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ABSTRACT OF THE DISSERTATION 

 

 

From Bedside to Bench: the Clinical, Epidemiological and Molecular Basis for Nonalcoholic 

Steatohepatitis and Hepatocellular Carcinoma  

 

by 

 

 

Jihane Benhammou  

 

 

Doctor of Philosophy in Molecular, Cellular and Integrative Physiology 

 

 

University of California, Los Angeles, 2019 

 

 

Professor Joseph R Pisegna, Chair  

 

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) affect 75-

100 million U.S. citizens and carries an increased risk for liver, cardiovascular and cancer related 

morbidity and mortality. Similarly, chronic hepatitis C virus (HCV) infection is a major cause of 

liver disease and hepatocellular carcinoma (HCC) worldwide. Understanding the clinical, 

epidemiology and biological causes of NAFLD, with or without HCV, is of utmost importance 

given the lack of targeted therapies and the large economic burden it places on healthcare. 

Accordingly, we aimed to identify the clinical and epidemiological factors that affect HCV 

treatment in the setting of NAFLD and understand the risk of HCC in the NAFLD patients, 

compared to viral etiologies of HCC. To do so, we utilized the Electronic Medical Records of the 

Veterans Affairs Health Care System (VA HCS), the largest single-payer health system in the U.S., 

and UCLA Medical Center, one of the largest tertiary-care liver transplantation centers in the 

country. To further understand the molecular basis of NAFLD and NASH, we studied liver RNA-

sequencing from a cohort of bariatric surgery patients with detailed liver histopathological data. 
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We found that NAFLD does not affect HCV cure and that resolution of HCV leads to 

improvements in insulin resistance. We also observe that NAFLD HCC can occur in a non-

cirrhosis background in 18% of cases and that older Hispanic patients with larger BMIs were more 

likely to have cirrhosis when diagnosed with NAFLD HCC. Through analysis of our 

transcriptomics human liver RNA-sequencing, we identify a lipid responsive non-coding gene, 

OLMALINC, as a novel enhancer RNA (eRNA) in the cis regulation of stearoyl Co-A desature, a 

key triglyceride gene that has been a therapeutic target in NASH human clinical trials. In this work, 

we present the clinical and epidemiological phenotypes of NAFLD and identify important 

associations between insulin resistance, dyslipidemia, and BMI in HCC. Our functional genomics 

data in statin-users help us identify the first eRNA in lipid metabolism described to date. Bridging 

the understanding of clinical phenotypes that translate to human-relevant molecular studies is key 

to elucidating the mechanisms of NAFLD, NASH and HCC.     
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Chapter 1 

 

Non-alcoholic fatty liver disease and the metabolic syndrome in the era of chronic hepatitis C 

within a VA patient cohort 
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Introduction:  

Chronic hepatitis C (HCV) is one of the most common causes of chronic liver disease world-wide 

and is the most common blood-born infection in the United States 1. Long‐term infection can lead 

to complications including cirrhosis, hepatocellular carcinoma (HCC), and death 2. Eradication of 

HCV has become a world-wide focus given that sustained virological response (SVR) has been 

associated with reversal of hepatic fibrosis and decreased rates of HCC 3,4. New direct‐acting 

antivirals (DAAs) have revolutionized HCV therapy given their ease of administration, tolerability 

and reported SVR at 12 weeks (SVR12), considered to be a cure, with rates in the 90s, depending 

on the extent of liver fibrosis and genotype 5.  

 

Individuals with chronic HCV are more likely to develop type 2 diabetes (T2DM) and patients 

with T2DM have at least a 2-fold greater risk of developing HCV infection than the general 

population 6,7. Studies have also shown that chronic HCV infection is associated with a greater risk 

for the development of insulin resistance 8. In a retrospective analysis of cirrhotic patients, those 

with HCV infection were 10 times more likely to have T2DM than those without HCV infection 

8. There is also evidence that patients with chronic HCV infection and increased insulin resistance 

have a higher prevalence of hepatic fibrosis, HCC, and other extrahepatic manifestations 9-12. 

While there are unclear mechanisms for increased insulin resistance among those with HCV, 

factors such as the metabolic syndrome, have been implicated 13,14 

  

Non-alcoholic fatty liver disease (NAFLD), the liver manifestation of the metabolic syndrome, is 

on the rise and is predicted to continue to increase along its complications, including HCC 15. Thus, 

in the era of the NAFLD epidemic and new DAA treatments for chronic HCV, the impact of 

NAFLD and the metabolic syndrome on HCV response rates and cure warrants further study, 
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especially given the association of chronic HCV to insulin resistance and its association with 

progression of liver disease. The Veterans Affairs (VA) is the largest single-system U.S. health 

care provider and is one of the most diverse and longitudinally followed patient population. Within 

the VA, the incidence of chronic HCV is 2-3 times higher than the general public 16. Additionally, 

patients that receive care in the VA also have a higher prevalence of obesity and T2DM compared 

to the general population 17,18. Thus, the VA provides the ideal population to evaluate the 

relationships between chronic HCV, T2DM and NAFLD. 
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Materials and Methods: 

 
This study was approved by the Institutional Review Board and Research and Development 

Committee at the VA Greater Los Angeles Healthcare System. 

 

Data source 

This was an observational retrospective study of all HCV‐infected patients treated at the VA 

Greater Los Angeles Healthcare System within the Corporate Data Warehouse for a diagnosis of 

chronic hepatitis C by the International Classification of Diseases, ICD‐9 or ICD‐10, coding. Data 

were extracted from January 1, 2014 to December 31, 2016 and included: baseline demographic 

and clinical characteristics, medication, laboratory results, outpatient visits, and previous 

diseases/diagnoses. 

 

Study population 

The study population consisted of consecutive HCV‐infected patients who received DAA therapy 

at VA Greater Los Angeles Healthcare System. Patients without SVR data available 12 or more 

weeks following antiviral therapy were excluded from analysis. All genotypes 1‐6 were included. 

Choice of DAA regimen was at the discretion of the provider. On‐treatment and posttreatment 

monitoring followed an established protocol that included serum SVR evaluation every 2‐4 weeks. 

 

Sustained virological response 

The primary outcome of our study was SVR12, which was defined as an undetectable HCV RNA 

(<15 IU/mL) 12 weeks or beyond the conclusion of treatment 19.   
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Baseline characteristics 

Baseline demographic variables obtained at the initiation of therapy included: age, self‐reported  

race and ethnicity; HCV genotype; nonalcoholic fatty liver (NAFLD) fibrosis score (<−1.455 

being unlikely to have advanced NAFLD fibrosis vs >0.676 being predictive of advanced NAFLD‐

associated fibrosis) 20; the Fibrosis‐4 (Fib4; which will be referred to as advanced fibrosis from 

here forward), as a marker of advanced liver disease using the formula (age x aspartate 

aminotransferase)/(platelets X alanine aminotransferase1/2) 21; body mass index (BMI) 

(≥30 kg/m2 and <30 kg/m2); HIV status; hemoglobin A1c (HbA1c); and HCV treatment status 

(naïve or experienced). For race and ethnicity, we used a single variable that combines concepts 

of race and ethnicity into five mutually exclusive categories for race/ethnicity: non‐Hispanic 

White, non‐Hispanic Black (African‐Americans), Hispanics, Asians, and Unknown/Other. The 

presence of diabetes and its complications were determined by ICD‐9 (250.00‐250.92) and ICD‐

10 codes, as were diagnoses of hypertension, dyslipidemia, HIV, and AIDS with their 

complications. Psychiatric disorders, both organic and nonorganic (associated with substance 

abuse or not) were included in our analysis as was substance abuse and homelessness. 

 

Assessment of T2DM improvement  

To determine how HCV cure affects T2DM, we determined the HbA1c before and after DAA 

treatment. Serial BMI and HbA1c values were obtained from the year before and the year after 

HCV treatment and summarized as one-year pre-treatment and one-year posttreatment averages, 

respectively. A significant change of HbA1c was defined as a difference of 0.5 or greater, 

consistent with prior similar studies 22,23. Through chart review, we also documented whether a 

patient had an increase or decrease in oral hypoglycemic dose and/or injectable insulin dose from 
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one year before to one year after treatment with DAA. A change of greater than 10% from baseline 

was considered a significant change in medication, similar to prior studies 24. Daily insulin was 

calculated as a total amount of basal and/or meal-time insulin over a 24-h period as documented 

in the patient’s medication list. We also documented if there was a change in the overall number 

of diabetes medications from one year before to one year after treatment of DAAs.  

 

Medication adherence 

Patient adherence was assessed by calculating the medication procession ratio (MPR) since this 

has been a validated method to determine adherence 25. MPR was defined by the total number of 

pills supplied over the total number of pills expected to be dispensed by the pharmacy department 

based on length of treatment regimen and genotype. For purposes of simplicity, “MPR” will be 

defined and described as “adherence” from here onward. 

 

Statistical analysis 

Demographic data which included sex, race/ethnicity, DAA regimen, body mass index (BMI), 

advanced fibrosis, and genotype were summarized with frequencies and chi‐square tests for 

comparisons. We conducted multivariable logistic regression analysis to model predictors of 

SVR12. A priori covariates selected for the model were age, race/ethnicity, genotype, treatment 

regimen, treatment length, being treatment naïve, HIV status, advanced fibrosis, NAFLD fibrosis 

score, and adherence as defined by MPR. Age and adherence were continuous variables in the 

analysis. To analyze the adherence data further, we stratified adherence into the following groups: 

≥90%, 80%‐89%, 60%‐79%, and <60%. In addition to using adherence as a continuous variable 

we also performed regression models with MRP with the defined groups as a categorical covariate. 
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Prior to regression analyses, we tested for multiple collinearity, and no covariates were collinear 

as defined as a variance inflation factor of less than 10. Separate logistic multivariable regressions 

models were used to model SVR predictors in the African‐American subgroup by assessing 

treatment length of 8‐ versus 12‐week treatment, removing what is now considered suboptimal 

therapies (sofosbuvir/simeprevir ± ribavirin and sofosbuvir/ribavirin). We also performed 

regression models by race/ethnicity, genotype, and adherence on SVR12. 

Due to the rare event of DAA failure, to examine the relationship between SVR12 and HbA1c, 

we performed univariable and multivariable penalized maximum likelihood logistic regression 

analyses similar to prior studies 26,27.  
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Results: 

Baseline characteristics and treatment regimens 

Of the 1204 patients meeting the inclusion and exclusion criteria, 1068 patients were included for 

analysis based on having complete demographic and follow‐up data. Baseline characteristics of 

the cohort are presented in Table 1. Males comprised 97% of the study cohort, consistent with 

gender demographics within the VA system. The mean age was 61.8 (SE ± 0.2). White people and 

African‐Americans were equally represented at 37.8% of the population. Genotype 1 (1a and 1b) 

was the most common genotype in 83.9% of patients (N = 896), followed by genotype 2 (7.9%, 

N = 84) and genotype 3 (6.9%, N = 74). None of the patients had genotype 5. Of all patients, 35.4% 

were considered to have advanced liver disease as defined by a Fib4 > 3.25. A minority of patients 

were HIV positive (3%, N = 35). The majority of patients were treatment naïve at the time of DAA 

initiation at 79.5% (N = 849). 

DAA treatment regimen allocations for all patients and the corresponding SVR12 for each 

genotype are summarized in Table 2. The most common regimen was 

sofosbuvir/ledipasvir ± ribavirin, which occurred for 47.8% of the population. Since the study 

cohort included patients started on antiviral therapy from January 1, 2014, our data also include 

older antiviral regimens such as sofosbuvir/simeprevir (17.5%, N = 187), 

sofosbuvir/simeprevir ± ribavirin (0.7%, N = 7), and sofosbuvir/ribavirin (9.8%, N = 105). Our 

data also include a subgroup of African‐Americans patients who only received 8 weeks of therapy 

instead of 12 (N = 159) based on pretreatment viral level. These patients were treated before 2015 

and prior to recommendations to use 12‐week regimens in African‐Americans 28.  
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Predictors of SVR12 

Predictors of SVR12 from adjusted regression models are summarized in Table 3. There were two 

clinically significant negative predictors of SVR12: African‐American race/ethnicity (aOR = 0.43; 

95% CI = 0.27‐0.69) and advanced liver disease (Fib4 score >3.25) (aOR = 0.4; 95% CI = 0.26‐

0.68). Covariates that did not affect SVR12 included age, genotype, HIV status, advanced NAFLD 

fibrosis score, BMI ≥ 30 kg/m2, features of the metabolic syndrome (hypertension, dyslipidemia, 

T2DM) and whether the patient was treatment naïve or experienced. 

 

SVR12 by race/ethnicity 

SVR12 differences by race/ethnicity were also observed. African‐Americans reached SVR12 85% 

of the time, while White people had SVR rates of 89% and Hispanics of 83%. When older therapies 

(sofosbuvir/simeprevir, sofosbuvir/simeprevir ± ribavirin, sofosbuvir/ribavirin) were excluded 

from the analysis, African‐Americans reached SVR12 87.8% of the time, while White people and 

Hispanics achieved SVR12 rates of 92.4% and 88.7%, respectively. Hispanics had an adjusted OR 

of 0.75 (95% CI = 0.43‐1.31); Asians of 0.61 (95% CI = 0.67‐5.43); and other/unknown 

race/ethnicity of 0.67 (95% CI = 0.13‐3.37). 

 

Changes in HbA1c and BMI 

Overall, average HbA1c was significantly lower after DAA therapy: 7.44% vs 6.71%, P = 0.01. 

For the subgroup of patients that achieved SVR12, the average HbA1c before treatment was 

significantly higher than the average after treatment (7.35% vs 6.55%, P < 0.01). When SVR12 
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was not achieved, however, HbA1c was not significantly different before and after treatment: 

8.60% vs 8.61%, P = 0.99 (Table 4).  

 

SVR12 is not affected by the components of metabolic syndrome  

After adjusting for age, sex, race/ethnicity, cirrhosis, treatment experience, HCV genotype, 

treatment regimen, HIV status, and treatment duration, the individual components of metabolic 

syndrome (obesity, HTN, HLD, and T2DM) and the presence of metabolic syndrome itself did not 

predict SVR12 (Table 5).  

Forty-six patients were on insulin before treatment and 43 patients were on insulin after treatment. 

