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Abstract Linguistic Structure Correlates with Temporal Activity 
during Naturalistic Comprehension
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aDepartment of Linguistics, University of Michigan, Ann Arbor MI

bDepartment of Linguistics, University of California, Los Angeles CA

cMRI Facility, Cornell University, Ithaca NY

dDepartment of Linguistics, Cornell University, Ithaca NY

Abstract

Neurolinguistic accounts of sentence comprehension identify a network of relevant brain regions, 

but do not detail the information flowing through them. We investigate syntactic information. Does 

brain activity implicate a computation over hierarchical grammars or does it simply reflect linear 

order, as in a Markov chain? To address this question, we quantify the cognitive states implied by 

alternative parsing models. We compare processing-complexity predictions from these states 

against fMRI timecourses from regions that have been implicated in sentence comprehension. We 

find that hierarchical grammars independently predict timecourses from left anterior and posterior 

temporal lobe. Markov models are predictive in these regions and across a broader network that 

includes the inferior frontal gyrus. These results suggest that while linear effects are wide-spread 

across the language network, certain areas in the left temporal lobe deal with abstract, hierarchical 

syntactic representations.
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1. Introduction

The neural bases of syntactic processing remain elusive, despite intensive study. Current 

models catalog the network of regions and connections involved in various sentence-related 

computations, including syntax, but do not specify the kind of information that flows 

through this network (see e.g. Turken & Dronkers, 2011; Friederici & Gierhan, 2013; 
Hickok & Poeppel, 2007; Hagoort & Indefrey, 2014). As Poeppel (2012) notes, it is the 

*Corresponding author: ; Email: jobrenn@umich.edu (Jonathan R. Brennan), ; Email: stabler@ucla.edu (Edward P. Stabler), ; Email: 
wl358@cornell.edu (Wen-Ming Luh), ; Email: jthale@cornell.edu (John T. Hale) 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Brain Lang. Author manuscript; available in PMC 2017 June 01.

Published in final edited form as:
Brain Lang. 2016 ; 157-158: 81–94. doi:10.1016/j.bandl.2016.04.008.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information encoded during incremental stages of language comprehension that is critical 

for mapping between the vocabulary of neurobiology and the vocabulary of linguistics. This 

study examines what kind of syntactic information is manipulated by brain regions involved 

in sentence comprehension by correlating the complexity of different syntactic structures 

with brain activity recorded using fMRI while participants listen to a naturalistic narrative.

The proper conception of syntactic structure is debated across the language sciences. The 

available models range across many different levels of detail. There are models based on 

word-to-word dependencies, models based on abstract, hierarchical grammars, and many 

alternatives in between. While mathematical linguists are in agreement regarding the level of 

expressive power needed for adequate natural language grammars (Shieber, 1985; Joshi et 

al., 1990; Stabler, 2013a) there remains a debate over the need for more abstract 

representations in every-day language performance (Sanford & Sturt, 2002; Frank & Bod, 

2011). To address this debate, we quantify, word-by-word, the cognitive states that are 

implied by parsing models that assign comparatively more or less detailed syntactic 

analyses. We evaluate alternative theories of syntactic structure and parsing by fitting these 

models to brain activity from regions that have been traditionally associated with sentence 

comprehension. By relying on brain data collected while participants simply listen to a story, 

we aim to better understand the role of syntax in every-day language comprehension.

1.1. Brain regions involved in syntactic processing

The spatio-temporal characteristics of brain activity that is sensitive to sentence structure 

have been examined using a wide variety of experimental techniques (see Hagoort & 

Indefrey, 2014 for a recent review). One common approach has been to vary whether 

syntactic structure is present or not by comparing phrases or sentences with lists of words. 

Sentence structure reliably leads to greater activation in the anterior portion of the temporal 

lobes (ATL) across multiple techniques and stimulus modalities (Stowe et al., 1998; 
Vandenberghe et al., 2002; Humphries et al., 2006; Friederici et al., 2000; Rogalsky & 

Hickok, 2009; Jobard et al., 2007; Snijders et al., 2009; Xu et al., 2005; Brennan & 

Pylkkänen, 2012). Many studies also show sensitivity in a broader network as well, which 

includes the left inferior frontal gyrus (IFG; “Broca’s Area”) and the posterior temporal lobe 

(PTL; “Wernicke’s Area”) in the vicinity of the temporal-parietal junction (Friederici et al., 

2000; Jobard et al., 2007; Snijders et al., 2009; Vandenberghe et al., 2002; Xu et al., 2005; 
Brennan & Pylkkänen, 2012; Pallier et al., 2011).

These studies reveal a network of regions that are sensitive to sentence structure, with a 

focus on the ATL, the IFG and the PTL. Evidence suggests that these regions subserve 

different functions that relate to identifying or perhaps interpreting phrases, though debate is 

far from settled. In several of these studies, the ATL, but not the IFG or PTL, is activated 

even for simple sentences (Stowe et al., 1998; Rogalsky & Hickok, 2009), though others 

show broader activations (e.g. Pallier et al., 2011; Snijders et al., 2009). Further work using 

Magnetoencephalography (MEG) has shown that simple two-word phrases lead to increased 

ATL activation within 200 to 400 ms of word onset in both visual and auditory presentation 

(Bemis & Pylkkänen, 2011, 2013). This effect generalizes across languages and phrase types 

(Westerlund et al., 2015). Shetreet et al. (2009) report a similar sensitivity to constituent 
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structure type in the anterior temporal lobe: more complex hierarchical structure (phrasal vs. 

nominal verb complements) increased activation in this region. Brennan et al. (2012) build 

on these observations by testing for sensitivity to incremental, word-by-word, phrase-

structure complexity. In this 2012 study, the ATL is the only brain area whose activity 

correlates positively with phrase-structure complexity. Some models suggest that the ATL 

may subserve constituent structure processes, a conclusion consistent with the 

morphosyntactic deficits due to anterior lesions observed by Dronkers et al. (2004) (e.g. 
Friederici & Gierhan, 2013). However, more recent evidence from magnetoencephalography 

(Westerlund & Pylkkänen, 2014; Zhang & Pylkkänen, 2015) and patient studies of Primary 

Progressive Aphasia (Wilson et al., 2014) point towards a more nuanced function that relates 

to the semantic interpretation of composed structures.

Turning to the functional role of the PTL, it has been reported to be modulated by the 

presence or absence of basic phrase structure in some studies (e.g. Pallier et al., 2011; Bemis 

& Pylkkänen, 2013), but does not uniformly show such effects across the literature. There is 

also evidence from neurodegenerative disorders that posterior temporal and inferior parietal 

atrophy is associated with syntactic deficits (Wilson et al., 2011). Some theorists have 

hypothesized that this region may play a role in discourse-level comprehension (e.g. Ferstl et 

al., 2008), though note also that nodes within this broad area, specifically along the posterior 

middle temporal gyrus, have long been implicated in lexical processing that is sensitive to 

sentence and discourse context (see Hickok & Poeppel, 2007, for discussion). Bornkessel-

Schlesewsky et al. (2015) argue that posterior and dorsal regions, which include the PTL and 

extend through the inferior parietal lobule (IPL) to premotor cortex, are involved in sentence 

processing that is sensitive to linear order. These order-sensitive regions contrast with ventral 

anterior regions like the ATL, discussed above, which are associated with hierarchical 

processes. It remains unknown whether sentence-related activation in PTL is best attributed 

to a single function, such as order-related, lexical, or discourse computations, or to some 

combination of these or other functions.

