by focusing on a critically important yet 

overlooked region, and our extensive sampling and temporally explicit approach provides a more

comprehensive assessment of regional airborne fungal dispersal than preceding studies. This 

information will further our understanding of fungal dispersal as well as facilitate connections 

between epidemiological data on fungal disease of crops and humans with fungal dispersal 

dynamics, allowing more robust predictions to be generated and prevention strategies employed.

Methods: Fungi in soil and in settled dust were sampled from undeveloped land (defined here as 

uncultivated and unirrigated land showing few signs of recent disturbance) adjacent to California

highway 33 (Hwy33), at five sites spanning 80km, monthly, from November 2017 through 

October 2018. These sites provide a north-south transect though one of the least developed areas 

in the SJV (Table S2). Hwy33 sites have aridic soils, receive between 15 and 25cm of annual 

precipitation, and support a wild vegetation that includes Nassella spp., Sporobolus spp., Suaeda 
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nigra, Atriplex polycarpa and Adenostoma fasciculatum (Griffith et al., 2016). Developed land 

along Hwy33 is primarily cropland, followed by pasture and sites of oil extraction interspersed 

with small urban areas (Griffith et al., 2016). Fungi in soil and in settled dust were also sampled 

from experimental sorghum fields at the Kearney Agricultural Research and Extension Center 

(KARE), 100km northeast of the nearest Hwy33 site, in the summers of 2016, 2017 and 2018

(Gao et al., 2020). There is little undeveloped land near KARE (Griffith et al., 2016). At their 

furthest, these 6 sites extend across 160km, a substantial portion of the SJV (Figure 1A, Table 

S2). Soils from agricultural land were collected as shallow soil cores from the upper organic soil 

layers (Gao et al., 2018, 2020), where both the highest density and a broad diversity of microbial 

and fungal species are encountered (Fierer et al., 2003; Hao et al., 2021). While soils from 

agricultural land were collected as shallow soil cores, we chose to collect soils on undeveloped 

land from within rodent burrows. Fungi generally inhabit places that are protected from stressors 

such as desiccation, high temperatures and UV irradiation in extreme environments

(Makhalanyane et al., 2015; Santiago et al., 2018), and rodent burrows provide such a habitat and

are nearly ubiquitous across the landscape in arid and semiarid ecosystems (Davidson & 

Lightfoot, 2008; Grinnell, 1923; Whitford & Kay, 1999). Our own experience confirmed this 

ubiquity in the SJV, with hundreds of burrows observed in the immediate vicinity at all Hwy33 

sites. Rodent burrows have been shown to be rich in fungal diversity, owing not only to their 

environmental conditions but also to the nutrients provided by rodents and other macro-

organisms that reside within (Hawkins, 1996; Herrera et al., 1999; Miranda et al., 2019; 

Reichman et al., 1985). Given their unique characteristics when compared to the surrounding 

landscape, we expect that rodent burrows contribute greatly to soil fungal diversity in arid and 

semi-arid regions.
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Sampling and DNA Extraction: At Hwy33 sites, soil was sampled from within rodent burrows 

using hemispherical collectors mounted on threaded rods inserted in the burrows as deeply as 

possible but no deeper than 30cm. Ten burrows were sampled at each site in the first month 

(November 2017). Thereafter, due to time constraints, sampling was reduced to three burrows for

all remaining months. Sampled burrows were not necessarily the same each month though were 

selected as close as possible to the coordinates sampled the previous month. There were no other 

selection criteria for burrows. Air was sampled by allowing dust to passively settle into empty, 

sterile, 10cm Petri dish bottoms placed 50cm off the ground on a polyvinylchloride pipe and 

protected from precipitation beneath a plastic cone (Figure S1). Three passive dust collectors 

were placed in a triangular formation at each site with two collectors 5m apart on an east-west 

axis (the western of which was at the coordinates of soil sampling) that lay 50m north of the third

collector. After one month of exposure, Petri dish bottoms were retrieved and covered with 

sterile lids for transport to the laboratory, and replaced with clean, sterile bottoms, a process that 

was repeated monthly at each Hwy33 site from November 2017 through October 2018. At 

KARE, soils were sampled by collecting soil cores 3cm in diameter and 15cm deep, as 

previously described (Gao et al., 2020), which spans soil depths that incorporate a range of 

agricultural soil fungal diversity (Schmidt et al., 2019). KARE samples were collected from May

through September in 2016, June through October in 2017, and July through October in 2018, 

with total monthly replicates ranging from 6 to 90 soil samples. Air samples of passively settled 

dust were taken at KARE in September and October of 2017 (Gao et al., 2020) and from June 

through October of 2018 as described above with one difference; at KARE, 13 air samplers were 

arrayed at the corners of nested squares with sides of 10m, 20m, 40m and 80m. Settled dust was 
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retrieved from all Petri dish bottoms using sterile, DNA-free swabs moistened in sterile, DNA-

free, distilled water. Swabs were cut from their wooden sticks, placed into buffer and disrupted 

by bead beating followed by DNA extraction using the MoBio Powersoil DNA kit (MoBio, 

Carlsbad, CA, USA). Soil, 0.25g, was added to buffer and DNA extracted using the same kit. 

DNA was quantified using a Qubit dsDNA HS Assay kit (Life Technologies Inc., Gaithersburg, 

MD, USA) and then diluted to 5ng⸱µl-1.

PCR Amplification and Sequencing: For Hwy33 samples, the ITS2 region was PCR amplified 

from extracted DNA with the 5.8SFun (AACTTTYRRCAAYGGATCWCT) and ITS4Fun 

(AGCCTCCGCTTATTGATATGCTTAART) primers (D. L. Taylor et al., 2016) using the 

AccuStart II PCR SuperMix kit (Quantabio, Beverly, MA, USA). The reaction mixture contained

2µl of undiluted template DNA, 2.5µl each of 50 μM forward and reverse primer, 12.5µl 

AccuStart II PCR SuperMix, 2.5µl of nuclease-free water and 3µl BSA. A negative control 

consisted of 2µl of nuclease-free water in the place of template DNA. Amplification was 

performed on the Gene Amplification PCR System (Bio-Rad Laboratories, Hercules, CA, USA) 

under the following conditions: 1 cycle of 96°C for 2 minutes, 35 cycles of 94°C for 30 seconds, 

58°C for 40 seconds and 72°C for 2 minutes, and 1 cycle of 72°C for 10 minutes. The PCR 

product was quantified using the Qubit dsDNA HS Assay kit (Life Technologies Inc., 

Gaithersburg, MD, USA) and sent to the QB3 Vincent J. Coates Genomics Sequencing 

Laboratory (University of California, Berkeley, CA, USA), where samples were assigned unique 

dual indices to avoid barcode bleed / tag-jumping (Carøe & Bohmann, 2020; Zinger et al., 2019),

and sequenced on the MiSeq platform using the paired-end PE300 chemistry (Illumina, Inc., CA, 

USA). For KARE samples, the molecular protocols were identical with the following exceptions:
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template DNA was diluted to 5ng⸱ µl-1, BSA was not added and 5PRIME HotMaster Mix 

(Eppendorf-5Prime, Gaithersburg, MD, USA), now discontinued, was used instead of the 

AccuStart II PCR SuperMix (Gao et al., 2020).

Sequence Processing: All sequence processing was done in Qiime 2 version 2019.10.0 (Bolyen 

et al., 2019) and sequence runs were visually inspected for quality using the summarize 

command. Sequences were denoised using the denoise-paired command in DADA2 (Callahan et

al., 2016), and primer sequences were removed, paired-end reads were joined, and bases trimmed

at the beginning and end of every read once the median quality score dropped below 25. 

Unpaired reads (roughly 2% of reads) were discarded. A naïve Bayes classifier was trained with 

the UNITE database (UNITE Community, 2019) at 97% similarity using the feature-classifier 

fit-classifier-naive-bayes command, and OTUs were assigned with the feature-classifier classify-

sklearn command (Bokulich et al., 2018; Pedregosa et al., 2011). “Unidentified” taxa could be 

matched to an unidentified UNITE database sequence entry, indicating that this sequence had 

been found in the environment, though the taxon associated with it remains unknown. 

“Unspecified” taxa, on the other hand, were algorithmically categorized by classify-sklearn, a 

machine learning method, at a certain taxonomic level but were not matched to a specific UNITE

database entry. All data and metadata supporting the findings of this study have been deposited 

in the NCBI Sequence Read Archive (www.ncbi.nlm.nih.gov/sra) with the following accession 

numbers: PRJNA736543 (Wagner, 2021a), PRJNA736167 (Wagner, 2021b) and PRJNA736519

(Wagner, 2021c). All code used to convert raw sequencing data (FASTQ files) into the 

taxonomic tables used in this study are included as supplementary material.
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Statistical Analysis: Statistical analyses used R version 4.0.2 (R Core Team, 2020) and vegan 

version 2.5.6 (Oksanen et al., 2019). Taxa were analyzed at the species level and those 

represented by only one DNA sequence amongst all samples were removed. Unidentified and 

unspecified taxa were also removed for all community-level statistical analyses, though were 

kept for generation of taxonomic figures. Taxa tables were then transformed (square-rooted to 

reduce the effect of a few dominant taxa and Wisconsin double standardized) before calculating 

Bray-Curtis dissimilarity (Bray & Curtis, 1957; Legendre & Gallagher, 2001). Wisconsin double

standardization first divides each taxon by the most abundant taxon across all samples, followed 

by division across all taxa for each sample to calculate proportional relative effect sizes. These 

transformations make taxa comparable across samples regardless of sample size. Taxa were not 

rarefied as rarefaction of microbiome data can introduce bias and needlessly throw out data

(McMurdie & Holmes, 2014; Willis, 2019). We found no effect on our findings in tests of 

rarefaction or the inclusion of sequencing depth as a covariate (Weiss et al., 2017).

Differences in the fungal community between factors (land use, site, year, month and sampling 

medium) were assessed using a nested PERMANOVA (Anderson, 2001) on Bray-Curtis 

dissimilarities with the adonis2 function. Bray-Curtis dissimilarities were visualized using 

principal coordinate analysis with ape version 5.6.2 (Paradis & Schliep, 2019) and clustering of 

principal coordinate scores used ward.D2 distances (Murtagh & Legendre, 2014). Permutations 

(1000) were left unstratified as stratifying (block permutations) did not change the nested 

PERMANOVA results. Pairwise differences between land use and sampling medium were 

assessed using pairwiseadonis (Arbizu, 2019) with 1000 permutations. Significance of the 

relationship between temporal and geographic distance (distance-decay), and Bray Curtis 
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dissimilarity, was correlated (Pearson) using the Mantel test (Legendre & Legendre, 2012; 

Mantel & Valand, 1970) with unstratified permutations (1000). Significant differences between 

factors in the strength (slope) of the distance-decay relationship were established when a 

significant interaction was present using linear regression. A linear mixed effects model was used

to test for differences in Onygenales abundance between land use and sampling medium 

combinations as fixed effects, and month as a random effect, using lme4 version 1.1.26 (Bates et 

al., 2015). P-values were calculated by comparing the full model with a null model excluding 

fixed effects, using a log-likelihood test (Barr et al., 2013), and variance explained was estimated

as marginal and conditional r2 values (Nakagawa & Schielzeth, 2013) using MuMIn version 

1.43.17 (Bartoń, 2020). Post-hoc tests comparing factor levels used the Kenward-Rogers method 

in lsmeans version 2.30.0 and pbkrtest version 0.5.0.1 (Halekoh & Højsgaard, 2014; Lenth, 

2016). 

Estimating species richness notoriously undercounts the true richness in ecological studies, 

which is only compounded when rarifying data by the smallest sample size in a given study

(Colwell et al., 2012). Methods to alleviate these problems have faced novel challenges with 

microbial datasets using high-throughput sequencing due to sequencing errors being 

indistinguishable from novel taxa (Chiu & Chao, 2016). To alleviate these problems, species 

accumulation curves and estimated species richness were calculated with iNEXT.3D version 

1.0.1, which extrapolates species richness based on individual sample sizes using unrarefied data

(Chao et al., 2014, 2021; Hsieh et al., 2016). Confidence intervals in iNEXT.3D were calculated 

from 1000 bootstrap replications. To assess functional potential, OTUs were assigned to 

functional guilds using FUNGuild version 1.1 (N. H. Nguyen et al., 2016). Guild assignments 
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were only kept if they reached the “Probable” and “Highly Probable” confidence levels. As each 

OTU could be assigned to multiple functional guilds, all functional guild assignments were 

counted to determine the proportional functional potential for each sample (i.e. if an OTU was 

assigned “Plant Pathogen” and “Saprotroph” it would be counted in both categories). A linear 

mixed effects model was used to test for temporal shifts in the proportional abundances of taxa in

settled dust samples assigned to the “Plant Pathogen” functional guild, with month as a fixed 

effect and site as a random effect. P-values and r2 values were calculated as described above. 

Visualizations were created using ggplot2 version 3.3.2 (Wickham, 2016). No novel code was 

used to perform the statistical analyses done in this study, though the code used has been 

included as supplementary material.

Results: A total of 1002 individual soil and air samples were collected and their mycobiota 

sequenced and characterized using the ITS2 region of fungal ribosomal DNA, with 413 samples 

from Hwy33 sites and 589 samples from KARE, inclusive of previously published data (Gao et 

al., 2018, 2020). Hwy33 sites included 175 air and 238 soil samples, while KARE sites included 

90 air and 499 soil samples. In total, 1417 known fungal species (non-inclusive of unidentified 

taxa at higher taxonomic levels) were identified from roughly 44,000,000 reads. The highest 

number of species was found in Hwy33 (930) and KARE (660) air samples, followed by Hwy33 

(563) and KARE (499) soil samples (Figure S2, Table S3). The number of species found along 

Hwy33 did not significantly differ between individual sites, though there were more species 

found in air than in soil (Figure S3, Table S4). Of the total number of identified fungal species, a 

little less than half (626 species) were unique to individual land use and sampling medium 
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combinations. The number of sequence reads assigned to these species was quite small, however,

representing only 1.4% of the total number of reads across both land uses and in air and soil. The

highest number of uniquely sampled species (270) were found in Hwy33 air and the fewest (95) 

in KARE air (Figure S4), representing 0.05% and 0.02% of total sequence reads, respectively. 

172 species were found in common across all sampling mediums and sites, that is, in both soil 

and air and at both Hwy33 and KARE, representing 87.9% of total sequence reads. Between 

Hwy33 and KARE, more species were shared in air (503) than in soil (265), though the 

proportion of sequences in each category was nearly identical at 92.4% and 92.1%, respectively.

Fungal Community Structure: The most interesting and unexpected result of our analyses is the 

similarity in fungal assemblages in air over distances as great as 160 km, compared to the 

distinct nature of soil fungal communities over the same distances. Using principal coordinate 

analysis (PCoA), all samples separated into three distinct categories representing Hwy33 soil, 

KARE soil, and a third category containing all air samples from both Hwy33 and KARE (Figure 

1B). The difference in PCoA-derived mean Bray-Curtis distance between soil and air fungal 

communities at any individual site was greater than the difference in air between any pair of sites

(Figure 1C). In terms of individual predictors of fungal community structure, PERMANOVA 

analysis showed that land use (Hwy33 vs KARE) and sampling medium (soil vs air) explained 

18% and 10%, respectively, of the variance in fungal community structure, while month, year, 

and differences between Hwy33 sites were weak predictors (Table 1). Taken together, 

interactions between factors represented 18% of explained variance, but only when inclusive of 

month or sampling medium. All factors showed significant differences (p ≤ 0.001) between 

factor levels, likely because of the high number of samples (van der Laan et al., 2010), with 
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variance explained delineating important predictors from inconsequential ones. In general, the 

fungal assemblage in air more closely resembled the fungal community in soils from Hwy33 

than from KARE, based on post-hoc PERMANOVA analyses (Table S5). Reducing species to 

only those shared between soil and settled dust did not substantially change the results of 

PERMANOVA or PCoA analyses (Figure S5), though subsampling to account for an unbalanced

sampling design or heterogeneous dispersion between factor levels greatly reduced the effect of 

land use from 18% to 10% variance explained (Figure S6). In both cases, land use and sampling 

medium remained the most important explanatory variables. Likewise, reanalysis in the absence 

of soils from Hwy33 (Figure S7) or KARE (Figure S8), to test if results were influenced by 

differences in soil sampling methods, did not change our core findings. Rarifying data did not 

change our findings and sequencing depth differences between samples could only explain about 

1% of the total variance observed (Table S6, S7).

Spatial and Temporal Distance-Decay: Significant patterns of temporal and geographic distance-

decay, with Bray-Curtis dissimilarity, were found for fungi in both Hwy33 and KARE samples, 

and in both the air and the soil (in all cases, Mantel p = 0.001) (Figure 2). In air samples, a 

seasonal pattern of fungal community dissimilarity and temporal distance was evident from the 

similar parabolic succession relationship seen at both Hwy33 (r2 = 0.35, Mantel r = 0.38) and 

KARE (r2 = 0.36, Mantel r = 0.17), with the initial rate of change significantly greater at KARE 

than at Hwy33 (p < 0.001) (Figure 2A). In contrast, the relationship between fungal community 

dissimilarity and geographic distance in air was very weak across Hwy33 sites (r2 = 0.01, Mantel

r = 0.11) over a maximum distance of approximately 80km. When airborne fungi from KARE 

were included in the relationship, which were collected 100-160km from Hwy33 sites, the slope 
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of the relationship between community dissimilarity and geographic distance in air samples 

significantly increased (p < 0.001) by 36.4% when compared to Hwy33 sites alone (r2 = 0.11, 

Mantel r = 0.33) (Figure 2B). Within Hwy33 sites, air samples taken no more than 50m apart 

showed no relationship between dissimilarity and geographic distance (p > 0.09, |Mantel r| < 

0.09, r2 < 0.01). The relationship between fungal community dissimilarity and temporal distance 

was weaker in soils than in air at KARE (r2 = 0.08, Mantel r = 0.28), and much weaker at Hwy33

sites (r2 = 0.01, Mantel r = 0.09) (Figure 2C). The difference in temporal decay in soils between 

KARE and Hwy33 sites is almost certainly due to the former being actively cultivated 

agricultural land with regular seasonal disturbances due to planting, fertilization, irrigation and 

harvesting of crops. The temporal distance-decay relationship in soils was also analyzed 

separately for each year at KARE, which all had significantly different slopes from one another 

(p < 0.001) (Figure S9). Bray-Curtis dissimilarity significantly correlated with temporal distance 

in KARE soils in 2016 and 2017 (Mantel p = 0.001) but not in 2018 (Mantel p = 0.7). This 

difference may be due to substantially fewer samples being sequenced and a shorter length of 

time investigated in 2018 (n = 98, 4 months) than from 2016 (n = 254, 5 months) and 2017 (n = 

147, 5 months). With geographic distance, the slope of the relationship with fungal community 

dissimilarity in soils over approximately 80km along Hwy33 sites (r2 = 0.08, Mantel r = 0.28) 

was significantly (p < 0.001) greater (approximately 2.5 fold) than in air (r2 = 0.01, Mantel r = 

0.11) (Figure 2D). 

Functional Guilds and Taxonomy: The distribution of functional guild assignments showed 

distinct sampling medium and land-use specific patterns (Figure 3). Air samples were dominated 

by the plant pathogen functional guild both along Hwy33 (46.7±0.2%) and at KARE 
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(71.2±1.2%), while soil samples were dominated by the saprotroph functional guild, also both 

along Hwy33 (59.2±0.9%) and at KARE (73.9±0.8%) The proportional abundance of taxa 

assigned to the plant pathogen functional guild in air increased significantly from May through 

October (p < 0.001), though this pattern was less clear during the rest of the year (Figure S10). 

