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Abstract

A theorefical model of éiectronically non—adiabatiq collision procésses
is proposed whicﬁ describes all degreeS'ofafreedom, electronic and heavy
paftiéle'(tfanslatiOn, rotation; and yibration), by ciassical mechanics.
The advantage of sucﬁ anvapproach is that_since all degrees of freedom are
treated An the'saﬁe dynamical footing (i.e., via classical mechanics), all
dynamical‘effecfs ére described correctly (even resonanée effec;s in electronic
to vibrational/rotational energy t%ansfer). Caiculatioﬁs can be carried out
within_the‘framewprk of the standard.quasi—classical trajectory-method.v The
key eléménf in making.thié approaéhlsuccessful is being able to construct a
classical model fér the electronic_degrees‘of f;eedom, and several»approaches

for doing this are déscribed.



I. ' Introduction

It is well-known that ‘cl#ssical trajectory method_sl are extremely
useful for describing atomic and molecular collision processes that take
place on one electronically adiabatic potential enefgy surface; i.ef, that
stay within oné adiabaticv(Born-Oppenheimer) electronic‘étate'throughout
the collision. Thisvusefdlnesé séems from the fact that trajectory ﬁéthods
are general, simple to apply, and>need in§olve no approximations other; of
course, than the use of classical rather than quantum ﬁechanicé.‘ (Tﬁe:é:rors
infroduced by using claésiéal rather tﬁan quantum mechanics are well under-

-stood2¥—i.e., intérfefencé and tunneling effects are missed—;but these
quantum mechaniéél_effécts can in'ﬁrinciple; and to some extent in practice,
be incorporéted by semiélassical methods.z)

In attempting to extend these types of methods to the treatment of

electrohicélly non-adiabatic collisioﬁ/proéessés, i.e.,vthose that involve
more than'oneABofﬁ-Oppenhéimer potential energy surface, one is faced with
considerable diffiéﬁlty.3 It is.desirable to retain the facility and accuracy
of using classical mechanics to describe the heavy particle degreeé of
fregdom (i.e., translation, rotation, and vibration), but it seems clear

that the electronic dégrees of freédom must be described quantum mechanically,
i.e., as states. Oné is thus forced to mix dynamicél descriptions--i.e., to
déscriBe somevdégrees of freeddm by ‘quantum mechanics and others by classical
mechanics--and it is in general not possible to do-this without.ihtroducing
inherent dynamical approximations. Any theory, therefore, that treats theb
héavy particle motion classically, i.e., via_trajectories, and the electronic

degrees of freedom quantum mechanically, i.e., as states, will contain-



dynamical approximations and thus fail to describe certain aspects of these
collision processes eorrectly. |
Tully ana ?reSton's Surface hopping tnodel4 for treating non-adiabatic

collision processes is of the type mentioned above: the heavy particle
degrees of freedom are described classically, as trajectories moving on a
potential energy surface, and transitions from one potential energy.surface
(i.e., electronic state) to another are accomplished by locaiized'"hopS"
that take,place with a prdbability determined semiclassically. Although
this model is a cqnsiderable improvement over earlier approaches that treat-
ed both electronic and»vibfational degrees of freedom quantum mechanically
(the vibronic represeetation)-—for it is usually more important to treat

the interaction between translation and vibration (and rotation) consistently
“(and therefore bybclassical mechanics) rather than to treat vibrationel
motion by.quantum mechanics-fthe modelvhas some failings because it does

not treat all degrees of freedom on the same dynamical footing. One failure

of the surface hopping model is its inability to describe resonance effects -

in energy transfer between electronic degrees of freedom and heavy particle

5,6

degrees of freedom, ‘for example, near-resonance in electronic-rotational

energy transfer,
F* + Hy(j=0) > F + H,(j=2) (1.1)
and in electronic-vibrational energy transfer,

Brf + Hz(v=0) - Br + Hz(v=1) . . : , (1.2)

It is clear also that the model will fail if the non-adiabatic transitions

are not localized.



.The generalized Stueckelberg model devised by Miller and Geo_rge7 is
eséentially a more sophisticéted version of the surfacé‘hopping model that

incorporates interference effects between different trajectories that '"hop"

from one potential energy surface to another. Although this semiclassical
theory is more satisfactory and internally consistent in some ways than
the Tuily?Preston model--it is capable, for example, of describing the above

6 . . -
resonance effects correctly --it, too, has inherent limitations: “the

generalized‘Stueckelbgrg model is essentially adiabatic perturbation theer
) and is thus rigorously ﬁalidlonly if the non-adiabatic transition probabilities
are exponentially:small.7’8

~To have a ﬁruly cdrfect dynamical theory of non-adiabatic collisiqh
processés one fhus needsvtq treat all the degregs of freedom, eiectronig
and heavy particle (traﬁélatidn, rotatiop, and vibration), on the same
dynamical footing. .It would;be best, of course, to treat them all quantum
4 mechanically,.butvthis typically leads to sucﬁ_an enormous nu@ber of coupled
'channel SchrBdingef equations thét it is out of-the question. In most cases,
.too, thé resultg desired ffom a calculaﬁion afe not sufficiently detailed
to justify a cqmpletely quantﬁm mechanical scattering calculation.

The oﬁposite extreme, which is explored in this paper, is to treat

all the degfees bf'ffeedom, électronic and heévy pafticle, by classicai
méchanics. Tﬁié approach is one step furfher down the road of classical
mechanics thén the Tully-Preston and Miller-George models in thatvelectronic,
as well as the heavy particie degrees éf freedom are fo_be treafed'claséicélly.