Evidence for a functional division specifically between temporal lobe processing and the 

IFG comes from studies that compare processing of sentence types which differ in their 

constituent structure or dependency properties. Studies that compare sentences which differ 

in memory-load demands, such as subject and object relative clauses, yield differential 

activation in IFG, with variation in the precise localization (Just et al., 1996; Stromswold et 

al., 1996; Caplan et al., 2008; Ben-Shachar et al., 2004, 2003; Santi & Grodzinsky, 2010, 
2007b,a). This result is consistent with deficit-lesion studies suggesting that frontal lobe 

damage most strongly impacts the processing of syntactically complex sentences (Zurif, 

1995; Caramazza & Zurif, 1976; Grodzinsky, 2000). One possibility is that the IFG is 

implicated in the processing of more complex syntactic operations, such as the formation of 

long-distance dependencies, however, the literature has yet to settle on a functional 

explanation that captures the broader range of observations (see Rogalsky & Hickok, 2010, 

for a critical review). While some models take the IFG to be implicated only in more 

complex syntactic operations (e.g. Grodzinsky & Friederici, 2006), in others it is positioned 

as a central hub for basic combinatoric processing (Hagoort, 2013). This latter view 

contrasts with that described above in which basic combinatorics is attributed to the ATL 

(e.g. Friederici & Gierhan, 2013). One avenue of current research is whether these disparate 
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results may be reconciled in terms of fine-grained functional divisions within sub-parts of 

the IFG. For example, Zaccarella & Friederici (2015) report sensitivity in a sub-part of the 

Pars Opercularis of the IFG to very simple phrases. Similarly, different argument structure 

configurations have been associated with differences in IFG activation that form a spatial 

cline (Bornkessel-Schlesewsky & Schlesewsky, 2009).

Despite the lack of consensus about the functional division of anterior-frontal and posterior-

dorsal structures in sentence comprehension, a common thread across this broad literature is 

that the mental representations whose processing is implicated in various regions are 

described at a relatively coarse-grain, for example, at the level of separating syntactic and 

compositional semantic representations (Westerlund & Pylkkänen, 2014) or hierarchical 

from non-hierarchical processing (Bornkessel-Schlesewsky et al., 2015). The level of detail 

of these representations remains largely underspecified.

1.2. Sensitivity to syntactic structure during incremental processing

While neural studies have become increasingly tuned to fine-grained linguistic differences 

between sentence and phrase types (e.g. Shetreet et al., 2009; Bornkessel et al., 2005; 
Westerlund et al., 2015), the relationship between detailed linguistic grammars and language 

comprehension remains controversial. On one view, the abstract hierarchical grammars that 

have been developed to explain offline judgments and typological patterns should also serve 

to explain online comprehension (Miller & Chomsky, 1963; Berwick & Weinberg, 1983; 
Bresnan & Kaplan, 1982; Steedman, 2000; Lewis & Phillips, 2015). This is the competence 
hypothesis

an explanatory model of human language performance will incorporate a 

theoretically-justified representation of the native speaker’s linguistic knowledge

designated as such by Kaplan & Bresnan (1982, page 173), who offer the formulation 

quoted above as a restatement of Chomsky’s original suggestion (1965, page 9). 

Alternatively, interpretive short-cuts relying on surface patterns and extragrammatical 

heuristics might be the best characterization of on-line processing. This grammar-free 

alternative seems more plausible in circumstances that encourage rapid but not especially 

deep processing (Sanford & Sturt, 2002; Ferreira & Patson, 2007; Ferreira et al., 2002). On 

the other hand, by postulating two cognitive faculties to explain two distinct types of data, 

this latter view is more complex. Defenders have traditionally appealed to patterns of 

fallibility, such as garden path sentences, to motivate the additional heuristic system (Bever, 

1970). We review evidence for both of these positions.

Evidence for the competence hypothesis comes from behavioral and event-related potential 

(ERP) studies involving syntactically unexpected stimuli. For example, Xiang et al. (2009) 

probe the processing of words whose use is licensed only in particular hierarchical 

configurations. Words like “any” or “ever”, so-called negative polarity items, can only be 

used in contexts where they are embedded under phrases with restricted entailment 

properties, such as those that contain a negation (see (1-a)–(1-c)) (e.g. Giannakidou, 1998, 

but cf. Vasishth et al., 2008).1 Using ERPs, Xiang et al. found that such words elicited an 

immediate early evoked negativity in sentences like (1-b), where negation is not in the 

correct hierarchical position to license the negative polarity item. This contrasts with the 
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pattern for well-formed examples (1-a), (1-c) and indicates that the relevant hierarchical 

relationships are made available within a few hundred milliseconds after encountering the 

unlicensed target word.

(1) a. [No students [would ever say that.]]

b. *[A professor [with no students] [would ever say that.]]

c. [A professor [with no students] [would definitely say that.]]

The ERP response to unlicensed polarity items is but one example of the human parser’s 

sensitivity to hierarchical structure during online comprehension, as predicted by the 

competence hypothesis. Related support for the competence hypothesis comes from 

behavioral studies that show differences in incremental reading times when a variety of 

structure-dependent rules are violated, such as those governing the distribution of reflexive 

pronouns (Sturt & Lombardo, 2005; Yoshida et al., 2012), bound-variable pronouns (Kush et 

al., 2015), and filled gaps (Phillips, 2006); see Lewis & Phillips (2015) for extensive 

discussion.

Further evidence for the competence hypothesis comes from eye-tracking measures 

collected while participants read natural texts, such as newspaper stories. In these studies, 

word-category expectations based on hierarchical grammars have been found to predict eye-

fixation measures (Boston et al., 2008; Demberg & Keller, 2008; Roark et al., 2009; Boston 

et al., 2011; Fossum & Levy, 2012; van Schijndel & Schuler, 2015). These findings are 

particularly relevant to the present study, since they indicate that hierarchical structure 

subserves every-day comprehension.

On the other hand, there is also evidence for a two-system view that minimizes the role of 

hierarchical syntactic structure in comprehension. One type of evidence comes from 

experiments where comprehenders seem to ignore syntactic structure when syntactic cues 

conflict with other information (see Sanford & Sturt, 2002; Ferreira & Patson, 2007, for 

reviews). Another type is based on eye-tracking corpora. For instance, Frank & Bod (2011) 

compare predictors that are based on hierarchical grammars to those based solely on word-

to-word dependencies. In this study, syntactic structure did not improve models of eye-

fixation measures. This result, like the eye-tracking data described above, relies on reading 

data from newspaper text. Using similar models, Frank et al. (2015) report that ERP indices 

of syntactic expectations are similarly insensitive to hierarchically-based predictions.