Plant pathogen functional guild percentages in soils were much lower than in air samples and 

were similar between soils at Hwy33 (20.1±0.5%) and KARE (22.3±0.8%). The animal 

pathogen functional guild, alternatively, was most abundant in Hwy33 soils (10.3±0.5%), 

followed by Hwy33 air (8.6±0.3%) and KARE air (6.6±0.3%), and lowest in KARE soils 

(2.3±0.3%). Taxonomic proportional abundances were characterized at the phylum, order, and 

genus levels. Most taxa were Ascomycota in the Pleosporales, Capnodiales and Sordariales 

(Figure S11, S12). The most common genera in air were Mycosphaerella (30.8%) and Alternaria

(27.9%), which contain numerous plant and crop pathogenic species (Figure 4A-F). Alternaria 

was also the most common genus in soil fungi, though was much more common along Hwy33 

(22.2%) than at KARE (9.6%) (Figure 4G-L). Genera of Onygenales, the order that contains 

Coccidioides as well as numerous animal pathogenic fungi (Sigler, 2002), were orders of 

magnitude more abundant in soils than in the air at both Hwy33 and KARE but did not 

significantly differ in proportional abundance between soils from Hwy33 and KARE, or between 

air samples from Hwy33 and KARE (Figure S13). Coccidioides was identified in only 4 soil 

samples from Hwy33 rodent burrows and was not found in any soil cores collected at KARE nor 

in any air samples. The soil samples that Coccidioides was detected in did not have an unusually 

high or low sequencing depth (Figure S14A), nor were the number of reads assigned to 

Coccidioides exceptional when compared to other taxa (Figure S14B).
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Discussion: In the study presented here, we investigated the assemblage of airborne fungi in 

settled dust and compared it to the soil fungal community in the most productive agricultural 

region in the United States, the SJV in California. Our study is one of only a handful to 

simultaneously compare the mycobiome in soil and air using high-throughput sequencing. We 

showed that the assemblage of airborne fungi collected on both agricultural and undeveloped 

land, at distances of up to 160km, resemble one another far more than they resemble the fungal 

communities in nearby soils. We also showed that, regardless of sampling location, the airborne 

fungal assemblage in the SJV was more similar to the fungal community in rodent burrow soils 

on undeveloped land than to the fungal community in agricultural soils. The similarity of the 

airborne fungal community across the SJV, though previously undocumented, is not entirely 

unexpected. Once airborne, fungal spores can be dispersed across vast distances (Barberán et al., 

2015; Cáliz et al., 2018; Griffin, 2007), and the distribution of airborne fungal taxa can change 

little over tens (Kivlin et al., 2014) to hundreds (Nicolaisen et al., 2017) of kilometers and along 

altitudinal gradients of up to 1000m (Sánchez-Parra et al., 2021). This degree of mixing is not 

always the case, however. Airborne fungi in Finnish conifer forests differ from one another at 

sites approximately 100 to 400km distant from one another (Abrego et al., 2018), and to a lesser 

degree at distances as short as 1km when sampling across a land-use gradient between forested 

and urban areas (Abrego et al., 2020). In the coniferous forest study, airborne fungal assemblages

from hundreds of kilometers away were more similar to one another than to soil fungi previously

characterized at the same sites (Abrego et al., 2018; Mäkipää et al., 2017). These results raise the

possibility that the findings we present may not be isolated only to arid environments such as the 

SJV, but are instead relevant across multiple biomes.
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Spatial and Temporal Patterns: Distance-decay relationships are helpful for understanding 

patterns in community ecology (Anderson et al., 2011; Dray et al., 2012; Nekola & White, 1999; 

Soininen et al., 2007; Whittaker, 1972). Among studies of fungi, such relationships can illustrate 

both geographic variation (Bahram et al., 2013; Barberán et al., 2015) and patterns of dispersal 

limitation (Adams et al., 2013; Peay et al., 2012), both of which are relevant to the current study. 

The fungi that we sampled in soil and in settled dust showed evidence of dispersal limitation 

based on significant correlations between Bray-Curtis dissimilarity of the fungal community and 

geographic distance. Dispersal limitation of airborne fungi has been reported previously in 

settled dust (Adams et al., 2013; Barberán et al., 2015) and rain spore traps (Peay et al., 2012). 

Conversely, airborne fungi sampled in southern California showed no evidence of dispersal 

limitation (Kivlin et al., 2014). The reasons for this difference in findings are likely 

methodological: Kivlin et al. (2014) sequenced the 18s region of fungal rDNA, which provides a 

decidedly lower species level resolution than the ITS2 region (Bruns & Taylor, 2016; Schoch et 

al., 2012) and used an older sequencing technology than the one we used. However, differences 

may also be related to the frequency and scale of sampling, the geographic region investigated or

the sampling methods employed, all of which can influence distance-decay relationships (Clark 

et al., 2021; Soininen et al., 2007). Our finding that the distance-decay relationship was 

significantly stronger for soil fungi than airborne fungi reflect our observations of greater 

community variation in soil fungi than in airborne fungi in the SJV. This result provides support 

for our main finding that the air mycobiome is more similar than the soil mycobiome, not only 

with regard to ecological distance, but when incorporating a physical measure of distance as 

well. While we could assess the distance decay relationship in soils over the 80km separating 
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undeveloped sites along Hwy33, we felt this relationship could not be extended to soils at KARE

due to differences in land management, sampling methods and an absence of rodent burrows on 

agricultural land. However, the environmental conditions at our undeveloped sites are largely 

representative of a substantial portion of the undeveloped land in the SJV (Griffith et al., 2016), 

indicating that our findings regarding the soil fungal community may be generalizable at a larger 

landscape scale. This point is supported by the fact that rodent burrows, such as the ones we 

sampled, are exceedingly common across similar arid environments (Davidson & Lightfoot, 

2008; Grinnell, 1923; Whitford & Kay, 1999).

As previously noted, the airborne fungi surveyed here and in other studies that use molecular 

identification techniques are not required to establish and grow (Adams et al., 2013). What is 

measured is only the DNA that is associated, or was associated, with a living organism. 

Environmental stressors in the atmosphere, such as ultraviolet irradiation and desiccation, can 

render airborne fungal spores non-viable (Griffin, 2004; Ulevičius et al., 2004), though dormancy

mechanisms can confer a fitness advantage by protecting against such stressors (Nemergut et al., 

2013). However, this selective force remains unmeasured, likely inflating the perceived diversity 

of viable airborne fungi across geographic distances, and possibly underestimating airborne 

fungal dispersal limitation. The influence of non-viable fungi that plagues studies of airborne 

fungi is lessened in soils, where unprotected nucleic acids are subject to decomposition (Gordon 

& Van Norman, 2021). Still, some fungal spores can persist in soils for many years, confusing 

the detection of growing fungi with dormant fungi (Aime & Miller Jr, 2002; Bruns et al., 2009; 

N. H. Nguyen, 2018; Sussman et al., 1966). The germination and growth of fungal spores in 

soils, unlike in air and settled dust, raises the prospect that fitness advantages conferred by 
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dormancy mechanisms and favorable adaptations to local edaphic conditions contribute to the 

observed community structure.

The seasonal pattern (temporal-decay) we observed in airborne fungi in the SJV has been 

reported from other studies based on abundances of individual fungal taxa in air (Almaguer-

Chávez et al., 2012; Lacey, 1981; Lagomarsino Oneto et al., 2020; Reyes et al., 2016). Likewise,

the distribution of taxa that make up the outdoor airborne fungal assemblage is associated with 

the frequency and timing of sample collection, whether weekly, seasonally or yearly (Cáliz et al.,

2018; Du et al., 2018; Fierer et al., 2008; Nicolaisen et al., 2017). We hypothesize that the 

seasonal pattern we observed in airborne fungi is due to the annual, agricultural cycle of planting

and harvesting, whereupon crops are generally planted in the spring and harvested in the fall

(Zhong et al., 2011), as well as the yearly phenology of wild plants in the SJV (Chiariello, 1989).

This hypothesis is supported by our observations of monthly shifts in the proportional abundance

of taxa assigned to the plant pathogen functional guild as well the dominance of Alternaria and 

Mycosphaerella in settled dust samples, genera that contain numerous plant pathogenic and 

parasitic species (Camiletti et al., 2022; Crous, 2010; Farrar et al., 2004; Fones et al., 2020; 

Koike et al., 2017). Similar seasonal patterns to the ones we show here have been observed in 

other agricultural regions, with increased abundances of plant pathogenic fungi in the late 

summer and fall (Almaguer-Chávez et al., 2012; Nicolaisen et al., 2017). The soil fungal 

community in the SJV, in contrast to the airborne fungal assemblage, changed little with time, 

suggesting that shifts in the distribution of fungi present in soils cannot fully explain the 

corresponding shifts in the distribution of airborne fungi above. While fungi inhabiting soil can 

survive adverse conditions as vegetative hyphae, through the production of sclerotia (Willetts, 
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1971) or as spore banks (Baar et al., 1999), fungi inhabiting living tissue on the aerial structures 

of host plants typically must sporulate for persistence. The high abundance of Mycosphaerella in

air samples, and its relative near absence in soil samples, indicates that this genus is largely 

unassociated with soils in the SJV. We presume that airborne Mycosphaerella, which constitutes 

over half of the air mycobiome in some land-use and month combinations, as well as other plant 

pathogenic and parasitic fungi, are more associated with the crop and wild plant phyllosphere 

than the soil environment in the SJV.

Land Use and the Influence of Burrowing Rodents: Our results indicate that most airborne fungal

taxa in the SJV can be found in both agricultural soils and soils within rodent burrows on 

undeveloped land. Mean Bray-Curtis dissimilarities, and proportional abundances of taxa 

indicate that soils from rodent burrows more closely resemble the air mycobiome in the SJV than

soils from agricultural fields. Though we believe that the air mycobiome in the SJV is probably 

more associated with plants than with soils, at some point in their lifecycle most described fungi 

can be found in soils (Bridge & Spooner, 2001; O’Brien et al., 2005; Tedersoo et al., 2014). 

Fungi primarily disperse through the air (Magyar et al., 2016; Talbot, 1997), and in arid 

environments, wind erosion can liberate large volumes of surface soil and dust (Duniway et al., 

2019; Field et al., 2010), likely dispersing fungi and fungal spores (Barberán et al., 2015; Dietzel

et al., 2019; Schiro et al., 2022). This type of dispersal suggests that, though perhaps not the 

dominant source of airborne fungi, soil fungi and their spores can contribute significantly to the 

air mycobiome in arid environments such as those found in the SJV. While the SJV is generally 

considered an arid environment (Griffith et al., 2016), the physical characteristics of cultivated 

agricultural land within the SJV are probably less susceptible to wind disturbance than 
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undeveloped land due to artificial irrigation and crop cover (Duniway et al., 2019). Conversely, 

on undeveloped lands, burrowing mammals can liberate significant quantities of fine soil 

material (Black & Montgomery, 1991; Davidson & Lightfoot, 2008; Grinnell, 1923; Whitford & 

Kay, 1999), and this material is highly susceptible to wind erosion (Wei et al., 2007; Whitford & 

Kay, 1999). It has been estimated that, in areas where foraging occurs, up to twenty percent of 

the soil surface is disturbed by burrowing mammals in arid environments each year (Whitford & 

Kay, 1999). The data we have collected does not allow us to determine the origin of the airborne 

fungi we found in the SJV, as many variables were left unexplored and the range of locations 

sampled was limited. However, the susceptibility of soils from rodent burrows to wind erosion 

could offer a plausible starting point for explaining the higher similarity we found between 

airborne fungi and fungi from rodent burrow soils, than fungi from agricultural soils.

Methodological Considerations: An important question is to what degree sampling method and 

study site selection play a role in the observed distribution of fungal species. There are numerous

methods for sampling airborne fungi, each with its own unique trade-offs (West & Kimber, 

2015). We used passive deposition sampling on petri dishes, which is inexpensive and allows for

a high degree of replication. Differences in spore aerodynamic diameter, however, may enrich 

for specific taxa with larger spores and higher settling velocities when using deposition sampling

(C. Woo et al., 2018). Kivlin et al. (2014) sampled airborne fungi on nylon filters that use an 

active air pump, which can likely capture a wider distribution of particle sizes. However, filters 

on active samplers such as this slowly become clogged with material (West & Kimber, 2015), 

which may impact the distribution of fungi sampled over time. Indeed, Kivlin et al. (2014) state 

that filter replacement was sometimes necessitated due to obstructed airflow. A bigger drawback 
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is the cost of active sampling systems and their need for electricity, which limits replication. For 

example, our passive sampling method allowed for monthly collection from 13 samplers at 

KARE for three summers, and 15 samplers among the five Hwy33 sites for one year, whereas 

Kivlin et. al (2014) collected 1 filter from each of five sites every 2-3 months, over a 17-month 

period. In both studies by Abrego et al. (2018, 2020), a “cyclone sampler” was used, which 

likely captures the most representative sample of airborne fungi of the methods mentioned

(Abrego et al., 2018), though replication is limited by cost similar to filtration methods. An 

important consideration regarding the results of ours and the few other metabarcoding studies 

that have compared airborne fungi and soil fungi is that sampling methods between these two 

mediums are not equivalent. While the soil fungal community may have taken years to arrive at 

its current state (Osburn et al., 2021), the airborne fungal assemblage can change with the 

seasons, as we have shown here. There are likely numerous other differences between these 

sampling mediums with which to contend, and while we are currently unable to address all of 

them, it’s important to evaluate our results with this caveat in mind.

The location in the environment where air sampling takes place, particularly sampling height, 

can influence the distribution of fungal taxa observed (Charalampopoulos et al., 2022; Khattab &

Levetin, 2008; Mahaffee, 2014). Sampling closer to the ground (0.5 – 1.5m)  better represents 

local taxonomic distributions of airborne fungi while sampling higher up (10-30m) is more likely

to represent regional distributions (Lacey & Venette, 1995; West & Kimber, 2015). Sampling 

very high up (>100m) appears to homogenize fungal aerobiota (Núñez & Moreno, 2020; 

Sánchez-Parra et al., 2021; Tipton et al., 2019). Both our study and those of Abrego et al. (2018, 

2020) sampled close to the soil surface and found small but significant differences in the 
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distribution of airborne taxa between sites. It is possible that our study and Abrego et al. (2018, 

2020) preferentially sampled more localized fungal taxa. Sampling at low heights near the 

saltation layer (the height range where wind causes particles to skip across the soil surface) 

enriches for particles from the surrounding area (Ho et al., 2014; Martin & Kok, 2017). In 

contrast, Kivlin et al. (2014) sampled at 7m and found no significant differences among sites or 

between seasons, while we showed clear difference with both. Though Kivlin et al. (2014) used 

different sequencing methods than ours, it is possible that sampling at a greater height also 

homogenized the distribution of fungi sampled with respect to time as well as location. This 

possibility is supported by fungal sampling at elevations above 3000m in which the distribution 

of airborne fungal taxa can become completely decoupled with time from the seasonal to decadal

scale (Tipton et al., 2019).

Difficulty in Detecting   Coccidioides  :   Our inability to detect Coccidioides in all but four samples 

prevent us from saying much that is ecologically relevant regarding Coccidioides in either soil or

air. It is notable however that the sequencing depth and the total number of reads assigned to 

Coccidioides in samples where Coccidioides was detected were neither remarkably high nor low.

This finding suggests that the likelihood of finding Coccidioides in soils may be more associated 

with an uneven distribution across the landscape (Greene et al., 2000; Maddy, 1958; Stewart & 

Meyer, 1932) rather than its presence at some minimum abundance. Detecting Coccidioides in 

air samples has only been accomplished three times from ambient air (Ajello et al., 1965; 

Daniels et al., 2002; Gade et al., 2020), and once from dust generated through disturbance of the 

soil surface with a leaf blower (Chow et al., 2016). In all three cases, a high-throughput pump 

was used to sample thousands of liters of air, which contrasts greatly with our passive deposition 
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sampling method. It is possible that our sampling method did not allow for the reliable detection 

of Coccidioides, which may only be present in the air in extremely small abundances. Our 

finding that fungi in the order Onygenales are far more common in soils than in settled dust, on 

both agricultural and undeveloped land, allows for speculation that soil disturbance may be 

important for dispersal and infection of animal pathogenic fungi (including Coccidioides). The 

higher proportional abundance of taxa assigned to the animal pathogenic fungal guild in the air 

and soil of undisturbed land than those of agricultural land hints at possible source dynamics, 

though more work is needed here. Regardless, high-throughput air sampling techniques should 

be used in any future attempts to capture airborne Coccidioides fungi and a more sensitive 

Coccidioides detection strategy, such as using the CocciENV qPCR assay (Bowers et al., 2019) 

should be applied in future work investigating Coccidioides in either soil or air.

Conclusion: The study presented here provides an analysis of the most extensive sampling effort

of fungi in both soil and air to date using high-throughput sequencing methods. By comparing 

the settled dust mycobiome with the spatially associated soil mycobiome from two distinct 

sources (rodent burrows on undeveloped land and soil cores from agricultural land), we show 

that the airborne fungal assemblage in the San Joaquin Valley in California is far more similar 

between sites over one hundred kilometers away than to nearby soil fungal communities. Our 

results indicate that the air mycobiome in the San Joaquin Valley experiences seasonal cycles 

which we hypothesize are the result of the cultivation of crop plants on agricultural land and the 

phenology of wild plants. We show that, despite the relative similarity of the air mycobiome 

among sites when compared to the soil mycobiome, significant geographic patterns are apparent. 
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This pattern is elucidated most clearly through the evidence we provide for airborne fungal 

dispersal limitation in the San Joaquin Valley. Finally, we hypothesize that the broad array of 

methodological differences used to explore airborne fungi in the past are likely responsible for 

differences in results, and that future work should seek to either standardize methods or present 

results in the context of the methods used. Taken together, our study provides an important 

exploration of airborne fungal dispersal in the San Joaquin Valley in California, which will be 

important for gaining a better understand of how fungal pathogens spread in the outdoor 

environment. This information will be useful for helping to prevent airborne fungal disease as 

well as for providing a broader understanding of fungal community ecology.
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Figure Captions

Figure 1. (A) Location of sampling sites on undeveloped land (Hwy33) and agricultural land 

(KARE) in the San Joaquin Valley with counties labeled. Inset shows the location of labeled 

counties within California. (B) Principal coordinate analysis of the Bray-Curtis dissimilarity 
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between ITS2-identified fungal species, demarcated by land use (Hwy33 vs KARE) and 

sampling medium (soil vs air), which separates into three distinct groups: agricultural (KARE) 

soil, wild (Hwy33) soil, and air from both agricultural and wild land (KARE and Hwy33). (C) 

Hierarchically clustered mean Bray-Curtis distances derived from principal coordinates between 

each pair of individual sites and sampling mediums. Distances were greatest between KARE and

Hwy33 soils, and between soil and air samples, and least when comparing between only air 

samples. Air samples from both land uses were more similar to soils from Hwy33 than soils from

KARE. Black boxes indicate comparisons between soil and air at the same site, and between air 

at KARE and air at each Hwy33 site.

Figure 2. Effect of geographic distance and temporal distance on the composition of fungal 

communities. Relationships are between Bray-Curtis dissimilarity in air (A, B) and soil (C, D) 

samples. Temporal distance showed a stronger annual pattern in air (A) than in soils (C), while 

geographic distance (and land-use change) showed little difference across air samples (B). 

Likewise, geographic distance among Hwy33 air samples was small compared to moderate 

differences between soil samples (D). r = Mantel statistic. r2 = linear model coefficient of 

determination. The linear model for Hwy33 air and KARE air (A) both use a 2nd order 

polynomial, and the reported slope is the initial rate of change. Geographic distance decay 

between soils (D) excludes KARE because of differences in sampling methods between land use 

types. Mantel p < 0.001 in all cases. Points jittered up to ±3 units on the x-axis for visibility. 

Note: x-axis range differs between panels.
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Figure 3. Mean proportional abundance of fungal guilds as a function of month, site and 

sampling medium. All guilds assigned to multi-guild taxa were counted. Only guilds 

representing at least 1% of the community across all samples were included. Only Funguild 

version 1.1 “Probable” and “Highly Probable” guild assignments were used. Note that November

and December (2017) precede January – October (2018) for Hwy33.

Figure 4. Mean proportional abundance of the top 30 most abundant genera, among all genera, as

a function of month, site and sampling medium. Values are means between replicates, and across

years (for KARE samples). unidentified = all pooled genera matching an unidentified reference 

sequence. unspecified = sequences binned into a taxonomic level without a reference sequence. 

Note that November and December (2017) precede January – October (2018) for Hwy33.

Table 1. PERMANOVA coefficient table for the Bray-Curtis dissimilarity among samples as a 

function of land use, site, year, month and sampling medium and the interactions between them 

in a fully nested model (adonis2 function). Permutations = 1000 (unstratified). n = 1002. df = 

degrees of freedom. F = pseudo F-ratio (Anderson, 2001). Note: very low p-values are likely a 

result of greatly increased sensitivity due to high replication (van der Laan et al., 2010), whereas 

r2 and F values can better differentiate between important and trivial independent variables.

56

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256



Figure 1. (A) Location of sampling sites on undeveloped land (Hwy33) and agricultural land 
(KARE) in the San Joaquin Valley with counties labeled. Inset shows the location of labeled 
counties within California. (B) Principal coordinate analysis of the Bray-Curtis dissimilarity 
between ITS2-identified fungal species, demarcated by land use (Hwy33 vs KARE) and 
sampling medium (soil vs air), which separates into three distinct groups: agricultural (KARE) 
soil, wild (Hwy33) soil, and air from both agricultural and wild land (KARE and Hwy33). (C) 
Hierarchically clustered mean Bray-Curtis distances derived from principal coordinates between 
each pair of individual sites and sampling mediums. Distances were greatest between KARE and
Hwy33 soils, and between soil and air samples, and least when comparing between only air 
samples. Air samples from both land uses were more similar to soils from Hwy33 than soils from
KARE. Black boxes indicate comparisons between soil and air at the same site, and between air 
at KARE and air at each Hwy33 site.
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Figure 2. Effect of geographic distance and temporal distance on the composition of fungal 
communities. Relationships are between Bray-Curtis dissimilarity in air (A, B) and soil (C, D) 
samples. Temporal distance showed a stronger annual pattern in air (A) than in soils (C), while 
geographic distance (and land-use change) showed little difference across air samples (B). 
Likewise, geographic distance among Hwy33 air samples was small compared to moderate 
differences between soil samples (D). r = Mantel statistic. r2 = linear model coefficient of 
determination. The linear model for Hwy33 air and KARE air (A) both use a 2nd order 
polynomial, and the reported slope is the initial rate of change. Geographic distance decay 
between soils (D) excludes KARE because of differences in sampling methods between land use 
types. Mantel p < 0.001 in all cases. Points jittered up to ±3 units on the x-axis for visibility. 
Note: x-axis range differs between panels.
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Figure 3. Mean proportional abundance of fungal guilds as a function of month, site and 
sampling medium. All guilds assigned to multi-guild taxa were counted. Only guilds 
representing at least 1% of the community across all samples were included. Only Funguild 
version 1.1 “Probable” and “Highly Probable” guild assignments were used. Note that November
and December (2017) precede January – October (2018) for Hwy33.
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Figure 4. Mean proportional abundance of the top 30 most abundant genera, among all genera, as
a function of month, site and sampling medium. Values are means between replicates, and across
years (for KARE samples). unidentified = all pooled genera matching an unidentified reference 
sequence. unspecified = sequences binned into a taxonomic level without a reference sequence. 
Note that November and December (2017) precede January – October (2018) for Hwy33.
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Table 1. PERMANOVA coefficient table for the Bray-Curtis dissimilarity among samples as a 
function of land use, site, year, month and sampling medium and the interactions between them 
in a fully nested model (adonis2 function). Permutations = 1000 (unstratified). n = 1002. df = 
degrees of freedom. F = pseudo F-ratio (Anderson, 2001). Note: very low p-values are likely a 
result of greatly increased sensitivity due to high replication (van der Laan et al., 2010), whereas 
r2 and F values can differentiate between important and trivial independent variables.