Of those patients who were on insulin, the average daily insulin requirement before treatment was 

55.1 IU (5.7) and 49.7 IU (6.2) after treatment (P = 0.50). For patients on insulin who achieved 

SVR12, the average daily insulin requirement before treatment was 55.0 IU (5.85) and the average 

daily insulin requirement after treatment was 48.2 IU (6.30) (P = 0.42). Insulin requirement also 

did not change significantly for patients who did not achieve SVR12 [55.5 IU (20.4) vs 58.1 IU 

(21.8), P = 0.93]. No patients analyzed were on any non-insulin injectable diabetes medications. 

There was no difference between the number of diabetes medications per patient before or after 

DAA therapy (1.23 vs 1.26, P = 0.43). The study included 44 patients (41.5%) defined as 

overweight (BMI ≥ 25), 30 (28.3%) that were defined as obese (BMI ≥ 30), and 12 (10.4%) with 

severe obesity (BMI ≥ 40). The average BMI for all patients before treatment was 30.1 kg/m2 

(0.53), and the average BMI for all patients after treatment was 30.2 kg/m2 (0.54) (P = 0.92). For 

patients who achieved SVR12, the average BMI before and after treatment were not statistically 

different: 30.3 kg/m2 (0.56) vs 30.3 kg/m2 (0.57), P = 0.96. Similarly, the average BMI was not 

different before and after treatment for the patients that did not achieve SVR12: 28.8 kg/m2 (1.4) 

vs 29.2 kg/m2 (1.5), P = 0.92. 
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SVR12 in African‐Americans by treatment duration subgroup 

Given previously published data suggesting that African‐American patients require 12 weeks of 

therapy regardless of baseline viral load, we further investigated SVR12 rates for African‐

Americans when stratifying by duration of treatment (8 weeks and 12 weeks) 5,28. Only 159 

African‐American patients were treated for 8 weeks of therapy given the recent change in clinical 

practice. The adjusted odds ratio for SVR12 for all genotypes in the 8‐week group was 0.34 (95% 

CI = 0.09‐1.29) compared to 0.4 (95% CI = 0.25‐0.63) in the 12‐week treatment group (N = 1043). 

There were 746 African‐American patients who were treated with DAA regimens other than 

sofosbuvir/ledipasvir ± ribavirin and sofosbuvir/ribavirin. In this subgroup, the adjusted OR for 

SVR12 among African‐Americans was 0.45 (95% CI = 0.25‐0.81), consistent with a significantly 

lower SVR12 for those only using optimal therapy when compared to those on obsolete therapies. 

However, when adherence, as defined by MPR, was included in the model, the adjusted OR was 

0.47 (95% CI = 0.21‐1.07), mitigating the effect. When adjusting for homelessness, substance 

abuse, and mental health disorders (N = 306), only homelessness affected SVR12 rates among 

African‐Americans (aOR = 0.39; 95% CI = 0.19‐0.81). 

 

SVR12 in genotype 1 patients 

Given the heterogeneity of our patient population in genotype and therapies, as well as the 

observation that genotype 3 is more difficult to eradicate 29, we performed subanalyses on patients 

with only genotype 1 disease (1a and 1b) (N = 872). Similar to the larger cohort, African‐American 

race/ethnicity was a significant predictor for non‐SVR12 with an adjusted OR of 0.48 (95% 
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CI = 0.29‐0.80). When older therapies were excluded (N = 69), being African‐American 

race/ethnicity remained a significant predictor with an adjusted OR of 0.47 (95% CI = 0.23‐0.82). 

When adherence was included in the model, African‐American race/ethnicity was not a significant 

predictor (aOR = 0.60; 95% CI = 0.31‐1.17). When addressing SVR12 only in the African‐

American subgroup treated for genotype 1 (N = 358), the only predictor of SVR12 failure was 

advanced liver disease (aOR = 0.35; 95% CI = 0.12‐0.97). 
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Discussion: 

This study demonstrates that in a large ethnically diverse community-based VA  practice, SVR12 

rates for chronic hepatitis C are influenced by race/ethnicity and advanced liver disease, which 

corroborates previously published data 28,30,31.  Having the metabolic syndrome or features of it 

(T2DM, hypertension or dyslipidemia) did not affect SVR12 rates. We also observed that T2DM 

(as measured by HbA1c or changes in medication use) improves after DAA therapy, independently 

of BMI. In our cohort, the lower SVR rates observed in African-Americans relative to Whites is 

persistent despite at least 12 weeks of therapy even when only using current “optimal” therapies.  

One important consideration in our analysis was the effect of adherence by measures of MPR in 

an ethnically diverse population treated with direct acting antivirals, which has not been evaluated 

in detail previously. We find that adherence explains some of these differences.  These data suggest 

potential underlying biological differences between Whites and African-Americans in medication 

response.  

 

 

While adherence and medication tolerability are not a concern in well-resourced large clinical 

trials, they can be more difficult to measure in real-world effectiveness data for chronic hepatitis 

C treatment.  In 2007, Backus and colleagues assessed SVR12 rates in a VA cohort during the 

interferon era and demonstrated adherence, as defined by MPR, to be a predictor of SVR success.  

Patients with adherence of 90% or greater reached SVR 88% of the time.  There was a clear 

threshold where any adherence less than 80% negatively impacted SVR, resulting in SVR12 rates 

of only 8% 30.  More recently in 2017, Louie and colleagues assessed real-world effectiveness 

SVR12 with the use of DAAs in the Kaiser Permanente Southern California health care system.  

Although African-Americans only represented 8% of their population (N=17), adherence was also 
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a predictor of success with an adjusted OR of 2.28 if it reached 80% or higher 32.  Our study 

demonstrated similar findings.  We find that patients with adherence rates of <90% did not reach 

SVR12.  Adherence appeared to attenuate the association between race/ethnicity and SVR12, thus 

explaining some of the differences observed, although biological causes have not been addressed.     

 

One potential biological explanation for these observations is SVR12 differences in drug 

metabolism, driven by the patients’ genetic background.  Drug metabolism differences have been 

described to exist between African-Americans and Whites.  Although some of these differences 

have been attributed to environmental factors such as diet and concomitant medications, intrinsic 

host factors such as genetic variability and gene polymorphisms in drug metabolizers such as 

CYP2D6 and CYP2C19 have also been described 33,34.  Understanding genetic polymorphisms in 

African-Americans and elucidating their mechanism of action, namely in the IL28B gene also 

offered great advances in understanding the underlying genetic differences between African-

Americans and Whites in the interferon era 35,36 .  Other genetic differences such as the variant in 

HAVCR1 gene variant (rs6880859) were also subsequently identified 37.  Although the 

polymorphisms and genetic differences listed above have not been shown to affect SVR12 with 

DAAs, such undiscovered genetic polymorphisms could explain these findings.  The effects of 

genetic variants on SVR in the DAA era have not been addressed in any systematically other than 

to assess patterns of resistance 38.  The previous findings that extending therapy in African-

Americans from 8 to 12 weeks to reach similar SVR12 to Whites, also points to potential biological 

differences between differences races and ethnicities. To address this, Large Genome Wide 

Association Studies (GWAS) or comparing genotypes in African-Americans and Whites who 

reached and did not reach SVR are needed.          
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The other important finding from our study is the improvement in HbA1c in patients cured of 

chronic HCV in the DAA era as measured by improvements in HbA1c or T2DM medication use, 

which has been previously described 39. By analyzing each individual patient and examining both 

changes in the number of T2DM medication and the dosage, we find that the change of HbA1c 

was not due to an increase in oral hypoglycemic or insulin treatment. The findings imply that the 

change in HbA1c was most likely due to a change in host insulin resistance due to HCV clearance. 

This is in line with a recent study showing that HCV clearance with DAA reverses insulin 

resistance 40. The data presented here are also consistent with data during the pegylated-interferon 

era where SVR clearance was associated with decreased insulin resistance and improved beta-cell 

function 13,41,42.  

 

In conclusion, we present a large, ethnically and medically heterogeneous population within the 

VA System and their SVRs rates in the DAA era. Our data demonstrate the importance of 

racial/ethnic differences in SVR12 as well as regression of insulin resistance with HCV cure. 

Although DAAs have revolutionized chronic HCV care, it remains to be seen what the long term 

outcomes are since DAAs have only become available in 2014. What improvements in HCV-

related insulin resistance mean in the context of having underlying NAFLD and NASH, where the 

prevalence of T2DM is high, has yet to be determined due to lack of long-term follow up of cured 

patients and the difficulty in identifying NAFLD and NASH patients using Electronic Medical 

Records within the VA and in other health care systems 43,44. These questions are especially 

relevant in the setting of recent studies demonstrating a rise in HCC, which is closely associated 

with insulin resistance/T2DM and NAFLD 11,45,46. Further understanding of these relationships 

will need to be the focus of new studies given the controversies associated with HCC screening 

and the large economic burden this places on our primary care and sub-specialty clinics.  
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Table 1: Demographics of study population.   

Demographic  N=1068 

Age in years, mean 

SVR, % 

61.8 

87.0 

Race/Ethnicity, % (N) 

          Whites  

          African American  

          Hispanic 

          Asian 

          Other/Unknown 

 

37.5 (400) 

37.5 (401) 

15.1 (161) 

0.7 (7) 

21 (9.3) 

Genotype 1 (a & b), % (N) 83.9 (896) 

Treatment naïve, % (N) 79.5 (849) 

BMI > 30, % (N) 

T2DM 

Dyslipidemia 

Hypertension 

33.5 (358) 

14.4 (154) 

41.9 (448) 

56.3 (601) 

Advanced fibrosis, % (N) 

HIV positive, % (N) 

Homelessness, % (N)  

Substance abuse, % (N) 

History of psychiatric disorder, % (N) 

Medical Procession Ration, % (N) 

          <60% 

          60-79% 

          80-89% 

          ≥90% 

35.4 (462) 

3.3 (35) 

22 (236) 

27.9 (298) 

58.5 (625) 

 

5.3% (57) 

0.5% (5) 

0.2% (2) 

94%(1004) 
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Table 2: Treatment regimen allocation and SVR12 rates for all patients and genotypes. 

Treatment Regimen by Genotype SVR12, % (N) 

Genotype 1 

          sofosbuvir/ledipasvir  

1a 

95.0 (314) 

1b 

90.0 (116) 

          sofosbuvir/ledipasvir/ribavirin 

          sofosbuvir/ribavirin 

          sofosbuvir/simeprevir  

87.2 (89) 

100.0 (1) 

78.0 (138) 

92 (27) 

85.5 (1) 

100.0 (57)  

          sofosbuvir/simeprevir/ribavirin 100.0 (8) 100.0 (1) 

          paritaprevir/ritonavir/ombitasvir + dasabuvir  100.0 (1) 91.5 (47) 

          paritaprevir/ritonavir/ombitasvir + dasabuvir/ribavirin 

          grazoprevir/elbasvir 

83.6 (152) 

100.0 (1) 

91.5 (50) 

100.0 (8) 

Genotype 2 

          sofosbuvir/ribavirin  

          sofosbuvir/ledipasvir/ribavirin  

 

77.8 (97) 

100.0 (1) 

Genotype 3  

          sofosbuvir/ledipasvir 

          sofosbuvir/ledipasvir/ribavirin 

          sofosbuvir/ribavirin 

          sofosbuvir/daclatasvir 

          sofosbuvir/daclatasvir/ribavirin 

Genotype 4 

          sofosbuvir/ledipasvir 

          sofosbuvir/ribavirin 

          paritaprevir/ritonavir/ombitasvir + dasabuvir/ribavirin 

          paritaprevir/ritonavir/ombitasvir/ribavirin 

Genotype 6 

          sofosbuvir/ledipasvir 

100.0 (1) 

82.1 (43) 

61.1 (20) 

83.3 (7) 

81.8 (13) 

 

100.0 (8) 

100.0 (3) 

100.0 (1) 

100.0 (2) 

 

100.0 (1) 
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Table 3: Odds ratios for SVR12 for all patients. 

Patient characteristic 

Unadjusted Adjusted 

OR 95% CI OR 95% CI 

African American (ref. Whites) 0.77 0.54-1.11 0.43 0.27-0.69 

Age 1.02 1.00-1.05 1.04 1.00-1.07 

Genotype 2 (ref. genotype 1) 0.5 0.29-0.88 2.47 0.25-24.5 

Treatment Naïve (ref. treatment experienced) 1.44 0.95-2.17 1.46 0.90-2.37 

Advanced fibrosis (ref. Fib4<3.25) 0.4 0.28-0.58 0.40 0.26-0.68 

BMI  30 (ref. BMI<30 kg/m2) 0.9 0.62-1.31 1.18 0.79-1.78  

HIV positive (ref. HIV negative) 1.44 0.43-4.8 1.77 0.48-6.54  

MPR 80-89% (ref. ≥90%) 0.15 0.01-2.37 * *  

MPR 60-79% (ref. ≥90%) 0.04 0.004-0.32 <0.1 0  

MPR <60% (ref. ≥90%) 0.02 0.01-0.05 0.01 13-166  

(*) omitted in the analysis given only 2 patients.  
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Table 4: Mean HbA1c before and after HCV treatment by genotype and SVR12 status 

 

Genotype Before DAA ( SE) After DAA ( SE) P-value 

Mean HbA1c of patients who achieved SVR12 

1a 7.5 (0.19) 6.68 (0.14) 0.001 

1b 7.3 (0.22) 6.59 (0.21) 0.03 

2 7.09 (0.35) 6.29 (0.21) 0.06 

3 7.12 (0.37) 6.10 (0.39) 0.08 

4 5.5 (0.13) 5.30 (NA) NA 

Overall 7.35 (0.13) 6.55 (0.11) <0.01 

Mean HbA1c of patients who did not achieved SVR12 

1a 8.98 (1.14) 8.95 (1.41) 0.98 

1b 6.4 (NA) 6.50 (NA) NA 

2 No observations   

3 8.5 (NA) 8.70 (NA) NA 

4 No observations   

Overall 8.6 (0.89) 8.61 (1.08) 0.99 

  



 20 

 

Table 5: Odds ratios for SVR12 for features of the metabolic syndrome 

 

Patient characteristic 

Unadjusted Adjusted 

OR 95% CI OR 95% CI 

Obese 0.90 0.62-1.31 1.25 0.82-1.90 

Hypertension 1.06 0.74-1.52 0.81 0.51-1.28 

Dyslipidemia 1.42 0.97-2.10 1.31 0.87-1.97 

T2DM 0.72 0.48-1.10 0.82 0.55-1.09 

Metabolic syndrome 1.04 0.68-1.60 1.81 0.75-4.37 
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Chapter 2 

 

Clinical characteristics and outcomes of nonalcoholic fatty liver disease associated with 

hepatocellular carcinoma 
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Introduction:  

The metabolic syndrome, as defined by the clustering of biochemical and clinical features, has 

increased to epidemic proportions. Non-alcoholic fatty liver disease (NAFLD), the liver 

manifestation of the metabolic syndrome, has increased in parallel and is the most common cause 

of liver disease in the United States 47. NAFLD can progress to nonalcoholic steatohepatitis 

(NASH), fibrosis, cirrhosis as well as hepatocellular carcinoma (HCC) 48. NAFLD and its 

complications are predicted to continue to increase over the next decade, which is likely a 

reflection of the progression of disease and the aging patient population 15. This has and will 

continue to have a large economic burden on society, especially given the lack of optimal current 

therapies for NASH. 