In summary, then, the literature draws conflicting conclusions regarding the role of syntactic 

structure in comprehension. Disagreements may reflect differences in tasks and techniques 

in prior work. While ERP studies and behavioral experiments have found support for the 

competence hypothesis, they have typically done so in a way that relies on stimuli that 

sharply violate syntactic expectations. By contrast, results based on naturalistic texts, such as 

the eye-tracking corpora mentioned above, have been mixed, with Frank & Bod (2011) 

coming down on the “con” side and Fossum & Levy (2012) on the “pro” side. Differences 

1As Bornkessel-Schlesewsky & Schlewswsky (2009, page 23–24) and Xiang et al. (2009, page 42) point out, it remains controversial 
whether NPI licensing conditions should be thought of as being syntactic, semantic or pragmatic. What matters for the present point is 
that the conditions reflect, at least in part, hierarchical relationships that are characterized by the competence grammar.
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between these latter studies may reflect alternative modeling choices. In addition, behavioral 

measures which integrate over many stages of processing may challenge efforts to separate 

out effects of syntactic hierarchy from word-to-word expectations. Likewise, the ERP 

signatures sensitive to syntactic violations that were probed by Frank et al. (2015) have not 

been directly linked with sentence processing in non-violational every-day contexts. On 

balance, the field remains uncertain about the competence hypothesis.

1.3. Examining syntactic structure during naturalistic story listening

To better characterize the role of syntactic structure in every-day language comprehension, 

we examine several different types of structure. These structure types can be viewed as 

points on a cline of increasing syntactic detail. Each type of structure implies different 

partial products of the comprehension process. We focus on three levels that have received 

significant attention in psycholinguistics. At one end are Markov models that use linear, 

word-to-word, surface dependencies. These are “string-level” language models. One step 

further along the cline are context-free grammars (CFG). These are “tree-level” models that 

directly derive the sorts of immediate-constituency relationships that linguists traditionally 

hold up as a central part of sentence structure. The particular grammars that we use at this 

point in the cline are free from empty categories and lack any systematic treatment of 

movement. Proceeding one more step, to the deep end of the cline, are Minimalist 

Grammars (Stabler, 1997) (MGs). These grammars generate X-Bar structures (see e.g. 
Haegeman, 1999) which encode movement and make extensive use of empty categories in a 

drive towards greater regularity in the analysis of typologically diverse languages.

Of course, there are other formal grammars that could have been chosen to represent each 

distinct level of this cline. For example, certain forms of Tree-Adjoining Grammars and 

Categorial Grammars are weakly-equivalent to MGs (see Stabler, 2013a, and references 

cited therein). But such equivalences pose no particular problems for the present study. Our 

investigation is not intended to decide between alternative accounts of syntactic competence 

at any one specific level of expressivity. Rather, it probes the level of syntactic detail that is 

processed by the brain, using the cline as a yardstick whose notches are classes of 

formalisms.

We link properties of these grammars, word-by-word, with hemodynamic data collected 

while participants listen to a story. This linking is accomplished using two different 

complexity metrics. One quantifies the degree of expectation for a particular symbol, given 

the syntactic left-context; this is “surprisal” in the sense of Hale (2001). The second metric 

quantifies syntactic complexity by counting the number of tree nodes that would be visited 

by a surface-structure parser (Miller & Chomsky, 1963; Frazier, 1985).

Throughout, we focus on naturalistic sentence comprehension, since this has been an 

important pivot in the debate over the role of abstract structures. The passive story listening 

task we use does not lend itself to clearly delineated conditions and the traditional 

“subtraction” approach to neuroimaging analysis. Instead, we adapt the methodology of Just 

& Varma (2007) to construct a model of the expected hemodynamic response (see also 
Brennan et al., 2012; Willems et al., 2015). This expected response is what an experimenter 

should observe if a brain region were doing the work implied by each language model — as 

Brennan et al. Page 6

Brain Lang. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



seen through the lens of the complexity metric. We evaluate these models by testing the fit 

between the expected hemodynamic responses and those observed in the data.

1.4. Summary

Previous work suggests that the ATL, left PTL, and left IFG form the core of a network 

involved in sentence comprehension, and the ATL in particular has been linked with basic 

constituent-level processing. The syntactic structures manipulated within this network have 

not been identified. We examine the nature of the syntactic structures computed by these 

circuits. To do so, we derive predictions of word-by-word processing complexity from a 

range of syntactic models, from string-level Markov models to hierarchical CFGs and MGs. 

These models are tested against neural timecourses recorded using fMRI while participants 

passively listen to a natural story. If hierarchical structures are computed during passive 

naturalistic listening, we predict that syntactic complexity estimates based on hierarchical 

language models will correlate with fMRI signal fluctuations above and beyond those 

derived from non-hierarchical, string-level models.

2. Methods

2.1. Participants

Twenty-nine college-age volunteers participated for pay (17 women and 12 men, 18–24 

years old). All qualified as right-handed on the Edinburgh handedness inventory Oldfield 

(1971). They self-identified as native English speakers and gave their informed consent. As 

detailed below, we excluded from our analyses data from one participant due to excessive 

head movement and data from two participants due to poor behavioral performance, leaving 

twenty-six datasets for our analyses (15 women, 11 men).

2.2. Stimuli & Procedure

The audio stimulus was Kristen McQuillan’s reading of the first chapter of Lewis Carroll’s 

Alice in Wonderland from librivox.org. We chose this text because of its enjoyability, its use 

in prior imaging work (Brennan et al., 2012), and because of available fine-grained syntactic 

annotations (VanWagenen et al., 2014). The chapter we used does not include significant 

word-play, such as the famous Jabberwocky poem that appears elsewhere in the story. To 

improve comprehensibility in the noisy scanner, the audio was normalized to 70 dB and 

slowed by 20% with the pitch-preserving PSOLA algorithm implemented in Praat software. 

This moderate amount of time-dilation did not introduce recognizable distortion and was 

judged by an independent rater to sound natural and to be easier to comprehend than the raw 

audio recording. The audio presentation lasted 12.4 minutes. The stimulus is available as 

Supplementary Material.

After giving their informed consent, participants were familiarized with the MRI facility and 

assumed a supine position on the scanner gurney. Auditory stimuli were delivered through 

MRI-safe, high-fidelity headphones (Confon HP-VS01, MR Confon, Magdeburg, Germany) 

inside the head coil. The headphones were secured against the plastic frame of the coil using 

foam blocks. Using a spoken recitation of the US Constitution, an experimenter increased 

the volume stepwise until participants reported that they could hear clearly. Participants then 
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listened passively to the audio storybook. Upon emerging from the scanner, participants 

completed a twelve-question multiple-choice questionnaire concerning events and situations 

described in the story. The entire session lasted less than an hour.

2.3. Modeling syntactic effort

We constructed nine models which quantified word-by-word syntactic processing effort. 

These models spanned three different levels of syntactic detail and drew from two different 

complexity metrics.

2.3.1. Two complexity metrics—For probabilistic language models, we linked the 

probability of a word in its left-context to the BOLD signal using the log-reciprocal of the 

probability of the next word. This is “surprisal” in the sense of Hale (2001).

With non-probabilistic grammars, we linked the syntactic structure of a sentence to the 

BOLD signal it evokes by counting the number of tree nodes between successive words 

(Miller & Chomsky, 1963; Frazier, 1985; Hawkins, 1994). Counts included “empty” nodes 

such as the traces of movement. If one thinks of nodes as consuming stack cells, this 

becomes a kind of depth hypothesis in the sense of Yngve (1960). We considered two 

parsing strategies: top-down and bottom-up (see e.g. Hale, 2014, chapter 3). The top-down 

traversal that we used enumerates nodes in a depth-first, left to right order analogous to an 

LL parser. The bottom-up traversal that we used enumerates daughters before mothers in the 

manner of a shift-reduce LR parser. Taking the story stimulus to be largely unambiguous for 

native English-speaking listeners, we assume that the parser enumerates nodes of just the 

correct structure when faced with temporary ambiguities (i.e. a “perfect” oracle).