Model (adonis2 function):
~ Land Use + Site + Year + Month + Medium + Medium*Land Use/Site/Year/Month

df
Sum of
Squares r2 F p value

Land Use 1 64.74 0.18 381.06 0.001
Site 4 7.73 0.02 11.38 0.001
Year 1 12.08 0.03 71.11 0.001
Month 11 17.6 0.05 9.42 0.001
Medium 1 35.95 0.10 211.58 0.001
Land Use : Medium 1 15.56 0.04 91.58 0.001
Land Use : Site : Medium 4 4.62 0.01 6.79 0.001
Land Use : Site : Year : Medium 10 5.15 0.01 3.03 0.001
Land Use : Site : Year : Month : Medium 104 41.56 0.12 2.35 0.001
Residual 864 146.79 0.42           
Total 1001 351.78 1.00           
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Figure S1. Photograph of settled dust sampler used to sample the air 
mycobiome in the San Joaquin Valley. The sampler rests atop a 
polyvinylchloride pipe that is slipped over and secured to a reinforcing rod 
driven into the ground so that the sampler is 50cm above the soil surface. A 
plastic cone was affixed to the top of the sampler to prevent precipitation 
from impacting the open petri dish within. The sides of the sampler were 
open to ambient air to allow dust carried on air currents to passively settle 
on the petri dish. Vertical deposition during periods of still air may have been
inhibited.
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Figure S2. Species richness as a function of sampling effort across all sites. 
Points and interpolated lines represent actual sampling effort. Extrapolated 
lines estimate species richness at higher potential sampling efforts. Shaded 
regions = 95% confidence interval derived from a bootstrap estimate of 
variance with 1000 replications.
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Figure S3. Species richness as a function of sampling effort at Hwy33 sites 
for air and settled dust samplers (A) and rodent burrow soils (B). Points and 
interpolated lines represent actual sampling effort. Extrapolated lines 
estimate species richness at higher potential sampling efforts. Shaded 
regions = 95% confidence interval derived from a bootstrap estimate of 
variance with 1000 replications.
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Figure S4. Venn diagram showing the number of species unique to, and 
shared between, each land use type (Hwy33 vs KARE) and sampling medium
(soil vs air) combination.
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Figure S5. Principal coordinate analysis limited to species found in both air 
and soil samples, which separates into the same three groups as the full 
dataset: agricultural (KARE) soil, undeveloped (Hwy33) soil, and air from 
both agricultural and undeveloped land (KARE and Hwy33) (A). Venn diagram
showing the number of species unique to, and shared between, each land-
use and sampling medium combination (B). Nested PERMANOVA coefficient 
table (C).
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Figure S6. Principal coordinate analysis after balancing the number of 
samples from the four combinations of land-use and sampling medium 
(Hwy33 Soil, Hwy33 Air, KARE Soil, KARE Air) by randomly selecting 90 
samples from the abundantly sampled groups to match the lower number 
from KARE Air. (A). Venn diagram showing the number of species unique to, 
and shared between, each land-use and sampling medium combination (B). 
Nested PERMANOVA coefficient table (C).
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Figure S7. Principal coordinate analysis after removing all Hwy33 soil 
samples from the analysis, leaving only three combinations of land-use and 
sampling medium (KARE Soil, Hwy33 Air and KARE Air) (A). Venn diagram 
showing the number of species unique to, and shared between, each land-
use and sampling medium combination (B). Nested PERMANOVA coefficient 
table (C).
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Figure S8. Principal coordinate analysis after removing all KARE soil samples 
from the analysis, leaving only three combinations of land-use and sampling 
medium (Hwy33 Soil, Hwy33 Air and KARE Air) (A). Venn diagram showing 
the number of species unique to, and shared between, each land-use and 
sampling medium combination (B). Nested PERMANOVA coefficient table (C).
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Figure S9. Bray-Curtis dissimilarity as a function of temporal distance (days) 
at KARE in 2016 (A), 2017 (B) and 2018 (C). Significant relationships were 
present in 2016 and 2017 but not in 2018. Mantel p = 0.001 in 2016 and 
2017. Mantel p = 0.7 in 2018. n = 254 in 2016, 147 in 2017 and 98 in 2018. r
= Mantel statistic. r2 = linear model coefficient of determination. Slopes 
differed significantly between all pairs of years (p < 0.001). Points jittered up
to ±3 units on the x-axis for visibility. Note: x-axis range differs between 
panels.
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Figure S10. Proportional abundance of airborne taxa assigned to the Plant 
Pathogen functional guild as a function of month and site. For settled dust 
samples collected from May through October (n = 180), a linear mixed 
effects model was calculated with month as a fixed effect and site as a 
random effect. Plme = p-value obtained from log-likelihood test between full 
model (site and month) and null model (excluding month). r2

c = conditional r2

(fixed effect [month] + random effect [site]). r2
m = marginal r2 (only random 

effect [site]). Thick lines = linear regression lines for each site from May 
through October. Thin lines = natural cubic spline regressions (3 degrees of 
freedom) for each site. Note: x-axis is from November 2017 through October 
2018. Points represent individual settled dust samples and are jittered on the
x-axis for clarity.
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Figure S11. Mean proportional abundance of the top 10 most abundant 
phyla, among all phyla, as a function of month, site and sampling medium. 
Values are means between replicates, and across years (for KARE samples). 
unidentified = all pooled phyla matching unidentified reference sequences. 
unspecified = sequences binned into a taxonomic level without a reference 
sequence. Note that November and December (2017) precede January – 
October (2018) for Hwy33.
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Figure S12. Mean proportional abundance of the top 30 most abundant 
orders, among all orders, as a function of month, site and sampling medium 
from ITS2 sequences. Values are means between replicates, and across 
years (for KARE samples). unidentified = all pooled orders matching 
unidentified reference sequences. unspecified = sequences binned into a 
taxonomic level without a reference sequence. Note that November and 
December (2017) precede January – October (2018) for Hwy33.
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Figure S13. Mean proportional abundance of Onygenales genera as a 
function of land use (Hwy33 vs KARE) and sampling medium (soil vs air) (A, 
B). A linear mixed effects model was calculated with a factor combining land 
use and sampling medium “site-medium” (Hwy33 Air, KARE Soil, etc.) as a 
fixed effect and sampling month as a random effect. Plme = p-value obtained 
from log-likelihood test between full model (site-medium and month) and 
null model (excluding site-medium). r2

c = conditional r2 (fixed effect[site-
medium] + random effect [month]). r2

m = marginal r2 (only random effect 
[month]). Error bars = SEM. Pairwise comparison of individual factor levels 
obtained from the mixed effects model (C).
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Figure S14. Sequencing depth as a function of sample, ordered from highest 
to lowest, with samples where Coccidioides was detected in red (A). 
Distribution of total sequence reads assigned to each species across all 
samples on a logarithmic scale. Vertical red bar indicates the position of 
Coccidioides reads in the distribution (B).
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Table S1. The current study (yellow, bold text) and publications investigating 
the outdoor air mycobiome with the soil mycobiome (tan) and the outdoor air
mycobiome without the soil mycobiome (blue) using high-throughput 
sequencing methods. In some cases, elevation and sampler height values 
were estimated based on methods and site descriptions. This list is 
extensive, though not necessarily exhaustive.

Study
Air

Sampl
es

Soil
Sample

s
Location

Sampling 
Method

Elevatio
n

Sampler 
Height

DNA 
Regio
n

Sequencer

Current Study 265 737 California
Depositio
n

103m - 
361m

0.5m ITS2
Illumina 
Miseq

(Schiro et al., 2022)* 12 87 Arizona Impaction
600m - 
1400m

0m - 
0.05m

ITS1
Illumina 
Miseq

(Abrego et al., 2020) 90 90 Finland Impaction
7m - 
100m

0m ITS2
Illumina 
Miseq

(Abrego et al., 2018) 134 35 Finland Impaction
0m - 
126m

0m - 
10m

ITS1, 
ITS2

Roche 454

(Kivlin et al., 2014)
25 -

40
63 California Filtration

520m - 
1680m

7m 18s Roche 454

(Redondo et al., 2022) 322 - Sweden Deposition
15m - 
50m

1.5m ITS2 PacBio SMRT

(Niu et al., 2021) 11 - Tianjin Impaction 6m 21m ITS1
Illumina 
HiSeq

(Sánchez-Parra et al., 

2021)
15 - Spain Impaction 1000m 1.5m - 

1000m
ITS1, 
ITS2

Illumina 
Miseq

(Redondo et al., 2020) 1157 - Sweden
Deposition
, 
Impaction

50m - 
110m 1m - 8m ITS2 PacBio SMRT

(Núñez & Moreno, 2020) 8 - Spain Impaction 640m 80m - 
250m

ITS1, 
ITS2

Illumina 
Miseq

(Tipton et al., 2019) 383 - Hawaii Filtration 3397m Unknow
n

ITS1 Illumina 
Miseq

(Tignat-Perrier et al., 

2019)
75 - Global Filtration Variable

Unknow
n

ITS2
Illumina 
Miseq

(Du et al., 2018) 104 - Beijing Filtration 88m 30m ITS1 Illumina 
Miseq

(Chen et al., 2018) 98 - Canada
Deposition
, 
Impaction

20 - 60m
0m - 
1.2m

ITS1, 
ITS2

Roche 454

(Cáliz et al., 2018) 150 - Spain
Deposition
, Filtration

1800m
Unknow
n

18s
Illumina 
Miseq

(Woo et al., 2018) 58 -
South 
Korea

Deposition
, Filtration

109m 20m ITS1
Illumina 
Miseq

(Castaño et al., 2017) 64 - Spain Deposition 670m 30cm ITS2
Illumina 
Miseq

(Nicolaisen et al., 2017) 193 - Europe Impaction
9m - 
130m

10m - 
15m

ITS1 Roche 454

(Yan et al., 2016) 81 - Beijing Impaction 51m 8m ITS1
Illumina 
Miseq

(Barberán et al., 2015) 1289 -
United 
States Deposition Variable

2m - 
Unknow
n

ITS1
Illumina 
Miseq, HiSeq

(Womack et al., 2015) 4 - Amazonia Impaction 67m 48m
D1/
D2 
LSU

Illumina 
Miseq, HiSeq

(Peay & Bruns, 2014) 178 - California Deposition 64m
Unknow
n

ITS1, 
ITS2

Roche 454

(Adams et al., 2013) 84 -
United 
States

Deposition
Unknow
n

Unknow
n

ITS1 Roche 454

(Yamamoto et al., 2012) 20 -
Connecticu
t

Filtration 12m 22m
ITS1, 
ITS2

Roche 454

(Fröhlich-Nowoisky et al., 

2012)
136 - Global Variable Variable Variable ITS1, 

ITS2
ABI Prism 
3xxx

(Frohlich-Nowoisky et al., 42 - Germany Filtration, 
Impaction

127m 16m ITS1, 
18s

ABI Prism 
3xxx
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2009)

(Bowers et al., 2009) 11 - Colorado Filtration 3200m 4m 18s ABI Prism 
3xxx

(Fierer et al., 2008) 5 - Colorado Impaction 1660m 1.5m 18s ABI Prism 
3730

*Sampling was from dust generated by artificially disturbing the soil surface.
Table S2. Site latitude and longitude in decimal degrees and distance from 
California Highway 33 (Hwy33 sites).

Site Latitude Longitude

Distance from 
highway
(Hwy33)

Hwy33 2
35.1761

95

-
119.5228

2

56m

Hwy33 3
35.3397

17

-
119.6308

3

90m

Hwy33 4
35.4742

97

-
119.7227

7

147m

Hwy33 7
35.5706

72

-
119.8214

4

515m

Hwy33 8
35.7957

95

-
119.9877

1

80m

KARE
36.6002

89

-
119.5109

9

NA
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Table S3. Species richness as a function of sampling effort. Richness 
estimates were calculated in iNEXT at 500 samples. 95% confidence interval 
derived from a bootstrap estimate of variance with 1000 replications.

Site
Observ

ed
Estimate

d
Std.

Error
Lower 95%

CI
Upper 95%

CI
Hwy33 Air 930 1409.53 56.65 1298.5 1520.56
KARE Air 660 918.97 35.97 848.47 989.48
Hwy33 Soil 563 779.97 36.41 708.6 851.34
KARE Soil 569 759.3 34.37 691.93 826.66
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Table S4. Species richness as a function of sampling effort for Hwy33 
samples. Richness estimates were calculated in iNEXT at 500 samples. 95% 
confidence interval derived from a bootstrap estimate of variance with 1000 
replications.

Medium Site
Observe

d
Estimate

d
Std.

Error
Lower

95% CI
Upper

95% CI
Air Site 2 463 738.84 41.69 657.13 820.55
Air Site 3 517 767.13 38.00 692.66 841.61
Air Site 4 478 804.67 50.11 706.46 902.89
Air Site 7 475 742.44 42.95 658.26 826.62
Air Site 8 459 819.94 50.26 721.43 918.45
Soil Site 2 304 394.88 22.47 350.85 438.91
Soil Site 3 323 448.13 27.31 394.60 501.66
Soil Site 4 281 361.11 21.44 319.09 403.12
Soil Site 7 290 469.80 37.60 396.11 543.49
Soil Site 8 308 490.68 36.97 418.21 563.14
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Table S5. Pairwise PERMANOVA coefficient table for the Bray-Curtis dissimilarity among 
samples as a function of a factor combining land use and sampling medium (pairwiseadonis 
function). Permutations = 1000 (unstratified). n = 1002. F = pseudo F-ratio (Anderson, 2001). 
Note: very low p-values are likely a result of greatly increased sensitivity due to high replication
(van der Laan et al., 2010), whereas r2 and F values can differentiate between important and 
trivial independent variables.

Sum of
Squares F r2

p
value

Adjust
ed
p

value
KARE Soil vs Hwy33 
Soil 65.28

310.
8

0.3
0 0.001 0.006

KARE Soil vs Hwy33 
Air 54.89

257.
5

0.2
8 0.001 0.006

KARE Soil vs KARE 
Air 35.01

180.
7

0.2
3 0.001 0.006

Hwy33 Soil vs 
Hwy33 Air 26.04 95.3

0.1
9 0.001 0.006

Hwy33 Soil vs KARE 
Air 24.38 96.1

0.2
3 0.001 0.006

Hwy33 Air vs KARE 
Air 5.89 21.6

0.0
8 0.001 0.006
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Table S6. PERMANOVA coefficient table (using community data rarefied to 
the mean sequencing depth) for the Bray-Curtis dissimilarity among samples 
as a function of land use, site, year, month and sampling medium and the 
interactions between them in a fully nested model (adonis2 function). 
Permutations = 1000 (unstratified). n = 1002. df = degrees of freedom. F = 
pseudo F-ratio (Anderson, 2001). Note: very low p-values are likely a result of
greatly increased sensitivity due to high replication (van der Laan et al., 
2010), whereas r2 and F values can better differentiate between important 
and trivial independent variables.
Model
~ Land Use + Site + Year + Month + Medium + Medium*Land 
Use/Site/Year/Month

df
Sum of

Squares r2 F
p

value

Land Use 1 65.93
0.1

9
404.

59 0.001

Site 4 7.57
0.0

2
11.6

1 0.001

Year 1 11.81
0.0

3
72.4

5 0.001

Month 11 17.91
0.0

5 9.99 0.001

Medium 1 37.06
0.1

1
227.

41 0.001

Land Use : Medium 1 15.61
0.0

5 95.8 0.001

Land Use : Site : Medium 4 4.45
0.0

1 6.82 0.001
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Land Use : Site : Year : Medium 10 4.98
0.0

1 3.05 0.001
Land Use : Site : Year : Month : 
Medium 104 40.37

0.1
2 2.38 0.001

Residual 864 140.8
0.4

1           

Total
100

1 346.47 1           

Table S7. PERMANOVA coefficient table (including sample sequencing depth 
as a predictor variable) for the Bray-Curtis dissimilarity among samples as a 
function of land use, site, year, month and sampling medium and the 
interactions between them in a fully nested model (adonis2 function). 
Permutations = 1000 (unstratified). n = 1002. df = degrees of freedom. F = 
pseudo F-ratio (Anderson, 2001). Note: very low p-values are likely a result of
greatly increased sensitivity due to high replication (van der Laan et al., 
2010), whereas r2 and F values can better differentiate between important 
and trivial independent variables.
Model
~ Land Use + Site + Year + Month + Medium + Sequencing Depth + 
Medium*Land Use/Site/Year/Month

df
Sum of

Squares r2 F
p

value

Land Use 1 64.74
0.1

8
384.

67 0.001

Site 4 7.73
0.0

2
11.4

8 0.001
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Year 1 12.08
0.0

3
71.7

9 0.001

Month 11 17.6
0.0

5 9.51 0.001

Medium 1 35.95 0.1
213.

59 0.001

Sequencing Depth 1 2.92
0.0

1
17.3

8 0.001

Land Use : Medium 1 14.88
0.0

4
88.4

3 0.001

Land Use : Site : Medium 4 4.62
0.0

1 6.87 0.001

Land Use : Site : Year : Medium 10 5.31
0.0

2 3.16 0.001
Land Use : Site : Year : Month : 
Medium 104 40.69

0.1
2 2.32 0.001

Residual 863 145.25
0.4

1           

Total
100

1 351.78 1           
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# import FASTAs into artifact object (make sure to set the correct path!)
qiime tools import --type 'SampleData[PairedEndSequencesWithQuality]' --
input-path /fastq --input-format CasavaOneEightSingleLanePerSampleDirFmt 
--output-path demux.qza

# generate summary
qiime demux summarize --i-data demux.qza --o-visualization demux.qzv
qiime tools view demux.qzv

# denoise with dada2 (truncate read ends)
# Forward primer = 5.8s-Fun (AACTTT...CAA.GGATC.CT)
# Reverse primer = ITS4-Fun (AGCCTCCGCTTATTGATATGCTTAA.T)
# Quality cutoff at >= 25
# (trim parameters below differ between runs but adhere to the quality
# cutoff)
qiime dada2 denoise-paired --i-demultiplexed-seqs demux.qza --p-trim-left-
f 22 --p-trunc-len-f 300 --p-trim-left-r 28 --p-trunc-len-r 258 --p-n-
threads 7 --o-representative-sequences rep-seqs-dada2.qza --o-table table-
dada2.qza --o-denoising-stats stats-dada2.qza

# generate visualization for denoise
qiime metadata tabulate --m-input-file stats-dada2.qza --o-visualization 
stats-dada2.qzv
qiime tools view stats-dada2.qzv
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# rename files
mv rep-seqs-dada2.qza rep-seqs.qza
mv table-dada2.qza table.qza

# import UNITE database
qiime tools import --type 'FeatureData[Sequence]' --input-path 
sh_refs_qiime_ver8_97_s_02.02.2019.fasta --output-path reference.qza
qiime tools import --type 'FeatureData[Taxonomy]' --input-format 
HeaderlessTSVTaxonomyFormat --input-path 
sh_taxonomy_qiime_ver8_97_s_02.02.2019.txt --output-path taxonomy.qza

# train naive bayes classifier
qiime feature-classifier fit-classifier-naive-bayes --i-reference-reads 
reference.qza --i-reference-taxonomy taxonomy.qza --o-classifier 
classifier.qza

# run sklearn naive bayes classifier
qiime feature-classifier classify-sklearn --verbose --p-n-jobs 7 --i-
classifier classifier.qza --i-reads rep-seqs.qza --o-classification taxonomy-
output.qza

qiime metadata tabulate \
  --m-input-file taxonomy-output.qza \
  --o-visualization taxonomy-output.qzv

qiime tools view taxonomy-output.qzv

# collapse taxa table
qiime taxa collapse --i-table table.qza --i-taxonomy taxonomy-output.qza 
--p-level 7 --o-collapsed-table table-collapsed.qza

# export fearture table to biom file and convert biom file to tsv
qiime tools export \
  --input-path table-collapsed.qza \
  --output-path exported-feature-table
cd exported-feature-table
biom convert -i feature-table.biom -o feature-table.tsv --to-tsv

### R code ###

# next, open the tsv file in R and make taxa tables at each taxonomic 
level.

# load libraries
library(reshape2)

# load otu data
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d.otus = read.table("feature-table.tsv", sep = "\t", skip = 1, 
comment.char = "")

d.otus = t(d.otus)
colnames(d.otus) = d.otus[1,]
colnames(d.otus)[1] = "sample"
d.otus = d.otus[-1,]
d.otus = as.data.frame(d.otus)
d.otus = sapply(d.otus, as.numeric)
d.otus = as.data.frame(d.otus)