    

Partly fueled by the NAFLD and NASH epidemic, HCC incidence has also shown a continuous 

increase over the years, which has placed economic strains on health care 49. NAFLD patients have 

been shown to have a 7-fold increase in HCC incidence which tends to occur in older Hispanic 

patients with cirrhosis 45,46. Although the majority of NAFLD and NASH-related HCC cases occur 

in a cirrhosis background, non-cirrhosis HCC cases have been described to occur in up to 50% of 

cases 50,51. Features of the metabolic syndrome and more specifically type 2 diabetes mellitus 

(T2D) are highly associated with HCC development 11. In a large prospective study with a 26-year 

follow-up, the length of T2D and the number of features of the metabolic syndrome were 

associated with HCC development in patients with and without cirrhosis, suggesting a mechanistic 

role between chronic inflammation, insulin resistance and liver carcinogenesis 52.       

 

Early HCC detection has been shown to improve mortality 53-55. However, current society 

guidelines only recommend HCC screening in patients with cirrhosis or those with high risk 
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features of chronic hepatitis B (HBV) infection. This poses a clinical dilemma given the number 

of patients with NAFLD, the increase in HCC incidence and the potential for cancer in non-

cirrhosis population not currently targeted for screening 56. Thus, identifying clinical high-risk 

factors and understanding the tumor growth rate in NAFLD-associated HCC may provide valuable 

insight into how to identify and stratify an “at-risk” patient population with NAFLD for screening. 

 

Accordingly, we aimed to study the clinical features of NAFLD-associated HCC in cirrhosis and 

non-cirrhosis patients, study NAFLD-HCC outcomes compared to viral etiologies of HCC, and 

measure tumor growth as compared to viral etiologies of HCC.   
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Materials and Methods: 

The study was approved by the Institutional Review Board of the University of California, Los 

Angeles (IRB#17-000015). 

 

Data source 

This is a retrospective case control study comparing NAFLD (including non-alcoholic 

steatohepatitis or NASH), chronic HBV and C (HCV) HCC cases. Our data source for the NAFLD-

HCC cases were evaluated between 1/1/2000 to 12/31/2016 and comprised of the UCLA Jonsson 

Comprehensive Care Center (JCCC) cancer registry as well as review of liver surgical, hepatology 

and oncology clinic patient visits identified in the UCLA Electronic Medical Records (EMR) using 

International Classification of Diseases (ICD-9 and ICD-10 codes) for HCC with a diagnosis of 

NAFLD, NASH, the metabolic syndrome, or features of the metabolic syndrome as defined by 

diabetes (including its complications diabetic nephropathy, diabetic polyneuropathy, diabetic 

retinopathy), hypertension and dyslipidemia (see appendix). Given the under-reported cases of 

NAFLD and NASH using EMR ICDs 43,44, we identified additional cases using natural language 

processing of all pathology, operative, diagnostic and interventional radiology (using Current 

Procedural Terminology, CPT codes) reports with the following key terms: “NASH”, “NAFLD”, 

“steatohepatitis”, “ballooning” or “NAFLD activity score”. HBV and HCV cases were used as a 

comparative group and were identified from the Liver Cancer Center in Pasadena, CA. Hepatitis 

B and C patients received their care at the local clinic and/or at a tertiary transplant center including 

at UCLA Medical Center 53.  

     

NAFLD patient population 
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Men and women ≥ 18 years were included. Patients with mixed HCC and cholangiocarcinoma on 

pathology report were excluded as were patients who reported excessive alcohol consumption as 

defined by the AASLD guidelines (>21 standard drinks on average per week for men and >14 

standard drinks on average in women). All patients with a diagnosis of HBV (positive surface 

antigen), HCV (positive HCV RNA or history of SVR12), primary biliary cholangitis, primary 

sclerosis cholangitis, alpha-1 anti-trypsin, auto-immune hepatitis, Wilson disease and 

hemochromatosis were also excluded. 

 

Baseline laboratory and clinical data 

All patients who met inclusion criteria had laboratory data, including body mass index (BMI), 

evaluated closest to the time of HCC diagnosis. If patients had laboratory data after 6 months from 

the time of HCC diagnosis, they were included in our final analysis without their laboratory data. 

Hypertension, dyslipidemia, T2D and glucose intolerance were defined by diagnosis (as defined 

by ICD codes or from review of cardiology notes) or being on a medication associated with that 

diagnosis. HCC cases were defined as anyone with evidence of Li-RADS-5 lesions on CT or MRI 

or evidence of HCC on liver biopsy or on evaluation of the explanted liver (including autopsy in 

the event of death).    

 

HCC characteristics and tumor growth 

Tumor number and size were collected for all patients from MRI or CT scans with and without 

contrast. Pathology data (from biopsy, explant or resections) were reviewed when available. 

Studies done outside UCLA (interpreted locally or outside the institution) were included if local 

imaging data were not available. Abdominal ultrasound data were excluded. Tumor growth was 

determined based on the number of patients having two consecutive 2D images by CT or MRI 
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(prior to any therapy) and determining the size and time difference in cm between the two studies. 

When available, tumor growth in patients with multiple tumors was measured in those meeting Li-

RADS-5 criteria 57. Tumors measuring <2cm on initial imaging study were included if they were 

confirmed HCC on subsequent studies by imaging or pathology data. HCC cases were classified 

using the Milan criteria (single lesion 5 cm, maximum of three lesions with none >3 cm) and by 

the University of California at San Francisco (UCSF) criteria (single lesion 6.5 cm, maximum of 

three lesions with none >4.5 cm, or a total tumor burden of 8 cm). Metastasis was determined 

based on abdominal CT or MRIs as well as CT chest and bone scans. Recurrence was defined if 

on a subsequent scan a new lesion was identified after evidence of resolution on prior imaging 

study. We excluded any lesions that did not meet Li-RADS-5 criteria or if a study was done outside 

of UCLA without contrast agent.  

  

Statistical analysis 

The p values for between group comparisons of continuous variables that did not follow the normal 

distribution were calculated using the non-parametric Kruskal-Wallis method. The p values for 

comparing continuous variables such as age that followed the normal distribution were computed 

using a one-way analysis of variance model.   

The p values for comparing binary data across groups were computed using Fisher’s exact test. 

Recurrence free survival curves were calculated using the Kaplan-Meier method and the p values 

for their comparison were performed using the log rank test. 

A Cox proportional hazard model was used to compare recurrence free survival curves adjusted 

for covariates.  The Hazard (event rate) ratio (HR) and its 95% confidence bounds under this model 

are reported. A linear regression model was used to compute age and gender adjusted means for 

(log) tumor growth. To measure tumor growth, we used the log tumor growth since log tumor 
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growth is normally distributed. Logistic regression was used to model cirrhosis risk as a function 

of gender, age, T2D/glucose intolerance, dyslipidemia and BMI.   
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Results: 

Validation of NAFLD HCC cases 

3,358 HCC cases were identified in the JCCC cancer registry of which only 22 had a diagnosis of 

NASH. One patient who had both HCV and NASH was excluded. 4,809 cases were identified 

from the EMR abstraction using ICD codes and natural language processing. To validate our 

algorithm, key words from natural language processing (NASH, NAFLD, steatohepatitis, 

ballooning and metabolic syndrome) were counted the number of times they appeared in an 

individual’s chart. Cases were then ranked based on those numbers, and individual patient chart 

reviews were conducted to validate these definitions.  All highly ranked “NASH” patients were 

evaluated, followed by all highly ranked “NAFLD”, “steatohepatitis”, “ballooning”, “NAFLD 

activity score” and “metabolic syndrome” cases. A total of 10-15 charts were reviewed in patients 

who had a key term appear once or twice and no confirmed cases were identified. 10-15 cases were 

reviewed in patients who only had one key term appear without identifying any NAFLD or NASH 

cases, and an additional 20 charts were reviewed without any key terms, which did not confirm 

any cases. Of the 430 charts reviewed, 127 met inclusion criteria. One patient was removed from 

the final analysis due to being the only one having received stereotactic body radiation therapy; 

another patient was removed due to an unclear sequence of events related to the diagnosis of HCC 

(outside scans only available for review) and only a small focus on explant that was not consistent 

with the imaging data (<0.5 cm without field defect from prior therapies). Therefore, 125 cases 

were included in our final NAFLD cohort. Of note, one patient had possible autoimmune hepatitis 

versus NASH, two patients had positive HCV antibody without positive RNA or a history of HCV 

treatment, and one patient was homozygous for C282Y mutation with elevated ferritin (>1000), 

but did not show evidence of iron overload on pathology. Due to the retrospective nature of the 
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study, patients self-identified their race and ethnicity. Given the large missing data for race, only 

ethnicity was included in the final analysis.  

 

Demographics of NAFLD HCC cases 

The mean age of the NAFLD-associated HCC cases was 64.8 years with a mean BMI of 31.2 

kg/m2 ( 10.5 kg/m2). The majority had hypertension (n=85, 68%) and dyslipidemia (n=44, 35%). 

Seventy percent (n=87) had T2D (n=82) or glucose intolerance (n=4). The majority had T2D or 

glucose intolerance for ≥10 years (n=32), with 16 patients having had the disease for 2-10 years 

and only 2 for 0-2 years. Of the patients with T2D, 32% (n=27) were on insulin therapy. The 

median A1c was 6.1 (IQR 5.4-6.95); however, the majority were on therapy by the time of A1c 

analysis. The majority of patients identified themselves as Hispanics (n=52, 42%).  

 

Clinical characteristics of NAFLD, HBV and HCV associated HCC cases 

Four patients who were co-infected with HBV and HCV were removed from the final analysis. 

Therefore, 168 cases were included in the HBV cohort and 158 in the HCV cohort. Demographics 

of all three groups are presented in Table 1. Unlike HBV and HCV cases who had mostly men 

(n=135, 80%, and n=97, 61%, respectively), NAFLD cases were equally distributed between men 

and women (n=59, 47%). NAFLD cirrhosis patients were more likely to have decompensated liver 

disease with 51% of the cohort with a Child-Turcotte-Pugh score of B and C (n=45), when 

compared to HBV who only comprised 29.4% (n=50) and HCV 23% (n=36) of the cohorts. This 

is consistent with more patients in the NAFLD group having hepatic encephalopathy compared to 

HBV and HCV (25% versus 11% and 6%, respectively; p<0.0001) and ascites/volume overload 

(36% versus 2% and 15%, respectively; p<0.0001). NAFLD cases also were more likely to have 

T2D or glucose intolerance (70%, p<0.0001). The HCC screening rate between all three groups 
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was not significantly different (p=0.0503). Patients with HBV were more likely to have a family 

history of HCC (25%) when compared to NAFLD (8%) or HCV (5%).    

 

Tumor characteristics of NAFLD, HBV and HCV cases 

NAFLD and HCV HCC cases were more likely to be within Milan and UCSF criteria for liver 

transplantation than the HBV group (Table 2). This was further confirmed when assessing the 

median size of the first tumor which was similar in the NAFLD and HCV groups (2.9 and 2.1 cm, 

respectively) but markedly larger in the HBV group at 4 cm (p=0.0003) (Table 2). To measure 

tumor growth, 230 cases had serial imaging studies available for review for all three groups. Tumor 

growth, as measured by % increase per month (given its linear increase), was not different between 

the three groups after adjusting for age and gender. The adjusted mean for the HBV tumor growth 

in males was 8.18% when compared to 7.79% in females. In the HCV group, the adjusted mean 

for males was 7.6% while it was 7.51% in females. In NAFLD, similar trends were seen with the 

adjusted mean in males being 6.69% and 6.29% in females, although none were statistically 

significantly different.  We also found that NAFLD HCC patients were less likely to have a 

positive AFP (AFP  10) when compared to the other two groups (p<0.0001) (Table 2). 

 

Clinical and tumor characteristics of cirrhosis versus non-cirrhosis HCC cases   

To characterize which clinical features were more likely to predict cirrhosis and advanced fibrosis 

in the NAFLD HCC cohort, we classified the group into “cirrhosis/advanced fibrosis” or “non-

cirrhosis”. We defined cirrhosis/advanced fibrosis as anyone with clinical evidence of cirrhosis 

(platelets <150K, evidence of portal hypertension or as diagnosed by a hepatologist) or pathology 

review (all F3, F-4 and F4 on trichrome stain by METAVIR scoring system) 58. The non-cirrhosis 

group was defined as anyone who had F0, F1-2, F2-3 disease on the pathology review or as 
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diagnosed by a hepatologist. A total of 86.5% of our cohort had pathology available for review. 

Eighteen patients (14%) had no evidence of clinical cirrhosis; 2 (2%) had F0-1; 4 (3%) had F1-2; 

one patient had F2-3 (1%); 6 (5%) had F3; 5 (3%) had F3-4 and 71 (89%) had clinical evidence of 

cirrhosis of F4 disease on liver biopsy.  

Based on these definitions, 102 (82%) had cirrhosis/advanced fibrosis and 23 (18%) had non-

cirrhosis liver disease. The demographics comparing the two groups are presented in Table 3. In 

an unadjusted bivariate analysis comparing clinical factors associated with cirrhosis, we identified 

that being of non-Hispanic ethnicity (OR=0.07, p=0.0001), having dyslipidemia (OR=0.321, 

p=0.0268) and having a lower BMI (p=0.00065) were associated with non-cirrhosis NAFLD HCC. 

In an adjusted multivariate analysis, patients who identified themselves as Hispanic  (adj. 

OR=12.34, 95% CI 2.59-58.82) and who had a higher BMI (adj. OR=1.19, 95% CI 1.066-1.330) 

were more likely to have cirrhosis. T2D and glucose intolerance diagnoses showed an increased 

trend towards the cirrhosis group; however, the differences were not statistically significant (adj. 

OR=1.46, 95% CI 0.464-4.614). Similarly, age and gender were not predictive of 

cirrhosis/advanced fibrosis (adj. OR=0.970, 95% CI 0.859-1.095), while dyslipidemia 

demonstrated a trend towards decreased cirrhosis (adj. OR=0.538, 95% CI 0.1643-1.762).     