The electronic states are thus.reblaced by coordinates and momenta (more

precisely, by action-angle variables) whose time evolution will be determined, -



along with that of the heavy‘particle coordinates and momenta, by Hamilton's
equations of motion.

It may aﬁ first seeﬁ absurd to think that electronic degrees of freedom
can be treated classically, and indeed we do not plan to follow the classical
orbits of ail 11 elégtrons, for example, in the F + H2 collision system. For
non-adiabatic transitions to have signifigant_probabilit;es, however, the
electronic energy spacingvmust be comparable (at least locally) to vibrational/
rotational energy level,SPacings. Energy level spacings, however, correspond
to frequencies (i.e., w = AE/h) §f classical motion. This implies that
there is at least some aspect of the electronic motion that is Slow, i.e.,
that corresponds to.the classical motion of something that varies on the
same time scale as the coordihates and momenta of the heavy particle degrees
of freedom._ From this point of view, therefore, it does not seem completely
unreasonable that oneléhould‘be able to construct a classicai model for the

: . / . . .
relevant aspects of the electronic degrees of freedom. This paper is a first

attempt in showing how this can be done.

Section II considers first the specific case of fine structure transitions
. 2 . . 1 1. .. .
in a P atom caused by collision with a S atom or a "I diatomic molecule.

The specifié'examples we have in mind are
2 2, | | |
F( Pj)+X+F( Pj,) + X R | (1.3)

where X is a rare gas atom or a diatomic molecule such as Hys J and j' can
have the values 1/2 or 3/2. ‘As will be seen, it is relatively simple to
construct a classical model for the relevant electronic degrees of freedom

in this case because the ofigin'of the different electronic étateé'(i;e.,



spin-orbit coupling) has a simple classical analogue.

In Section IIIit is shown how a classical model for a general two
(electronic) state system can be construc;ed.‘ For an atom?aﬁom or éﬁom—
diatom collision system, for example, in whiéh two adiabatic électronié
states are ihvolved, if_is shown how the two electronic'states can be
réplaced'By_a‘generalized'coérdinate and momentum. It is seen that this
can be done in both a diabatic electronic representation or the adiaBatic
electronic representation. ' It is also suggested how this scheme can be
generalizéd_to an afbitfary number of states.

For the caées discussed in both Sections II and III the idea.ié that
non-adiabatic ﬁrahsitions will be described by computing the complete
classical trajectories invol&ing.all the degrées of ffeedom,belectrbnic
as well as heavy particle. Transitions between speéific electronic states
can be detérminedAby the usual quasi—classical prescription,1 namely thé
action variable corresponding to the electronic degree of freedom is
initially set to an integer, and‘its final (non-integral) value is assigned.
to ;he nearest integer quantum number "box". SiQCe ail‘the degrees of
fréedom are treéted'on the saﬁe (i.e., classical) dynamical footing, one
expects this approach to describe all dynamical effects correctly. Even
the resonaﬁée effecté of Eqs; (l.l) and (1.2) should be described correctly
since fesqnance'energy transfer'occurs in‘classical as well as quantum
meéchanics; the Tully-Preston surface hopping modei misses these effects 6
only because electronic and‘heavy particle degrees of fréedom afe deécribed
on different dynamical footings, i.e., by quantum‘and.byvclassicél mechanicé,
respectively.. There afe; of course, the purely quéntum mechanical inter-

ference and tunneling effects. that this completely classical model will'miss.



These effects can in principle, however, be ingorporated by using classical
S-matrix the_o;:y.2 !

In cdnclﬁding fhis Introduction it should be noted that there afe other
contextsin which classical modéls have been used to describe'electronic degrees
of freedom.‘ Pérhaps the most common situation is-to describe highly
excited Rydberg states cl'assically,9 for these states can be modeled
as one-electrbn systems. Work by Green and Zare,10 showing that the
electronic states arising from théAinteraction of a 2H diatomic molecule
and a lS atom can be modeled as a:symmetrié top molecule plus an atom,
is an example of the genéral correspondence we are trying to dé?elbp hefe,
but they did not proceed to construct the actual classical Hamiltonian for

this system.



2
ITI. Fine Structure Transitions in P Atoms

a. 2P Atom + 1S_Atom ot

The goal here is to construct a classical Hamiltonian that describes

the collision of a 2P atom and a{lS atom, where one is interested in

2

transitions between the ?Pl/Z and the “P states of the atom. o

3/2
For the'isglated 2P atom we thus introduce two classical angular

momenta, f and §, each of which consists of twokdegreeé of freedom character-

ized by the usual action-angle variabi'es:ll’12 (L,qL),ﬂ(mL,qu), (S;qs),

' : >

(m.,q ), where L,S,mL, and m_, are the magnitudes of L and $ and their

SmS , S ‘ . - -
projections onto the intératbmic axis, respectively, and the'q'svare
thgir‘cbnjugate angle variables. ‘f and g are the electronic orbital and

spin angulaf momentum, respectively, of the 2P atom, so that L = 1 and

g = 1/2. The classical Hamiltonian for the 'isolated 2P atom is

> =g
B|T43]2 = B? + s% + 208, (2.1)
T > >
where B is a constant, and L°S is given in terms of the canonical variables
13

!

by

2

» f.§ = mmg +-V%?—mLZjV/SZ—mS ' cos(émL-qu) . (2.2)