These complexity metrics could not both be applied at each level of syntactic detail. As 

described below, only the surprisal metric was defined for the least abstract Markov models, 

and only the node count metric was applied at the most abstract MG level of detail.

2.3.2. String-level: Markov models—Word-to-word surface dependencies were 

modeled using n-gram Markov models; these models involve a minimal level of syntactic 

abstraction. Rather, they de-fine the probability of a word at position j, denoted wj, in terms 

of the preceding n − 1 words. A 2-gram model considers P(wj|wj−1) while a 3-gram model 

considers P(wj|wj−1, wj−2) and so-forth. Lexicalized models define probabilities of actual 

words, while unlexicalized models define the probability of part-of-speech tags (POS).

We used OpenGRM to fit Markov models of various orders (Allauzen et al., 2007). 

Linguistic expectations have been shown to be highly sensitive to experiment- and genre-

specific idiosyncrasies (e.g. Fine et al., 2013). To best approximate such expectations, these 

models were trained on the entire text of Alice in Wonderland that is distributed by Project 

Gutenberg, etext # 11. As a preprocessing step, chapter headings were removed and all 

words converted to lowercase. Note that the test data for our models was fMRI signals, not 

corpus occurrences, and thus no circularity was introduced by including the text that 

corresponded to our stimulus within the training set.
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Four models in total were constructed for this class. Models differed in order (2 or 3) and 

whether they were lexicalized or unlexicalized. These models do not allow for the 

representation of syntactic nodes and so only the surprisal complexity metric is defined. We 

identify these models as 2gram.l, 2gram.p, 3gram.l, and 3gram.p.

2.3.3. Hierarchical: Context-free phrase structure—Context-free phrase structure 

grammars (CFGs, defined on page 5) model sentence structure as a hierarchy of phrases. In 

this sense, they are more abstract than the Markov models discussed above. Although CFGs 

are inadequate to characterize natural languages in certain key respects — for instance, 

cross-serial dependencies (Shieber, 1985; Joshi et al., 1990; Stabler, 2013a) — they are very 

commonly used in broad-coverage parsing systems.

We constructed a family of models based on treebank CFGs.2 In these grammars, many 

constructions that are syntactically similar end up being listed separately; this lack of 

abstraction highlights the positioning of these CFGs at a middle point on the cline of 

structure types. An example phrase structure, in the style of the Penn Treebank, is illustrated 

in Figure 1 (top).

We used the EarleyX implementation of Stolcke’s probabilistic Earley parser to compute 

surprisal values (Luong et al., 2013; Stolcke, 1995). Rules were read off the output of the 

Stanford parser (Klein & Manning, 2003b) and probabilities were trained using the entire 

Alice in Wonderland book, just as with the Markov models described above. Punctuation 

was removed. The node count predictors were based on the same Penn Treebank structures 

as in Brennan et al. (2012).

Three models were constructed for this class, differing in terms of the complexity metric 

used to derive effort: Surprisal, bottom-up node count, and top-down node count. We denote 

these models cfg.surp, cfg.bu, cfg.td, respectively.

2.3.4. Dependency-capable: Minimalist Grammar—At the most abstract level of 

syntactic detail, we used Minimalist Grammars (MG; Stabler, 1997, 2011). This formalism 

derives binary-branching “X-bar” structural descriptions that integrate constituency, 

dependency and movement information. The particular syntactic analyses that we used 

extend those in Hale (2003, chapter 4) along the lines of Sportiche et al. (2013). Figure 1 

(bottom) illustrates one such tree in which the representation of a long-distance “movement” 

relationship leads to node counts that are different from those derived by a context-free 

analysis of the same sentence (Figure 1, top). While MGs are not the only grammar 

formalism that adequately covers long-distance dependencies (see e.g. Müller, 2015) the fact 

that they include a nonconcatenative rule, one that goes beyond the mechanisms of context-

free grammar, is a key part of the “hidden consensus” among the many formal approaches to 

grammar in modern linguistics (see e.g. Stabler, 2013a, §17.2).

The current study examines MGs only through the lens of node count linking hypotheses. 

While information-theoretical complexity metrics like surprisal are well-defined for MGs 

2A treebank is a collection of hand-analyzed syntactic representations, see e.g. Marcus et al. (1993) or Jurafsky & Martin (2009, 
chapter 12).
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(Hale, 2003; Yun et al., 2015; Hunter & Dyer, To Appear), computing their values from 

wide-coverage grammars requires approximations analogous to those typically applied with 

CFGs (Charniak et al., 1998; Klein & Manning, 2003a). Such techniques are a current focus 

of MG parsing research (e.g. Stabler, 2013b), but are not available for our application. As 

they mature, we expect to be able to deploy them in future modeling efforts. We identify the 

two models in this class mg.bu, mg.td based on top-down and bottom-up enumeration, 

respectively.

2.4. Data collection & analysis

Imaging was performed using a 3T MRI scanner (Discovery MR750, GE Health-care, 

Milwaukee, WI) with a 32-channel head coil at the Cornell MRI Facility.

Blood Oxygen Level Dependent (BOLD) signals were collected from twenty nine 

participants. Thirteen participants were scanned using a T2*-weighted echo planar imaging 

(EPI) sequence with: a repetition time of 2000 ms, echo time of 27 ms, flip angle of 77°, 

image acceleration of 2X, field of view of 216 × 216 mm, and a matrix size of 72 × 72. 

Under these parameters we obtained 44 oblique slices with 3 mm isotropic voxels. Sixteen 

participants were scanned with a three-echo EPI sequence where the field of view was 240 × 

240 mm resulting in 33 slices with an in-plane resolution of 3.75 mm2 and thickness 3.8mm. 

This multi-echo sequence was used for reasons that are not related to the present study. For 

our purposes, analyses of this second group were based exclusively on images from the 

second EPI echo, where the echo time was 27.5 ms. All other parameters were exactly the 

same. This selection of the second-echo images renders the two sets of functional images as 

comparable as possible.

2.4.1. fMRI Preprocessing—Preprocessing was done with SPM8 (Friston et al., 2007), 

Data were spatially realigned based on 6-parameter rigid body transformation using the 2nd 

degree B-spline method. Functional (EPI) and structural (MP-RAGE) images were co-

registered via mutual information and functional images were smoothed with a 3 mm 

isotropic gaussian filter. We used the ICBM template provided with SPM8 to put our data 

into MNI stereotaxic coordinates. The data were high pass filtered at 1/128 Hz and we 

discarded the first 10 functional volumes. Data from one participant was excluded at this 

stage due to head movement that exceeded an absolute threshold of 1 mm.

2.4.2. Deriving estimated BOLD signals from syntactic models—Via the models 

described in Section 2.3 above, we predicted the level of syntactic processing effort at each 

word in the stimulus text. Specifically, we defined point events at the offset of each word, 

whose intensity is proportional to this predicted effort. The predicted effort from each model 

is illustrated for three example sentences in Supplementary Figure S1. This yields a time 

series of theoretical predictions for each point along the cline of syntactic structures. 