# melt otu data into long format
d.melt = melt(d.otus, id=c("sample"))

# remove taxa level prefix from otu names
d.melt$variable = gsub("[a-z]__", "", d.melt$variable)

# make kingdom column
function.kingdom = function(x) substr(x, 1, unlist(gregexpr(";", x))[1] - 
1)
d.melt$kingdom = lapply(d.melt$variable, function.kingdom)

# make phylum column
function.phylum = function(x) substr(x, unlist(gregexpr(";", x))[1] + 1, 
unlist(gregexpr(";", x))[2] - 1)
d.melt$phylum = unlist(lapply(d.melt$variable, function.phylum))

# make class column
function.class = function(x) substr(x, unlist(gregexpr(";", x))[2] + 1, 
unlist(gregexpr(";", x))[3] - 1)
d.melt$class = unlist(lapply(d.melt$variable, function.class))

# make order column
function.order = function(x) substr(x, unlist(gregexpr(";", x))[3] + 1, 
unlist(gregexpr(";", x))[4] - 1)
d.melt$order = unlist(lapply(d.melt$variable, function.order))

# make family column
function.family = function(x) substr(x, unlist(gregexpr(";", x))[4] + 1, 
unlist(gregexpr(";", x))[5] - 1)
d.melt$family = unlist(lapply(d.melt$variable, function.family))

# make genus column
function.genus = function(x) substr(x, unlist(gregexpr(";", x))[5] + 1, 
unlist(gregexpr(";", x))[6] - 1)
d.melt$genus = unlist(lapply(d.melt$variable, function.genus))

# make species column
function.species= function(x) substr(x, unlist(gregexpr(";", x))[6] + 1, 
nchar(x))
d.melt$species = unlist(lapply(d.melt$variable, function.species))
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# replace __ wih Unknown
d.melt[d.melt == "__"] = "unspecified"

# append "unspecified" with next highest identified taxa level
unspecified.phylum = function (x) paste("unspecified_", substr(x, 1, 
unlist(gregexpr(";", x))[1]-1), sep = "")
d.melt[d.melt$phylum=="unspecified",][,5:10] = 
unlist(lapply(d.melt[d.melt$phylum=="unspecified",]$variable, 
unspecified.phylum))

unspecified.class = function (x) paste("unspecified_", substr(x, 
unlist(gregexpr(";", x))[1]+1, unlist(gregexpr(";", x))[2]-1), sep = "")
d.melt[d.melt$class=="unspecified",][,6:10] = 
unlist(lapply(d.melt[d.melt$class=="unspecified",]$variable, 
unspecified.class))

unspecified.order = function (x) paste("unspecified_", substr(x, 
unlist(gregexpr(";", x))[2]+1, unlist(gregexpr(";", x))[3]-1), sep = "")
d.melt[d.melt$order=="unspecified",][,7:10] = 
unlist(lapply(d.melt[d.melt$order=="unspecified",]$variable, 
unspecified.order))

unspecified.family = function (x) paste("unspecified_", substr(x, 
unlist(gregexpr(";", x))[3]+1, unlist(gregexpr(";", x))[4]-1), sep = "")
d.melt[d.melt$family=="unspecified",][,8:10] = 
unlist(lapply(d.melt[d.melt$family=="unspecified",]$variable, 
unspecified.family))

unspecified.genus = function (x) paste("unspecified_", substr(x, 
unlist(gregexpr(";", x))[4]+1, unlist(gregexpr(";", x))[5]-1), sep = "")
d.melt[d.melt$genus=="unspecified",][,9:10] = 
unlist(lapply(d.melt[d.melt$genus=="unspecified",]$variable, 
unspecified.genus))

unspecified.species = function (x) paste("unspecified_", substr(x, 
unlist(gregexpr(";", x))[5]+1, unlist(gregexpr(";", x))[6]-1), sep = "")
d.melt[d.melt$species=="unspecified",][,10] = 
unlist(lapply(d.melt[d.melt$species=="unspecified",]$variable, 
unspecified.species))

# cast molten data at each taxonomic level
d.cast.phylum = dcast(d.melt, sample ~ phylum, sum)
d.cast.class = dcast(d.melt, sample ~ class, sum)
d.cast.order = dcast(d.melt, sample ~ order, sum)
d.cast.family = dcast(d.melt, sample ~ family, sum)
d.cast.genus = dcast(d.melt, sample ~ genus, sum)
d.cast.species = dcast(d.melt, sample ~ species, sum)
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### PCoA and PERMANOVA

# load libraries
library(vegan)
library(ape)
library(lsmeans)
library(psych)
library(data.table)

# load data
d = read.csv("d.combined.species.csv")

# remove unidentified and unspecified taxa
d = d[,-grep("unspecified", colnames(d))]
d = d[,-grep("unidentified", colnames(d))]

# remove rows containing no taxa
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d = d[which(rowSums(d[,10:dim(d)[2]]) != 0),]

# load meta data
d.meta = d[,1:9]

# make data matrix
d.matrix = as.matrix(d[,10:dim(d)[2]])
# remove rare species (optional)
d.matrix.removed.rare = d.matrix[,colSums(d.matrix) > 1]
# first squareroot and wisconsin 2x transform data
d.matrix.transformed = sqrt(d.matrix.removed.rare)
d.matrix.transformed = wisconsin(d.matrix.transformed)
# next, create dissimilarity matrix with transformed data (bray-curtis)
d.dist = vegdist(d.matrix.transformed, method="bray")

# ordination (PCoA)
myPCoA = pcoa(d.dist)

# Permutational multivariate analysis of variance (PerMANOVA)
# note: Site = "Land Use", site = "Site", year = "Year", month = "Month", 
type = "Medium"
adonis2(d.dist ~ Site + site + year + month + type + Site/site/year/month/
type, d.meta, parallel = 8, method = "bray", permutations = 1000)

# Permutational multivariate analysis of variance (PerMANOVA) (with 
strata[or "blocks"])
# https://github.com/vegandevs/vegan/issues/427
# https://stats.stackexchange.com/questions/350462/can-you-perform-a-
permanova-analysis-on-nested-data
# https://stats.stackexchange.com/questions/188519/adonis-in-vegan-order-
of-variables-or-use-of-strata/238962#238962

perm = how(nperm = 1000)
setBlocks(perm) = with(d.meta, type)
adonis2(d.dist ~ Site + site + year + month + type + Site/site/year/month/
type, d.meta, parallel = 8, method = "bray", permutations = perm)

### Distance Decay

# load libraries
library(vegan)
library(ape)

# load data
d = read.csv("d.combined.species.csv")

# remove unidentified and unspecified taxa
d = d[,-grep("unspecified", colnames(d))]
d = d[,-grep("unidentified", colnames(d))]
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# remove rows containing no taxa
d = d[which(rowSums(d[,10:dim(d)[2]]) != 0),]

# load meta data
d.meta = d[,1:9]

# make data matrix
d.matrix = as.matrix(d[,10:dim(d)[2]])
# remove rare species (optional)
d.matrix.removed.rare = d.matrix[,colSums(d.matrix) > 1]
# first squareroot and wisconsin 2x transform data
d.matrix.transformed = sqrt(d.matrix.removed.rare)
d.matrix.transformed = wisconsin(d.matrix.transformed)
# next, create dissimilarity matrix with transformed data (bray-curtis)
d.dist = vegdist(d.matrix.transformed, method="bray")

# create a dissimilarity matrix with transformed data
d.dist = vegdist(d.matrix.transformed, method="bray")
d.dist.air = vegdist(d.matrix.transformed[d.meta$type=="Air",], 
method="bray")
d.dist.soil = vegdist(d.matrix.transformed[d.meta$type=="Soil",], 
method="bray")
d.dist.hwy33.air = vegdist(d.matrix.transformed[d.meta$site!="KARE" & 
d.meta$type=="Air",], method="bray")
d.dist.hwy33.soil = vegdist(d.matrix.transformed[d.meta$site!="KARE" & 
d.meta$type=="Soil",], method="bray")
d.dist.kare.air = vegdist(d.matrix.transformed[d.meta$site=="KARE" & 
d.meta$type=="Air",], method="bray")
d.dist.kare.soil = vegdist(d.matrix.transformed[d.meta$site=="KARE" & 
d.meta$type=="Soil",], method="bray")

# make another site and type factor for all sites
d.meta$sitetype2 = as.factor(paste(d.meta$site, d.meta$type, sep = "-"))

# create latitude and longitude table by site
d.lat.long = 
read.csv("/Users/user/Desktop/Cocci2020/data.meta/sites.lat.long.csv")
d.lat.long[d.lat.long$site!="KARE",]$site = paste("Hwy33-", 
d.lat.long[d.lat.long$site!="KARE",]$site, sep = "")

d.geo = d.lat.long[match(d.meta$site, d.lat.long$site),]

# create euclidean distance matrix
d.dist.geo = vegdist(d.geo[,2:3], method="euclidean")*111
d.dist.geo.air = vegdist(d.geo[d.meta$type=="Air",2:3], 
method="euclidean")*111
d.dist.geo.soil = vegdist(d.geo[d.meta$type=="Soil",2:3], 
method="euclidean")*111
d.dist.geo.hwy33.air = vegdist(d.geo[d.meta$site!="KARE" & 
d.meta$type=="Air",2:3], method="euclidean")*111
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d.dist.geo.hwy33.soil = vegdist(d.geo[d.meta$site!="KARE" & 
d.meta$type=="Soil",2:3], method="euclidean")*111
d.dist.geo.kare.air = vegdist(d.geo[d.meta$site=="KARE" & 
d.meta$type=="Air",2:3], method="euclidean")*111
d.dist.geo.kare.soil = vegdist(d.geo[d.meta$site=="KARE" & 
d.meta$type=="Soil",2:3], method="euclidean")*111

# create a vector of julian dates
d.meta$date = paste(d.meta$year, d.meta$month, d.meta$day, sep = "-")
date.samples = strptime(d.meta$date, "%Y-%B-%e")
d.time = as.integer(round(julian(date.samples), 0))

# create a temporal (euclidean) distance matrix from julian dates
d.dist.time = vegdist(d.time, method="euclidean")
d.dist.time.air = vegdist(d.time[d.meta$type=="Air"], method="euclidean")
d.dist.time.soil = vegdist(d.time[d.meta$type=="Soil"], 
method="euclidean")
d.dist.time.hwy33.air = vegdist(d.time[d.meta$site!="KARE" & 
d.meta$type=="Air"], method="euclidean")
d.dist.time.hwy33.soil = vegdist(d.time[d.meta$site!="KARE" & 
d.meta$type=="Soil"], method="euclidean")
d.dist.time.kare.air = vegdist(d.time[d.meta$site=="KARE" & 
d.meta$type=="Air"], method="euclidean")
d.dist.time.kare.soil = vegdist(d.time[d.meta$site=="KARE" & 
d.meta$type=="Soil"], method="euclidean")

# air

# fit linear models for dist ~ time for air hwy33, air KARE and both 
combined
fit.time.air.hwy33 = lm(d.dist.hwy33.air ~ d.dist.time.hwy33.air + 
I(d.dist.time.hwy33.air^2))
fit.time.air.hwy33.linear = lm(d.dist.hwy33.air ~ d.dist.time.hwy33.air)
prd.time.air.hwy33 = data.frame(d.dist.time.hwy33.air = seq(from = 
range(d.dist.time.hwy33.air)[1], to = range(d.dist.time.hwy33.air)[2], 
length.out = 100))
err.time.air.hwy33 = predict(fit.time.air.hwy33, newdata = 
prd.time.air.hwy33, se.fit = TRUE)

prd.time.air.hwy33$lci = err.time.air.hwy33$fit - 1.96 * 
err.time.air.hwy33$se.fit
prd.time.air.hwy33$fit = err.time.air.hwy33$fit
prd.time.air.hwy33$uci = err.time.air.hwy33$fit + 1.96 * 
err.time.air.hwy33$se.fit

fit.time.air.kare = lm(d.dist.kare.air ~ d.dist.time.kare.air + 
I(d.dist.time.kare.air^2))
fit.time.air.kare.linear = lm(d.dist.kare.air ~ d.dist.time.kare.air)
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prd.time.air.kare = data.frame(d.dist.time.kare.air = seq(from = 
range(d.dist.time.kare.air)[1], to = range(d.dist.time.kare.air)[2], 
length.out = 100))
err.time.air.kare = predict(fit.time.air.kare, newdata = prd.time.air.kare,
se.fit = TRUE)

prd.time.air.kare$lci = err.time.air.kare$fit - 1.96 * 
err.time.air.kare$se.fit
prd.time.air.kare$fit = err.time.air.kare$fit
prd.time.air.kare$uci = err.time.air.kare$fit + 1.96 * 
err.time.air.kare$se.fit

fit.time.air = lm(d.dist.air ~ d.dist.time.air + I(d.dist.time.air^2))
prd.time.air = data.frame(d.dist.time.air = seq(from = 
range(d.dist.time.air)[1], to = range(d.dist.time.air)[2], length.out = 
100))
err.time.air = predict(fit.time.air, newdata = prd.time.air, se.fit = TRUE)

prd.time.air$lci = err.time.air$fit - 1.96 * err.time.air$se.fit
prd.time.air$fit = err.time.air$fit
prd.time.air$uci = err.time.air$fit + 1.96 * err.time.air$se.fit

# fit mantel tests for dist ~ time for air hwy33, air KARE and both 
combined
mantel.time.hwy33.air = mantel(d.dist.time.hwy33.air, d.dist.hwy33.air, 
method="pearson", permutations=999, parallel = 8)
mantel.time.kare.air = mantel(d.dist.time.kare.air, d.dist.kare.air, 
method="pearson", permutations=999, parallel = 8)
mantel.time.air = mantel(d.dist.time.air, d.dist.air, method="pearson", 
permutations=999, parallel = 8)

# define points for plotting dist ~ time
df.time.air = data.frame(x = as.numeric(d.dist.time.air), y = 
as.numeric(d.dist.air))
df.time.hwy33.air = data.frame(x = as.numeric(d.dist.time.hwy33.air), y = 
as.numeric(d.dist.hwy33.air))
df.time.kare.air = data.frame(x = as.numeric(d.dist.time.kare.air), y = 
as.numeric(d.dist.kare.air))

# fit linear models for dist ~ geo for air hwy33, air KARE and both 
combined
fit.geo.air.hwy33 = lm(d.dist.hwy33.air ~ d.dist.geo.hwy33.air)
prd.geo.air.hwy33 = data.frame(d.dist.geo.hwy33.air = seq(from = 
range(d.dist.geo.hwy33.air)[1], to = range(d.dist.geo.hwy33.air)[2], 
length.out = 100))
err.geo.air.hwy33 = predict(fit.geo.air.hwy33, newdata = prd.geo.air.hwy33,
se.fit = TRUE)

prd.geo.air.hwy33$lci = err.geo.air.hwy33$fit - 1.96 * 
err.geo.air.hwy33$se.fit
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prd.geo.air.hwy33$fit = err.geo.air.hwy33$fit
prd.geo.air.hwy33$uci = err.geo.air.hwy33$fit + 1.96 * 
err.geo.air.hwy33$se.fit

fit.geo.air.kare = lm(d.dist.kare.air ~ d.dist.geo.kare.air)
prd.geo.air.kare = data.frame(d.dist.geo.kare.air = seq(from = 
range(d.dist.geo.kare.air)[1], to = range(d.dist.geo.kare.air)[2], 
length.out = 100))
err.geo.air.kare = predict(fit.geo.air.kare, newdata = prd.geo.air.kare, 
se.fit = TRUE)

prd.geo.air.kare$lci = err.geo.air.kare$fit - 1.96 * err.geo.air.kare$se.fit
prd.geo.air.kare$fit = err.geo.air.kare$fit
prd.geo.air.kare$uci = err.geo.air.kare$fit + 1.96 * err.geo.air.kare$se.fit

fit.geo.air = lm(d.dist.air ~ d.dist.geo.air)
prd.geo.air = data.frame(d.dist.geo.air = seq(from = range(d.dist.geo.air)
[1], to = range(d.dist.geo.air)[2], length.out = 100))
err.geo.air = predict(fit.geo.air, newdata = prd.geo.air, se.fit = TRUE)

prd.geo.air$lci = err.geo.air$fit - 1.96 * err.geo.air$se.fit
prd.geo.air$fit = err.geo.air$fit
prd.geo.air$uci = err.geo.air$fit + 1.96 * err.geo.air$se.fit

# fit mantel tests for dist ~ geo for air hwy33, air KARE and both combined
mantel.geo.hwy33.air = mantel(d.dist.geo.hwy33.air, d.dist.hwy33.air, 
method="pearson", permutations=999, parallel = 8)
mantel.geo.kare.air = mantel(d.dist.geo.kare.air, d.dist.kare.air, 
method="pearson", permutations=999, parallel = 8)
mantel.geo.air = mantel(d.dist.geo.air, d.dist.air, method="pearson", 
permutations=999, parallel = 8)

# define points for plotting dist ~ geo
df.geo.air = data.frame(x = as.numeric(d.dist.geo.air), y = 
as.numeric(d.dist.air))
df.geo.hwy33.air = data.frame(x = as.numeric(d.dist.geo.hwy33.air), y = 
as.numeric(d.dist.hwy33.air))
df.geo.kare.air = data.frame(x = as.numeric(d.dist.geo.kare.air), y = 
as.numeric(d.dist.kare.air))

## test for significant difference between intercepts/slopes between hwy33 
and KARE

# time
d.dist.time.hwy33.air.df = data.frame(
        dist = as.matrix(d.dist.hwy33.air)
[lower.tri(as.matrix(d.dist.hwy33.air))],
        time = as.matrix(d.dist.time.hwy33.air)
[lower.tri(as.matrix(d.dist.time.hwy33.air))],
        site = "hwy33"
)
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d.dist.time.kare.air.df = data.frame(
        dist = as.matrix(d.dist.kare.air)
[lower.tri(as.matrix(d.dist.kare.air))],
        time = as.matrix(d.dist.time.kare.air)
[lower.tri(as.matrix(d.dist.time.kare.air))],
        site = "kare"
)

d.dist.time.air.df = rbind(
        d.dist.time.hwy33.air.df,
        d.dist.time.kare.air.df
)

y = d.dist.time.air.df$dist
x = d.dist.time.air.df$time
site = d.dist.time.air.df$site

fit.time.air.mtest = lm(y ~ site*(x + I(x^2)))
summary(fit.time.air.mtest)

# geo
d.dist.geo.hwy33.air.df = data.frame(
        dist = as.matrix(d.dist.hwy33.air)
[lower.tri(as.matrix(d.dist.hwy33.air))],
        geo = as.matrix(d.dist.geo.hwy33.air)
[lower.tri(as.matrix(d.dist.geo.hwy33.air))],
        site = "hwy33"
)

d.dist.geo.air.df = data.frame(
        dist = as.matrix(d.dist.air)[lower.tri(as.matrix(d.dist.air))],
        geo = as.matrix(d.dist.geo.air)
[lower.tri(as.matrix(d.dist.geo.air))],
        site = "all"
)

d.dist.geo.air.df = rbind(
        d.dist.geo.hwy33.air.df,
        d.dist.geo.air.df
)

y = d.dist.geo.air.df$dist
x = d.dist.geo.air.df$geo
site = d.dist.geo.air.df$site

fit.geo.air.mtest = lm(y ~ site*x)
summary(fit.geo.air.mtest)
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# soil

# fit linear models for dist ~ time for soil hwy33, soil KARE and both 
combined
fit.time.soil.hwy33 = lm(d.dist.hwy33.soil ~ d.dist.time.hwy33.soil)
prd.time.soil.hwy33 = data.frame(d.dist.time.hwy33.soil = seq(from = 
range(d.dist.time.hwy33.soil)[1], to = range(d.dist.time.hwy33.soil)[2], 
length.out = 100))
err.time.soil.hwy33 = predict(fit.time.soil.hwy33, newdata = 
prd.time.soil.hwy33, se.fit = TRUE)

prd.time.soil.hwy33$lci = err.time.soil.hwy33$fit - 1.96 * 
err.time.soil.hwy33$se.fit
prd.time.soil.hwy33$fit = err.time.soil.hwy33$fit
prd.time.soil.hwy33$uci = err.time.soil.hwy33$fit + 1.96 * 
err.time.soil.hwy33$se.fit

fit.time.soil.kare = lm(d.dist.kare.soil ~ d.dist.time.kare.soil)
#fit.time.soil.kare = lm(d.dist.kare.soil ~ d.dist.time.kare.soil + 
I(d.dist.time.kare.soil^2))
prd.time.soil.kare = data.frame(d.dist.time.kare.soil = seq(from = 
range(d.dist.time.kare.soil)[1], to = range(d.dist.time.kare.soil)[2], 
length.out = 100))
err.time.soil.kare = predict(fit.time.soil.kare, newdata = 
prd.time.soil.kare, se.fit = TRUE)

prd.time.soil.kare$lci = err.time.soil.kare$fit - 1.96 * 
err.time.soil.kare$se.fit
prd.time.soil.kare$fit = err.time.soil.kare$fit
prd.time.soil.kare$uci = err.time.soil.kare$fit + 1.96 * 
err.time.soil.kare$se.fit

fit.time.soil = lm(d.dist.soil ~ d.dist.time.soil)
prd.time.soil = data.frame(d.dist.time.soil = seq(from = 
range(d.dist.time.soil)[1], to = range(d.dist.time.soil)[2], length.out = 
100))
err.time.soil = predict(fit.time.soil, newdata = prd.time.soil, se.fit = 
TRUE)

prd.time.soil$lci = err.time.soil$fit - 1.96 * err.time.soil$se.fit
prd.time.soil$fit = err.time.soil$fit
prd.time.soil$uci = err.time.soil$fit + 1.96 * err.time.soil$se.fit