As shown in the Appendix, the electronic energy for the two-atom

system is given in terms of the canonical variables by

iy = nd) @ +nlve @3



where VZ(R) and Vﬂ(R) are the 22 and 2H potential curves for the 2P + lS

diatomic system. ' One may simply think of Eq. (2.3) as an interpolation
formula:> when m (which is'called A in usual spectrbscopic notation) is
0, the energy is Vg, and when mL‘t 1 it is v

The coﬁplete ciassical Hamiltonian for the system is thus

2 2 |
B ST Y DR N 2
H=o-+— + B|L+§|" + A-m D) Vp®) +m "V ® o, (2.4)

2R
where (P,R) are the momentum and coordinate for the relative translational
motion of the two atoms and Qiié the orbital angulatr momentum for relative

motion of the atoms. - SiﬁCe the total angular momentum 3,
> : ‘
Fj=1+0+5 (2.5)

is ¢onsérved, it can be used to eliminate I from. the Hamiltonian; i.e.,

>

T=-3-d% . ~(2.6)

(Table I summarizes the different angular momenta that appear in this
system.) Also, one notes that the Hamiltonian does not involve the angle'
vériabies.qL-and qs; so that L and S are conserved quantitieé.> The

Hamiltonian thus becomes

p? . 13- @+3) | 2

H (BR,m g m,q ) = o
R L e
+EdP+ amH vy rn v, @D

where the variables J,L,S are conserved and appeaf in the Hémiltonian-only

as parameters.
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Before going further it is useful to make a canonical transformation
to the '"good" action-angle variables of the 2P,atom; i.e., since the"
atomic Hamiltonian of Egs. (2.1) and (2.2) involves qu and qm s the
action variables mL and ms are not constants of the motion of the isolated
2P atom. The desired canonical transformation replaces the momenta mL
and ng by j and mj, where J |L+S| is the magnitude of the total electronic
angular momentum of the 2P atom and mj its projection onto the inter--
atomic axis. This;canonical transformation has been discussed in considerable
detail by Miller;ll it is the classicel analogue of the Clebsch-Gordan

transformation of quantum mechanics. With (mL,qu) and (ms,qm ) replaced

by (j,qj) and (mj,qm.); the-Hamiltonien ofvK. (2.7) becomes

(P,R,3,q, sm, ) =
Hrs i qm u 2uR2

+ (-1-mL2) ® +nlv® (2.8)

where m is now a function of the "new'" variables j,qj,mj,qm ; the explicit

J
expression for it is :
o= [avﬁz-mjz cosq, + m, (32+L2 Sz)]/(Z ) (2.9a)
where
= V) % ia-s? . | (2.9b)

Proceeding further, one has

R ) |
152 =+ 522057, (2.10)
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and ih terms of the action-angle variables one has13

- j-}_: mej + VJz-sz.. AY j2—m_j‘ COS'(qu‘qmj) > (2'11)

Where vais.the prpjection of J qpﬁo the interactomic axis,‘énd qu is
its cdnjﬁgate‘anglé{ Siﬁcé the Hamiltonian'is independent of m,, qm& .
is a constant and can be seqfto Oi(This is possible since the 2m-length

interval_choseﬁ qu the domain'of:qm; is'arbitrary.) Fufthermore, since

‘ : . _ : k| : _ : :
thevinteratomic axis has been chosen as the quantization axis, it must be that

"mz, the p:ojection oij a1ong it, isv0 (because % =.§ x»?); since by Eq. (2.6),

-3
one has  o
) ='memJ
= 0 , ‘
wﬁich 1m§iies that
my = ?j ;--. - o (z.iz)

Using Eqs. (2.12) and (2.11) in Eq. (2.10) gives
= (3317 = sheyPom, - 2% ? \/jz-mjz cosq (13
: S ' : I - ‘
which may be recognized as the expfession obtained ear1ier12_for the

atom~diatom system in the_helicity representation.

Thevdlassical Hamiltonian.of Edg“(Z.S) can[naw.be written in its final form -
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B (P,R,] R SO S SN
sy %t RS m

2
v(®R) ,
2u 2UR ‘ L m

(2.14)

with 22 and mL given in terms of the canonical variables by Eqs. (2.13) and
(2.9), respectively.

The various terms in Eq. (2.14) have rather obvious interpretations as
coriolis interactions, etc. This classicalvHamiltOnian-is; in fact, the
direct anelogue of the quantum mechanical Hamiltonian Mies14 obtained for
‘describing this same.problem'quantum mechanically, and the two Hamiltonian's
are essentially identical in structure. |

With this Hamiltonian one can carry out completely classical trajectory
calculations for all the degrees of freedom. According to the standard
quasiclassical procedure_,1 the electronic angular momentum j is initially
set to an integer, 1/2 or 3/2, and qj is chosen as a random number in the
interval (0,2n),.etc. | |

It could turn out to be easier in practice to compute the classical
trajectories in the uncoupied.representation, i.e., with (mL,q ) and
(mS qm ) as the dynamical variables, rather than in the coupled representa-
tion described above, i.e., with (J,q ) and (m ,q ) as the dynamical

J
variables. ~ If so, the Hamiltonlan in the uncoupled representation,

2
JLS(P R, T qu,mS qm ), is given still by Eq. (2.14) but with j and £

v expressed in terms of the varlables (m qu), (ms,q ). TFrom the analysis
S
described above it is not hard to show that these expressions are.