Following Just & Varma (2007), we convolved these time series with a canonical 

hemodynamic response function (HRF). Such a procedure yields an expected BOLD signal 

for each syntactic predictor under the assumption that the BOLD signal reflects the output of 

a linear system (Boynton et al., 1996). Figure 2(A–E) summarizes this methodology 

Brennan et al. Page 10

Brain Lang. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



graphically and illustrates how values derived from different models yield distinct predictors 

for brain activity.

Left alone, the resulting estimate for brain activity is dominated by the narrator’s speech 

rate. Higher estimates appear for words in rapid succession and smaller estimates for 

segments where words are more widely spaced. Following Brennan et al. (2012), we define 

a baseline Word Rate predictor with a value of one at the offset of each word and zero 

otherwise. We orthogonalize all syntactic predictors against this baseline, after it has been 

convolved with the HRF, in order to isolate the truly syntactic aspect of the predictor. Panel 

E of Figure 2 illustrates this step.

2.4.3. Regions of interest—Models were evaluated against fMRI timecourses from six 

regions of interest (ROIs). We followed the theory-driven ROI analysis with an exploratory 

whole brain analysis that is described in the next section.

We defined ROIs on a per-participant basis using both functional and anatomical criteria 

(Fedorenko et al., 2010). The functional criteria was based on an a-theoretical language 

localizer using the Word Rate predictor introduced in section 2.4.2. This predictor identifies 

brain regions whose BOLD signal increases each time a word is presented. Such a pattern is 

expected to be found in regions sensitive to any activation that is time-locked to word 

presentation, including those involved in incremental sentence processing as well as regions 

sensitive to lexical, sub-lexical, and auditory processes. Analyses at the single-participant 

and group levels verified that this localizer activated a broad set of temporal and frontal 

perisylvian regions with a left-hemisphere bias (see Figures 3 and 5). Anatomical criteria 

were added to narrow our focus to brain regions associated specifically with sentence-level 

processing. Each ROI was a sphere with radius 10 mm centered on a peak t-value of at least 

2.0 for the language localizer within the anatomical constraints that are described below. 

Data from every voxel within each sphere was averaged into a single timecourse per ROI. 

We discuss the (in)sensitivity of our results to size and inclusion criteria used to define the 

ROIs in Section S.3 of the Supplementary Materials.

Peaks that fell bilaterally within the superior, middle, or inferior temporal gyri with greater 

than 50% probability in the Harvard-Oxford Brain Atlas, and were anterior to Heschl’s 

Gyrus, served to define the center of left and right anterior temporal regions (LATL; RATL) 

(cf. Rademacher et al., 1992). In some participants, multiple peaks with similar statistical 

values fit these criteria. In these cases, anteriority (including the temporal pole) and non-

contiguity with posterior temporal activity were included as additional criteria. Anterior 

temporal lobe has shown sensitivity to the presence vs. absence of hierarchical constituent 

structure (Stowe et al., 1998; Vandenberghe et al., 2002; Humphries et al., 2006; Snijders et 

al., 2009; Bemis & Pylkkänen, 2011; Pallier et al., 2011, inter alia). Several studies report 

bilateral activation (Rogalsky & Hickok, 2009; Stowe et al., 1998, but cf. Humphries et al., 

2005 for the role of prosody in the right hemisphere). Further, anterior temporal brain 

damage to this region correlates with deficits in morphosyntax (Dronkers et al., 2004) and 

anterior temporal atrophy has been associated with deficits in combinatorial semantics 

(Wilson et al., 2014). These data, and others, have led to the proposal that the anterior 

temporal lobe is involved in basic compositional processes (Friederici & Gierhan, 2013).
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Maxima of the language localizer that fell with greater than 50% probability in the left 

superior temporal or middle temporal gyri, and were posterior to Heschl’s Gyrus, defined a 

left posterior temporal region of interest (LPTL). This region shows sensitivity to the 

presence and complexity of phrase structure (e.g. Pallier et al., 2011; Bemis & Pylkkänen, 

2013); though the functional role of this region remains poorly understood, one recent 

proposal links it with order-related processing (Bornkessel-Schlesewsky et al., 2015).

Peaks of the language localizer that fell within the left Inferior Frontal Gyrus with greater 

than 50% probability in the Harvard-Oxford Brain Atlas defined the center of our left 

inferior frontal gyrus region (LIFG). In cases where multiple peaks fit these criteria, 

proximity to the Pars Opercularis was included as an additional criterion. Numerous findings 

from lesion-induced syntactic deficits (Caramazza & Zurif, 1976; Grodzinsky, 2000) and 

neuroimaging of brain activations for syntactically complex sentences (Just et al., 1996; 
Stromswold et al., 1996; Stowe et al., 1998; Snijders et al., 2009; Santi & Grodzinsky, 

2007b, inter alia) have implicated this region in various aspects of grammatical processing 

(see Rogalsky & Hickok, 2010 for a critical review). Recent research points to a locus in the 

Pars Opercularis, specifically, for hierarchical composition (Zaccarella & Friederici, 2015).

The maxima that fell within either the Angular Gyrus or Supramarginal Gyrus with greater 

than 50% probability defined an inferior parietal region (LIPL). Finally, maxima that fell 

within the posterior aspect of the Middle Frontal Gyrus region of the left hemisphere with 

greater than 50% probability defined a premotor region (LPreM). Both of these regions have 

been implicated in sentence-level processing that is sensitive to linear order (see Bornkessel 

et al., 2005 for functional imaging evidence and Wilson et al., 2011 for evidence from 

neurodegenerative disorders). Bornkessel-Schlesewsky et al. (2015) propose a model which 

contrasts order-sensitive processing in these posterior-dorsal regions with hierarchy-sensitive 

processing in ventral-anterior regions such as the ATL.

Figure 3 illustrates each of these ROIs in four representative participants. Supplementary 

Table S1 lists MNI coordinates and peak activation values for the center of each ROI for all 

participants.

2.5. ROI statistical analysis using stepwise model comparison

To provide an overview of which models correlate with measured brain activity, we first 

constructed a family of mixed-effects regression models using non-syntactic control 

predictors, described below, together with one syntax predictor drawn from each model. 

Fitted beta coefficients with a 95% confidence interval that did not include zero were taken 

to be “statistically significant” (Gelman & Hill, 2007). This first step is limited, however, as 

it does not take into account the relationships between the different models. Indeed, bivariate 

correlations between each syntactic predictor and also with non-syntactic control predictors 

showed non-trivial effects (Supplementary Figure S2). Of the target syntactic predictors, 

2gram.p and 3gram.p were highly correlated with each other (r = 0.84). The cfg.surp model 

was anti-correlated with unigram frequency (r = −0.54), and positively correlated with 

2gram.p and 3gram.p (r ≈ 0.45). The node count models were moderately-to-highly 

correlated with each other: r(cfg.td, cfg.bu) = 0.43; r(mg.bu, mg.td) = 0.9.
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To evaluate the unique contribution made by each type of syntactic structure, we conducted 

step-wise model comparisons using likelihood ratio tests. The models were ordered both by 

amount of syntactic detail (ngram ≺ c f g ≺ mg), and by a rough-and-ready characterization 

of the number of parsing assumptions in the complexity metric (surp ≺ bu ≺ td). Judging 

the number of parsing assumptions is subjective, and so we conducted an auxiliary analysis 

to test the sensitivity of any results to this parameter by reversing the ordering by complexity 

metric (see Supplementary Table S3). The list of fixed effects for each model entered into 

this comparison is given on the left-hand side of Table 1.