 

Survival outcomes are not different between the NAFLD, HBV and HCV groups 

We evaluated the overall and recurrence-free survival among the three groups and found that 217 

patients died and 82 developed recurrences. Figure 1A represents the unadjusted overall survival 

for all three groups with a median follow up of 22.4 months. Our data demonstrate a better overall 

survival in the NAFLD group when compared to HBV and HCV. These findings persist after 

removing the 23 non-cirrhosis patients in the NAFLD group (Figure 1B). Unadjusted recurrence 

free survival, which had a median follow up of 19 months, was also better in the NAFLD group 
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when compared to HBV and HCV with or without the NAFLD non-cirrhosis patients (Figure 1C-

D). The adjusted multivariate models for the overall and recurrence free survival are presented in 

Table 4. In the multivariate model adjusting for gender, ethnicity and most definitive treatment, 

we found that HBV patients had the lowest survival when compared to HCV (adj. HR=0.70, 95% 

CI 0.514-0.952) and NAFLD (adj. HR=0.236, 95% CI 0.103-0.539). NAFLD patients had 

improved survivals when compared to HCV (adj. 0.337, 95% CI 0.156-0.725). As expected, the 

type of definitive therapy influenced the survival rates of the groups, with the orthotopic liver 

transplantation (OLT) giving the most decrease in death or recurrence rates (adj. HR=0.115, 95% 

CI 0.062-0.214). In the adjusted recurrence-free model, we also observe that HBV patients had 

decreased survival rates compared to NAFLD patients (adj. HR=0.487, 95% CI 0.242-0.977). No 

differences were seen in the recurrence-free survival rates between the HCV and HBV groups (adj. 

HR=0.792, 95% CI 0.590-1.063) or the NAFLD and HCV group (adj. HR=0.615, 95% CI 0.325-

1.161).    
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Discussion: 

We present the largest NAFLD HCC cohort with the longest follow-up to date with detailed 

clinicopathological data. We demonstrate important clinical differences between NAFLD and viral 

etiologies of HCC, including that HBV-associated HCC patients present at a younger age and have 

larger tumors at the time of presentation, which lends them to be outside of OLT criteria. Although 

NAFLD patients tend to have more decompensated liver disease at the time of HCC presentation, 

the overall survival rates are better when compared to HBV and HCV, as is the recurrence-free 

survival in the NAFLD group when compared to HBV patients.  Hester et al. recently analyzed 

the outcomes of a group of 97 NASH HCC patients.  When compared to HBV, HCV and alcoholic-

associated liver (ALD) disease, NASH HCC patients had worse overall survivals than ALD 

patients but similar survival rates as HCV or HBV cases (median follow up time of only 16 

months) 59. Wakai et al. evaluated post-surgical outcomes in 17 NAFLD-associated HCC cases 

and demonstrated that although the overall survival was not different between NAFLD, HBV and 

HCV patients, the recurrence-free survival was improved in the NAFLD cohort at a median follow-

up time of 87 months, similarly to our findings 60,61. Some of the differences observed between the 

studies can likely be explained by different patient demographics (especially given regional 

differences in liver transplantation allocations), sample sizes, and longer follow-up times.  

 

HCC in the non-cirrhosis liver has been reported to occur in NAFLD 51,52. Since distinguishing 

NAFLD, NASH and different stages of fibrosis remains a diagnosis based on pathology, assessing 

liver histology in NAFLD-associated cases of HCC is critical but is often lacking in larger studies. 

Our detailed pathological analysis enabled us to distinguish between cirrhosis/advanced fibrosis 

cases when compared to non-cirrhosis. We report that ~18% of our cohort did not have any 

cirrhosis, although our definition was conservative due to including all bridging fibrosis cases (F3 
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and F3-F4 by METAVIR) in the advanced fibrosis/cirrhosis group. We found that patients who 

self-identified as Hispanic and had a larger BMI are more likely to develop HCC in a cirrhosis 

background. We also noted that the cirrhosis HCC group was less likely to have dyslipidemia 

although this was no longer significant after adding BMI in our model. We interpret these data as 

potential statin effects (our definition of dyslipidemia included patients on lipid-lowering agents 

including statins) since their use has been shown to decrease fibrosis progression and HCC 52,62. 

Few studies have attempted to differentiate statin effects between those with and without cirrhosis. 

In a recent case-control study comparing cirrhosis and non-cirrhosis cases based on histology, 

dyslipidemia (as defined by a high LDL cholesterol or triglycerides) was independently associated 

with HCC development in the non-cirrhosis group (adjusted OR=1.74, p<0.05) 63.  Although the 

cirrhosis group had a larger BMI (29.2 kg/m2) when compared to the non-cirrhosis (26.1 kg/m2) 

group, those differences were not significant (p=0.05), which is possibly explained by only having 

28 NAFLD patients in the cohort of 545 individuals (5%). Statin use has also been shown to be 

associated with a decreased HCC mortality, although again in most studies NAFLD cases only 

comprise a small group of the patient population 64,65. In a large retrospective study assessing the 

occurrence of HCC in 18,080 non-cirrhosis patients with NAFLD using Taiwan’s National Health 

Insurance Research, Lee and colleagues found that statin use significantly decrease HCC incidence 

(HR=0.29, 95% CI 0.12-0.68) 66. BMI differences were not addressed in their models, although 

Asian NAFLD patients often develop lean or non-obese NAFLD where BMI criteria are not as 

relevant, thus representing a different patient population from the ones normally seen within the 

U.S 67,68. Teasing out the effects of dyslipidemia and statin use in different ethnic backgrounds will 

be important for future studies given our findings. Several clinical trials are ongoing assessing the 

effects of statin therapy on liver fibrosis progression and HCC recurrence, which will provide 
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valuable insight into the chemoprotective effects of statins (NCT03219372, NCT03024684, 

NCT03275376, NCT03654053, NCT02968810).  

 

In addition to understanding the clinical factors that differentiate cirrhosis and non-cirrhosis cases, 

understanding tumor growth may help risk stratify the non-cirrhosis group. HCC screening 

practices have been developed partially based on image-based tumor growth measurements, which 

have mostly been studied in the context of viral etiologies of HCC 69. Given the recent birth of 

NAFLD as a major etiology of cirrhosis and HCC in the U.S., few studies have evaluated this topic 

in the NAFLD patient population. To evaluate tumor growth, we evaluated the % change of the 

tumor per month, which is stable and steadily increases over time, given that most tumors will 

grow exponentially when small and will level with time 70. We found that the median growth rate 

of HCC in all three groups was not different after adjusting for age and gender, suggesting that 

screening intervals should not differ between viral etiologies of HCC and NAFLD. We were not 

able to compare the tumor growth of cirrhosis and non-cirrhosis in the NAFLD group due to  the 

small sample size of the non-cirrhosis group of only 6. However, this should be the subject of 

further studies to better understand whether and how often to screen this patient population, 

especially given that NAFLD patients are less likely to be AFP-producers (a HCC serum 

biomarker), as shown by us and others 45.   

 

While our study highlights important differences between the cirrhosis and non-cirrhosis NAFLD 

HCC patient population as well as viral etiologies of HCC, there are limitations. UCLA is a large 

tertiary-care liver transplantation center in the U.S.; therefore, the majority of our patients were 

referred from outside institutions, thus creating a bias towards OLT evaluation and treatment. This 

may explain the large proportion of decompensated NAFLD patients who received OLT (versus 
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regional differences in transplantation allocation where region 5, which includes California, tends 

to have a sicker patient population 71). However, this also allowed for a more diverse patient 

population due to the large referral pattern seen in Los Angeles. Being in a transplant center also 

provided for a detailed review of the pathology, which is often not available in large cohorts. To 

the best of our knowledge, there are no previous free language processing approaches that would 

have identified cases within the EMR. This approach also allowed us to minimize selection bias 

of only studying patients seen by hepatologists and therefore have OLT or other curative 

treatments offered. Inter-observer differences between radiographic assessments of HCC also 

introduced differences in tumor growth measurements given that most initial imaging studies were 

done outside of UCLA. We attempted to normalize these by only including CT or MRI studies 

that were re-interpreted at UCLA using the validated Li-RADS score. Another limitation is the 

small sample size of the non-cirrhosis cases of HCC (23), restricting further analyses, such as 

tumor growth, and teasing out the effects of dyslipidemia and statin treatment. This is especially 

relevant because recent obese mouse models have demonstrated that NASH HCC can occur 

through independent mechanisms of NASH 72. 

 

In conclusion, we present a large, diverse NAFLD HCC patient population with detailed clinical 

and pathological data, allowing for important differences to be identified between various stages 

of fibrosis. Identifying population-specific biomarkers, which will likely require a combination of 

clinical risk factors, laboratory data and tumor growth data, will be important in this group of 

patients. These studies also support the use of longitudinal biomarker studies to identify potentially 

useful diagnostic targets. The association between BMI and dyslipidemia remains of crucial 

clinical significance due to the non-cholesterol and pleiotropic effects of statins on HCC and liver 

fibrosis. This provides an avenue for statin use as a chemoprotective agent not only in NAFLD 



 37 

cirrhosis patients but specifically in the sub-group of non-cirrhosis patients who are not currently 

being targeted for screening. Although the ongoing prospective randomized clinical trials with 

statins will help elucidate the benefits of statins in cirrhosis and HCC, new prospective studies are 

needed to assess the benefits of statins in the non-cirrhosis group, which comprises a large portion 

of the NAFLD.  
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Table 1- Demographics and clinical characteristics of NAFLD, HBV and HCV cases 

 NAFLD HBV HCV P value 

Males n, % 59 (47) 135 (80) 97 (61) <0.001 

Mean age at HCC dx ± SD 64.8 ± 8.5  57.7 ± 12.7 65.9 ± 10.3 <0.0001 

Hispanic ethnicity, n (%) 52 (42) 2 (1) 29 (18) <0.0001 

T2D and glucose intolerance, n (%) 87 (70) 21 (13) 28 (17) <0.0001 

Decompensation, n (%) 

          HE 

          Ascites/volume overload  

 

31 (25) 

45 (36) 

 

19 (11) 

3 (2) 

 

10 (6) 

25 (15) 

 

<0.0001 

<0.0001 

Child-Pugh Score 

          A 

          B 

          C 

          Missing data 

 

41 (41)** 

34 (34) 

10 (10) 

8 

 

120 (71) 

41 (24) 

9 (5) 

0 

 

121 (77) 

30 (19) 

6 (3.7) 

2 

 

 

<0.0001 

 Median INR (IQR) 1.2 (11-1.3) 1.1 (1-1.2) 1.1 (1.1-1.3) 0.0001 

Median AST (IQR)  45 (33-60) 65 (35-113) 84 (49-128) <0.0001 

Median ALT (IQR) 32 (21-45) 54 (32-84) 64 (38-114) <0.0001 

Median bilirubin (IQR) 1.2 (0.7-2.3) 0.9 (0.7-1.6) 1.1 (0.8-1.6) 0.0246 

Screened for HCC, n (%) 56 (44) 79 (47) 95 (58) 0.0503 

Family history HCC, n (%) 10 (8) 42 (25) 8 (5) <0.0001 

** excludes patients without cirrhosis (see table 3) 
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Table 2- Presenting tumor characteristics between NAFLD, HBV and HCV 

 NAFLD HBV HCV P value 

Within Milan 85 (68) 78 (46) 112 (69) <0.0001 

Within UCSF 100 (80) 92 (55) 131 (80) <0.0001 

Median first tumor size (cm) 

(IQR) 

2.9 (2-4.5) 4 (2.4-7.6)  3 (2.1-4.6) 0.0003 

Median tumor numbers (IQR) 1 (1-2) 1 (1-2) 1 (1-2) 0.232 

Median tumor growth  

(% per month) (IQR) 

4.5% (1.3-13.7) 7.3% (1.8-14) 5.7% (1.6-11.4) 0.6636 

AFP-producers 35 (35) 111 (66) 124 (76) <0.0001 

Most definitive therapy, n (%): 

          OLT 

          Resection  

          RFA 

          TACE/Y-90 

          PEI 

          Chemotherapy 

          Supportive  

 

50 (40) 

14 (11) 

26 (21) 

13 (10) 

0 (0) 

5 (4) 

17 (14) 

 

19 (11) 

37 (22) 

20 (12) 

27 (16)  

2 (1) 

14 (8) 

51 (30) 

 

30 (19) 

14 (9) 

24 (15) 

26 (16) 

6 (4) 

4 (3) 

 55 (35) 

 

 

 

<0.001 

 IQR=interquartile range; AFP= alpha-fetoprotein; RFA=radiofrequency ablation; TACE=trans-

arterial chemoembolization; OLT=orthotopic liver transplantation 
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Table 3- Clinical and tumor characteristics between the cirrhosis/advanced fibrosis versus non-

cirrhosis group within the NAFLD cohort  

 Cirrhosis/advanced fibrosis 

(n=102) 

Non-cirrhosis 

(n=23) 

P value 

Males n, % 57 (56) 9 (39) 0.170 

Mean age at HCC dx  ± 

SD 

64.3 ± 7.4 67.1± 12 0.286 

Hispanic ethnicity 50 (49) 2 (9) 0.0001 

Median BMI (IQR) 31.7 (28-34) 25.5 (22-30) 0.0007 

T2D/GI, n (%) 72 (71) 14 (61) 0.478 

Median  A1c (IQR) 5.9 (5.4-6.9) 6.1 (5.4-6.5) 0.909 

Hypertension, n (%) 67 (67) 17 (74) 0.623 

Dyslipidemia, n (%) 30 (29) 13 (56) 0.0268 

AFP-producers, n (%) 

          Yes 

          No 

          Missing or no AFP 

 

29 (29) 

63 (62) 

8 (8) 

 

6 (26) 

14 (58) 

3 (13) 

 

>0.999 

Screened, n (%) 60 (58) 1 (4) <0.0001 

FHx of HCC, n (%) 9 (9) 4 (17) 0.266 

FHx LD, n (%) 27 (26) 4 (17) 0.187 

SD=standard deviation; IQR= interquartile range; GI=glucose intolerance; T2D=type 2 diabetes; 

FHx=family history; AFP=alpha-fetoprotein; LD=liver disease.   
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Figure 1-Overal and recurrence free survival of NAFLD, HBV and HCV cases. A. Overall 

survival of the three groups; B. Overall survival in all three groups without non-cirrhosis NAFLD 

group; C. Recurrence free survival for all three groups; D. Recurrence free survival in all three 

groups without the non-cirrhosis NAFLD group.    
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Table 4- Cox multivariable analysis of patients and treatment variables associated with overall 

survival and recurrence free survival.  