# fit mantel tests for dist ~ time for soil hwy33, soil KARE and both 
combined
mantel.time.hwy33.soil = mantel(d.dist.time.hwy33.soil, d.dist.hwy33.soil,
method="pearson", permutations=999, parallel = 8)
mantel.time.kare.soil = mantel(d.dist.time.kare.soil, d.dist.kare.soil, 
method="pearson", permutations=999, parallel = 8)
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mantel.time.soil = mantel(d.dist.time.soil, d.dist.soil, method="pearson",
permutations=999, parallel = 8)

# define points for plotting dist ~ time
df.time.soil = data.frame(x = as.numeric(d.dist.time.soil), y = 
as.numeric(d.dist.soil))
df.time.hwy33.soil = data.frame(x = as.numeric(d.dist.time.hwy33.soil), y 
= as.numeric(d.dist.hwy33.soil))
df.time.kare.soil = data.frame(x = as.numeric(d.dist.time.kare.soil), y = 
as.numeric(d.dist.kare.soil))

# fit linear models for dist ~ geo for soil hwy33, soil KARE and both 
combined
fit.geo.soil.hwy33 = lm(d.dist.hwy33.soil ~ d.dist.geo.hwy33.soil)
prd.geo.soil.hwy33 = data.frame(d.dist.geo.hwy33.soil = seq(from = 
range(d.dist.geo.hwy33.soil)[1], to = range(d.dist.geo.hwy33.soil)[2], 
length.out = 100))
err.geo.soil.hwy33 = predict(fit.geo.soil.hwy33, newdata = 
prd.geo.soil.hwy33, se.fit = TRUE)

prd.geo.soil.hwy33$lci = err.geo.soil.hwy33$fit - 1.96 * 
err.geo.soil.hwy33$se.fit
prd.geo.soil.hwy33$fit = err.geo.soil.hwy33$fit
prd.geo.soil.hwy33$uci = err.geo.soil.hwy33$fit + 1.96 * 
err.geo.soil.hwy33$se.fit

fit.geo.soil.kare = lm(d.dist.kare.soil ~ d.dist.geo.kare.soil)
prd.geo.soil.kare = data.frame(d.dist.geo.kare.soil = seq(from = 
range(d.dist.geo.kare.soil)[1], to = range(d.dist.geo.kare.soil)[2], 
length.out = 100))
err.geo.soil.kare = predict(fit.geo.soil.kare, newdata = prd.geo.soil.kare,
se.fit = TRUE)

prd.geo.soil.kare$lci = err.geo.soil.kare$fit - 1.96 * 
err.geo.soil.kare$se.fit
prd.geo.soil.kare$fit = err.geo.soil.kare$fit
prd.geo.soil.kare$uci = err.geo.soil.kare$fit + 1.96 * 
err.geo.soil.kare$se.fit

fit.geo.soil = lm(d.dist.soil ~ d.dist.geo.soil)
prd.geo.soil = data.frame(d.dist.geo.soil = seq(from = 
range(d.dist.geo.soil)[1], to = range(d.dist.geo.soil)[2], length.out = 
100))
err.geo.soil = predict(fit.geo.soil, newdata = prd.geo.soil, se.fit = TRUE)

prd.geo.soil$lci = err.geo.soil$fit - 1.96 * err.geo.soil$se.fit
prd.geo.soil$fit = err.geo.soil$fit
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prd.geo.soil$uci = err.geo.soil$fit + 1.96 * err.geo.soil$se.fit

# fit mantel tests for dist ~ geo for soil hwy33, soil KARE and both 
combined
mantel.geo.hwy33.soil = mantel(d.dist.geo.hwy33.soil, d.dist.hwy33.soil, 
method="pearson", permutations=999, parallel = 8)
mantel.geo.kare.soil = mantel(d.dist.geo.kare.soil, d.dist.kare.soil, 
method="pearson", permutations=999, parallel = 8)
mantel.geo.soil = mantel(d.dist.geo.soil, d.dist.soil, method="pearson", 
permutations=999, parallel = 8)

# define points for plotting dist ~ geo
df.geo.soil = data.frame(x = as.numeric(d.dist.geo.soil), y = 
as.numeric(d.dist.soil))
df.geo.hwy33.soil = data.frame(x = as.numeric(d.dist.geo.hwy33.soil), y = 
as.numeric(d.dist.hwy33.soil))
df.geo.kare.soil = data.frame(x = as.numeric(d.dist.geo.kare.soil), y = 
as.numeric(d.dist.kare.soil))

# test for significant difference between intercepts/slopes between hwy33 
and KARE

# time
d.dist.time.hwy33.soil.df = data.frame(
        dist = as.matrix(d.dist.hwy33.soil)
[lower.tri(as.matrix(d.dist.hwy33.soil))],
        time = as.matrix(d.dist.time.hwy33.soil)
[lower.tri(as.matrix(d.dist.time.hwy33.soil))],
        site = "hwy33"
)

d.dist.time.kare.soil.df = data.frame(
        dist = as.matrix(d.dist.kare.soil)
[lower.tri(as.matrix(d.dist.kare.soil))],
        time = as.matrix(d.dist.time.kare.soil)
[lower.tri(as.matrix(d.dist.time.kare.soil))],
        site = "kare"
)

d.dist.time.soil.df = rbind(
        d.dist.time.hwy33.soil.df,
        d.dist.time.kare.soil.df
)

y = d.dist.time.soil.df$dist
x = d.dist.time.soil.df$time
site = d.dist.time.soil.df$site

fit.time.soil.mtest = lm(y ~ site*(x))
summary(fit.time.soil.mtest)
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# geo
d.dist.geo.hwy33.soil.df = data.frame(
        dist = as.matrix(d.dist.hwy33.soil)
[lower.tri(as.matrix(d.dist.hwy33.soil))],
        geo = as.matrix(d.dist.geo.hwy33.soil)
[lower.tri(as.matrix(d.dist.geo.hwy33.soil))],
        site = "hwy33"
)

d.dist.geo.soil.df = data.frame(
        dist = as.matrix(d.dist.soil)[lower.tri(as.matrix(d.dist.soil))],
        geo = as.matrix(d.dist.geo.soil)
[lower.tri(as.matrix(d.dist.geo.soil))],
        site = "all"
)

d.dist.geo.soil.df = rbind(
        d.dist.geo.hwy33.soil.df,
        d.dist.geo.soil.df
)

y = d.dist.geo.soil.df$dist
x = d.dist.geo.soil.df$geo
site = d.dist.geo.soil.df$site

fit.geo.soil.mtest = lm(y ~ site*x)
summary(fit.geo.soil.mtest)

# combine and export mtest results
fit.mtest.combined = rbind(
        summary(fit.time.air.mtest)$coefficients,
        summary(fit.geo.air.mtest)$coefficients,
        summary(fit.time.soil.mtest)$coefficients,
        summary(fit.geo.soil.mtest)$coefficients
)
fit.mtest.combined = round(fit.mtest.combined, 4)

# compare slopes for geographic distance decay between hwy33 air and all 
air
# (see if land use is a significant interaction term)

# Make lm and anova table with "site" as interaction term
m.interaction = lm(dist ~ geo*site, data = d.dist.geo.air.df)
anova(m.interaction)

# Obtain slopes
m.interaction$coefficients
m.lst <- lstrends(m.interaction, "site", var="geo")

# Compare slopes
pairs(m.lst)
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# compare slopes for temporal distance decay between hwy33 air and kare 
air (parabola)
# (see if land use is a significant interaction term)

# Make lm and anova table with "site" as interaction term
m.interaction = lm(dist ~ time*site + I(time^2)*site, data = 
d.dist.time.air.df)
anova(m.interaction)

# Obtain slopes
m.interaction$coefficients
m.lst <- lstrends(m.interaction, "site", var="geo")

# Compare slopes
pairs(m.lst)

### Linear Mixed Effects Model (Onygenales Abundance)

# load libraries
library(lme4)
library(lmerTest)
library(multcomp)
library(lsmeans)
library(pbkrtest)
library(MuMIn)
library(vegan)

# load data
d = read.csv("d.combined.genus.onygenales.csv")
d.meta = d[,1:9]

# add factor for sitetype
d.meta$sitetype = paste(d.meta$site, d.meta$type, sep = " ")

# add factor for sitetype
d.meta$sitetype = paste(d.meta$site, d.meta$type, sep = " ")

# extract numeric data for number wrangling
d.numeric = d[,10:(ncol(d))]

# sum total abundance for each sample
total.abundance = rowSums(d.numeric)

# make new dataframe
d.total = d.meta
d.total$Onygenales = rowSums(d.numeric)
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# define variables
# note: Site = "Land Use", site = "Site", year = "Year", month = "Month", 
type = "Medium"
y = d.total$Onygenales
month= d.total$month
sitetype = d.total$sitetype

# fit model with varying intercepts for month and type and fixed effect for 
site
lmer_fit_REML = lmer(y ~ sitetype + (1|month), REML=T)

# extract coefficients
coefs = round(data.frame(coef(summary(lmer_fit_REML))), 3)
coefs

# fit alternative model
lmer_fit = lmer(y ~ sitetype + (1|month), REML=F)

# fit null model
lmer_fit_null = lmer(y ~ (1|month), REML=F)

# compare models using log-likelihood ratio
anova(lmer_fit, lmer_fit_null)

# multiple comparison with glht (z-statistic, less conservative)
summary(glht(lmer_fit_REML,mcp(sitetype="Tukey")))

# multiple comparison with lsmeans (t-statistic, more conservative, 
kenwood-rogers)
lsmeans(lmer_fit_REML, pairwise ~ sitetype)

### Linear Mixed Effects Model (Plant Pathogen Guild)

# load libraries
library(lme4)
library(lmerTest)
library(multcomp)
library(lsmeans)
library(pbkrtest)
library(MuMIn)
library(vegan)
library(reshape2)

# load data
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d = read.csv("d.combined.guilds.csv")

# remove rows containing no guilds
d = d[which(rowSums(d[,9:dim(d)[2]]) != 0),]

d.matrix = as.matrix(d[,9:dim(d)[2]])

# remove any guilds not representing at least 1% of the community across 
all samples
d.matrix = d.matrix[,(colSums(d.matrix)/sum(colSums(d.matrix))) >= .01]

# convert data to percent abundance
d.matrix = prop.table(d.matrix, 1)

# load meta data
d.meta = d[,1:8]

# standardize date column
d.meta$date = strptime((paste(d.meta$day, d.meta$month, d.meta$year)), 
format = "%e %B %Y")

# make numeric month column
d.meta$month.numeric = format(d.meta$date, "%m")

# aggregate data
d.aggregate = aggregate(d.matrix, by = list(d.meta$month, d.meta$site, 
d.meta$type), mean)
names(d.aggregate)[1:3] = c("month", "site", "type")

# change factor names for plotting
d.aggregate[d.aggregate$site!="kare",]$site = paste("Hwy33-", 
d.aggregate[d.aggregate$site!="kare",]$site, sep = "")
d.aggregate[d.aggregate$site=="kare",]$site = "KARE"
d.aggregate[d.aggregate$type=="air",]$type = "Air"
d.aggregate[d.aggregate$type=="soil",]$type = "Soil"

# melt data
d.melt = melt(d.aggregate, id.vars = list("month", "site", "type"))

# add numeric month vector
d.melt$month.numeric = as.factor(match(d.melt$month, month.name))

# add abbreviated month vector
d.melt$month.abv = factor(substr(d.melt$month, 1, 3), levels = 
substr(month.name, 1, 3))

# replace . with space in guild names for clearer visualization
d.melt$variable = gsub("\\.", " ", d.melt$variable)

# make air only dataframe
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d.melt.air = d.melt[which(d.melt$type=="Air"),]

# reorder months so nov and dec are 1st
d.melt.air$month.numeric = as.numeric(d.melt.air$month.numeric)
d.melt.air$month.numeric = d.melt.air$month.numeric + 2
d.melt.air[which(d.melt.air$month.numeric == 13),]$month.numeric = 1
d.melt.air[which(d.melt.air$month.numeric == 14),]$month.numeric = 2

# make plant pathogen only graph
d.melt.air.plant = d.melt.air[which(d.melt.air$variable=="Plant 
Pathogen"),]

# make plant pathogen only graph with only may - oct
d.melt.air.plant.summer = d.melt.air.plant[which(d.melt.air.plant$month 
%in% month.name[5:10]),]

# adjust d.meta
# reorder months so nov and dec are 1st
d.meta$month.numeric = as.numeric(d.meta$month.numeric)
d.meta$month.numeric = d.meta$month.numeric + 2
d.meta[which(d.meta$month.numeric == 13),]$month.numeric = 1
d.meta[which(d.meta$month.numeric == 14),]$month.numeric = 2

# make air only matrix
d.matrix.air = d.matrix[which(d.meta$type=="air"),]

# make air only meta
d.meta.air = d.meta[which(d.meta$type=="air"),]

# change factor names for plotting (d.meta.air)
d.meta.air[d.meta.air$site!="kare",]$site = paste("Hwy33-", 
d.meta.air[d.meta.air$site!="kare",]$site, sep = "")
d.meta.air[d.meta.air$site=="kare",]$site = "KARE"
d.meta.air[d.meta.air$type=="air",]$type = "Air"

# make air only matrix (summer)
d.matrix.air.summer= d.matrix.air[which(d.meta.air$month %in% 
month.name[5:10]),]

# make air only meta (summer)
d.meta.air.summer= d.meta.air[which(d.meta.air$month %in% 
month.name[5:10]),]

# statistics

# define variables
y = d.matrix.air.summer[,4]
month= d.meta.air.summer$month.numeric
site = as.factor(d.meta.air.summer$site)

# fit linear model
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lm_fit = lm(y ~ month + site)
summary(lm_fit)

# fit model with varying intercepts for month and type and fixed effect for 
site
lmer_fit_REML = lmer(y ~ month + (1|site), REML=T)

# extract coefficients
coefs = round(data.frame(coef(summary(lmer_fit_REML))), 3)
coefs

# fit alternative model
lmer_fit = lmer(y ~ month + (1|site), REML=F)

# fit null model
lmer_fit_null = lmer(y ~ (1|site), REML=F)

# compare models using log-likelihood ratio
model_compare_1 = anova(lmer_fit, lmer_fit_null)
model_compare_1

# extract p, marginal and conditional R^2 values
p = round(model_compare_1[2,8], 3)
r2m = round(r.squaredGLMM(lmer_fit)[1], 3)
r2c = round(r.squaredGLMM(lmer_fit)[2], 3)

#make labels for p and r^2 values
rp0 = as.expression(" " ~ " " ~ " ")
rp1 = as.expression(bquote({r^{2}}[m] ~ "=" ~ .(format(r2m, digits = 2))))
rp2 = as.expression(bquote({r^{2}}[c] ~ "=" ~ .(format(r2c, digits = 2))))
#rp3 = as.expression(bquote(p[lme] ~ "=" ~ .(format(p, digits = 2))))
rp3 = as.expression(bquote(p[lme] ~ "<" ~ .(format(0.001, digits = 2))))
rp = c(rp3, rp2, rp1)

# multiple comparison with glht (z-statistic, less conservative)
multiple_glht = summary(glht(lmer_fit_REML,mcp(site="Tukey")))
multiple_glht[1]

# multiple comparison with lsmeans (t-statistic, more conservative, 
kenwood-rogers)
multiple_lsmeans = as.data.frame(lsmeans(lmer_fit_REML, pairwise~site)
$contrasts)
multiple_lsmeans[,2:6] = apply(multiple_lsmeans[,2:6], 2, function (x) 
{round(x, 3)})
colnames(multiple_lsmeans) = c("", "Estimate", "se", "df", "t", "p")
rownames(multiple_lsmeans) = multiple_lsmeans[,1]
multiple_lsmeans = multiple_lsmeans[,-c(1,3)]
multiple_lsmeans$p[c(1,3,4,6)] = "<0.001"
multiple_lsmeans
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Metadata for:

The air mycobiome is decoupled from the soil mycobiome 
in the California San Joaquin Valley
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sample land.use site sampling.medium year month day
0724185S01 Agricultural KARE Soil 2018 July 24
0724185S02 Agricultural KARE Soil 2018 July 24
0724185S05 Agricultural KARE Soil 2018 July 24
0724185S06 Agricultural KARE Soil 2018 July 24
0724185S11 Agricultural KARE Soil 2018 July 24
0724185S12 Agricultural KARE Soil 2018 July 24
0724185S13 Agricultural KARE Soil 2018 July 24
0724185S14 Agricultural KARE Soil 2018 July 24
0724185S17 Agricultural KARE Soil 2018 July 24
0724185S18 Agricultural KARE Soil 2018 July 24
0724185S19 Agricultural KARE Soil 2018 July 24
0724185S20 Agricultural KARE Soil 2018 July 24
0821185S01 Agricultural KARE Soil 2018 August 21
0821185S02 Agricultural KARE Soil 2018 August 21
0821185S03 Agricultural KARE Soil 2018 August 21
0821185S04 Agricultural KARE Soil 2018 August 21
0821185S05 Agricultural KARE Soil 2018 August 21
0821185S06 Agricultural KARE Soil 2018 August 21
0821185S12 Agricultural KARE Soil 2018 August 21
0821185S13 Agricultural KARE Soil 2018 August 21
0821185S14 Agricultural KARE Soil 2018 August 21
0821185S15 Agricultural KARE Soil 2018 August 21
0821185S16 Agricultural KARE Soil 2018 August 21
0821185S17 Agricultural KARE Soil 2018 August 21
0821185S18 Agricultural KARE Soil 2018 August 21
0821185S19 Agricultural KARE Soil 2018 August 21
0821185S20 Agricultural KARE Soil 2018 August 21
0821185S21 Agricultural KARE Soil 2018 August 21
0821185S22 Agricultural KARE Soil 2018 August 21
0821185S27 Agricultural KARE Soil 2018 August 21
0821185S28 Agricultural KARE Soil 2018 August 21
0821185S29 Agricultural KARE Soil 2018 August 21
0821185S30 Agricultural KARE Soil 2018 August 21
0821185S31 Agricultural KARE Soil 2018 August 21
0821185S32 Agricultural KARE Soil 2018 August 21
0823187S01 Agricultural KARE Soil 2018 August 23
0823187S02 Agricultural KARE Soil 2018 August 23
0823187S03 Agricultural KARE Soil 2018 August 23
0823187S04 Agricultural KARE Soil 2018 August 23
0823187S11 Agricultural KARE Soil 2018 August 23
0823187S12 Agricultural KARE Soil 2018 August 23
0823187S15 Agricultural KARE Soil 2018 August 23
0823187S16 Agricultural KARE Soil 2018 August 23
0823187S19 Agricultural KARE Soil 2018 August 23
0823187S20 Agricultural KARE Soil 2018 August 23
0823187S21 Agricultural KARE Soil 2018 August 23
0823187S22 Agricultural KARE Soil 2018 August 23
0823187S27 Agricultural KARE Soil 2018 August 23
0823187S28 Agricultural KARE Soil 2018 August 23
0823187S29 Agricultural KARE Soil 2018 August 23
0823187S30 Agricultural KARE Soil 2018 August 23
0823187S31 Agricultural KARE Soil 2018 August 23
0823187S32 Agricultural KARE Soil 2018 August 23
0828189S01 Agricultural KARE Soil 2018 August 28