>
R bt S L R L

L2 + 82 + 2mLm_S + ZYiz—mLzﬁV%?—msz' co_s(qu—qm ) y >(2.15)
. S
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and
2
g% = 13-2-3]
L Y L % 13 A% 17 I ST A% 4
- .2 2 2
=J +L + S - 2mL - ZmS - ZmLms

- 2\/\12¥(mL-I-ul )2 VLZ- 2 cos
- ZVJ —(mL+ms) Vs ~mg coSqm
. 8

’» + Zyé:—ﬂ&‘.vsz—msg cos(qu—qm ) . . (2.16)
. o S

The results of a claSSicai trajectory calculation are, of course, independent
of fhe representation in which the calculation is carried out.

As’a‘finél comment, we note.that since_J'>> L,S,j, it is likely that
many of the ceﬁtrifugal coupiing’terms in Eq. (2.13) or Eq. (2.16) can be
discarded with'li;tle error. The simplest such approximation is to take
22 = J2 in both cases; this corresponds to a "helicity conserving" approxi-

mation of the type now often used to simplify quantum mechanical scattering

calculations.15

b. 2P Atom and 12 Diatom

Here we show how the above analysis can be generalized to describe
2 .
a P atom + 12 diatom collision system, the example we have in mind
being F(ZP) + H,. Just as the Hamiltonian of Section IIa is analogous

to- the quantum mechanical Hamiltonién.of Mies;l4 the Hamiltonian of this
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section is the classical analogue of the quantummechanical Hamiltonian

‘ opératér that Rebentrost and Lester16 deri&ed for the F(2P) + H2 system.
To a large exteﬁt, therefore, we follow their notation and approach in
constructing the classical Hamiltonian for the system.

T and § again denote the eléctronic orbital and spin angular momentum
of the 2P atom, } =T+ §, and the Hamiltonian for the isolated atom is
againvgivenvby Eq. (2.1). The diatomic molecule is treated initially as
a rigid rotor and thus has only a rotational degree’of freedom. N -and
my are the action-angle variables for this rotational angular momentum
of the diatom--N is the magnitude of the rotafionai angular.momentum and -
mN its projection onto the R.axis (see Figure l)--and qN and q are their
conjugate angle variables. vThe various angular momenta of the system are

summarized in Table II.v‘The'Hamiltonian for the isolated diatom is

N ‘ (2.17)

where m is the reduced mass of the diatom‘and ro its bound length.
Analogous to Section Ila, the complete Hamiltonian for the system

is thus given by

H. (P RNq s - j q.,m,, )
JLs Ve Ny 23 9y,
‘ qu A

_P° . 8 N 2 :
= +, + 2+BJ +He2 E , (2.18)

- where, as before, total angular momentum conservation can be used to

. 9
express £ in terms of the total angular momentum J and the other
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angular momenta of the system,

72?ey? - 23 R-2F Tk

L

; (2.19)

using the general relation in footnote 13 and the fact that m = m —mN-m =
0 (31nce R is the quantlzatlon axis), which implies that mJ = mN + mj, the

explicitvexpression for 22 in terms of the action angle variables is
2 2 2 .2

J+ N + J - ZmN an - ZmNm

yAVA = (mN+m Y°VN “ cosqmN

2VJ :-(mN+m )2 Vi —m cosqm

+ V& V 5 cos(qu—q ) b. (2.20)

P
]

It is shown in the Appendix that Hez’ the electronic energy of the

system, is given in terms of the canonical variables by

H_ (R,Y o qu) M) + m ) B

H _-H |
2 xx .
+m c~——§e21) cos2q) - 2m Vi-m " H  sinq (2.21)

:where the electronic matrix H <° ny; Hyz’ etc.,; is determined~by a quantum
chemistry calculation; these matrix elements are functions of R and Y.
These diabatic potential energy surfaces H (R,y) H (R,Y), etc., have

been’ calculated, for -example, by Rebentrost and Lester16vfor the F(‘P) + H2 system.
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To complete the specification of the Hamiltonian one needs to express
' : : < :
Y, the angle between the center of mass coordinate R and the diatomic axis,

in terms of the action angle variables; this is the same expression derived

earlie_r12 for the atom-diatom collision system on a single potential energy

surface,

cosy = Vl—mN /N ‘cosqN . ‘ * T (2.22)
m is still given in terms of the canonical variables by Eq. (2.9), and it

is also necessary now to express q_ in terms of the "coupled variables"

(j,qj) and (mj,qm ); this expression can also be worked out from the generat-

ing function derived by Miller,ll and one obtains -

“aj sing; K
—L ] (2.23)

. . —l " )
. =q + tan [ 51
qu mj . amj cosqj - ij—mj2 (j2+L2-SZ)
In shmmarizing the final result we generalize to the case that the

diatom is allowed to vibrate. If r is the diatomic coordinate and p its

conjugate momentum, this adds the term p2/2m'to the ﬁamiltonian and r

%o in
Eq. (2.17) becomes the variable r. The final result is then
_ . P2 12

H._ (P’R’P3r9qu sJ,q. M., ) =5+ ——
JLS N*d295 J.qmj 27 uR?

52 -3 ) ) |

+ Z—Iﬂ + —_E + Bji + Hez(R’Y’r’m_L’qu) Py (2'24)
2me - )

where 22>is given by Eq. (2.20), He2 bylEq. (2.21) (the matrix élementé ny,

etc., now depénd on R,Y,Aandvr),'mi-by Eq. (2.9); q by Eq; (2.23), and
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Y by Eq. (2.22). With this Hamiltonian one can proceed to compute
classical trajectories by numerically integrating Hamilton's equations
in the usual way.

We also note the expression for the Hamiltonian if the uncoupled
representation, with variables (mL qu) and (mS qm ), is used 1nstead
of the above coupled representation with variables (j,q ) and (m Q- ).