Variable HR 95% CI P value 

Overall Survival 

Male gender 0.140 0.893-1.543 0.250 

Etiologies:  

HCV vs HBV 

NAFLD vs HBV 

NAFLD vs HCV 

 

0.711 

0.235 

0.331 

 

0.523-0.966 

0.105-0.525 

0.145-0.694 

 

0.0293 

0.0004 

0.0034 

Ethnicity 

African American 

White 

Asian 

Hispanic 

Not Hispanic 

 

Ref 

0.888 

0.825 

1.331 

1.089 

 

- 

0.312-2.523 

0.298-2.285 

0.449-3.948 

0.287-4.131 

 

- 

0.8230 

0.7108 

0.6066 

0.9001 

Most definitive treatment: 

Chemotherapy 

OLT 

PEI 

Resection 

RFA 

Supportive care 

TACE 

 

Ref 

0.115 

0.366 

0.177 

0.175 

1.325 

0.539 

 

- 

0.062-0.214 

0.142-0.938 

0.096-0.328 

0.093-0.329 

0.784-2.240 

0.309-0.939 

 

- 

<0.0001 

0.0364 

<0.0001 

<0.0001 

0.2936 

0.0290 

Recurrence Free Survival 

Male gender 1.197 0.920-1.558 0.1799 

Etiologies:  

HCV vs HBV 

NAFLD vs HBV 

NAFLD vs HCV 

 

0.792 

0.487 

0.325 

 

0.590-1.063 

0.242-0.977 

0.325-1.161 

 

0.1199 

0.0429 

0.1336 

Ethnicity: 

African American 

White 

Asian 

Hispanic 

Not Hispanic 

 

Ref 

0.966 

0.947 

1.280 

1.146 

 

- 

0.340-2.745 

0.343-2.619 

0.433-3.780 

0.323-4.061 

 

- 

0.9489 

0.9169 

0.6553 

0.8327 

Most definitive treatment: 

Chemotherapy 

OLT 

PEI 

Resection 

RFA 

Supportive care 

TACE 

 

Ref 

0.114 

0.432 

0.306 

0.339 

1.446 

0.694 

 

- 

0.062-0.211 

0.168-1.111 

0.168-0.556 

0.190-0.605 

0.852-2.455 

0.401-1.203 

 

- 

<0.0001 

0.0816 

0.0001 

0.0002 

0.1718 

0.1935 
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Appendix: 

 

JCCC and UCLA EMR 

  

1. Males and females 

2. Age 18 years at the initial diagnosis of HCC and NAFLD and/or NASH 

3. Dates 01/01/2000-12/31/2016 

4. Diagnosed with Hepatocellular Carcinoma (HCC) 

a. Either listed on JCCC Cancer Registry list (~3k patients) 

b. OR has diagnosis of Hepatocellular carcinoma (HCC) by EMR as defined by: 

1. ICD-9 or ICD-10: (155.2, 155.0) [C22.8, C22.0, C22.7]  

AND DIAGNOSED with one of the following comorbidities: 

5. Non-alcoholic fatty liver disease (NAFLD) patients 

a. NAFLD by (ICD-9) or [ICD-10]: (571.8, 571.9, 573.8, 573.9) [K76.9, K76.0, 

K76.89, K76.81] 

6. OR Non-alcoholic steatohepatitis (NASH) patients 

a. NASH by (ICD-9) and [ICD-10]: (571.8, 571.9, 573.8, 573.9) [K75.81, K75.8, 

K75.9] 

b. NASH by pathology natural language processing using the following keywords: 

(NAFLD Activity Score (NAS) and include fibrosis score F0-F4): 

c. "steatohepatitis", "ballooning", "NAFLD activity score", “NASH” or “NAFLD” 

7. OR metabolic syndrome (Please flag metabolic syndrome patients) 

a. Metabolic syndrome defined by ICD-9 or ICD-10: (277.7) [E88.8] 

b. OR Metabolic syndrome as defined by: diabetes [(ICD-9: 250.00) [ICD-10: E11]: 

Diabetic nephropathy N08.3, Diabetic polyneuropathy G63.2, Diabetic 

retinopathy H36.0], hypertension [portal hypertension (572.3 or K76.6) or 

Hypertension (401.9)] and hyperlipidemia (272.4) or [E78.4, E78.5] 

ADDITIONALLY,  

Evaluated all EMR patient from oncology liver clinic and all patients who had hepatic resection 

from 2010-2016 (separate lists). 

Abstracted medications, A1c, liver tests, AFP level, all radiology data, all pathology data.   

 

All EMR data was ranked based on following keywords: "steatohepatitis", "ballooning", 

"NAFLD activity score", “NASH”,  “NAFLD” or “metabolic syndrome” 
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Chapter 3 

 

Novel lipid lincRNA OLMALINC regulates the liver steatosis gene, SCD, as an enhancer RNA 
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Introduction: 

 

The metabolic syndrome (MetS), as defined by the clustering of phenotypic, biochemical and 

clinical factors, has reached epidemic proportions in the United States 73. Non-alcoholic fatty liver 

disease (NAFLD), the liver manifestation of the MetS, has also increased in parallel with other 

determinants of the MetS 74. NAFLD ranges from simple steatosis to inflammatory non-alcoholic 

steatohepatitis (NASH), which can lead to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) 

48. The pathophysiology and interplay of the MetS and NAFLD are complex, multi-factorial, and 

include both genetic and environmental contributions.   

 

Intrahepatic lipid accumulation, steatosis, is the hallmark of NAFLD 75,76. Although the pathogenic 

pathways that cause progression from steatosis to steatohepatitis and fibrosis remain elusive, 

human and murine models have demonstrated that lipid dysregulation plays an important role in 

the NAFLD pathogenesis 76-79. Blood lipidomics data in NAFLD patients 77,80,81 and murine knock-

out models 82 have also shown the importance of the monounsaturated fatty acid rate-limiting 

enzyme, stearoyl-CoA desaturase (SCD) in the MetS, steatosis, and NAFLD 77,80,81. Targeting 

SCD in murine NASH models has shown promising results 83, which has recently led to human 

clinical trials with early phase data demonstrating reversal of hepatic steatosis using Aramchol, an 

SCD activity inhibitor 84.   

 

As advances in deep and high-throughput sequencing have emerged, novel players have been 

identified in lipid biology, including the identification of a unique group of non-coding genes 

called long non-coding RNAs (lncRNAs) 85. LncRNAs are >200 nucleotides long, show tissue and 

cell-type specificity, and can differentially regulate signaling pathways 86. Understanding their 

biology has provided insight into new ways in which known key metabolic genes and proteins are 
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regulated beyond previously described mechanisms, such as acting as scaffolds to complex 

proteins and enhancer RNAs (eRNAs), and modifying chromatin states 85,87. This has included the 

role of lncRNAs in the regulation of cholesterol and lipid pathways 88.  However, to the best of our 

knowledge, no eRNA lincRNAs have been discovered to regulate lipid metabolism as of yet. 

 

In the present study, we identified the long intervening non-coding RNA (lincRNA), 

Oligodendrocyte Maturation-Associated Long Intergenic Non-Coding RNA (OLMALINC), in a 

statin- and triglyceride (TG) -associated liver co-expression network utilizing liver RNA-

sequencing (RNA-seq) from 259 Finnish bariatric surgery patients from the Kuopio OBesity 

Surgery (KOBS) cohort with refined clinical phenotypic and liver histology data. We demonstrate 

that OLMALINC liver expression is highly correlated with the key lipid and TG pathway genes in 

the liver RNA-seq data, including SCD. We further functionally show that OLMALINC regulates 

this central TG metabolism gene, SCD as a regional eRNA. Taken together, these novel data 

indicate that SCD is regulated by the adjacent lincRNA, OLMALINC, which likely contributes to 

its central function in TG metabolism and liver steatosis.  
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Materials and Methods: 

Study cohorts  

The Kuopio OBesity Surgery (KOBS) cohort was recruited at the University of Eastern Finland 

and Kuopio University Hospital, Kuopio, Finland 89. All participants provided informed consent 

and the study was approved by the local ethics committee. The liver RNA-seq cohort comprises 

259 Finnish KOBS participants who underwent bariatric surgery, during which liver biopsies were 

obtained. Clinical measurements were performed as described previously 89. We also analyzed 

liver RNA-seq data on 96 GTEx samples 90.  

 

Histological assessment of the liver biopsy and meta-liver trait, D1 

The NASH Clinical Research Network (CRN) criteria were used to evaluate the liver histological 

data 91. The following attributes were used: steatosis grade (0-3), lobular inflammation (0-2), 

ballooning (0-2), and fibrosis stage (0-4). The diagnosis for NASH was also determined by the 

pathologist following the standard guidelines 92,93. To determine the NAFLD status with liver 

RNA-seq data, we performed a non-linear principal component analysis (PCA) using the homals 

R package 94 on the four CNR liver histological phenotypes and used the first principal component 

(PC1) as the aggregated meta-liver trait (D1) for NAFLD (Figure 1A). We note that the D1 is 

negatively correlated with the histological parameters, i.e. a higher D1 represents a healthier liver 

(Figure 1A). 

 

 Liver RNA-seq and expression quantification 

RNA samples were isolated a using the miRNeasy (Qiagen) kit and sequencing libraries were 

prepared using Ribo-Zero gold (Illumina) kit to remove ribosomal RNAs. External RNA Controls 

Consortium (ERCC) spike-ins (ThermoFisher Scientific) were added as controls. We quantified 
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the transcript abundance as read counts and transcript per million (TPM) using Kallisto 95, based 

on GENCODE version 25 liftover to hg19 gene annotation. Gene-level quantification is estimated 

as the sums of read counts and TPM of all transcripts of a gene. To remove lowly expressed genes, 

a gene had to have >10 reads in 80% of samples, resulting in 15,670 genes in the final analysis. 

 

Hidden covariate estimation for RNA-seq  

We performed a supervised surrogate variable analysis (sSVA) 96 on TPMs and used the 92 ERCC 

spike-in transcripts as invariable controls to estimate hidden confounders in the liver RNA-seq 

data.  The following covariates were included in the sSVA analysis: uniquely aligned reads %, 

mitochondrial reads %, 3’ bias, BMI, sex, and age. Overall, 25 latent factors were estimated and 

we included all sSVA factors and known covariates in down-stream analyses. GTEx data do not 

contain ERCC spike-ins, so we did not carry out sSVA analysis, but adjusted for the same 

covariates as in KOBS.  

  

Statistical analysis for WGCNA, gene correlations, and expression-trait associations 

Statistical analyses were performed in R. We transformed raw TPM to log2(TPM+1) and then 

performed empirical Bayes-moderated linear regression implemented in the WGCNA package 97 

(function empiricalBayesLM) to correct for covariates while retaining the variation due to the trait 

of interest. We calculated pairwise gene correlation using biweight correlation allowing a 

maximum of 5% outliers, and subsequently built a signed network using the soft threshold power 

of 12.  The eigen-gene of each module was calculated and used for trait association tests. To test 

the module preservation in GTEx, we re-processed the RNA-seq raw reads using our pipeline, the 

same QC and genes expressed in both KOBS and GTEx. A module with a preservation summary 

Z-statistics >10 was considered as strongly preserved 98. Pair-wise gene expression correlation 
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between OLMALINC and all other genes were calculated using biweight correlation and the 

adjusted TPMs. We used linear and logistic regression in all trait association tests where the 

adjusted gene expression level and trait were treated as dependent and independent variables, 

respectively. The quantitative traits were adjusted for age and sex as well as inverse normal 

transformed to avoid outlier effects.    

 

 

Cell culture  

We maintained HepG2 (ATCC) and Fa2N4 (Xeno Tech) cells in a monolayer culture at 37oC with 

5% CO2.  The base medium was EMEM for HepG2 (Corning) or base media for Fa2N4 (Xeno 

Tech) containing 100 U/ml penicillin and 100 g/ml streptomycin sulfate (GE Healthcare 

Sciences). We tested the cells for mycoplasma contamination using SoutherBiotech Mycoplasma 

Detection Kit.   

 

Reagents and transfections  

For ASO treatment, 0.5 million cells were grown to ~70% confluency in 6-well plates in triplicates 

(in 10% FBS containing 1g/L of glucose with penicillin/ampicillin). Cells were treated with Opti-

MEM (Gibco), Lipofectamine RNAiMax (Invitrogen 13778100) and the ASO (IDT) at a final 

concentration of 50-100 nanomoles.  The control ASO was designed to have similar modifications 

to the OLMALINC ASO. Cells were transfected at a final concentration to 30 pmoles for siRNAs. 

ASO and siRNA sequences are provided in Supplemental Tables 3S and 4S. For plasmid 

transfections, we used Lipofectamine 3000 (Invitrogen) with 2 ug of DNA. For the time point 

experiments, cells were incubated overnight in 0.25% BSA (Simga) followed by treatment in 

corresponding conditions outlined in the figures 99. We obtained Lipoprotein deficient medium 

(LPDS) from Kalen Biomedical LLC; Simvastatin sodium salt from Calbiochem dissolved in 
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DMSO; and GW 3965 and mavelonic acid were purchased from Sigma Aldrich. Oleic acid was 

purchased from Sigma Aldrich.  For cellular localization experiments, we used the PARIS Kit 

(Invitrogen). GFP control and OLMALINC cDNA plasmids were obtained from GeneCopoeia.                  

 

RNA purification, cDNA synthesis and real time quantitative PCR (RT-qPCR)  

We harvested cells in TRIzol (Invitrogen) and extracted their RNA using Direct-Zol (Zymo 

Research) according to the manufacturer’s protocol. We synthesized cDNA using the Maxima 

First Strand cDNA Synthesis Kit (Thermo Scientific). RT-qPCR was performed using 

SYBRGreen reaction mix (Applied Biosystems) and Studio 5 detection system (Applied 

Biosystems). 36B4 was used as an internal control to normalize the data. The primer list is provided 

in Supplemental Table 2S.   

 

Conservation and synteny of OLMALINC  

To study the conservation of the OLMALINC locus, we used the NCBI HomoloGene and the mouse 

and human ENSEMBL data. We evaluated the conservation of OLMALINC between human and 

mouse by aligning DNA segments sequentially between the mouse and the human using blast 

(GRCh37/hg19), utilizing the blastn function: word size 11, expected threshold 10, match score of 

2, and mismatch score of -3. We also used the mouse ENCODE data (Mouse mm10) to identify 

RNA polymerase II and histone methylation markers.   