113

3230
3231
3232
3233
3234
3235
3236
3237
3238



0828189S02 Agricultural KARE Soil 2018 August 28
0828189S03 Agricultural KARE Soil 2018 August 28
0828189S04 Agricultural KARE Soil 2018 August 28
0828189S05 Agricultural KARE Soil 2018 August 28
0828189S06 Agricultural KARE Soil 2018 August 28
0828189S11 Agricultural KARE Soil 2018 August 28
0828189S12 Agricultural KARE Soil 2018 August 28
0828189S13 Agricultural KARE Soil 2018 August 28
0828189S14 Agricultural KARE Soil 2018 August 28
0828189S15 Agricultural KARE Soil 2018 August 28
0828189S16 Agricultural KARE Soil 2018 August 28
0828189S17 Agricultural KARE Soil 2018 August 28
0828189S18 Agricultural KARE Soil 2018 August 28
0828189S19 Agricultural KARE Soil 2018 August 28
0828189S20 Agricultural KARE Soil 2018 August 28
0828189S21 Agricultural KARE Soil 2018 August 28
0828189S22 Agricultural KARE Soil 2018 August 28
0828189S27 Agricultural KARE Soil 2018 August 28
0828189S28 Agricultural KARE Soil 2018 August 28
0828189S29 Agricultural KARE Soil 2018 August 28
0828189S30 Agricultural KARE Soil 2018 August 28
0828189S31 Agricultural KARE Soil 2018 August 28
0828189S32 Agricultural KARE Soil 2018 August 28
0925180S27 Agricultural KARE Soil 2018 September 25
0925180S28 Agricultural KARE Soil 2018 September 25
0925180S29 Agricultural KARE Soil 2018 September 25
0925180S31 Agricultural KARE Soil 2018 September 25
0925183S32 Agricultural KARE Soil 2018 September 25
0925189S30 Agricultural KARE Soil 2018 September 25
1 Undeveloped Hwy33-2 Soil 2017 November 8
10 Undeveloped Hwy33-2 Soil 2017 November 8
100 Undeveloped Hwy33-8 Soil 2018 February 15
1002185S01 Agricultural KARE Soil 2018 October 2
1002185S02 Agricultural KARE Soil 2018 October 2
1002185S03 Agricultural KARE Soil 2018 October 2
1002185S04 Agricultural KARE Soil 2018 October 2
1002185S05 Agricultural KARE Soil 2018 October 2
1002185S11 Agricultural KARE Soil 2018 October 2
1002185S12 Agricultural KARE Soil 2018 October 2
1002185S13 Agricultural KARE Soil 2018 October 2
1002185S14 Agricultural KARE Soil 2018 October 2
1002185S15 Agricultural KARE Soil 2018 October 2
1002185S16 Agricultural KARE Soil 2018 October 2
1002185S17 Agricultural KARE Soil 2018 October 2
1002185S19 Agricultural KARE Soil 2018 October 2
1002185S21 Agricultural KARE Soil 2018 October 2
1002185S22 Agricultural KARE Soil 2018 October 2
101 Undeveloped Hwy33-2 Soil 2018 March 17
102 Undeveloped Hwy33-2 Soil 2018 March 17
103 Undeveloped Hwy33-2 Soil 2018 March 17
104 Undeveloped Hwy33-3 Soil 2018 March 17
105 Undeveloped Hwy33-3 Soil 2018 March 17
106 Undeveloped Hwy33-3 Soil 2018 March 17
107 Undeveloped Hwy33-4 Soil 2018 March 17
108 Undeveloped Hwy33-4 Soil 2018 March 17
109 Undeveloped Hwy33-4 Soil 2018 March 17
11 Undeveloped Hwy33-2 Soil 2017 November 8
110 Undeveloped Hwy33-7 Soil 2018 March 17
111 Undeveloped Hwy33-7 Soil 2018 March 17
112 Undeveloped Hwy33-7 Soil 2018 March 17
113 Undeveloped Hwy33-8 Soil 2018 March 17
114 Undeveloped Hwy33-8 Soil 2018 March 17
115 Undeveloped Hwy33-8 Soil 2018 March 17
116 Undeveloped Hwy33-2 Soil 2018 April 19
117 Undeveloped Hwy33-2 Soil 2018 April 19
118 Undeveloped Hwy33-2 Soil 2018 April 19
119 Undeveloped Hwy33-3 Soil 2018 April 19
12 Undeveloped Hwy33-2 Soil 2017 November 8
120 Undeveloped Hwy33-3 Soil 2018 April 19
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121 Undeveloped Hwy33-3 Soil 2018 April 19
122 Undeveloped Hwy33-4 Soil 2018 April 19
123 Undeveloped Hwy33-4 Soil 2018 April 19
124 Undeveloped Hwy33-4 Soil 2018 April 19
125 Undeveloped Hwy33-7 Soil 2018 April 19
126 Undeveloped Hwy33-7 Soil 2018 April 19
127 Undeveloped Hwy33-7 Soil 2018 April 19
128 Undeveloped Hwy33-8 Soil 2018 April 19
129 Undeveloped Hwy33-8 Soil 2018 April 19
13 Undeveloped Hwy33-2 Soil 2017 November 8
130 Undeveloped Hwy33-8 Soil 2018 April 19
131 Undeveloped Hwy33-2 Soil 2018 May 17
132 Undeveloped Hwy33-2 Soil 2018 May 17
133 Undeveloped Hwy33-2 Soil 2018 May 17
134 Undeveloped Hwy33-2 Soil 2018 May 17
135 Undeveloped Hwy33-2 Soil 2018 May 17
136 Undeveloped Hwy33-2 Soil 2018 May 17
137 Undeveloped Hwy33-3 Soil 2018 May 17
138 Undeveloped Hwy33-3 Soil 2018 May 17
139 Undeveloped Hwy33-3 Soil 2018 May 17
14 Undeveloped Hwy33-2 Soil 2017 November 8
140 Undeveloped Hwy33-3 Soil 2018 May 17
141 Undeveloped Hwy33-3 Soil 2018 May 17
142 Undeveloped Hwy33-3 Soil 2018 May 17
143 Undeveloped Hwy33-4 Soil 2018 May 17
144 Undeveloped Hwy33-4 Soil 2018 May 17
145 Undeveloped Hwy33-4 Soil 2018 May 17
146 Undeveloped Hwy33-7 Soil 2018 May 17
147 Undeveloped Hwy33-7 Soil 2018 May 17
148 Undeveloped Hwy33-7 Soil 2018 May 17
149 Undeveloped Hwy33-8 Soil 2018 May 17
15 Undeveloped Hwy33-2 Soil 2017 November 8
150 Undeveloped Hwy33-8 Soil 2018 May 17
151 Undeveloped Hwy33-8 Soil 2018 May 17
152 Undeveloped Hwy33-2 Soil 2018 June 19
153 Undeveloped Hwy33-2 Soil 2018 June 19
154 Undeveloped Hwy33-2 Soil 2018 June 19
155 Undeveloped Hwy33-3 Soil 2018 June 19
156 Undeveloped Hwy33-3 Soil 2018 June 19
157 Undeveloped Hwy33-3 Soil 2018 June 19
158 Undeveloped Hwy33-4 Soil 2018 June 19
159 Undeveloped Hwy33-4 Soil 2018 June 19
16 Undeveloped Hwy33-3 Soil 2017 November 8
160 Undeveloped Hwy33-4 Soil 2018 June 19
161 Undeveloped Hwy33-7 Soil 2018 June 19
162 Undeveloped Hwy33-7 Soil 2018 June 19
163 Undeveloped Hwy33-7 Soil 2018 June 19
164 Undeveloped Hwy33-8 Soil 2018 June 19
165 Undeveloped Hwy33-8 Soil 2018 June 19
166 Undeveloped Hwy33-8 Soil 2018 June 19
167 Undeveloped Hwy33-2 Soil 2018 July 25
168 Undeveloped Hwy33-2 Soil 2018 July 25
169 Undeveloped Hwy33-2 Soil 2018 July 25
17 Undeveloped Hwy33-3 Soil 2017 November 8
170 Undeveloped Hwy33-3 Soil 2018 July 25
171 Undeveloped Hwy33-3 Soil 2018 July 25
172 Undeveloped Hwy33-3 Soil 2018 July 25
173 Undeveloped Hwy33-4 Soil 2018 July 25
174 Undeveloped Hwy33-4 Soil 2018 July 25
175 Undeveloped Hwy33-4 Soil 2018 July 25
176 Undeveloped Hwy33-7 Soil 2018 July 25
177 Undeveloped Hwy33-7 Soil 2018 July 25
178 Undeveloped Hwy33-7 Soil 2018 July 25
179 Undeveloped Hwy33-8 Soil 2018 July 25
18 Undeveloped Hwy33-3 Soil 2017 November 8
180 Undeveloped Hwy33-8 Soil 2018 July 25
181 Undeveloped Hwy33-8 Soil 2018 July 25
182 Undeveloped Hwy33-2 Soil 2018 August 23
183 Undeveloped Hwy33-2 Soil 2018 August 23
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184 Undeveloped Hwy33-2 Soil 2018 August 23
185 Undeveloped Hwy33-3 Soil 2018 August 23
186 Undeveloped Hwy33-3 Soil 2018 August 23
187 Undeveloped Hwy33-3 Soil 2018 August 23
188 Undeveloped Hwy33-4 Soil 2018 August 23
189 Undeveloped Hwy33-4 Soil 2018 August 23
19 Undeveloped Hwy33-3 Soil 2017 November 8
190 Undeveloped Hwy33-4 Soil 2018 August 23
191 Undeveloped Hwy33-7 Soil 2018 August 23
192 Undeveloped Hwy33-7 Soil 2018 August 23
193 Undeveloped Hwy33-7 Soil 2018 August 23
194 Undeveloped Hwy33-8 Soil 2018 August 23
195 Undeveloped Hwy33-8 Soil 2018 August 23
196 Undeveloped Hwy33-8 Soil 2018 August 23
197 Undeveloped Hwy33-8 Soil 2018 August 23
198 Undeveloped Hwy33-8 Soil 2018 August 23
199 Undeveloped Hwy33-8 Soil 2018 August 23
2 Undeveloped Hwy33-2 Soil 2017 November 8
20 Undeveloped Hwy33-3 Soil 2017 November 8
200 Undeveloped Hwy33-8 Soil 2018 August 23
201 Undeveloped Hwy33-8 Soil 2018 August 23
202 Undeveloped Hwy33-8 Soil 2018 August 23
203 Undeveloped Hwy33-2 Soil 2018 September 23
204 Undeveloped Hwy33-2 Soil 2018 September 23
205 Undeveloped Hwy33-2 Soil 2018 September 23
206 Undeveloped Hwy33-2 Soil 2018 September 23
207 Undeveloped Hwy33-2 Soil 2018 September 23
208 Undeveloped Hwy33-2 Soil 2018 September 23
209 Undeveloped Hwy33-3 Soil 2018 September 23
21 Undeveloped Hwy33-3 Soil 2017 November 8
210 Undeveloped Hwy33-3 Soil 2018 September 23
211 Undeveloped Hwy33-3 Soil 2018 September 23
212 Undeveloped Hwy33-3 Soil 2018 September 23
213 Undeveloped Hwy33-3 Soil 2018 September 23
214 Undeveloped Hwy33-3 Soil 2018 September 23
215 Undeveloped Hwy33-4 Soil 2018 September 23
216 Undeveloped Hwy33-4 Soil 2018 September 23
217 Undeveloped Hwy33-4 Soil 2018 September 23
218 Undeveloped Hwy33-7 Soil 2018 September 23
219 Undeveloped Hwy33-7 Soil 2018 September 23
22 Undeveloped Hwy33-3 Soil 2017 November 8
220 Undeveloped Hwy33-7 Soil 2018 September 23
221 Undeveloped Hwy33-8 Soil 2018 September 23
222 Undeveloped Hwy33-8 Soil 2018 September 23
223 Undeveloped Hwy33-8 Soil 2018 September 23
224 Undeveloped Hwy33-2 Soil 2018 October 23
225 Undeveloped Hwy33-2 Soil 2018 October 23
226 Undeveloped Hwy33-2 Soil 2018 October 23
227 Undeveloped Hwy33-3 Soil 2018 October 23
228 Undeveloped Hwy33-3 Soil 2018 October 23
229 Undeveloped Hwy33-3 Soil 2018 October 23
23 Undeveloped Hwy33-3 Soil 2017 November 8
230 Undeveloped Hwy33-4 Soil 2018 October 23
231 Undeveloped Hwy33-4 Soil 2018 October 23
232 Undeveloped Hwy33-4 Soil 2018 October 23
233 Undeveloped Hwy33-7 Soil 2018 October 23
234 Undeveloped Hwy33-7 Soil 2018 October 23
235 Undeveloped Hwy33-7 Soil 2018 October 23
24 Undeveloped Hwy33-3 Soil 2017 November 8
25 Undeveloped Hwy33-3 Soil 2017 November 8
251 Undeveloped Hwy33-8 Soil 2018 October 23
252 Undeveloped Hwy33-8 Soil 2018 October 23
253 Undeveloped Hwy33-8 Soil 2018 October 23
26 Undeveloped Hwy33-4 Soil 2017 November 8
27 Undeveloped Hwy33-4 Soil 2017 November 8
28 Undeveloped Hwy33-4 Soil 2017 November 8
29 Undeveloped Hwy33-4 Soil 2017 November 8
3 Undeveloped Hwy33-2 Soil 2017 November 8
30 Undeveloped Hwy33-4 Soil 2017 November 8
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31 Undeveloped Hwy33-4 Soil 2017 November 8
32 Undeveloped Hwy33-4 Soil 2017 November 8
33 Undeveloped Hwy33-4 Soil 2017 November 8
34 Undeveloped Hwy33-4 Soil 2017 November 8
35 Undeveloped Hwy33-4 Soil 2017 November 8
36 Undeveloped Hwy33-7 Soil 2017 November 8
37 Undeveloped Hwy33-7 Soil 2017 November 8
38 Undeveloped Hwy33-7 Soil 2017 November 8
39 Undeveloped Hwy33-7 Soil 2017 November 8
4 Undeveloped Hwy33-2 Soil 2017 November 8
40 Undeveloped Hwy33-7 Soil 2017 November 8
41 Undeveloped Hwy33-7 Soil 2017 November 8
42 Undeveloped Hwy33-7 Soil 2017 November 8
43 Undeveloped Hwy33-7 Soil 2017 November 8
44 Undeveloped Hwy33-7 Soil 2017 November 8
45 Undeveloped Hwy33-7 Soil 2017 November 8
46 Undeveloped Hwy33-8 Soil 2017 November 8
47 Undeveloped Hwy33-8 Soil 2017 November 8
48 Undeveloped Hwy33-8 Soil 2017 November 8
49 Undeveloped Hwy33-8 Soil 2017 November 8
5 Undeveloped Hwy33-2 Soil 2017 November 8
50 Undeveloped Hwy33-8 Soil 2017 November 8
51 Undeveloped Hwy33-8 Soil 2017 November 8
52 Undeveloped Hwy33-8 Soil 2017 November 8
53 Undeveloped Hwy33-8 Soil 2017 November 8
54 Undeveloped Hwy33-8 Soil 2017 November 8
55 Undeveloped Hwy33-8 Soil 2017 November 8
56 Undeveloped Hwy33-2 Soil 2017 December 14
57 Undeveloped Hwy33-2 Soil 2017 December 14
58 Undeveloped Hwy33-2 Soil 2017 December 14
59 Undeveloped Hwy33-3 Soil 2017 December 14
6 Undeveloped Hwy33-2 Soil 2017 November 8
60 Undeveloped Hwy33-3 Soil 2017 December 14
61 Undeveloped Hwy33-3 Soil 2017 December 14
62 Undeveloped Hwy33-4 Soil 2017 December 14
63 Undeveloped Hwy33-4 Soil 2017 December 14
64 Undeveloped Hwy33-4 Soil 2017 December 14
65 Undeveloped Hwy33-7 Soil 2017 December 14
66 Undeveloped Hwy33-7 Soil 2017 December 14
67 Undeveloped Hwy33-7 Soil 2017 December 14
68 Undeveloped Hwy33-8 Soil 2017 December 14
69 Undeveloped Hwy33-8 Soil 2017 December 14
7 Undeveloped Hwy33-2 Soil 2017 November 8
70 Undeveloped Hwy33-8 Soil 2017 December 14
71 Undeveloped Hwy33-2 Soil 2018 January 18
72 Undeveloped Hwy33-2 Soil 2018 January 18
73 Undeveloped Hwy33-3 Soil 2018 January 18
74 Undeveloped Hwy33-3 Soil 2018 January 18
75 Undeveloped Hwy33-3 Soil 2018 January 18
76 Undeveloped Hwy33-3 Soil 2018 January 18
77 Undeveloped Hwy33-4 Soil 2018 January 18
78 Undeveloped Hwy33-4 Soil 2018 January 18
79 Undeveloped Hwy33-4 Soil 2018 January 18
8 Undeveloped Hwy33-2 Soil 2017 November 8
80 Undeveloped Hwy33-7 Soil 2018 January 18
81 Undeveloped Hwy33-7 Soil 2018 January 18
82 Undeveloped Hwy33-7 Soil 2018 January 18
83 Undeveloped Hwy33-8 Soil 2018 January 18
84 Undeveloped Hwy33-8 Soil 2018 January 18
85 Undeveloped Hwy33-8 Soil 2018 January 18
86 Undeveloped Hwy33-2 Soil 2018 February 15
87 Undeveloped Hwy33-2 Soil 2018 February 15
88 Undeveloped Hwy33-2 Soil 2018 February 15
89 Undeveloped Hwy33-3 Soil 2018 February 15
9 Undeveloped Hwy33-2 Soil 2017 November 8
90 Undeveloped Hwy33-3 Soil 2018 February 15
91 Undeveloped Hwy33-3 Soil 2018 February 15
92 Undeveloped Hwy33-4 Soil 2018 February 15
93 Undeveloped Hwy33-4 Soil 2018 February 15
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94 Undeveloped Hwy33-4 Soil 2018 February 15
95 Undeveloped Hwy33-7 Soil 2018 February 15
96 Undeveloped Hwy33-7 Soil 2018 February 15
97 Undeveloped Hwy33-7 Soil 2018 February 15
98 Undeveloped Hwy33-8 Soil 2018 February 15
99 Undeveloped Hwy33-8 Soil 2018 February 15
Y16TP00S1 Agricultural KARE Soil 2016 May 20
Y16TP00S11 Agricultural KARE Soil 2016 May 20
Y16TP00S12 Agricultural KARE Soil 2016 May 20
Y16TP00S13 Agricultural KARE Soil 2016 May 20
Y16TP00S14 Agricultural KARE Soil 2016 May 20
Y16TP00S15 Agricultural KARE Soil 2016 May 20
Y16TP00S16 Agricultural KARE Soil 2016 May 20
Y16TP00S17 Agricultural KARE Soil 2016 May 20
Y16TP00S18 Agricultural KARE Soil 2016 May 20
Y16TP00S19 Agricultural KARE Soil 2016 May 20
Y16TP00S2 Agricultural KARE Soil 2016 May 20
Y16TP00S20 Agricultural KARE Soil 2016 May 20
Y16TP00S21 Agricultural KARE Soil 2016 May 20
Y16TP00S22 Agricultural KARE Soil 2016 May 20
Y16TP00S3 Agricultural KARE Soil 2016 May 20
Y16TP00S4 Agricultural KARE Soil 2016 May 20
Y16TP00S5 Agricultural KARE Soil 2016 May 20
Y16TP00S6 Agricultural KARE Soil 2016 May 20
Y16TP01S1 Agricultural KARE Soil 2016 June 8
Y16TP01S11 Agricultural KARE Soil 2016 June 8
Y16TP01S12 Agricultural KARE Soil 2016 June 8
Y16TP01S19 Agricultural KARE Soil 2016 June 8
Y16TP01S2 Agricultural KARE Soil 2016 June 8
Y16TP01S20 Agricultural KARE Soil 2016 June 8
Y16TP02S1 Agricultural KARE Soil 2016 June 15
Y16TP02S11 Agricultural KARE Soil 2016 June 15
Y16TP02S12 Agricultural KARE Soil 2016 June 15
Y16TP02S19 Agricultural KARE Soil 2016 June 15
Y16TP02S2 Agricultural KARE Soil 2016 June 15
Y16TP02S20 Agricultural KARE Soil 2016 June 15
Y16TP03S1 Agricultural KARE Soil 2016 June 22
Y16TP03S11 Agricultural KARE Soil 2016 June 22
Y16TP03S12 Agricultural KARE Soil 2016 June 22
Y16TP03S13 Agricultural KARE Soil 2016 June 22
Y16TP03S14 Agricultural KARE Soil 2016 June 22
Y16TP03S17 Agricultural KARE Soil 2016 June 22
Y16TP03S18 Agricultural KARE Soil 2016 June 22
Y16TP03S19 Agricultural KARE Soil 2016 June 22
Y16TP03S2 Agricultural KARE Soil 2016 June 22
Y16TP03S20 Agricultural KARE Soil 2016 June 22
Y16TP03S5 Agricultural KARE Soil 2016 June 22
Y16TP03S6 Agricultural KARE Soil 2016 June 22
Y16TP04S1 Agricultural KARE Soil 2016 June 29
Y16TP04S11 Agricultural KARE Soil 2016 June 29
Y16TP04S12 Agricultural KARE Soil 2016 June 29
Y16TP04S13 Agricultural KARE Soil 2016 June 29
Y16TP04S14 Agricultural KARE Soil 2016 June 29
Y16TP04S17 Agricultural KARE Soil 2016 June 29
Y16TP04S18 Agricultural KARE Soil 2016 June 29
Y16TP04S19 Agricultural KARE Soil 2016 June 29
Y16TP04S2 Agricultural KARE Soil 2016 June 29
Y16TP04S20 Agricultural KARE Soil 2016 June 29
Y16TP04S5 Agricultural KARE Soil 2016 June 29
Y16TP04S6 Agricultural KARE Soil 2016 June 29
Y16TP05S1 Agricultural KARE Soil 2016 July 6
Y16TP05S11 Agricultural KARE Soil 2016 July 6
Y16TP05S12 Agricultural KARE Soil 2016 July 6
Y16TP05S13 Agricultural KARE Soil 2016 July 6
Y16TP05S17 Agricultural KARE Soil 2016 July 6
Y16TP05S18 Agricultural KARE Soil 2016 July 6
Y16TP05S19 Agricultural KARE Soil 2016 July 6
Y16TP05S2 Agricultural KARE Soil 2016 July 6
Y16TP05S20 Agricultural KARE Soil 2016 July 6