J
The Hamiltonian HJLS(P,R,o,r,N,qN,mL,qu,ms,qms) is the same as that
in Eq. (2.24) but withvj2 and 22 expressed in terms of the appropriate

variables. j2 is given by Eq. (2.15) of the preceeding section,‘and

it is not herd to‘ehow (since my = my + m + ms) that

S L T R I 15 TR 15 AP X 15 S 15 AR I SN 48

= 32 + N2 + L2 + 32 - 2mN2 - 2mL2 - 2ms2 - 2mNmL - ZmNmS - ZmLmS

4

:2 \[IZ— (ﬂlﬁ'l’ml;-l'ms) Z‘JNZ—%,Z cosqu .

2\/.12— ('mN'HD.L-th) 2 '\/LZ- mLZ l cosqml;

ZVGZ—(m§+mL+mS)Z. S -mg"  cosq

’ : S
+ 2\/1\12-%2 VLZ—mL | -cos(.qu-qu)
+ 2 ¢§ V : cos(qmN qm )

+ ML Z'szz“cos%Lm . @5y
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Again, since J >> N,L,S,j it is likely that many of the angular momentum
coupling terms in Eq. (2.20) and Eq. (2.25) can be discarded with liﬁtle
error being introduced. Thé simplest Such_apprOXimatibn.is; in both cases,

to take'SL2 = Jz.
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III. The General Two-State Problem

Here we.consider the general problem of a molecuier eollision system
involVing,heavy'particle degrees of freedom X and P end fwo electronic
-stefes. We went te ehow in general——witheut taking any account of the
physical nature of the electronic states as wes eone abo&e for the e#amples
in Section II--how a classical electronic aegree ofvfreedom can be constructed
to replaee the two‘electronic states. To include'both‘atom—atom, atom—diafom,_
etc;, éysteﬁs we omit e detailedvépecificetion (i.e., aﬁgﬁlar momentum |

coupling, etc.) of the heavy particle degrees of freedom.

a. Diebatic Electronic Representation

We look for a classical Hamiltonian of'the;form”

2

H(p,x,n,q) = %§f+ H o (,q5%) R 3.1

where the first term is the kinetic energy of the heavy particle degrees
of freedom; and'Héz is the Born—Oppenheimer electronic eﬁergy'of'the system

in terms of the electronic action-angle variables (n,q); H , also depends

el
parametricaliy on x, the positions of the heavy.particles (i.e., nuclei).
The goal is to show how the classical.function Hez(n,q;x) should be constructed

from the quantum mechaﬁicel 2 x 2 diabatic Hamiltonian matrix
[ Boo® ’_H01(§)

o ; @)
Hio® » B0/

i.e., suppressing the dependence on x for the. moment, one wants to show

how the 2 x 2 Hamiltonian matrix Hn' n,n,n' = 0,1lshould--in the most
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consistent and correct way possible--be replaced by a classical Hamiltonian
functioﬁ H(n,q).

Before proceeding further, it is useful to digreés briefly to consider
how a diabétic Born-Oppenheimer electronic métrix can be éonstructed
uniquely. This is a topic with a considerable history,17 énd we only wish
to make some elementary commenté here. ?he fwo adiabatic éigenfunctions
wo énd wl, and'éorrespondihg eigenvélues EO and Ei, depénd.parametricallf
oﬁ the nuclear_positions X. If is always bossible fo definevfunctions ¢0
and ¢1, and the related é}ectronic Hamiltonian matrix Hn' #,n,n' =.Ojl, that

»

are a unitary transformation of the adiabatic quantities:

¢0 - [ cosw  sinw \ wo

¢1, . —sinm cosw / lpl _ - : (3.3a)
HOO HOl _ cosw sinw' EO 0 cosw -sinw
HlO Hll -sinw cosw 0 El sinw cosw (3.3b)

where EO,El,w, and Hn' n 2re related by the usual expressions:
. . 9 !

| L f 2m
w =7 tan 1 ;f—jiél— (3.4a)
’ 11 00/
E0+El = Hoo + Hll - | , - (3.4b)
_ 7 ya ' |
E,-E, = ‘,/(Hl-l Hop)™ + 4 By . (3.4c)

In general, the functions ¢0 and ¢l will depend parametrical1y‘on X, _Iﬁ,

however, there exists. a function w(x) so that'¢0 and ¢l of Eq. (3.3a) are
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independent of x--or at least approximately so--then all the x dependence

of Yo and wl is contained in the angle w(x):

wo | cosw -sinw ¢O 1
= : ‘ . ' (3.5)
wl sinw cosw / ¢1

[

If this‘is true, then it is easy to show that the non-adiabatic coupling

function is given by

. (3.6)

For the case of just one nuclear variable x, for example, 1t is thus possible

to start with the adiabatic potential curves Eo(x), El(x), and the non-adiabatic
R
~ coupling function <w0{75%>, and determine the diabatic Hamiltonian matrix

Hn' n(x) as fqllows:

’

wlx) = jd_x' <w0|'-5-£}—> s ' (3.7)

X
and then Eq. (3.3b) gives H, n(x)ﬁ

2

e 22 < . '
vHOl Ejcos’w + E sin"w , (El EO)51nw cosw

H ./ (El'Eo)éinw‘cosw , Eosin w + Elcos Q_

(3.8)