All models included fixed effects for sound power, Word Rate (defined in section 2.4.3, 

above), word frequency (log-transformed values from the HAL corpus via the English 

Lexicon Project; Balota et al., 2007), and six parameters representing estimated head 

movements. A fixed effect for prosodic breaks was also included to control for correlations 

between acoustic variance and syntactic structure. This predictor is a perceptual judgment of 

break index strength made in light of ToBI annotation guidelines (Beckman et al., 2005) by 

two independent raters. All predictors except for those representing head movements were 

converted to z-scores. Each model also included a random intercept by participant and a 

random slope for the baseline Word Rate predictor.

Statistical significance was evaluated against an alpha level of 0.05 that was corrected for 

multiple comparisons across six ROIs with the bonferroni method (raw p-values, which are 

reported in the Supplementary Materials, should be evaluated against an adjusted alpha-level 

of 0.0083̄).

2.6. Whole brain analysis

As a follow-up to the theory-driven analysis, we conducted an exploratory analysis of the 

whole brain using a subset of our predictors. This analysis permits us to test for activations 

that may fall outside of regions traditionally implicated in sentence-level processing. 

However doing so necessarily sacrifices power to detect possibly subtle differences between 

models.

A first-level General Linear Model (GLM) was fit for each voxel of each individual 

participant.3 The non-syntactic predictors were sound power, word rate, word frequency, 

prosodic breaks, and six head movement predictors. We added to this baseline model three 

syntactic predictors to represent each of the three levels of syntactic detail. We selected the 

most robust predictor from each level based on the ROI results. As detailed in the Results 

section, below, the most robust predictors were 2gram.p, cfg.surp, and mg.td (see Figure 4 

and Table 1). To align the whole brain analysis with the model comparison-based ROI 

analysis, the three syntactic predictors were first residualized against all lower-level 

predictors according to the ordering of models shown in Table 1. For example, 2gram.p was 

residualized against 2gram.l, 3gram.l, and all non-syntactic predictors. By residualizing the 

predictors in this way, the whole brain analysis is sensitive to the unique contribution of each 

predictor independent of the contribution from lower-level predictors.

3We used a mask that includes all voxels within the envelope of the the MNI 152-brain average. The default masks calculated by 
SPM8 for each participant exclude some voxels in the orbito-frontal cortex and from the anterior temporal lobes.
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At the second, group, level, beta values from the first-level GLMs from each participant 

were evaluated with one-sampled t-tests. We report as “statistically significant” voxels with 

a p-value of at least 0.001 in clusters of at least 50 voxels that were reliable at p < 0.05 after 

correcting for the number of comparisons and the estimated smoothness of the data 

according to Random Field Theory (Worsley et al., 1996).

3. Results

3.1. Behavioral Results

The quiz comprised twelve questions, each with four possible answers. Under the 

cumulative binomial distribution, P(score ≥ 7) = 0.014. Two participants who scored lower 

than this threshold were discarded from further analysis. The remaining 26 participants had 

a median score of 10 with a range of [7 12]. This means that all participants whose data were 

analyzed scored higher than would be expected by chance.

3.2. fMRI Region of Interest Results

Figure 4 shows the estimated coefficients and 95% confidence intervals for each of the 

syntax predictors when included alone in a model with only non-syntactic and physiological 

“nuisance” predictors. Treated independently of each other, significant correlations were 

observed for unlexicalized 2- and 3-gram models in LATL, RATL, LIFG and LPTL. CFG 

surprisal estimates were significant in all six ROIs. Node count CFG predictors were 

significant in the LATL and LPTL but not in any other region. Node counts derived from the 

MG were significant predictors in the LATL, RATL, LIFG and LPTL. Estimated parameters 

for all of the linguistic coefficients for each model are shown for each ROI in Supplementary 

Figure S3.

These results suggest a role for both word-to-word and hierarchical dependencies in 

characterizing BOLD signal across the ROIs. The most abstract aspects of sentence structure 

were most predictive in the temporal lobe. However, this first analysis does not take into 

account co-dependencies between these different syntactic predictors. Accordingly, model 

comparison was used to evaluate the independent contribution of the more abstract models, 

above and beyond any effects due to more concrete string-level dependencies.

This model comparison evaluated a family of nested models, identified by the letters A 

through I in Table 1. The main result is that predictors based on MG and CFG each 

improved a mixed-effects model of the neural time course in the temporal lobe during 

naturalistic story comprehension.

Table 1 column 3 summarizes the model comparison in LATL. Surprisal based on word 

trigrams and POS bigrams improved the fit of a regression over the null model. Additional 

improvements were found for surprisal based on the CFG, node counts based on a top-down 

traversal of CFG structures, and for node counts based on a top-down traversal of X-Bar 

structures generated by MGs. In other words, even the most abstract grammars led to 

significant improvements in explaining the timecourse of the LATL response, above and 

beyond the variance explained by Markov models. Detailed model comparison statistics for 

this region and for the regions discussed below are given in Supplementary Table S2.
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The RATL (Table 1 column 4) showed significant improvements in fit for POS bigrams and 

CFG surprisal but not for any other models.

In LIFG, the situation was quite different. As shown in column 5 of Table 1, we observed 

improved fits for word-based bigram and trigram models, and also for POS-based bigram 

models, but neither CFG nor MG hierarchical models led to a significant improvement in 

regression fits. While CFG surprisal did show a significant correlation when considered 

alone (see Figure 4), this model was not significant when variance due to n-gram models 

was taken into consideration.

Results from the LPTL were similar to those of the LATL (Table 1 column 6): we observed 

effects for n-gram models, additional effects for CFG surprisals and node counts and, 

further, effects for MG node counts based on both a bottom-up and a top-down traversal.

Finally, fits against activation from the LIPL and LPreM regions were improved only by 

CFG surprisals. Neither n-gram models, nor MG models showed significant effects in these 

two ROIs. These effects are shown in columns 8 and 9 of Table 1.

3.3. Whole brain fMRI results

Following the theory-driven ROI analysis, we conducted an exploratory analysis across the 

whole brain with a focus on three syntactic predictors: 2gram.p, cfg.surp, and mg.td. 

Whereas the ROI analysis addresses what kind of syntactic information is processed in brain 

regions involved in sentence-level processing, the whole brain analysis explores the 

complementary question of what regions are sensitive to different kinds of syntactic 

information. These three syntactic predictors were, respectively, the most robust in the ROI 

analysis for each level of syntactic detail. They were entered into a whole brain GLM along 

with non-syntactic control predictors, including the language localizer Word Rate predictor 

after being residualized against lower-level covariates. Figure 5 illustrates a selection of the 

results of this analysis. Statistical maps for all predictors are shown in Supplementary Figure 

S4 along with detailed results in Supplementary Table S8.

The Word Rate localizer predictor showed robust effects across the temporal and frontal 

lobes with more reliable effects observed in the left-hemisphere. These are shown in red on 

Figure 5. This result serves as a “sanity check” showing that the localizer predictor 

correlates with activity across traditional language regions (e.g. Friederici & Gierhan, 2013). 

This result also offers a back-drop for more localized effects observed for other predictors.