118



Y16TP05S5 Agricultural KARE Soil 2016 July 6
Y16TP05S6 Agricultural KARE Soil 2016 July 6
Y16TP06S1 Agricultural KARE Soil 2016 July 13
Y16TP06S11 Agricultural KARE Soil 2016 July 13
Y16TP06S12 Agricultural KARE Soil 2016 July 13
Y16TP06S13 Agricultural KARE Soil 2016 July 13
Y16TP06S14 Agricultural KARE Soil 2016 July 13
Y16TP06S17 Agricultural KARE Soil 2016 July 13
Y16TP06S18 Agricultural KARE Soil 2016 July 13
Y16TP06S19 Agricultural KARE Soil 2016 July 13
Y16TP06S2 Agricultural KARE Soil 2016 July 13
Y16TP06S20 Agricultural KARE Soil 2016 July 13
Y16TP06S5 Agricultural KARE Soil 2016 July 13
Y16TP06S6 Agricultural KARE Soil 2016 July 13
Y16TP07S1 Agricultural KARE Soil 2016 July 20
Y16TP07S11 Agricultural KARE Soil 2016 July 20
Y16TP07S12 Agricultural KARE Soil 2016 July 20
Y16TP07S13 Agricultural KARE Soil 2016 July 20
Y16TP07S14 Agricultural KARE Soil 2016 July 20
Y16TP07S17 Agricultural KARE Soil 2016 July 20
Y16TP07S18 Agricultural KARE Soil 2016 July 20
Y16TP07S19 Agricultural KARE Soil 2016 July 20
Y16TP07S2 Agricultural KARE Soil 2016 July 20
Y16TP07S20 Agricultural KARE Soil 2016 July 20
Y16TP07S5 Agricultural KARE Soil 2016 July 20
Y16TP07S6 Agricultural KARE Soil 2016 July 20
Y16TP08S1 Agricultural KARE Soil 2016 July 27
Y16TP08S11 Agricultural KARE Soil 2016 July 27
Y16TP08S12 Agricultural KARE Soil 2016 July 27
Y16TP08S13 Agricultural KARE Soil 2016 July 27
Y16TP08S14 Agricultural KARE Soil 2016 July 27
Y16TP08S15 Agricultural KARE Soil 2016 July 27
Y16TP08S16 Agricultural KARE Soil 2016 July 27
Y16TP08S17 Agricultural KARE Soil 2016 July 27
Y16TP08S18 Agricultural KARE Soil 2016 July 27
Y16TP08S19 Agricultural KARE Soil 2016 July 27
Y16TP08S2 Agricultural KARE Soil 2016 July 27
Y16TP08S20 Agricultural KARE Soil 2016 July 27
Y16TP08S21 Agricultural KARE Soil 2016 July 27
Y16TP08S22 Agricultural KARE Soil 2016 July 27
Y16TP08S3 Agricultural KARE Soil 2016 July 27
Y16TP08S4 Agricultural KARE Soil 2016 July 27
Y16TP08S5 Agricultural KARE Soil 2016 July 27
Y16TP08S6 Agricultural KARE Soil 2016 July 27
Y16TP09S1 Agricultural KARE Soil 2016 August 3
Y16TP09S11 Agricultural KARE Soil 2016 August 3
Y16TP09S12 Agricultural KARE Soil 2016 August 3
Y16TP09S13 Agricultural KARE Soil 2016 August 3
Y16TP09S14 Agricultural KARE Soil 2016 August 3
Y16TP09S15 Agricultural KARE Soil 2016 August 3
Y16TP09S16 Agricultural KARE Soil 2016 August 3
Y16TP09S17 Agricultural KARE Soil 2016 August 3
Y16TP09S18 Agricultural KARE Soil 2016 August 3
Y16TP09S19 Agricultural KARE Soil 2016 August 3
Y16TP09S2 Agricultural KARE Soil 2016 August 3
Y16TP09S20 Agricultural KARE Soil 2016 August 3
Y16TP09S21 Agricultural KARE Soil 2016 August 3
Y16TP09S22 Agricultural KARE Soil 2016 August 3
Y16TP09S3 Agricultural KARE Soil 2016 August 3
Y16TP09S4 Agricultural KARE Soil 2016 August 3
Y16TP09S5 Agricultural KARE Soil 2016 August 3
Y16TP09S6 Agricultural KARE Soil 2016 August 3
Y16TP10S1 Agricultural KARE Soil 2016 August 10
Y16TP10S11 Agricultural KARE Soil 2016 August 10
Y16TP10S12 Agricultural KARE Soil 2016 August 10
Y16TP10S13 Agricultural KARE Soil 2016 August 10
Y16TP10S14 Agricultural KARE Soil 2016 August 10
Y16TP10S15 Agricultural KARE Soil 2016 August 10
Y16TP10S16 Agricultural KARE Soil 2016 August 10
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Y16TP10S17 Agricultural KARE Soil 2016 August 10
Y16TP10S18 Agricultural KARE Soil 2016 August 10
Y16TP10S19 Agricultural KARE Soil 2016 August 10
Y16TP10S2 Agricultural KARE Soil 2016 August 10
Y16TP10S20 Agricultural KARE Soil 2016 August 10
Y16TP10S21 Agricultural KARE Soil 2016 August 10
Y16TP10S22 Agricultural KARE Soil 2016 August 10
Y16TP10S3 Agricultural KARE Soil 2016 August 10
Y16TP10S4 Agricultural KARE Soil 2016 August 10
Y16TP10S5 Agricultural KARE Soil 2016 August 10
Y16TP10S6 Agricultural KARE Soil 2016 August 10
Y16TP11S1 Agricultural KARE Soil 2016 August 17
Y16TP11S11 Agricultural KARE Soil 2016 August 17
Y16TP11S12 Agricultural KARE Soil 2016 August 17
Y16TP11S13 Agricultural KARE Soil 2016 August 17
Y16TP11S14 Agricultural KARE Soil 2016 August 17
Y16TP11S15 Agricultural KARE Soil 2016 August 17
Y16TP11S16 Agricultural KARE Soil 2016 August 17
Y16TP11S17 Agricultural KARE Soil 2016 August 17
Y16TP11S18 Agricultural KARE Soil 2016 August 17
Y16TP11S19 Agricultural KARE Soil 2016 August 17
Y16TP11S2 Agricultural KARE Soil 2016 August 17
Y16TP11S20 Agricultural KARE Soil 2016 August 17
Y16TP11S21 Agricultural KARE Soil 2016 August 17
Y16TP11S22 Agricultural KARE Soil 2016 August 17
Y16TP11S3 Agricultural KARE Soil 2016 August 17
Y16TP11S4 Agricultural KARE Soil 2016 August 17
Y16TP11S5 Agricultural KARE Soil 2016 August 17
Y16TP11S6 Agricultural KARE Soil 2016 August 17
Y16TP12S1 Agricultural KARE Soil 2016 August 24
Y16TP12S11 Agricultural KARE Soil 2016 August 24
Y16TP12S12 Agricultural KARE Soil 2016 August 24
Y16TP12S13 Agricultural KARE Soil 2016 August 24
Y16TP12S14 Agricultural KARE Soil 2016 August 24
Y16TP12S15 Agricultural KARE Soil 2016 August 24
Y16TP12S16 Agricultural KARE Soil 2016 August 24
Y16TP12S17 Agricultural KARE Soil 2016 August 24
Y16TP12S18 Agricultural KARE Soil 2016 August 24
Y16TP12S19 Agricultural KARE Soil 2016 August 24
Y16TP12S2 Agricultural KARE Soil 2016 August 24
Y16TP12S20 Agricultural KARE Soil 2016 August 24
Y16TP12S21 Agricultural KARE Soil 2016 August 24
Y16TP12S22 Agricultural KARE Soil 2016 August 24
Y16TP12S3 Agricultural KARE Soil 2016 August 24
Y16TP12S4 Agricultural KARE Soil 2016 August 24
Y16TP12S5 Agricultural KARE Soil 2016 August 24
Y16TP12S6 Agricultural KARE Soil 2016 August 24
Y16TP13S1 Agricultural KARE Soil 2016 August 31
Y16TP13S11 Agricultural KARE Soil 2016 August 31
Y16TP13S12 Agricultural KARE Soil 2016 August 31
Y16TP13S13 Agricultural KARE Soil 2016 August 31
Y16TP13S14 Agricultural KARE Soil 2016 August 31
Y16TP13S15 Agricultural KARE Soil 2016 August 31
Y16TP13S16 Agricultural KARE Soil 2016 August 31
Y16TP13S17 Agricultural KARE Soil 2016 August 31
Y16TP13S18 Agricultural KARE Soil 2016 August 31
Y16TP13S19 Agricultural KARE Soil 2016 August 31
Y16TP13S2 Agricultural KARE Soil 2016 August 31
Y16TP13S20 Agricultural KARE Soil 2016 August 31
Y16TP13S21 Agricultural KARE Soil 2016 August 31
Y16TP13S22 Agricultural KARE Soil 2016 August 31
Y16TP13S4 Agricultural KARE Soil 2016 August 31
Y16TP13S5 Agricultural KARE Soil 2016 August 31
Y16TP13S6 Agricultural KARE Soil 2016 August 31
Y16TP14S1 Agricultural KARE Soil 2016 September 7
Y16TP14S11 Agricultural KARE Soil 2016 September 7
Y16TP14S12 Agricultural KARE Soil 2016 September 7
Y16TP14S13 Agricultural KARE Soil 2016 September 7
Y16TP14S14 Agricultural KARE Soil 2016 September 7
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Y16TP14S15 Agricultural KARE Soil 2016 September 7
Y16TP14S19 Agricultural KARE Soil 2016 September 7
Y16TP14S2 Agricultural KARE Soil 2016 September 7
Y16TP14S20 Agricultural KARE Soil 2016 September 7
Y16TP14S21 Agricultural KARE Soil 2016 September 7
Y16TP14S22 Agricultural KARE Soil 2016 September 7
Y16TP14S3 Agricultural KARE Soil 2016 September 7
Y16TP14S4 Agricultural KARE Soil 2016 September 7
Y16TP14S5 Agricultural KARE Soil 2016 September 7
Y16TP15S1 Agricultural KARE Soil 2016 September 14
Y16TP15S11 Agricultural KARE Soil 2016 September 14
Y16TP15S13 Agricultural KARE Soil 2016 September 14
Y16TP15S14 Agricultural KARE Soil 2016 September 14
Y16TP15S15 Agricultural KARE Soil 2016 September 14
Y16TP15S16 Agricultural KARE Soil 2016 September 14
Y16TP15S17 Agricultural KARE Soil 2016 September 14
Y16TP15S18 Agricultural KARE Soil 2016 September 14
Y16TP15S19 Agricultural KARE Soil 2016 September 14
Y16TP15S2 Agricultural KARE Soil 2016 September 14
Y16TP15S20 Agricultural KARE Soil 2016 September 14
Y16TP15S21 Agricultural KARE Soil 2016 September 14
Y16TP15S22 Agricultural KARE Soil 2016 September 14
Y16TP15S3 Agricultural KARE Soil 2016 September 14
Y16TP15S4 Agricultural KARE Soil 2016 September 14
Y16TP15S5 Agricultural KARE Soil 2016 September 14
Y16TP15S6 Agricultural KARE Soil 2016 September 14
Y16TP16S1 Agricultural KARE Soil 2016 September 21
Y16TP16S11 Agricultural KARE Soil 2016 September 21
Y16TP16S12 Agricultural KARE Soil 2016 September 21
Y16TP16S13 Agricultural KARE Soil 2016 September 21
Y16TP16S14 Agricultural KARE Soil 2016 September 21
Y16TP16S15 Agricultural KARE Soil 2016 September 21
Y16TP16S16 Agricultural KARE Soil 2016 September 21
Y16TP16S18 Agricultural KARE Soil 2016 September 21
Y16TP16S19 Agricultural KARE Soil 2016 September 21
Y16TP16S2 Agricultural KARE Soil 2016 September 21
Y16TP16S20 Agricultural KARE Soil 2016 September 21
Y16TP16S21 Agricultural KARE Soil 2016 September 21
Y16TP16S22 Agricultural KARE Soil 2016 September 21
Y16TP16S3 Agricultural KARE Soil 2016 September 21
Y16TP16S4 Agricultural KARE Soil 2016 September 21
Y16TP16S5 Agricultural KARE Soil 2016 September 21
Y16TP16S6 Agricultural KARE Soil 2016 September 21
Y16TP17S1 Agricultural KARE Soil 2016 September 28
Y16TP17S11 Agricultural KARE Soil 2016 September 28
Y16TP17S12 Agricultural KARE Soil 2016 September 28
Y16TP17S13 Agricultural KARE Soil 2016 September 28
Y16TP17S14 Agricultural KARE Soil 2016 September 28
Y16TP17S2 Agricultural KARE Soil 2016 September 28
Y16TP17S3 Agricultural KARE Soil 2016 September 28
Y16TP17S4 Agricultural KARE Soil 2016 September 28
Y16TP17S5 Agricultural KARE Soil 2016 September 28
Y16TP17S6 Agricultural KARE Soil 2016 September 28
Y171011Hwy2a Undeveloped Hwy33-2 Air 2017 November 8
Y171011Hwy2b Undeveloped Hwy33-2 Air 2017 November 8
Y171011Hwy2c Undeveloped Hwy33-2 Air 2017 November 8
Y171011Hwy3a Undeveloped Hwy33-3 Air 2017 November 8
Y171011Hwy3b Undeveloped Hwy33-3 Air 2017 November 8
Y171011Hwy3c Undeveloped Hwy33-3 Air 2017 November 8
Y171011Hwy4a Undeveloped Hwy33-4 Air 2017 November 8
Y171011Hwy4b Undeveloped Hwy33-4 Air 2017 November 8
Y171011Hwy4c Undeveloped Hwy33-4 Air 2017 November 8
Y171011Hwy7a Undeveloped Hwy33-7 Air 2017 November 8
Y171011Hwy7b Undeveloped Hwy33-7 Air 2017 November 8
Y171011Hwy7c Undeveloped Hwy33-7 Air 2017 November 8
Y171011Hwy8a Undeveloped Hwy33-8 Air 2017 November 8
Y171011Hwy8b Undeveloped Hwy33-8 Air 2017 November 8
Y171108Hwy2a Undeveloped Hwy33-2 Air 2017 December 14
Y171108Hwy2b Undeveloped Hwy33-2 Air 2017 December 14
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Y171108Hwy2c Undeveloped Hwy33-2 Air 2017 December 14
Y171108Hwy3a Undeveloped Hwy33-3 Air 2017 December 14
Y171108Hwy3b Undeveloped Hwy33-3 Air 2017 December 14
Y171108Hwy3c Undeveloped Hwy33-3 Air 2017 December 14
Y171108Hwy4a Undeveloped Hwy33-4 Air 2017 December 14
Y171108Hwy4b Undeveloped Hwy33-4 Air 2017 December 14
Y171108Hwy4c Undeveloped Hwy33-4 Air 2017 December 14
Y171108Hwy7a Undeveloped Hwy33-7 Air 2017 December 14
Y171108Hwy7b Undeveloped Hwy33-7 Air 2017 December 14
Y171108Hwy8a Undeveloped Hwy33-8 Air 2017 December 14
Y171108Hwy8b Undeveloped Hwy33-8 Air 2017 December 14
Y171214Hwy2a Undeveloped Hwy33-2 Air 2018 January 18
Y171214Hwy2b Undeveloped Hwy33-2 Air 2018 January 18
Y171214Hwy2c Undeveloped Hwy33-2 Air 2018 January 18
Y171214Hwy3a Undeveloped Hwy33-3 Air 2018 January 18
Y171214Hwy3b Undeveloped Hwy33-3 Air 2018 January 18
Y171214Hwy3c Undeveloped Hwy33-3 Air 2018 January 18
Y171214Hwy4a Undeveloped Hwy33-4 Air 2018 January 18
Y171214Hwy4b Undeveloped Hwy33-4 Air 2018 January 18
Y171214Hwy4c Undeveloped Hwy33-4 Air 2018 January 18
Y171214Hwy7a Undeveloped Hwy33-7 Air 2018 January 18
Y171214Hwy7b Undeveloped Hwy33-7 Air 2018 January 18
Y171214Hwy8a Undeveloped Hwy33-8 Air 2018 January 18
Y171214Hwy8b Undeveloped Hwy33-8 Air 2018 January 18
Y171214Hwy8c Undeveloped Hwy33-8 Air 2018 January 18
Y17A1170913 Agricultural KARE Air 2017 September 13
Y17A1171011 Agricultural KARE Air 2017 October 11
Y17A2170913 Agricultural KARE Air 2017 September 13
Y17A2171011 Agricultural KARE Air 2017 October 11
Y17A4170913 Agricultural KARE Air 2017 September 13
Y17A4171011 Agricultural KARE Air 2017 October 11
Y17A8170913 Agricultural KARE Air 2017 September 13
Y17A8171011 Agricultural KARE Air 2017 October 11
Y17B1170913 Agricultural KARE Air 2017 September 13
Y17B1171011 Agricultural KARE Air 2017 October 11
Y17B2170913 Agricultural KARE Air 2017 September 13
Y17B2171011 Agricultural KARE Air 2017 October 11
Y17B4170913 Agricultural KARE Air 2017 September 13
Y17B4171011 Agricultural KARE Air 2017 October 11
Y17B8170913 Agricultural KARE Air 2017 September 13
Y17B8171011 Agricultural KARE Air 2017 October 11
Y17C1170913 Agricultural KARE Air 2017 September 13
Y17C1171011 Agricultural KARE Air 2017 October 11
Y17C2170913 Agricultural KARE Air 2017 September 13
Y17C2171011 Agricultural KARE Air 2017 October 11
Y17C4170913 Agricultural KARE Air 2017 September 13
Y17C4171011 Agricultural KARE Air 2017 October 11
Y17C8170913 Agricultural KARE Air 2017 September 13
Y17C8171011 Agricultural KARE Air 2017 October 11
Y17P0170913 Agricultural KARE Air 2017 September 13
Y17P0171011 Agricultural KARE Air 2017 October 11
Y17TP02S02 Agricultural KARE Soil 2017 June 28
Y17TP02S06 Agricultural KARE Soil 2017 June 28
Y17TP02S13 Agricultural KARE Soil 2017 June 28
Y17TP02S30 Agricultural KARE Soil 2017 June 28
Y17TP03S02 Agricultural KARE Soil 2017 July 5
Y17TP03S06 Agricultural KARE Soil 2017 July 5
Y17TP03S11 Agricultural KARE Soil 2017 July 5
Y17TP03S13 Agricultural KARE Soil 2017 July 5
Y17TP03S16 Agricultural KARE Soil 2017 July 5
Y17TP03S19 Agricultural KARE Soil 2017 July 5
Y17TP04S02 Agricultural KARE Soil 2017 July 12
Y17TP04S06 Agricultural KARE Soil 2017 July 12
Y17TP04S11 Agricultural KARE Soil 2017 July 12
Y17TP04S13 Agricultural KARE Soil 2017 July 12
Y17TP04S18 Agricultural KARE Soil 2017 July 12
Y17TP04S19 Agricultural KARE Soil 2017 July 12
Y17TP05S02 Agricultural KARE Soil 2017 July 19
Y17TP05S06 Agricultural KARE Soil 2017 July 19
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Y17TP05S11 Agricultural KARE Soil 2017 July 19
Y17TP05S13 Agricultural KARE Soil 2017 July 19
Y17TP05S18 Agricultural KARE Soil 2017 July 19
Y17TP05S19 Agricultural KARE Soil 2017 July 19
Y17TP05S27 Agricultural KARE Soil 2017 July 19
Y17TP05S30 Agricultural KARE Soil 2017 July 19
Y17TP06S02 Agricultural KARE Soil 2017 July 26
Y17TP06S06 Agricultural KARE Soil 2017 July 26
Y17TP06S11 Agricultural KARE Soil 2017 July 26
Y17TP06S13 Agricultural KARE Soil 2017 July 26
Y17TP06S18 Agricultural KARE Soil 2017 July 26
Y17TP06S19 Agricultural KARE Soil 2017 July 26
Y17TP07S02 Agricultural KARE Soil 2017 August 2
Y17TP07S06 Agricultural KARE Soil 2017 August 2
Y17TP07S11 Agricultural KARE Soil 2017 August 2
Y17TP07S13 Agricultural KARE Soil 2017 August 2
Y17TP07S18 Agricultural KARE Soil 2017 August 2
Y17TP07S19 Agricultural KARE Soil 2017 August 2
Y17TP0808S02 Agricultural KARE Soil 2017 August 9
Y17TP0808S06 Agricultural KARE Soil 2017 August 9
Y17TP0808S11 Agricultural KARE Soil 2017 August 9
Y17TP0808S13 Agricultural KARE Soil 2017 August 9
Y17TP0808S18 Agricultural KARE Soil 2017 August 9
Y17TP0808S19 Agricultural KARE Soil 2017 August 9
Y17TP0824S02 Agricultural KARE Soil 2017 August 9
Y17TP0824S06 Agricultural KARE Soil 2017 August 9
Y17TP0824S11 Agricultural KARE Soil 2017 August 9