Eqs. (3.7) and (3.8) give the diabatic Hamiltonian matrix explicitly in
terms of the adiabatic eigenvalues and thefnonQAdiabatic'coﬁpling. Whether

or not this diabatic Hamiltonian is actually a good representation of the



-22-

non-adiabatic coupling depends on the extent to which it is phy51cally

true that the coupllng ‘does arise primarily from the interaction of Just

two states. | *

| Fer the present, therefore, we assume that the diabatic electronic

Hamiltonian matrix Hn';ngf) is provided by quahtum chemistry. How then

is Hez(n,q;§) to be'constructed? The basic clue comes from. an approximate

semiclassical relation sometimes’called the HeisenbergaCorrespondenCe

Principrle.18 ‘Suphressingbthe X dependence of all Quantities, this relation

is | |
o

B g ® §%~ dq eei(n'-n)q H(n,q) , (3.9)

0
where n is usually taken-to,be'% (n+n'), but this should be viewed only

as a rdugh.approximationAz If Eq. (3.9) were truly correct, then one could

construct. H(n,q) as a Fourier series by inverting it:

" oo
- H(n,q) = o e1Anq . (3.10)
v :E: n+éE _On
- Ap=-o 2°0 2
Since we have only two states,'and n,n' = 0 or 1, it is clearly not

possible to apply these relations in detail, but they do give some
clues as to how H(n,q) should be constructed from the matrix elements

Hﬁ, 0 For example, Eq. (3. 10) suggests that the q—1ndependent part
3

of H(n,q), i.e., the average of H(n,q) over q, should be such that
21

l . . . . . - ' .
T qu H(n,q) =H = \ - (3.11)
o
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for n = 0,1. The simplest way to accomplish this is to use lowest order

s

(i.e., linear) intérpolation, so that the g-independent part of H(n,q) is

chosen as

(l—n)H00 +nH . (3.12)

11 3

for n =0 and_l this becomes HOO and Hll’ respectively. (For the 3-state

case one would need quadratic intérpolation to do the‘job; i.e., Eq. (3.12)

would be replaced by
:l-(l;n)(z-nSH‘ .+ (2-n)an +-l n(n-1)H )
2 700 11 2 22 '

For the two-state case it is clear that only the lowest order terms in
Eq. (3.10) should be retained, so that one expects the q-dependent

part of H(n,q) to be_proportional to cosq; also since cosq = %-elq +

iq

l-e_ , this gives rise to Aﬁ = * 1 coupling, which is physically correct.

2

It is also clear that this term should be proportional to the off-diagonal
matrix element HOl but it is not clear how it should depend on n. The

form that we have chosen for the gq-dependent part of H(n,q) is
2 HoiJn(l-n)' cosq , (3.13)

so that the complete diabatic electronic Hamiltonian function is
Hez(n,q) = (l-n)Hoo +nHll +2H01\/n(1—n)= cosq s - (3.14)

and it is to be remembered that the matrix elements'Hn, n_depend parametrically

on the nuclear coordinates x.
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As indicated above, it is not obvious that the n~dependence of the .
last term in Eq. (3;14) shoﬁid.be-éhosen'as it is, namel& as ¢GZE:;3‘ |
Indeed, this was not the first ﬁhiﬁg‘we tried, but it is ﬁhe only'funcﬁién
wé have found that satisfies the criterion discussed below. It doés seem
reasonable that the function be required to vanish for n = 0 or 1, but
there aré of course other functional forms that do this.

The primary requirement we make of the classical electronic Hamiltonian

function Hez(n,q) is that, for fixed x, .it give the'correct adiabatic eigen-—

‘values when the system is quantized semiclassically. If E is the adiabatic

electronic energy, therefore, one defines n(q,E) by the equation

E = Hel(n,q) v, (3.15)

and then determines.the'éemiclassical eigenvalues E(N), N = 0,1 by the

Bohr-Sommerfeld phase integral relation
2N ejjqu n(q,E) . - (3.16)

Forvﬂez(n,q) of Eq. (3.14), Eq. (3.15) gives

e C o2 2 2 2 o . 2.1/2
n(q,E) —~{AH(E-H00).+ 2 HOl cos q * 2 H01cosq[H01 cos q + AH(E—HOO)—(E—HOO) 1 }

/OH? + 4 HOlZ cos’q) | o (3.17)
where AH = Hll_HOO' The-phase integral in Eq. (3.16) can be evaluated
_to give ' | -
) AH2+A(EeHOO)(E—H11) 172 | |
2iN =m4d1l - (3.18)
2 2 ’
: AH™ + 4 H : ] )

10
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and this can be algebraically converted to give E(N) as follows:

.Zl

0 s (3.19)

E(N) .=% (HygtH ) + -%—) VarZ + 4 Hi
wﬁich is seeﬁ to‘be the correct adiabatic eigenvalues for N = 0,1.

It is this abo#e‘analysisﬁthat.makes us think that Heg(n;q) of Eq. (3.14)
is the ﬁbest"'élaséical model for the two-state system. There may, of course,
be cher functions that Satisfy this criterion, but we have not found ény
(and a numbér have begﬂ tried). Iﬁ the spirit of Ockham's razof, too, one
does prefer thé simplgst; most physicallf reasonable function that meets
this criteria. - ‘

In summary, the classical.Hamiltonian for the collision system is

H(p,x,0,q) ==+ (1-n) Hy () +n H, (x)

+_2-H01(§),/n(1—n) cosq , ‘ (3.20)‘

for which the classical equations ofvﬁotion aré‘easily found to be

v <8 _ . |

X=%p - B/ - (3.21a)
| oH oH 3H -

e dH_ .o %0 %u, Por

P=-3" (; n) o n —= 2 T n(; n) cosq (3.21b)

s _oH _ . _ 1-2n | _

= 3n = B117Hoo * atTony 0% By | (3.21c)

L %% = 2 1y, JA(l0) 'sing . . 1 (3.214)
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b. Adiabatic Electronic Representation‘

Rather than carry out the calculation in the diabatic electronic
'brepresentation of the.previdus section, it may be more useful to change
to thevadiabatic'representation. One thus wishes to replace the "old"
action-angle variables (n,qj by the "new" variables (N,Q), where N is the
adiabatic action variable; i:e., N is defined in terms of (n,q) by the

relation

where E(N) is the semiclassical eigenvalue function in Eq. (3.19); more

specifically, this equation is

(l—n)H00 + n Hll + 2 Hlo‘/n(l—n) cosq

2l
10 ?