 

Promoter Capture Hi-C  

We performed the promoter Capture Hi-C in 2 biological replicates of 10 million HepG2 cells 100. 

The libraries were sequenced on the Illumina HiSeq 4000 to obtain ~114 million paired-end reads. 

The reads were processed as described in 101, using HiCUP 102 v0.7.2 software and aligning to the 
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GRCh37/hg19 102. Significant interactions were identified using the CHiCAGO software 103 

v1.1.1.      

 

GRO-sequencing  

GRO-seq libraries were prepared according to previously described protocols in HepG2 cells (10% 

FBS) 104,105. Illumina HiSeq 2000 platform was used to sequence the libraries after size selection 

(180-350 bp). After quality control, the data was aligned using the GRCh37/hg19. The GRO-Seq 

data is accessible under GEO accession GSE92375.  

   

Activating CRISPR dCas9 stable cell lines  

To generate the activating CRISPR dead Cas9-VP64 (aCRISPR dCas9) stable cell lines, we used 

the pHAGE EF10apha dCas9-VP64 (Addgene #50918) plasmid 106. Cells were transduced with 

polybrene (1g/ml) for 2-3 days followed by selection with 4ug/ml of puromycin for 7 days. Single 

clone isolation was obtained following the serial dilutions. Clones expressing the dCas9 were 

confirmed by RT-qPCR of the dCas9 gene. We used two OLMALINC guide RNAs (gRNAs) 

targeting the promoter region of OLMALINC 107. gRNAs were obtained from VectorBuilder 

(Shenandoah, TX).  

 

CRISPR Cas9 of the OLMALINC enhancer/promoter region  

Using IDT Alt-R CRISPR-Cas9 genome editing tools, gRNAs were designed to flank the 

enhancer/promoter region of OLMALINC which was identified using ENCODE, GRO-seq, and 

promoter Capture Hi-C. Four gRNAs were used to identify the most efficient gRNAs 

(supplemental table 3S). RNA protein complexes were prepared using Alt-R S.p. Cas9 Nuclease 

V3 (IDT) with the OLMALINC gRNAs. HepG2 cells were transfected with Opti-MEM (Thermo 
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Fisher Scientific) and Lipofectamine RNAiMax (Invitrogen) for 48 hours. Transfection efficiency 

was evaluated using light and fluorescent microscopy (Texas Red-X) using the BZ-X710 

fluorescent microscope. The FACAriaII cytometer was used to quantify the efficiency of 

transfection using FACDiva Version 8.0.2. HepG2 genomic DNA was extracted using PureLink 

Genomic DNA extraction kit (Thermo Fisher Scientific). The PCR of the genomic DNA was 

conducted using primers flanking the gRNA cut sites to detect efficiency of all clones, as well as 

to amplify regions within the OLMALINC wild type. These were confirmed using RT-qPCR.   

 

Western blots 

Cells were washed and lysed in 1X Laemmli SDS sample buffer (Alfa Aesar). Lysates were 

seprated by SDS-PAGE (4-15% polyacrylamide)  pre-cast gels (BioRad) overnight, transferred to 

a polyvinylidene difluoride membrane (Immobilon, Millipore Corp.), and blocked for 1 hours in 

5% blocking solution (Biorad). The membrane was incubated in 1:1000 primary SCD antibody 

(ThermoFisher) overnight at 40C followed by washes in and 1:1000 secondary mouse antibody 

for 45 min. The membrane was washed after which immunoreactive proteins was detected using 

chemiluminescence (Biorad). Beta-actin and secondary mouse antibodies was kindly provided by 

Dr. Enrique Rozengurt’s laboratory as a loading control.   

 

Statistical methods of the cellular data  

For the in vitro HepG2 and Fa2N4 experiments, numeric outcomes are summarized as means ± 

standard deviation (SD) or ± standard error of the mean (SEM). All relative expression values were 

measured using the ΔΔCt. Experimental groups were compared using unpaired Student’s t test (for 

two groups). Analyses were performed using GraphPad Prism version 7.0c. Statistical significance 

was defined as P < 0.05. Graphs were made in GraphPad Prism and assembled in Inkspace.     
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Results: 

Identification of OLMALINC in the statin- and triglyceride-associated liver co-expression 

network: 

To identify new genes involved in central liver functions, we performed a weighted gene co-

expression network analysis (WGCNA) on the liver transcriptomes from 259 participants (40% 

statin users) in the KOBS bariatric surgery cohort and tested the association of co-expression 

modules with statin use, serum TGs, and other metabolic and liver histology phenotypes measured 

in this cohort. Thirteen of the 19 co-expression modules were significantly associated (FDR<0.05) 

with at least one of the clinical or histological traits (Figure 1A), including the light cyan module 

(75 genes) that was significantly associated with statin use (FDR=2.0x10-15) and serum TGs 

(FDR=7.7x10-5), among other traits (Figure 1A). We validated the module preservation in an 

independent human liver RNA-seq cohort, Genotype-Tissue Expression (GTEx), by investigating 

the GTEx subjects whose causes of death were not liver diseases (n=96). Most trait-associated 

liver modules, such as the statin- and TG-associated light cyan module, were either preserved (Z 

score>3) or highly preserved (Z score>10) in the GTEx livers (Supplementary Figure 1), 

respectively, suggesting that gene co-regulation related to main liver functions is robust and 

consistent across human cohorts. Notably, we observed that the 75 genes in the statin- and TG-

associated light cyan network module (Figure 1A-B) comprise 19 known cholesterol pathway 

genes, 33 fatty acid and metabolic pathway genes, and several potentially novel statin response 

and TG genes, including the lincRNA, OLMALINC. In line with its statin and TG associations, 

this light cyan module was enriched for the steroid biosynthesis pathway, fatty acid metabolism, 

and other metabolic pathways (FDR<0.05) (Supplementary Figure S2) using the KEGG pathway 

database. 
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Since the lincRNA OLMALINC, identified in the lightcyan module, resides immediately 

downstream from the main TG metabolism gene, stearoyl-CoA desaturase (SCD), on human 

chromosome 10, and given that lincRNAs often regulate adjacent coding genes 108, we next 

individually tested the correlation of the OLMALINC liver expression with SCD and detected a 

significant correlation of ß=0.44 with FDR=4.57x10-11 (Supplemental Table 1S). We observed that 

SCD in turn resides in another WGCNA network, the midnight blue module, that is strongly 

associated with serum TGs (FDR=2.7x10-9) and liver steatosis (FDR=5.9x10-7) (Figure 1A).  

 

Next, we followed up the OLMALINC and SCD co-expression findings and their mutual 

associations. We first tested if the liver expression of OLMALINC is individually associated with 

statin usage. When counting for multiple testing of the 75 genes in the lightcyan module using 

Bonferroni (which is a conservative approach because these co-expressed module genes are not 

entirely independent), OLMALINC was nominally associated with statin use (p=0.0035, Figure 

1B). Thus, the statin users appear to have a higher OLMALINC liver expression than the non-users 

in the KOBS cohort, fully supported by our in vitro statin response results in HepG2 cells (see 

below; Figure 3). Similarly, SCD liver expression was also higher in the statin users of the KOBS 

cohort (p=0.0027), again in line with our in vitro HepG2 results (see below; Figure 3). We also 

detected a significant association between OLMALINC liver expression and fasting serum TGs in 

the KOBS cohort (ß=0.27, p=0.001, passing the Bonferroni correction for 7 traits, Supplemental 

Table 2S). In line with this observation, SCD liver expression was significantly associated with 

serum TGs (ß=0.48, p=0.13x10-7) in the KOBS cohort as well. Finally, although OLMALINC was 

not associated with steatosis or other liver histology traits (Supplemental Table 2S), SCD liver 

expression was associated with liver steatosis (ß=0.35; p=0.0054) but not NASH (ß=0.27; 

p=0.107). Taken together these novel data suggest the possibility that OLMALINC regulates its 
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adjacent regional protein coding gene, SCD, which is likely the driver in liver steatosis among the 

two, while both genes are associated with serum TG levels and respond to the statin use. To further 

investigate this new hypothesis that OLMALINC regulates SCD, we performed functional 

genomics studies, as described below. 

 

To assess OLMALINC gene expression in other human tissues, we analyzed the RNA-seq data 

from the GTEx project and found that OLMALINC is ubiquitously lowly expressed, as expected 

from a lincRNA. After the brain, the most abundant OLMALINC expression can be seen in the 

liver and other endocrine/hormone-regulated organs (Supplemental Figure S3).  

 

Overview of our functional genomic approaches to study OLMALINC in lipid metabolism: 

We aimed to study the function of OLMALINC by utilizing molecular genomics approaches 

(Supplemental Figure S4). Since the chromosomal location of OLMALINC is directly downstream 

of SCD (see below), we first demonstrate that OLMALINC is an enhancer of SCD transcription by 

forming a DNA-DNA looping interaction (Supplemental Figure S4A). This was confirmed by 

CRISPR-Cas9 genetic deletion of this region (Supplemental Figure S4B) and endogenous 

transcriptional over-expression using the activating CRISPR-dead Cas9 (aCRISPR-dCas9) gene 

editing system (Supplemental Figure S4d). To complement our CRISPR-Cas9 gene editing, we 

confirm that OLMALINC positively regulates SCD expression (Supplemental Figure S4C) by 

using an ASO which preferentially localizes to the nucleus. We further show that OLMALINC 

expression increases with SCD siRNA (Supplemental Figure S4E) but decreases with oleic acid 

treatment, a by-product of SCD enzyme activity.        

 

OLMALINC is statin, sterol, and LXR responsive: 
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Using data from the ENCODE project and chromatin immunoprecipitation sequencing (ChIP-seq) 

from HepG2 cells, we found two active transcription start sites (TSSs) characterized by a RNA 

polymerase II binding site, a 5’ CAGE peak, and active histone modification markers characteristic 

of enhancer- and promoter-elements, in the OLMALINC-SCD region (Figure 2A). GRO-seq data 

in HepG2 cells, used to assess nascent RNA, not only confirms two active TSSs in the enhancer 

and promoter of OLMALINC, but also demonstrates bi-directional transcription, suggesting that 

OLMALINC could function as an enhancer to SCD (Figure 2A). Using the ENCODE project data, 

we identified SREBP1 and SREBP2 ChIP-seq sites at the OLMALINC TSSs (Figure 2B). We 

hypothesized that OLMALINC expression would be statin and sterol responsive, based on our 

correlative results from the liver RNA-seq data in the KOBS cohort. Using RT-qPCR, we 

demonstrate that OLMALINC expression increases with statin and sterol treatments in a time-

dependent manner, demonstrating that it is both a sterol- and statin- responsive gene in HepG2 

(Figure 3A). Although there is a similar trend in the non-cancerous Fa2N4 cell line none of the 

increases show a significant increase (Figure 3B). These data are consistent with the human liver 

RNA-sequencing results in the KOBS cohort, which demonstrate a positive correlation of 

OLMALINC with liver cholesterol gene expression and a membership in the statin module of our 

WGCNA analysis (Figure 1; Supplemental Table 1S). We also show that OLMALINC expression 

is LXR-responsive as cells treated with the synthetic liver LXR and LXR agonist, GW3965, 

increase OLMALINC expression (Figure 3, C-D). We identified an LXR responsive element 

(LXRE-DR4)T(G/A)A(C/A)C(T/C)XXXXT(G/A)A(C/A)C(T/C) in the OLMALINC promoter 

(Supplemental Figure 5S). This is consistent with OLMALINC having a retinoid X receptor alpha 

(RXR) ChIP-seq binding site, which forms a heterodimer with LXR and LXR to activate 

transcription (Figure 2B), suggesting thus a direct role of LXR in regulating OLMALINC liver 

expression.   



 57 

 

OLMALINC function: 

To study OLMALINC function, we analyzed its cellular localization, which did not demonstrate a 

significant difference between the cytoplasmic and nuclear extracts for exons 1-2 (RT-qPCR of 

exons 2-3 demonstrates a preferential cytoplasmic expression of the stable transcript) 

(Supplemental Figure S6B). All subsequent RT-qPCR data that we present were conducted by 

measuring exons 1-2 (shared between the identified isoforms). A ~50% knock-down of 

OLMALINC by an ASO (of exon 2) resulted in a decrease in SCD expression (Figure 4A; 

Supplemental Figure S4C). Conversely, when SCD is knocked down, we observed an increase in 

OLMALINC expression (Figure 4B-C). These data suggest that OLMALINC expression is 

responsive to SCD expression, its protein level, or the monounsaturated fatty acid (MUFA) 

byproducts. Given that SCD resides upstream of OLMALINC and previous observations that 

lincRNAs can regulate genes in cis, we hypothesized that SCD is regulated locally by OLMALINC 

in cis.          

 

The cis effects of OLMALINC on SCD expression:  

OLMALINC resides directly downstream of SCD, the microsomal enzyme that converts 

polyunsaturated fatty acids into monounsaturated fatty acids (MUFAs). OLMALINC liver 

expression is significantly correlated with SCD expression (ß=0.44; FDR=4.57E-11, Supplemental 

Table S1) and serum TGs (Supplemental Table S2), suggesting a role for OLMALINC in TG 

regulation. The chromosome 10 region of OLMALINC and SCD in humans has synteny with 

chromosome 19 of the mouse genome where WNT8B, SCD1, SCD2, SCD3 and SCD4 are localized 

in a ~330 kb region (Supplemental Figure S7). However, no orthologues of OLMALINC were 
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identified in the mouse. Consistent with these findings, no histone methylation markers or RNA 

polymerase II ChIP-seq sites were found in the mouse genome between WNT8B and SCD1 to 

suggest a TSS (Supplemental Figure S8). Similar to other lincRNAs, OLMALINC only shows a 

high homology in primates 109. 

 

Since lincRNAs often exert their function by affecting adjacent genes, we hypothesized that 

OLMALINC may regulate SCD expression in cis by acting as an enhancer. To further investigate 

this, we performed promoter capture Hi-C in liver HepG2 cells (in 10% FBS) and identified a 

DNA-DNA looping interaction between the promoter of SCD and the annotated 

promoter/enhancer of OLMALINC (Figure 5A, Supplemental Figure S4A). This interaction is cell-

type specific given that no interaction was identified between SCD and OLMALINC in human 

adipocytes despite the high SCD adipocyte expression 100. These promoter capture Hi-C interaction 

data suggest that OLMALINC acts via looping in cis to affect transcription of SCD. It is worth 

noting that since OLMALINC and SCD have a bi-directional promoter (Figure 2B), it is possible 

that the looping interaction is strand-specific; however, only the positive strand was interrogated 

when targeting the promoter for CRISPR Cas9 (see below).  