Y17TP0824S13 Agricultural KARE Soil 2017 August 9
Y17TP0824S18 Agricultural KARE Soil 2017 August 9
Y17TP0824S19 Agricultural KARE Soil 2017 August 9
Y17TP0848S02 Agricultural KARE Soil 2017 August 9
Y17TP0848S06 Agricultural KARE Soil 2017 August 9
Y17TP0848S11 Agricultural KARE Soil 2017 August 9
Y17TP0848S13 Agricultural KARE Soil 2017 August 9
Y17TP0848S18 Agricultural KARE Soil 2017 August 9
Y17TP0848S19 Agricultural KARE Soil 2017 August 9
Y17TP0896S02 Agricultural KARE Soil 2017 August 9
Y17TP0896S06 Agricultural KARE Soil 2017 August 9
Y17TP0896S11 Agricultural KARE Soil 2017 August 9
Y17TP0896S13 Agricultural KARE Soil 2017 August 9
Y17TP0896S18 Agricultural KARE Soil 2017 August 9
Y17TP0896S19 Agricultural KARE Soil 2017 August 9
Y17TP08S02 Agricultural KARE Soil 2017 August 9
Y17TP08S06 Agricultural KARE Soil 2017 August 9
Y17TP08S11 Agricultural KARE Soil 2017 August 9
Y17TP08S13 Agricultural KARE Soil 2017 August 9
Y17TP08S18 Agricultural KARE Soil 2017 August 9
Y17TP08S19 Agricultural KARE Soil 2017 August 9
Y17TP08S27 Agricultural KARE Soil 2017 August 9
Y17TP0948S02 Agricultural KARE Soil 2017 August 16
Y17TP0948S03 Agricultural KARE Soil 2017 August 16
Y17TP0948S11 Agricultural KARE Soil 2017 August 16
Y17TP0948S16 Agricultural KARE Soil 2017 August 16
Y17TP0948S19 Agricultural KARE Soil 2017 August 16
Y17TP0948S22 Agricultural KARE Soil 2017 August 16
Y17TP0996S02 Agricultural KARE Soil 2017 August 16
Y17TP0996S03 Agricultural KARE Soil 2017 August 16
Y17TP0996S11 Agricultural KARE Soil 2017 August 16
Y17TP0996S16 Agricultural KARE Soil 2017 August 16
Y17TP0996S19 Agricultural KARE Soil 2017 August 16
Y17TP0996S22 Agricultural KARE Soil 2017 August 16
Y17TP09S02 Agricultural KARE Soil 2017 August 16
Y17TP09S03 Agricultural KARE Soil 2017 August 16
Y17TP09S06 Agricultural KARE Soil 2017 August 16
Y17TP09S11 Agricultural KARE Soil 2017 August 16
Y17TP09S13 Agricultural KARE Soil 2017 August 16
Y17TP09S16 Agricultural KARE Soil 2017 August 16
Y17TP09S18 Agricultural KARE Soil 2017 August 16
Y17TP09S19 Agricultural KARE Soil 2017 August 16
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Y17TP09S22 Agricultural KARE Soil 2017 August 16
Y17TP09S25 Agricultural KARE Soil 2017 August 16
Y17TP09S27 Agricultural KARE Soil 2017 August 16
Y17TP09S30 Agricultural KARE Soil 2017 August 16
Y17TP10S02 Agricultural KARE Soil 2017 August 23
Y17TP10S03 Agricultural KARE Soil 2017 August 23
Y17TP10S06 Agricultural KARE Soil 2017 August 23
Y17TP10S11 Agricultural KARE Soil 2017 August 23
Y17TP10S13 Agricultural KARE Soil 2017 August 23
Y17TP10S16 Agricultural KARE Soil 2017 August 23
Y17TP10S18 Agricultural KARE Soil 2017 August 23
Y17TP10S19 Agricultural KARE Soil 2017 August 23
Y17TP10S22 Agricultural KARE Soil 2017 August 23
Y17TP10S25 Agricultural KARE Soil 2017 August 23
Y17TP10S27 Agricultural KARE Soil 2017 August 23
Y17TP10S30 Agricultural KARE Soil 2017 August 23
Y17TP11S02 Agricultural KARE Soil 2017 August 30
Y17TP11S03 Agricultural KARE Soil 2017 August 30
Y17TP11S06 Agricultural KARE Soil 2017 August 30
Y17TP11S11 Agricultural KARE Soil 2017 August 30
Y17TP11S13 Agricultural KARE Soil 2017 August 30
Y17TP11S16 Agricultural KARE Soil 2017 August 30
Y17TP11S18 Agricultural KARE Soil 2017 August 30
Y17TP11S19 Agricultural KARE Soil 2017 August 30
Y17TP11S22 Agricultural KARE Soil 2017 August 30
Y17TP12S02 Agricultural KARE Soil 2017 September 6
Y17TP12S03 Agricultural KARE Soil 2017 September 6
Y17TP12S11 Agricultural KARE Soil 2017 September 6
Y17TP12S13 Agricultural KARE Soil 2017 September 6
Y17TP12S16 Agricultural KARE Soil 2017 September 6
Y17TP12S18 Agricultural KARE Soil 2017 September 6
Y17TP12S19 Agricultural KARE Soil 2017 September 6
Y17TP12S22 Agricultural KARE Soil 2017 September 6
Y17TP13S13 Agricultural KARE Soil 2017 September 13
Y17TP13S16 Agricultural KARE Soil 2017 September 13
Y17TP13S18 Agricultural KARE Soil 2017 September 13
Y17TP13S19 Agricultural KARE Soil 2017 September 13
Y17TP13S22 Agricultural KARE Soil 2017 September 13
Y17TP13S27 Agricultural KARE Soil 2017 September 13
Y17TP13S30 Agricultural KARE Soil 2017 September 13
Y17TP15S02 Agricultural KARE Soil 2017 September 20
Y17TP15S03 Agricultural KARE Soil 2017 September 20
Y17TP15S06 Agricultural KARE Soil 2017 September 20
Y17TP15S11 Agricultural KARE Soil 2017 September 20
Y17TP15S16 Agricultural KARE Soil 2017 September 20
Y17TP15S18 Agricultural KARE Soil 2017 September 20
Y17TP15S19 Agricultural KARE Soil 2017 September 20
Y17TP15S22 Agricultural KARE Soil 2017 September 20
Y17TP17S02 Agricultural KARE Soil 2017 October 4
Y17TP17S03 Agricultural KARE Soil 2017 October 4
Y17TP17S06 Agricultural KARE Soil 2017 October 4
Y17TP17S11 Agricultural KARE Soil 2017 October 4
Y17TP17S13 Agricultural KARE Soil 2017 October 4
Y17TP17S16 Agricultural KARE Soil 2017 October 4
Y17TP17S18 Agricultural KARE Soil 2017 October 4
Y17TP17S19 Agricultural KARE Soil 2017 October 4
Y17TP17S22 Agricultural KARE Soil 2017 October 4
Y17TP17S25 Agricultural KARE Soil 2017 October 4
Y17TP17S27 Agricultural KARE Soil 2017 October 4
Y17TP17S30 Agricultural KARE Soil 2017 October 4
Y180118Hwy2a Undeveloped Hwy33-2 Air 2018 February 15
Y180118Hwy2b Undeveloped Hwy33-2 Air 2018 February 15
Y180118Hwy2c Undeveloped Hwy33-2 Air 2018 February 15
Y180118Hwy3a Undeveloped Hwy33-3 Air 2018 February 15
Y180118Hwy3b Undeveloped Hwy33-3 Air 2018 February 15
Y180118Hwy3c Undeveloped Hwy33-3 Air 2018 February 15
Y180118Hwy4a Undeveloped Hwy33-4 Air 2018 February 15
Y180118Hwy4b Undeveloped Hwy33-4 Air 2018 February 15
Y180118Hwy4c Undeveloped Hwy33-4 Air 2018 February 15
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Y180118Hwy7a Undeveloped Hwy33-7 Air 2018 February 15
Y180118Hwy7b Undeveloped Hwy33-7 Air 2018 February 15
Y180118Hwy7c Undeveloped Hwy33-7 Air 2018 February 15
Y180118Hwy8a Undeveloped Hwy33-8 Air 2018 February 15
Y180118Hwy8b Undeveloped Hwy33-8 Air 2018 February 15
Y180118Hwy8c Undeveloped Hwy33-8 Air 2018 February 15
Y180215Hwy2a Undeveloped Hwy33-2 Air 2018 March 17
Y180215Hwy2b Undeveloped Hwy33-2 Air 2018 March 17
Y180215Hwy2c Undeveloped Hwy33-2 Air 2018 March 17
Y180215Hwy3a Undeveloped Hwy33-3 Air 2018 March 17
Y180215Hwy3b Undeveloped Hwy33-3 Air 2018 March 17
Y180215Hwy3c Undeveloped Hwy33-3 Air 2018 March 17
Y180215Hwy4a Undeveloped Hwy33-4 Air 2018 March 17
Y180215Hwy4b Undeveloped Hwy33-4 Air 2018 March 17
Y180215Hwy4c Undeveloped Hwy33-4 Air 2018 March 17
Y180215Hwy7a Undeveloped Hwy33-7 Air 2018 March 17
Y180215Hwy7b Undeveloped Hwy33-7 Air 2018 March 17
Y180215Hwy7c Undeveloped Hwy33-7 Air 2018 March 17
Y180215Hwy8a Undeveloped Hwy33-8 Air 2018 March 17
Y180215Hwy8b Undeveloped Hwy33-8 Air 2018 March 17
Y180215Hwy8c Undeveloped Hwy33-8 Air 2018 March 17
Y180317Hwy2a Undeveloped Hwy33-2 Air 2018 April 19
Y180317Hwy2c Undeveloped Hwy33-2 Air 2018 April 19
Y180317Hwy3a Undeveloped Hwy33-3 Air 2018 April 19
Y180317Hwy3b Undeveloped Hwy33-3 Air 2018 April 19
Y180317Hwy3c Undeveloped Hwy33-3 Air 2018 April 19
Y180317Hwy4a Undeveloped Hwy33-4 Air 2018 April 19
Y180317Hwy4b Undeveloped Hwy33-4 Air 2018 April 19
Y180317Hwy4c Undeveloped Hwy33-4 Air 2018 April 19
Y180317Hwy7a Undeveloped Hwy33-7 Air 2018 April 19
Y180317Hwy7b Undeveloped Hwy33-7 Air 2018 April 19
Y180317Hwy7c Undeveloped Hwy33-7 Air 2018 April 19
Y180317Hwy8a Undeveloped Hwy33-8 Air 2018 April 19
Y180317Hwy8b Undeveloped Hwy33-8 Air 2018 April 19
Y180317Hwy8c Undeveloped Hwy33-8 Air 2018 April 19
Y180419Hwy2a Undeveloped Hwy33-2 Air 2018 May 17
Y180419Hwy2b Undeveloped Hwy33-2 Air 2018 May 17
Y180419Hwy2c Undeveloped Hwy33-2 Air 2018 May 17
Y180419Hwy3a Undeveloped Hwy33-3 Air 2018 May 17
Y180419Hwy3b Undeveloped Hwy33-3 Air 2018 May 17
Y180419Hwy3c Undeveloped Hwy33-3 Air 2018 May 17
Y180419Hwy4a Undeveloped Hwy33-4 Air 2018 May 17
Y180419Hwy4b Undeveloped Hwy33-4 Air 2018 May 17
Y180419Hwy4c Undeveloped Hwy33-4 Air 2018 May 17
Y180419Hwy7a Undeveloped Hwy33-7 Air 2018 May 17
Y180419Hwy7b Undeveloped Hwy33-7 Air 2018 May 17
Y180419Hwy7c Undeveloped Hwy33-7 Air 2018 May 17
Y180419Hwy8a Undeveloped Hwy33-8 Air 2018 May 17
Y180419Hwy8b Undeveloped Hwy33-8 Air 2018 May 17
Y180419Hwy8c Undeveloped Hwy33-8 Air 2018 May 17
Y180517Hwy2a Undeveloped Hwy33-2 Air 2018 June 19
Y180517Hwy2b Undeveloped Hwy33-2 Air 2018 June 19
Y180517Hwy2c Undeveloped Hwy33-2 Air 2018 June 19
Y180517Hwy3a Undeveloped Hwy33-3 Air 2018 June 19
Y180517Hwy3b Undeveloped Hwy33-3 Air 2018 June 19
Y180517Hwy3c Undeveloped Hwy33-3 Air 2018 June 19
Y180517Hwy4a Undeveloped Hwy33-4 Air 2018 June 19
Y180517Hwy4b Undeveloped Hwy33-4 Air 2018 June 19
Y180517Hwy4c Undeveloped Hwy33-4 Air 2018 June 19
Y180517Hwy7a Undeveloped Hwy33-7 Air 2018 June 19
Y180517Hwy7b Undeveloped Hwy33-7 Air 2018 June 19
Y180517Hwy7c Undeveloped Hwy33-7 Air 2018 June 19
Y180517Hwy8a Undeveloped Hwy33-8 Air 2018 June 19
Y180517Hwy8b Undeveloped Hwy33-8 Air 2018 June 19
Y180517Hwy8c Undeveloped Hwy33-8 Air 2018 June 19
Y180616Hwy2a Undeveloped Hwy33-2 Air 2018 July 25
Y180616Hwy2b Undeveloped Hwy33-2 Air 2018 July 25
Y180616Hwy2c Undeveloped Hwy33-2 Air 2018 July 25
Y180616Hwy3a Undeveloped Hwy33-3 Air 2018 July 25
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Y180616Hwy3b Undeveloped Hwy33-3 Air 2018 July 25
Y180616Hwy3c Undeveloped Hwy33-3 Air 2018 July 25
Y180616Hwy4a Undeveloped Hwy33-4 Air 2018 July 25
Y180616Hwy4b Undeveloped Hwy33-4 Air 2018 July 25
Y180616Hwy4c Undeveloped Hwy33-4 Air 2018 July 25
Y180616Hwy7a Undeveloped Hwy33-7 Air 2018 July 25
Y180616Hwy7b Undeveloped Hwy33-7 Air 2018 July 25
Y180616Hwy7c Undeveloped Hwy33-7 Air 2018 July 25
Y180616Hwy8a Undeveloped Hwy33-8 Air 2018 July 25
Y180616Hwy8b Undeveloped Hwy33-8 Air 2018 July 25
Y180616Hwy8c Undeveloped Hwy33-8 Air 2018 July 25
Y180816Hwy2a Undeveloped Hwy33-2 Air 2018 August 23
Y180816Hwy2b Undeveloped Hwy33-2 Air 2018 August 23
Y180816Hwy2c Undeveloped Hwy33-2 Air 2018 August 23
Y180816Hwy3a Undeveloped Hwy33-3 Air 2018 August 23
Y180816Hwy3b Undeveloped Hwy33-3 Air 2018 August 23
Y180816Hwy3c Undeveloped Hwy33-3 Air 2018 August 23
Y180816Hwy4a Undeveloped Hwy33-4 Air 2018 August 23
Y180816Hwy4b Undeveloped Hwy33-4 Air 2018 August 23
Y180816Hwy4c Undeveloped Hwy33-4 Air 2018 August 23
Y180816Hwy7a Undeveloped Hwy33-7 Air 2018 August 23
Y180816Hwy7b Undeveloped Hwy33-7 Air 2018 August 23
Y180816Hwy7c Undeveloped Hwy33-7 Air 2018 August 23
Y180816Hwy8a Undeveloped Hwy33-8 Air 2018 August 23
Y180816Hwy8b Undeveloped Hwy33-8 Air 2018 August 23
Y180816Hwy8c Undeveloped Hwy33-8 Air 2018 August 23
Y180916Hwy2a Undeveloped Hwy33-2 Air 2018 September 23
Y180916Hwy2b Undeveloped Hwy33-2 Air 2018 September 23
Y180916Hwy2c Undeveloped Hwy33-2 Air 2018 September 23
Y180916Hwy3a Undeveloped Hwy33-3 Air 2018 September 23
Y180916Hwy3b Undeveloped Hwy33-3 Air 2018 September 23
Y180916Hwy3c Undeveloped Hwy33-3 Air 2018 September 23
Y180916Hwy4a Undeveloped Hwy33-4 Air 2018 September 23
Y180916Hwy4b Undeveloped Hwy33-4 Air 2018 September 23
Y180916Hwy4c Undeveloped Hwy33-4 Air 2018 September 23
Y180916Hwy7a Undeveloped Hwy33-7 Air 2018 September 23
Y180916Hwy7b Undeveloped Hwy33-7 Air 2018 September 23
Y180916Hwy7c Undeveloped Hwy33-7 Air 2018 September 23
Y180916Hwy8a Undeveloped Hwy33-8 Air 2018 September 23
Y180916Hwy8b Undeveloped Hwy33-8 Air 2018 September 23
Y180916Hwy8c Undeveloped Hwy33-8 Air 2018 September 23
Y181016Hwy2a Undeveloped Hwy33-2 Air 2018 October 23
Y181016Hwy2b Undeveloped Hwy33-2 Air 2018 October 23
Y181016Hwy2c Undeveloped Hwy33-2 Air 2018 October 23
Y181016Hwy3a Undeveloped Hwy33-3 Air 2018 October 23
Y181016Hwy3b Undeveloped Hwy33-3 Air 2018 October 23
Y181016Hwy3c Undeveloped Hwy33-3 Air 2018 October 23
Y181016Hwy4a Undeveloped Hwy33-4 Air 2018 October 23
Y181016Hwy4b Undeveloped Hwy33-4 Air 2018 October 23
Y181016Hwy4c Undeveloped Hwy33-4 Air 2018 October 23
Y181016Hwy7a Undeveloped Hwy33-7 Air 2018 October 23
Y181016Hwy7b Undeveloped Hwy33-7 Air 2018 October 23
Y181016Hwy7c Undeveloped Hwy33-7 Air 2018 October 23
Y181016Hwy8a Undeveloped Hwy33-8 Air 2018 October 23
Y181016Hwy8b Undeveloped Hwy33-8 Air 2018 October 23
Y181016Hwy8c Undeveloped Hwy33-8 Air 2018 October 23
Y18A10503 Agricultural KARE Air 2018 May 3
Y18A10601 Agricultural KARE Air 2018 June 1
Y18A10726 Agricultural KARE Air 2018 July 26
Y18A10823 Agricultural KARE Air 2018 August 23
Y18A10925 Agricultural KARE Air 2018 September 25
Y18A20503 Agricultural KARE Air 2018 May 3
Y18A20601 Agricultural KARE Air 2018 June 1
Y18A20726 Agricultural KARE Air 2018 July 26
Y18A20823 Agricultural KARE Air 2018 August 23
Y18A20925 Agricultural KARE Air 2018 September 25
Y18A40503 Agricultural KARE Air 2018 May 3
Y18A40601 Agricultural KARE Air 2018 June 1
Y18A40726 Agricultural KARE Air 2018 July 26
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Y18A40823 Agricultural KARE Air 2018 August 23
Y18A40925 Agricultural KARE Air 2018 September 25
Y18A80503 Agricultural KARE Air 2018 May 3
Y18A80601 Agricultural KARE Air 2018 June 1
Y18A80726 Agricultural KARE Air 2018 July 26
Y18A80823 Agricultural KARE Air 2018 August 23
Y18A80925 Agricultural KARE Air 2018 September 25
Y18B10503 Agricultural KARE Air 2018 May 3
Y18B10601 Agricultural KARE Air 2018 June 1
Y18B10726 Agricultural KARE Air 2018 July 26
Y18B10823 Agricultural KARE Air 2018 August 23
Y18B10925 Agricultural KARE Air 2018 September 25
Y18B20503 Agricultural KARE Air 2018 May 3
Y18B20601 Agricultural KARE Air 2018 June 1
Y18B20726 Agricultural KARE Air 2018 July 26
Y18B20823 Agricultural KARE Air 2018 August 23
Y18B20925 Agricultural KARE Air 2018 September 25
Y18B40503 Agricultural KARE Air 2018 May 3
Y18B40601 Agricultural KARE Air 2018 June 1
Y18B40726 Agricultural KARE Air 2018 July 26
Y18B40823 Agricultural KARE Air 2018 August 23
Y18B40925 Agricultural KARE Air 2018 September 25
Y18B80503 Agricultural KARE Air 2018 May 3
Y18B80601 Agricultural KARE Air 2018 June 1
Y18B80726 Agricultural KARE Air 2018 July 26
Y18B80823 Agricultural KARE Air 2018 August 23
Y18B80925 Agricultural KARE Air 2018 September 25
Y18C10503 Agricultural KARE Air 2018 May 3
Y18C10601 Agricultural KARE Air 2018 June 1
Y18C10726 Agricultural KARE Air 2018 July 26
Y18C10823 Agricultural KARE Air 2018 August 23
Y18C10925 Agricultural KARE Air 2018 September 25
Y18C20503 Agricultural KARE Air 2018 May 3
Y18C20601 Agricultural KARE Air 2018 June 1
Y18C20726 Agricultural KARE Air 2018 July 26
Y18C20823 Agricultural KARE Air 2018 August 23
Y18C20925 Agricultural KARE Air 2018 September 25
Y18C40503 Agricultural KARE Air 2018 May 3
Y18C40601 Agricultural KARE Air 2018 June 1
Y18C40726 Agricultural KARE Air 2018 July 26
Y18C40823 Agricultural KARE Air 2018 August 23
Y18C40925 Agricultural KARE Air 2018 September 25
Y18C80503 Agricultural KARE Air 2018 May 3
Y18C80726 Agricultural KARE Air 2018 July 26
Y18C80823 Agricultural KARE Air 2018 August 23
Y18C80925 Agricultural KARE Air 2018 September 25
Y18P00503 Agricultural KARE Air 2018 May 3
Y18P00601 Agricultural KARE Air 2018 June 1
Y18P00726 Agricultural KARE Air 2018 July 26
Y18P00823 Agricultural KARE Air 2018 August 23
Y18P00925 Agricultural KARE Air 2018 September 25
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