'=!'-(H +H')+(N——%—).\/AH2+4H

2 Y1100 (3.23)

which can . be solved for n to give

1/2

1

: V-l+t2 (N-—%) * %-t cosq [1 + tzcoszq - 4(1+t2)(N-%)2]
n(q,N) = §~+ . - :

-1+ t2 cos2q
(3.24)

where t = 2 HlO/AH. |
The generating function which accomplishes this canonical transformation

is of the Fz—type,19

Fz(x,q;p',N);# p'ex +d/§q n(q,N;x) . , ) (3.25)

b
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where p'

-~

and §' are the "new" canonical variéblés for the heavy particle
degrees of ffeedom; the function n(q,N;§) is given by Eq. (3.24), and it
has been emphasized that n also depends on the nuclear coordinates 5
Because the matrix elemen;s Hn',n do. The canonical transformatiéh is

specified by the usual derivative relations19

oF

O, o _ - .
aF, .~

-5' = E;T,= X _ | _ (3.26¢)
9F, 4 ' '

Eq. (3.26c) shows that x' = x, but Eq. (3.26c) shows that the nuclear

~

momenta are changed; i.e.,

p=rp'+dp - - (3.27)
where_

ap = - fdq neq,N;x) ' (3.28)

2 ax qnq’ ’x - .

\
‘with q replaced (after differentiation with respect to 3) by whét it is-

in terms of the "new" variables (this is-determined ffom Eq. (3.26d». “The
| classical Hamiltonian is still given Ey Eq. (3.20) bﬁt with the "old"
variables p,x,n,q replaced‘by what they are'in;tefmé of the "new" variables

E',§',N,Q; this gives

-
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H(p'.x',N,Q) = |p'+ap|®/2u + E®) O (3.29)

where E(N) is the adiabatic eigenvalue function of Eq. (3.19). Carrying out
‘the calculation for Ap, the nonadiabatic correction to the nuclear momenta,
is extremely.tedious,'but the answer is extremely simple. We leave it as

an interesting (but not trivial) exercise for the reader to show that

Ap = - 2 é‘;}({ﬁ AN sing  , (3.30)

where w(x) is the rotation angle that diagonalizes the 2 x 2 quantum

- mechanical matrix:

2 H01(§) ]

I .
wx) = tan [Hll(’f)'ﬂoo(i‘)

. (3.31)

Dropping the prime from the "new".heavy particle variables, one thus

obtains the complete Hamiltonian in the adiabatic representation as

2
H(p,x,M,Q) = 55 [p - 2 258 /NN sing)

+ (1-N) Ey(x) +NE ()  (3.322)
v or
Hp,x,N,Q) = 5 - 2 B0 20 NG sing
‘2 3w (x) 2 ) ‘
+ “'l—g§*—| N(1-N) sin"Q + (1-N) EO(f)‘+ N El(§) .

u

~

(3.32b)
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This classical Hamiltonian function has essentially the identical structure
as the quantum mechanical Hamiltonian operator in the adiabatic representation:
identifying
) Sy,

3w 1.

—_— < ———

wx VYol o
one seesvthaf'the principal non-adiabatic coupling, the second term in Eq.
(3.32b),'looks'just iike the quantum mechanical non-adiabatic coupling

operator,

Y ‘
. 1 P .

. 3
where here p is the momentum‘operatOr-—ih-5;;
the sinQ dependence corresponds to AN = # 1 coupling, and the N dependence,

VN(1-N), is of prgcisély the same form guessed in Section IIIa for the

off-diagonal part of the diabatic classical Hamiltonian. Since
sian =f% --% cos(2Q) . (3.33)

the third term in Eq. (3.32b) givés a small correction to the(édiabatié
potential curves (from the first term in Eq. (3.33), the "diagonal" part
of this tetﬁ), just as in the correspondiﬁg quaﬁtum mechanical case; the
cos(ZQ) part-gives,riserto‘AN = * 2'transitibns and is thus presumably
unimportant since N cannot_ﬁary below O or above 1. ‘Under‘mqét conditiohs
one would thus éxpect that this term could be discarded with little errbr,
as is usually done quantum mechanically.

The advantage of carrying out the elassical trajectory-cglcﬁlations

in the adiabatic representation is that if the non-adiabatic transitions
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are localized, N(t) will be constant and Q(t) will be a linear function of
t except in the region where non-adiabatic transitions occur. This would
mean that the timebdebendenée of the electronic variables would not sig-
nificantly slow down the trajectory caléulation.