The 2gram.p predictor, representative of string-level models, showed significant effects in 

the posterior temporal lobe bilaterally. This pattern closely matches the results reported by 
Willems et al. (2015) who applied a trigram part-of-speech language model and used 

similarly naturalistic spoken narratives for stimuli. Unlike Willems et al., we also found 

significant bilateral activation in the fusiform gyrus for this predictor. These results are 

shown in blue on Figure 5.

We did not observe any statistically reliable correlations for the cfg.surp or mg.td predictors. 

At an uncorrected p < 0.01 thresholds, cfg.surp correlated with clusters of voxels in the left 

anterior temporal lobe (pcorrected = 0.423) and with a cluster of voxels in the right 
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hemisphere spanning the central sulcus (pcorrected = .277; see Supplementary Table S8). 

These uncorrected observations are shown in green on Figure 5. Even at liberal thresholds, 

there were no coherent clusters of activation for mg.td (this is shown on the bottom-right 

panel of Supplementary Figure S4).

4. Discussion

Using fMRI, we evaluated alternative hypotheses regarding the syntactic information 

computed by neural circuits involved in naturalistic comprehension. This evaluation 

considered six brain regions that have been traditionally associated with sentence processing 

and was followed-up by an exploration across the entire brain. We correlated estimates of 

processing effort drawn from different syntactic models with fMRI timecourses. Comparing 

the fits of different models, we find support for abstract hierarchical structure in the left 

anterior and posterior temporal lobe, but not in the left inferior frontal gyrus or in dorsal 

parietal and premotor regions. These latter two regions showed sensitivity to phrase 

structure, but not to the most abstract structures that we considered. A whole brain analysis 

did not show any significant activations elsewhere. By contrast, string-level Markov models 

over part of speech tag sequences correlated with the fMRI-measured signal in the inferior 

frontal gyrus, the anterior temporal lobe bilaterally and the left posterior temporal lobe. This 

pattern of results constitutes support for the competence hypothesis that abstract hierarchical 

grammars subserve real-time natural comprehension. It also supports the characterization of 

the sub-parts of the temporal lobe as a kind of combinatorial hub.

4.1. Evidence for abstract hierarchy in naturalistic comprehension

Regarding the competence hypothesis, two findings in particular are significant. The first is 

syntactic structures generated by CFGs are helpful in predicting timecourses from all ROIs 

save the LIFG. This result obtained using the surprisal linking hypothesis. These CFG-based 

surprisals were predictive after taking into account n-gram and other predictors, such as 

unigram word frequency and prosodic break size. This suggests that abstract hierarchical 

structure plays a role in on-line comprehension, even in a task-free environment. This 

finding corroborates experimental work showing early effects of syntactic structure on on-

line processing (Xiang et al., 2009; Sturt & Lombardo, 2005; Yoshida et al., 2012; Kush et 

al., 2015; Phillips, 2006). Our results also align well with naturalistic eye-tracking studies 

that demonstrate sensitivity to expectations based on hierarchical structure (Fossum & Levy, 

2012; van Schijndel & Schuler, 2015).

The second finding that bears on the competence hypothesis is the pattern of fits obtained 

through node counts. Node counts derived from the CFG correlated with activity from LATL 

and LPTL but no other region, as shown in Figure 4. This partially replicates Brennan et al. 

(2012). The strongest support for the competence hypothesis in this study comes from node 

counts in X-bar trees that are generated by MGs. These were positive predictors of BOLD 

signal in the LATL and LPTL when considered on top of CFG node counts, string-level 

expectations, and non-syntactic predictors.

The simplest interpretation is that these temporal lobe regions do a computation that is 

isomorphic, in some way, to the abstract structures that MGs and CFGs strive to capture. 
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Both node count and surprisal seem to point toward the same sort of structure-dependence. 

This suggests that while the dynamics of processing in the temporal lobe may indeed be 

experience-based, as reflected by the surprisal effects, they are also correlated with the raw 

amount of syntactic structure.

Our findings contrast with those of Frank & Bod (2011) and Frank et al. (2015). In these 

studies, processing complexity predictions from hierarchical grammars turn out not to fit 

eye-movement measures or evoked scalp potentials any better than predictions based on 

string-level models. The positive results that we obtain may be attributable to the use of 

fMRI. By measuring a spatially-specific BOLD signal, our analysis is evidently able to 

detect hierarchical processing in just two regions. Indeed, the less abstract Markov models 

that we considered were predictive in a broader set of ROIs. It could be that word-to-word 

effects drown out the indicators of hierarchical processing in certain eye-tracking measures 

and ERP components.

4.2. Incremental syntactic parsing in the temporal lobe

Existing neurobiological models of sentence comprehension are divided as to the role of the 

anterior temporal lobes, posterior temporal lobe and inferior frontal gyrus in performing 

basic constituent-building computations. A prominent hypothesis links the ATL with such 

computations based on imaging and lesion-based data (Hickok & Poeppel, 2007; Friederici 

& Gierhan, 2013). It suggests that ATL activation ought to be sensitive to constituency 

properties as they are incrementally identified. The results of the present studies confirm this 

suggestion, but also shows that such a correlation holds in the posterior temporal lobe as 

well. This latter effect is consistent with patterns of syntactic deficits that have been 

observed in patients with atrophy to posterior temporal regions (Wilson et al., 2011). In 

virtue of using formal grammars, however, we gain a more specific understanding of the 

operations carried out by this neural circuit. What previous accounts have labeled “basic 

syntactic processes” or “constituent-building”, our results characterize in terms of 

intermediate parser states.4

As already mentioned above, the most abstract syntactic structures that we examined were 

only predictive in LATL and LPTL but not in RATL, LIFG or dorsal parietal and premotor 

regions. In these regions, the comparatively finer-grained X-bar structures did not improve 

regression models the way they did in the temporal lobe. This result indicates that we did not 

find evidence to support a role for this most abstract level of detail outside of the left 

temporal lobe. The effect is consistent with earlier findings that used node count but not 

surprisal (Brennan et al., 2012). These predictors, based on MGs, take into account 

movement, empty categories and other aspects of Minimalist syntax. But they do so only 

through the lens of tree nodes. The node count linking hypothesis does not separately 

distinguish the formation, checking, or maintenance of long-distance dependencies. It could 

be that the LIFG plays a distinctive role during these operations (Grodzinsky & Friederici, 

2006). On the other hand, our results do not straightforwardly support the idea that LIFG is 

the seat of syntactic and semantic integration in general (Hagoort, 2013). Rather, LIFG 

4Hale (2014) develops the “automaton view” of parser states as relating quite directly to syntactic structure.
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activity correlated with string-level n-gram expectations, as well as with unigram word 

frequency (see Supplementary Figure S4 and Table S8). This latter result extends previous 

findings (e.g. Fiebach et al., 2002) to naturalistic listening. Further work, perhaps using the 

unification spaces of Vosse & Kempen (2000), with careful attention to fine-grained spatial 

detail in the spirit of Zaccarella & Friederici (2015), may help clarify what role, if any, LIFG 

plays in basic sentence comprehension.

The temporal lobe results also align well with results obtained by Wehbe et al. (2014) using 

written (as opposed to auditory) stimuli. Wehbe and colleagues used predictors based on the 

labels of the dependency arcs, for instance SBJ for subject OBJ for direct object or PMOD 

for prepositional modifier. No hierarchical relationships entered into this labelling. However, 

as predictors they converge on some of the same brain regions as in the present work. 