 

To further investigate the cis local regulatory effects, we used an activating CRISPR dead Cas9-

VP64 (aCRISPR dCas9) to over-express OLMALINC endogenously using previously validated 

gRNAs in a constitutively expressing dCas9 cell line 107,110. By RT-qPCR, we demonstrate that a 

~1.8-fold increase in OLMALINC expression resulted in a 2-fold increase in SCD expression 

(Figure 5B, Supplemental Figure S4D).  
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To further tease out the local transcriptional versus post-transcriptional effects of OLMALINC 

regulation, we investigated the effects of its transcript on SCD expression. OLMALINC is 

annotated to have several transcripts (data not shown). Expression of a stable transcript with 3 

exons was confirmed by Sanger sequencing of the PCR products (Supplemental Figure S6A) and 

alignment analysis of the liver RNA-seq (data not shown). When the mature OLMALINC transcript 

is overexpressed using a cDNA construct (exons 1-3), we observed no downstream effects on SCD 

gene expression (Figure 5C). In conjunction with the endogenous over-expression data (aCRISPR 

dCas9), our results confirm that SCD regulation by OLMALINC occurs at the transcriptional level, 

likely through the cis effects.  

 

To target the cis effects of OLMALINC on SCD, we used CRISPR-Cas9 gene editing to delete the 

~3.5 kb region of OLMALINC, which encompasses the SREBP1/2 binding sites, TSSs, LXR 

element, and the capture Hi-C looping interactions (Figure 6A-C). Using a fluorescently-labeled 

tracrRNA, we determined that our transfection efficiency of the HepG2 cells was 84% 

(Supplemental Figure S9), thus showing success in targeting the majority of the cells.  The cells 

demonstrate ~50% decrease in OLMALINC expression, which causes a decrease in SCD 

expression (Figure 6D, Supplemental Figure S4B). Whether the SCD expression effects are 

specific to disruption of DNA-DNA interactions between SCD and OLMALINC encompassing the 

promoter/enhancer region or are a by-product of large DNA deletions remains to be tested. Wnt8B, 

the gene downstream of OLMALINC, is not expressed in human liver, as confirmed by the GTEx 

cohort and our RT-qPCR data in HepG2 cells (data not shown), thus ruling out a Wnt8B-specific 

effect. Taken together, our detailed functional genomic manipulation of OLMALINC expression 

(over-expression at the transcriptional level using aCRIPR-dCas9, over-expression post-

transcriptionally using the mature cDNA transcript, and knocking down OLMALINC RNA via 
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CRISPR-Cas9 and ASO) show that OLMALINC regulates SCD expression in cis as an enhancer, 

likely via looping interactions.  

 

OLMALINC regulation:  

In conjunction with the ENCODE data, we demonstrated that OLMALINC is sterol-, statin- and 

LXR- responsive (Figures 2 and 3). Given the cis effect of OLMALINC on SCD and the known 

regulation of SCD by the SREBP1 and SREBP2 pathways 111, we sought to further understand 

OLMALINC regulation by these transcription factors. To accomplish this, we knocked down 

SREBP1 and SREBP2 using siRNAs to study those effects on OLMALINC expression. We 

observed that knock-down of SREBP2 or SREBP1 alone does not affect OLMALINC expression 

or SREBP1/2 dependent genes, likely from compensatory effects of the SREBPs (data not shown). 

However, when both SREBP1 and SREBP2 siRNAs are used in conjunction, their target genes, 

including SCD, are decreased, while OLMALINC expression does not decrease (Figure 7A). We 

therefore hypothesized that OLMALINC expression is regulated by SCD by-products, which are 

MUFAs. To test these, we treated HepG2 cells with the MUFA oleic acid at different time points 

and show that OLMALINC expression decreases with oleic acid treatment (Figure 7B), which is 

consistent with the observed increase in OLMALINC expression when knocking down SCD 

(Figure 4B). We observe that OLMALINC gene expression decreases early (18 hours) prior to 

seeing an effect on SCD gene expression, which occurs later at 24 and 48 hours of treatment 

(Figure 4B), when we also see a decrease in SREBP1a and SREBP1c. These data suggest that 

OLMALINC senses and mediates SCD gene expression locally early before SREBP1 transcription 

factor proteins can regulate SCD expression. This is in line with our finding that the OLMALINC 

expression is positively correlated only with serum TGs and not with the other phenotypes in the 

KOBS cohort (Supplemental Table 2S).       
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Discussion: 

In the present study, we combined human liver transcriptomic and in vitro experimental data to 

identify and characterize the lincRNA, OLMALINC in lipid metabolism. We first detected 

OLMALINC in tight correlation with known lipid genes in human liver RNA-seq data, and then 

demonstrate that our human correlative expression data translate to important effects of 

OLMALINC on a key triglyceride gene, SCD. Our study also describes the first eRNA in lipid 

metabolism as our data show that OLMALINC regulates the SCD gene in cis. Specifically, we 

observed that OLMALINC regulates SCD at the transcriptional level in cis by forming a looping 

interaction with the SCD enhancer/promoter region at important DNA elements where 

transcription factors and enhancers can interact and activate gene transcription. Furthermore, as 

SCD encodes an enzyme involved in fatty acid biosynthesis, including the synthesis of the 

monounsaturated fatty acid oleic acid 79, it is noteworthy that in our context-specific lipid loading 

experiments, OLMALINC expression is responsive to the SCD byproduct oleic acid early, 

independently of SREBP1, prior to seeing changes in SREBP1a/c which occurs later. This suggests 

that OLMALINC may have evolved through an independent mechanism to sense and fine-tune 

SCD gene expression early given its proximity to the gene, perhaps to maintain the important 

monounsaturated fatty acid homeostasis.  

 

Cellular cholesterol and lipid homeostasis are tightly regulated to maintain essential lipid-related 

processes in the human membrane 111. Important feedback mechanisms are in place to preserve 

homeostasis at the transcriptional, post-transcriptional and protein level, partly through the SREBP 

transcription factors, which are the master regulators of cellular lipid and cholesterol processes, 

with SREBP1c preferentially activating the fatty acid synthesis pathway 111-113. Recent studies 

have demonstrated the role of lincRNAs in regulating and helping regulate SREBPs in their 
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functions 85. For instance, MALAT1, the nucleus specific lincRNA, inhibits degradation of 

SREBP1c protein by preventing its ubiquitination in the nucleus 114. Similarly, the lncRNA H19 

stabilizes SREBP1c both at the transcript and protein levels, depending if it exerts its function in 

the cytoplasm or nucleus, respectively 115. In our current study, we demonstrate that OLMALINC 

acts as an enhancer for SCD and regulates SCD expression through sensing of its by-products early 

prior to SREBP1-dependent effects.    

 

Patients with NASH and NAFLD have previously been shown to exhibit altered cholesterol and 

triglyceride metabolism 77,80. Since the majority of the participants in the KOBS cohort have some 

form of NAFLD, it is possible that the statin-associated co-expression module we identified in the 

WGCNA analysis may also reflect the primary effect that NAFLD and NASH have on cholesterol 

metabolism. However, the correlative WGCNA data cannot alone separate these two possibilities. 

As SCD and SREBP2 have been shown to be dysregulated in NAFLD and NASH 76,77,80 future 

studies are warranted to elucidate the role of OLMALINC in cholesterol metabolism perturbed by 

NASH.  

 

Recent studies have demonstrated that lncRNAs affect nearby coding gene expression similarly to 

the effects of OLMALINC on SCD expression 116. Through detailed transcriptional analyses, it has 

also been elucidated that the effects on the near-by genes by lncRNAs are not necessarily mediated 

through the transcript but rather by transcriptional regulation (through enhancers and promoters) 

and/or splicing machinery 87. In addition to the important enhancer/promoter region via which 

OLMALINC affects SCD, we show that OLMALINC has a stable, spliced and polyadenylated 

transcript. Given that enhancers generally produce unstable transcripts without a poly-A tail or 
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splicing 117, OLMALINC likely has a secondary function on other targets independently of its cis 

effects on SCD expression, which remains to be elucidated.          

 

Consistent with the importance of SCD in metabolic disorders, patients with NASH demonstrate 

an increased SCD expression in the liver 80. Plasma oleate to stearate (18:1/18:0) and palmitoleate 

to palmitate (16:1/16:0) ratios, which are used as surrogates for systemic SCD activity, are also 

increased in patients with the MetS and NASH, supporting an increase in SCD activity 81. These 

data are corroborated by recent clinical trials targeting SCD protein in NASH (n=58) and HIV 

(who also develop hepatic steatosis) (n=25) patients, which demonstrates reversal of hepatic 

steatosis with treatment  84,118. In agreement with the human data, SCD-/- mouse models are 

protected from adiposity, have decreased de novo lipogenesis and increased fatty acid oxidation 

82. It has also been shown that repletion of oleate through dietary supplementation in global and 

liver-specific SCD knock-out murine models prevents hepatic ER stress and inflammation 119. 

Given these findings, it would not be surprising for a lincRNA to have evolved to maintain MUFA 

homeostasis and provide another layer of early regional regulation to SCD gene expression 

epigenetically via chromosomal looping of this adjacent coding gene. Although far from 

therapeutic considerations, further understanding of OLMALINC function opens up unexplored 

avenues for gene modification and treatment considering its cell- and tissue-specificity.  

 

The present study highlights a novel lincRNA, OLMALINC, that affects a key TG gene by affecting 

SCD expression in cis as a regional eRNA. OLMALINC joins a group of lipid lincRNAs that have 

been described and continue to emerge in lipid homeostasis and pathology 88. In addition to their 

role in regulating important coding genes, they could be one of many factors that explain the cross-

species differences in lipid metabolism. Further unraveling of their biology will provide insight 
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into new cellular mechanisms and may pave the way for better understanding of complex 

cardiometabolic disorders in humans. 
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Figure 1- A, Liver weighted gene co-expression network analyses (WGCNA) identify a 

statin-associated network module (i.e. the light cyan module). The association results 

between the liver WGCNA modules and statin use, serum triglycerides (TGs), and other 

metabolic and histological liver phenotypes in the Finnish KOBS cohort (n=259). D1 indicates 

the aggregated meta-liver trait for NAFLD (see Methods). Numbers in the cells and parenthesis 

indicate the effect sizes and FDRs, respectively. B, Genes in the light cyan module (n=75) are 
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strongly associated with statin medication and involved in cholesterol synthesis. The strength of 

association with statin medication is highly correlated with the module membership of the light 

cyan module. The red line indicates the threshold for the Bonferroni corrected p-value of 0.05. 
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Figure 2- OLMALINC resides downstream of SCD and demonstrates similar regulatory 

regions. A, The annotated OLMALINC promoter (red) and enhancer (orange) demonstrate histone 

methylation marks, 5’ CAGE, and polymerase II ChIP-seq binding sites using the ENCODE data. 

There are two transcription start sites (TSSs): The orange arrow denotes the enhancer-TSS, while 

the red arrow highlights the promoter-TSS. Our GRO-seq data in HepG2 cells show active 

transcription and nascent OLMALINC RNA expression bi-directionally. B, OLMALINC has 

SREBP1/2, pravastatin (pravastatin-treated HepG2 cells with SREBP1/2 peaks), and RXRA (***) 

binding sites where an LXR element (LXRE-DR4) is identified using sequence comparisons.   
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Figure 3- OLMALINC expression is responsive to sterols, statins and LXR agonists in HepG2 

(A, C) and Fa2N4 (B, D) cells. A-B, OLMALINC and SCD increase expression by RT-qPCR in a 

time-dependent manner under sterol-depleted conditions supplemented with statin treatment (5% 

lipoprotein deficient media with 5 µM simvastatin and 50 µM mavelonic acid) when compared to 

sterol rich conditions (10% FBS) supplemented with DMSO vehicle control, similarly to SREBP2 

and its downstream gene HMGCS1. Each time point was normalized to its DMSO 10% FBS-

treated time point. C-D, OLMALINC gene expression increases after 24-h treatment of GW3695 

(an LXR and LXR agonist) when compared to the DMSO vehicle control in 5% LPDS with 5 

µM simvastatin and 50 µM mavelonic acid, as measured by RT-qPCR. Values are mean ± s.d. 

(n=3) for A and C or mean ± s.e.m. for B (n=3).  *P<0.05; **P<0.01, and ***P<0.001 (unpaired 

Student’s t test was used for two groups).  
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Figure 4- OLMALINC ASO introduced to HepG2 cells cause a decrease in expression of 

OLMALINC and target genes. A, OLMALINC and target gene expression, measured by RT-

qPCR, decrease after 24-h and 36-h treatment with an ASO targeting exon 2 of the OLMALINC 

gene. B, Validation of SCD protein antibody (38 kDa) after treatment with scramble, SCD and 

SREBP1 with SREBP2 siRNAs after 96-h. C, OLMALINC gene expression increases after 48-h 

treatment with an SCD siRNA compared to the scramble control. Values are mean ± s.d. (n=3). 

*P<0.05; **P<0.01, and ***P<0.001 (unpaired Student’s t test was used for two groups). 
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Figure 5- OLMALINC regulates SCD gene expression in cis by forming DNA-DNA looping 

interactions. A, Promoter-Capture Hi-C data in HepG2 cells demonstrate DNA-DNA looping 

interactions between the OLMALINC enhancer/promoter and the SCD promoter/enhancer regions. 