Specifically, Wehbe et al classified short text passages on the basis of the fMRI images they 

elicited in readers’ brains. In a searchlight-style analysis, their classifier performed above 

chance level in both a left hemisphere posterior temporal area and a right hemisphere 

anterior temporal area. While this right hemisphere localization was unexpected, it coheres 

well with our bilateral results for CFG-based surprisal. It suggests the existence of a 

temporal lobe language network that normally employs both hemispheres, to some degree.

Bornkessel-Schlesewsky et al. (2015) suggest that dorsal-posterior regions may be involved 

in processing related to linear order, in contrast to hierarchy-sensitive processing in anterior 

regions. Our results are not consistent with a naïve interpretation of this proposal: we do not 

see robust evidence for string-level Markov models in dorsal LIPL or LPreM, and we do see 

robust evidence for hierarchical effects in the posterior LPTL region. However, the notion of 

linear processing implied by that model, such as the mapping of the ordering of noun 

phrases to thematic roles like “agent” and “patient”, may be of a very different sort than the 

notion of string-based linear order encoded in an n-gram model.

The results from our analysis leave open several questions about the syntactic operations 

implemented in these brain regions. One has to do with the degree to which human parsing 

is “predictive” of upcoming words and phrases that have yet to be heard. Our complexity 

metrics distinguish non-predictive bottom-up node counts from highly predictive top-down 

node counts, and yet these metrics are highly correlated after being projected through the 

hemodynamic response function, especially for MG structures (see Supplementary Figure 

S2). This could reflect temporal limitations of fMRI. Bottom-up and top-down enumeration 

differ not in how much structure is built, but in the dynamics of when structure-building 

takes place. Given the rapid unfolding of spoken language, such differences may not have 

been sufficiently spread out to lead to detectable effects. Future work using 

electrophysiological tools may be more capable of teasing out these effects.

Details about the grammar implemented in these circuits are also underspecified. We only 

contrasted a single MG with CFG and Markov models. A very large variety of grammatical 

analyses that can be described by MGs continue to be explored in theoretical linguistics 

(Stabler, 2011). Further, MGs are but one of a class of grammars that are suitable for 

describing human language (Stabler, 2013a). Our approach does not distinguish which 

particular analysis from this class of grammars best matches the measured brain signals.
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Finally, our interpretation has been couched in terms of syntactic structure. This framing 

reflects the available computational models of incremental parsing. Interestingly, the anterior 

temporal lobes have also been linked with conceptual semantic processing. One piece of 

evidence for such a link is the correlation between anterior temporal atrophy and deficits in 

conceptual processing associated with Semantic Dementia (Patterson et al., 2007). Related 

research has found that activation in these regions is sensitive to uniqueness and to the 

conceptual specificity with which stimuli are categorized (Grabowski et al., 2001; Gorno-

Tempini & Price, 2001; Rogers et al., 2006). These findings have led to the hypothesis that 

ATL activity may reflect, in part, the specificity of a semantic representation being processed 

(Martin & Chao, 2001; Patterson et al., 2007). These conceptual and syntactic functions may 

be related: more complex phrases could be used to describe more specific concepts. In fact, 

recent work using MEG has found that LATL sensitivity to phrase-structure is modulated by 

conceptual specificity (Westerlund & Pylkkänen, 2014; Zhang & Pylkkänen, 2015).

While intuitive, however, such a link has not yet been formalized in a way that yields 

quantitative predictions. What we observe is that incremental syntactic parsing models 

appear to provide a good fit, quite apart from considerations of meaning. To tease apart 

possible connections between syntactic and conceptual composition, we await the 

deployment of more sophisticated quantifiable accounts of semantic composition. Those that 

rely on vector-semantics provide one promising avenue for research (Mitchell et al., 2008; 
Chang et al., 2009; Mitchell & Lapata, 2008). Another avenue might draw on algorithms 

describing the incremental evaluation of logical semantic rules (Stabler, 1991; Steedman, 

2000).

5. Conclusion

This study winnows down the type of information that flows through brain regions involved 

in syntactic processing. We asked whether abstract grammatical structures characterize 

fMRI-measured neural activity associated with sentence processing during a passive 

listening task. These more abstract structures indeed correlated with brain activity in the 

temporal lobes, but not in inferior frontal gyrus, inferior parietal lobe, or premotor areas. By 

contrast, predictors based on string-level Markov models correlated with brain activity 

frontal and temporal regions. In the most general terms, abstract linguistic structure of the 

sort proposed in generative grammars appears to characterize the information flowing 

through the temporal lobe during naturalistic comprehension.
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• We evaluate the role of hierarchical syntax in every-day language 

comprehension

• We correlate word-by-word parsing predictions with fMRI data during passive 

listening

• Surprisal from Markov models predictive in frontal and temporal ROIs

• Surprisal from phrase-structure grammar predictive in temporal and parietal 

lobes

• Minimalist Grammar node-count predictive only in left temporal lobes
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Figure 1. 
Less-detailed CFG analysis (top) versus more-detailed MG analysis (bottom) of the same 

sentence. Numbers beneath each word (purple) are estimates of syntactic “effort” which is 

used to derive BOLD signal predictors from a node count based on a bottom-up 

enumeration. Node count reflects the presence of empty nodes in the MG but not the CFG. 

This aspect of the structure impacts estimates of processing effort, for example, at the word 

“by” which is highlighted in red.
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Figure 2. 
Deriving an expected BOLD signal from linguistic structure: (A) The spoken narrative is 

segmented into words. (B) A complexity metric such as node count defines the intensity of 

point events at the offsest of each word according to a particular grammar; examples from a 

context-free grammar (red) and minimalist grammar (blue) derived using bottom-up 

enumeration are shown (see Figure 1). Panel (C) illustrates the same complexity counts over 

a longer interval. (D) The points are then convolved with canonical HRF (only one grammar 

is illustrated in this panel). (E) Results are summed to yields estimated BOLD responses 

(dotted) which are then made orthogonal to the Word Rate covariate (solid) and, finally, 

sampled at 0.5 Hz to match the sampling rate of the collected data (open circles). The two 

solid lines in panel (E) illustrate how different grammatical representations yield diverging 

estimates for BOLD signals associated with syntactic processing.
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Figure 3. 
Regions of interest (columns) from four representative participants (rows). Regions were 

defined by conjoining activation peaks based on the language localizer Word Rate predictor 

with anatomical definitions for each sentence-related region (see Methods). Integers indicate 

the MNI location of the sagittal slice shown in each frame.
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Figure 4. 
Fitted coefficients for all syntax predictors across six ROIs. Coefficients show the estimated 

change in BOLD signal per unit change in the syntactic predictor (x-axis). The nine models 

are ordered in descending order along the y-axis based on syntactic detail and complexity 

metric. Error bars show 95% confidence intervals based on Wald’s approximation. Filled 

points indicate models that made a statistically significant contribution in a descending step-

wise comparison against simpler models (see Table 1).
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Figure 5. 
Whole brain activation maps for three predictors rendered onto the surface of a template 

brain (N = 26). Maps for the language localizer Word Rate predictor (red) and 2gram.p 
predictor (blue) are thresholded at p < 0.001 with a cluster size of at least 50 voxels (family-

wise p < 0.05). The cfg.surp predictor (green) is shown at a liberal p < 0.01 threshold, 

illustrating non-significant trends in this analysis.
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