B, Endogenous OLMALINC over-expression using aCRISPR-dCa9 gene editing increases 

expression of SCD. C, Over-expression of the spliced OLMALINC stable transcript (exons 1-3) 

for 48-h does not affect SCD gene expression. Expression data are normalized to a GFP negative 

control. Values are mean ± s.d. (n=3). *P<0.05; **P<0.01, and ***P<0.001 (unpaired Student’s t 

test was used for two groups). 
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Figure 6- OLMALINC enhancer/promoter deletion using CRISPR-Cas9 gene editing 

decreases SCD gene expression. A, Schematic of primer designs for genomic PCR amplification 

of wild type versus CRISPR-Cas9-mediated OLMALINC promoter/enhancer deletion. Per 

ENCODE HepG2 chromatin state data, red highlights OLMALINC promoter while yellow 

highlights the enhancer. B, Gel electrophoresis of PCR products from amplification of the wild 

type and CRISPR-Cas9 OLMALINC enhancer/promoter deletions from the genomic DNA from 

HepG2 cells. C, Evaluation of transfection efficiency of HepG2 with fluorescently labeled 

tracRNA with ATTO-550 after 24-h, with left panel demonstrating bright field cells and right 

panel the corresponding labeled cells. D, OLMALINC and SCD gene expression by RT-qPCR after 

48-h transfection with the Cas9 enzyme and OLMALINC gRNAs flanking the enhancer/promoter 

region. Values are mean ± s.d. (n=3). *P<0.05; **P<0.01, and ***P<0.001 (unpaired Student’s t 

test was used for two groups).  
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Figure 7- OLMALINC is regulated by monounsaturated fatty acids but not by SREBP1/2. A, 

SREBP1a, SREBP1c, and SREBP2 gene expression after SREBP1 and SREBP2 siRNA co-

transfection for 48 hours, relative to scramble siRNA control. B, OLMALINC expression does not 

decrease after a 48-h co-transfection with SREBP1 and SREBP2 siRNAs, while SCD decreases. 

C-D, SREBP1a, SREBP1c, and SCD expression decreases after lipid loading with 

monounsaturated fatty acids (200 µM oleic acid) 24-h of treatment only, following 8 hours of 

starvation in 0.5% FBS F, OLMALINC decreases its expression after lipid loading with 

monounsaturated fatty acids (200 µM oleic acid) after 18-h and 24-h of treatment, following 8 

hours of starvation in 0.5% FBS. All expression time points are normalized to the corresponding 

gene expression in 0.5% FBS. Values are mean ± s.d. (n=3). *P<0.05; **P<0.01, and ***P<0.001 

(unpaired Student’s t test was used for two groups).   
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Figure 8-[Supplementary figure S1]- Most KOBS liver WGCNA modules are preserved in 

the GTEx liver RNA-seq data (n=96). We considered a Z-score > 10 strongly preserved based 

on the previous guidelines 98. The blue and green horizontal dotted lines indicate the summary 

preservation Z-score at 5 and 10, respectively, and the red dotted line indicates the significant 

threshold for a trait association at FDR<0.05. 
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Figure 9-[Supplementary figure S2]- The statin-associated liver WGCNA network module 

is enriched for steroid biosynthesis, fatty acid and other metabolic pathways. We show the 

top 5 significant preserved pathways (FDR<0.05) of each module. The cyan module is excluded 

due to no enrichments.  
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Figure 10-[Supplemental figure S3]- OLMALINC gene expression across different human tissues 

in the GTEx cohort (expression shown in TPMs).   
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Figure 11-[Supplemental figure S4]- Overview and schematic representation showing how 

OLMALINC regulates SCD in cis. A, The OLMALINC enhancer/promoter regions interact with 

SCD promoter/enhancer regions at the DNA level by forming a DNA-DNA looping interaction. 

B, Deletion of the OLMALINC promoter/enhancer regions by CRISPR-Cas9 gene editing 

decreases OLMALINC and SCD gene expression. C, ASO targeting OLMALINC in HepG2 cells 

causes a decrease in OLMALINC and SCD gene expressions. D, OLMALINC, similarly to SCD, is 

responsive to sterols, statins and LXR agonists. Endogenous over-expression of OLMALINC by 

aCRISPR-dCas9 increases SCD gene expression. E, OLMALINC gene expression increases with 

SCD siRNA knock-down. F, OLMALINC gene expression decreases after treating HepG2 cells 

with the SCD enzyme by-product oleic acid.  
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Figure 12-[Supplemental figure S5]- We identified an LXR responsive element (LXRE-DR4) in 

the annotated OLMALINC promoter similarly to other LXR responsive genes, including FAS and 

SREBP1c. This region is within the RXRA ChIP-seq binding site identified in ENCODE.  
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Figure 13-[Supplemental figure S6]- OLMALINC has three exons expressed in HepG2 cells 

and demonstrates differential cellular localization between the cytoplasm and nucleus based 

on exonic expression. A, PCR (and Sanger sequencing of isolated PCR fragments) confirms that 

OLMALINC expresses exons 1-3 in HepG2 cells under standard conditions. B, RT-qPCR confirms 

expression of exons 1-3 of OLMALINC and demonstrates a higher cytoplasmic expression for 

exons 2-3 when normalized to cytoplasmic expression for exons 1-2. MALAT1 was used as a 

nuclear positive control and GAPDH as a cytoplasmic positive control.      
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Figure 14-[Supplemental figure S7]- Synteny between the mouse chromosome 19 and human 

chromosome 10. The highlighted blue region demonstrates the syntenic regions between the two 

chromosomes.   
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Figure 15-[Supplemental figure S8]- SCD genes on mouse chromosome 19. There is no 

evidence of histone methylation marks in the region flanking SCD1 and WTN8B genes where 

OLMALINC is localized in the human chromosome 10, to suggest, an active transcription start site.  
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Figure 16-[Supplemental figure S9]- Evaluation of efficiency of HepG2 cells treated with 

CRISPR-Cas9 fluorescently labeled tracRNA ATTO-550 and OLMALINC 

promoter/enhancer gRNAs. Counting of labeled cells after 24-h transfection demonstrates an 

efficiency of 84% with Cas9 treated cells with corresponding gRNAs.    

 

 

 

 

 

  



 82 

Supplemental table S1- Genes that correlate with OLMALINC liver expression in the KOBS 

liver RNA-seq cohort. OLMALINC liver expression correlated with 6182 genes in the KOBS liver 

RNA-seq cohort, passing FDR<0.05. The correlation analyses were conducted using a linear 

regression model (see Methods).   

 (see attached excel file for Supplemental table 1) 
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Supplemental table S2- OLMALINC liver expression correlates with serum triglycerides in 

the KOBS cohort. Serum triglycerides correlate significantly (passing the Bonferroni corrected 

p-value cut-point of P<0.007 for the 7 tested traits) with OLMALINC liver expression. The 

correlation analyses were performed using linear and logistic regression models, and the 

quantitative traits were adjusted for age and sex as well as inverse normal transformed to avoid 

outlier effects.    

Clinical phenotype  ß estimate Standard error p-value 

NAFLD 

NASH 

Liver fibrosis 

Liver steatosis 

Type 2 Diabetes  

Total cholesterol (mmol/L) 

Triglycerides (mmol/L) 

0.210 

0.069 

0.131 

0.210 

0.237 

-0.06 

0.275 

0.126 

0.167 

0.124 

0.126 

0.127 

0.069 

0.084 

0.097 

0.677 

0.292 

0.097 

0.064 

0.366 

0.001 
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Supplemental table 3S- siRNA and ASO sequences. 

OLMALINC 

ASO 

/52MOErA/*/i2MOErT/*/i2MOErG/*/i2MOErT/*/i2MOErC/ 

*A*C*A*T*G*C*A*T*C*C*/i2MOErG/*/i2MOErT/*/i2MOErG/*/i2MOErT/*/32

MOErG/ 

Control ASO /52MOErG/*/i2MOErC/*/i2MOErG/*/i2MOErA/*/i2MOErC/*T*A*T*A*C*G*C*

G*C*A*/i2MOErA/*/i2MOErT/*/i2MOErA/*/i2MOErT/*/32MOErG/ 

SCD siRNA CCAGAGGAGGTACTAGAAATT 

SREBP1 siRNA CAGCTTATCAACAACCAAGACAGTG 

SREBP2 siRNA GCCTTTGATATACCAGAATTT 
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Supplemental table 4S- Primer sequences used for RT-qPCR. 

Primer Forward sequence (5’→3’) Reverse sequence (5’→3’) 

36B4 (RPLP0) CCACGCTGCTGAACATGCT TCGAACACCTGCTGGATGAC 

GAPDH GGGTGTGAACCATGAGAAGT CCTTCCACGATACCAAAGTT 

OLMALINC 

exons 1-2 

CCAGGAGTCAGCAAAACACA CTGGGTCTTCAGCACCAAAT 

OLMALINC 

exons 2-3 

CATGTGACATTTGGTGCTGA CTTGGACTCAGAGGCCTGAC 

SCD TGCCCACCTCTTCGGATATC GATGTGCCAGCGGTACTCACT 

SREBP2 GACGCCAAGATGCACAAGTC ACCAGACTGCCTAGGTCGAT 

SREBP1a TCAGCGAGGCGGCTTTGGAGCAG CATGTCTTCGATGTCGGTCAG 

SREBP1c CGCTCCTCCATCAATGACA TGCGCAAGACAGCAGATTTA 

HMGCS1 GATGTGGGAATTGTTGCCCTT ATTGTCTCTGTTCCAACTTCCAG 

LDLR AGGCTGTGGGCTCCATCGCCTA AGTCAGTCCAGTACATGAAGCCA 

MALAT1 GGTAACGATGGTGTCGAGGTC CCAGCATTACAGTTCTTGAACATG 
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Supplemental table 5S- OLMALINC sgRNA sequences for CRISPR-Cas9 knock out (the 

region column specifies the region upstream or downstream of the OLMALINC 

promoter/enhancer regions). Combination of the two different upstream and downstream guide 

RNAs were tested to determine efficiency of knock-out. The combination of (*) showed the 

highest efficiency and used in the final experiments.  

Region  Strand Sequence PAM 

U
p
st

re
a
m

 (-) *GATTGTATCCACAAGTCTGA TGG 

(-) AATAACACCTGCTTCGGATG TGG 

D
o
w

n
st

re
a
m

 

(+) *AAAGCTGGGATAGTCACGGT GGG 

(+) GGAAGCTATTGTTACCACTC 
TGG 
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Supplemental table 6S- OLMALINC primers used to validate the enhancer/promoter 

deletions. 

 

Region Forward sequence (5’→3’) Reverse sequence (5’→3’) 

Outside 

enhancer/promoter 

GGCAAGCTGCTATAAACTGGA CCTCCCAAATGCCTCTCAGC 

Within 

enhancer/promoter 

AGCCTTCCCACTTTCAGGAC AGCCTTCCCACTTTCAGGAC 
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Chapter 4 

 

Concluding remarks and future directions 
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Our data suggest that having a concomitant diagnosis of NAFLD with chronic HCV does not affect 

HCV cure in a large, diverse VA patient cohort. We observe that HbA1c improves independently 

of the HCV genotype or changes in a patient’s T2D medication regimen, suggesting a virus-

dependent effect of improved glycemic control. Given the era of DAAs and high HCV cure rates, 

it is also important to understand the prevalence of NAFLD in the post SVR12 patient population 

to elucidate how concomitant fatty liver affects liver fibrosis progression and HCC risk. Some 

studies have estimated that 50% of patients who reached SVR12 have underlying NAFLD 120. Our 

preliminary data using the national VHA Corporate Data Warehouse demonstrate that NAFLD 

and/or NASH are underdiagnosed (18%) in the post SVR12 patient population using the ICD9 and 

ICD10 codes. Identifying this patient population and their clinical outcomes for mortality, liver-

related complications and HCC will be important since the natural history of NAFLD in this patient 

population is not understood and will affect how these patients are treated in clinic55.    

 

We also show that high BMI, and potentially T2D, predict NAFLD cirrhosis in a NAFLD-

associated HCC cohort. There are ethnic differences not only in how patients respond to HCV 

treatment but also in the NAFLD and NAFLD-associated HCC, where non-Hispanic patients are 

more likely to develop HCC in a non-cirrhosis background. Leveraging these differences can help 

us create population and patient-specific screening tools to better address the heterogeneity of these 

complex diseases. Current general population guidelines do not reflect these nuances and are thus 

not optimal in the era of precision health.  Through our UCLA study, we also demonstrate that 

etiologies of HCC affect overall and recurrence free survival. Although dyslipidemia appeared to 

have a trend towards protection of NAFLD cirrhosis, the differences were not significant, likely 

due to small sample sizes and thus, they warrant further investigation in larger populations.  
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Through our detailed transcriptomics analyses of the human liver RNA-sequencing, we identified 

novel genes that are statin responsive that should be further evaluated, especially in the context of 

the potential benefits of statins on the non-cirrhosis patient population. Targeting of these novel 

lipid genes, such as OLMALINC, may have synergistic effects on the cholesterol and lipid 

pathways. Although not assessed further in our work, we observed that OLMALINC gene 

expression was significantly associated with SREBP2 gene expression (ß=0.67, FDR=3.96x10-34) 

(and SREBP2 target genes), the main transcription factor for the cholesterol synthesis pathway. 

How OLMALINC regulates SREBP2 is of interest and needs additional investigation given the 

non-cholesterol lowering beneficial effects of statin therapy, which OLMALINC may have. For 

instance, we observed that OLMALINC knock down and knock out (through ASO and CRISPR-

Cas9, respectively) decreased cell viability at ~2-3 weeks in culture. This was previously observed 

by Lui et al. independently in a brain U87 glioblastoma multiforme cell line 107. Given that our 

work was conducted in the cancerous HepG2 cell line and that SCD has been shown to play a role 

in liver fibrosis and tumorigenesis through the activation of the wnt pathway 121-123, these effects 

will need to be studied in a non-cancer or primary hepatocyte cell lines. We currently have on-

going studies repeating similar experiments in the non-cancer immortalized human hepatocyte cell 

line, Fa2N4. Differences observed in SCD regulation by OLMALINC between the HepG2 and 

Fa2N4 cell-lines could be attributed to the cancer and non-cancer origins of these cell-lines. 

 

To further investigate and address the molecular basis of the non-cirrhosis HCC, we will be 

sequencing human liver biopsy samples from HCC and adjacent non-cancer NASH liver tissue. 

Due to the heterogeneity that exists in HCC 124,125, our experiments will be conducted using single 

cell RNA-sequencing, which has successfully been utilized in other cancers and has allowed the 

identification of new cell-type sub-populations not previously known from bulk RNA-sequencing. 
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Single cell nuclei extraction and sequencing have also been successfully conducted in our 

laboratory using frozen human subcutaneous adipose tissue (Alvarez et al., manuscript in 

preparation). Understanding which genes are differentially expressed between the HCC and non-

HCC liver in NASH patients will provide insight into which pathways need closer evaluation, 

including those involved in the mevalonate pathway 126. 

 

The NAFLD, NASH and HCC epidemics are alarming and have already placed large economic 

burdens on healthcare 49,127. Understanding their clinical and epidemiological factors and 

characteristics in different health care settings and populations will help us frame the biologically-

relevant questions and subsequently identify the involved mechanisms. Thus, combining 

multidisciplinary approaches to study these patients will allow for new discoveries and advance 

the field of NAFLD, NASH and HCC.  
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