Another, berhaps more important advantage of using the classical
Hamiltonian in the electronic adiabatic représentation, Eq. (3.32), is
that one can coméletely by-pass the possible ambiguity of gonstructing an
_electronic diabatic Hamiltonian matrix. in Eq.'(3.3?) one can thus take

the adiabatic potential curves Eo(x) and El(x) directly from a quantum

chemistry calculation, as well as replace the funétion E§é§l by the non-
B : N aw . : -

adiabatic coupling function <w0|—§£> that also comes directly from a quantum

chemistry calculation.

c. Generalization to N States

In conclﬁding this séction-we show how the correspondence established
in Section IIIa can be exﬁended.to the case of an N x N diabatic Hamiltonian
matrix Hn,’n,p',n = 1, ...,»N.

Note that the classical Hamiltonian in Eq. (3.14) can be written as the

diagonal matrix element of the Hamiltonian matrix
_ ‘ 1 : ’ o :
H_,(n,q) = v *Hey = z . H (3.34)
e IR L R ke

where H is the 2 x 2 Hamiltonian matrix and v is the complex vector with

=~

" components

~-ikq o
Vk = pk(n) e ’ L K : . (3'35)
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k = 0,1, where

po(n) =/1-n : | (3.36a)
o _ py (n) =/ . o (3.36b)

It is éasy to show that Eq.' (3.34), with Egs. (3.35) and-(3.36), réproduces
Eq. (3.15). ‘
It is this above observation that suggests the generalization to the

N x N case. We thus take

| N | |
H = 2 : *
' k,k'=1
where T~
. -ikq

‘vk = pk(n) e - | - (3.38)

It is easy to see that this then gives

A _ ' i(k'-k)q : ' N
CH g (n,q) = . Z e T Py (m) py (o) B, o (3.39)
: ‘k,k'=1 - v ... .

and if we generalize to allow for the case that the matrix elements Hk' X
. ?

are cohplex (Hk, Kk is‘hermiﬁiant H;, k= Hk k')’ this becomes
K] ’ Bl ]

N
H, (n,q)—z p, () B ok
k=1 _

"N

+ 2 Z Py (n)pk(-t__l) {Re(-Hk. k) cos[(k'-k)q] - Im(Hk. kjsipv[(k'-'k)q]}
k<k'=l - . - ‘ » (3.391)
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The coefficients pk(n) are chosen via the logic of Section Ila, i.e., so

that

21

1 j =
T [dq Hez(n,q) = Hn,n (3.40)
0 ' :

‘'when n is an integer. This is achieved simplest if {pk(n) } are the

Lagranglan interpolation coefficients,20

N . o
. 2 —TT— n-m
m=1
n#k
Egs. (3.39) and (3.41) define the classical Hamiltonian function in terms of
the N x N Hamiltonian.matrix;
This presciption satisfies the desirable property of Eq. (3.40), and it
also has the correct feature that the matrix element Hk' Kk in Eq. (3.39)
’

'—
is proportional to e 1(k'-k)q

. as suggested by.the Fourier inversion relation
in Eq. (3.10)f It would be good? of coursé, to apply the "adiabatic eigen-
vaiue test" to this classical Hamiltonian, i.e;, to see how the semiclassical
eigenvalués obtéined from it agree with thosé'obtainedvby diagonalizing the

matrix. It is clear that this cannot be doné algebraically in élosed form

' as it was for the two-state case, but numerically tests should be possible.
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IV. Concluding Remarks .

The motivation for COnétructing=these'classicai.models of electronic
degrees of freedOm-is,to.ailpw one to carry out completely glassical
tréjectory calculations ﬁnvolving electronic and heavy particle degrees
of freedom. To thé'extent,that the'Claésical_model of the electronic
,degrees'of_freedom is,fealistic, this classical trajectory appréach“should
desgribe allfthe dynamical effects_in non-adiabatic coilision phenomena

'cor;ectiy,sinCe all theAdegfees of‘freedom ére treated on the séme‘.
dynamical footing.' Applications are underway to test this.

Sections II,:Ili, ahd the Appendix describe one wéy of constructing
a classical @odel’éf_the,électronic degrees‘of freedom. Another approach
to this that we afe alsé_exploriné is-based on the idea of a classical

pseudo-potential, and for the cases discussed in Sections II and III it leads

to precisely the same cléssital'Hamilténian obtained there. This classical
- pseudo-potential analysis will be developed fully in a future paper,21 along
with other approacﬁes to constructed classical modelé of electfonic degrees
of_freedom._ |

The>ability to construct a realistic:classical model for the relevant
_electroﬁic degrees of ffeedom is clearly.the key‘elementin the model
proposed-in_thisfpaper; More formal.énd applied (i.e., computétion).

research on this aspect of the. approach is needed to see how the idéa

works and how generally .it can be carried out.
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Appendix: HeZ of Section II

Here we show hOW‘HeR, thé‘electronic part 6f ﬁﬁé cla;sicél ﬁamiltonian
'of Section II, is oBgained. Since this part of ‘the Hamiltonian is from
purély‘coulombic interactions of the electrons, it is independent of spin
and is thus a function only of the canonical variables (L,qL) and (mL,qu)a
Alsg, since the variable L is a conserved quantity in this model--e.g., for
'a‘P atom one has L=l—-Hé2 must be independent of qp - ‘Fo;'L=1, therefore, we
seek tﬁe fﬁnction Hez(mL,q‘ )o Since no othef‘ahgular momenta are involved
.in the presént discussion, we simplify notation by dropping the subscript
"L"—-i.e.,.(mL,q?t) -~ (m;qm)——for thg remainder of this’ Appendix.

The diabatic electronic matrix Hxx’ ny; etc.,‘is the matrix of the

electronic interaétion in the basis set of cartesian p—orbifals p#,.py, P}
i.e., - : - - |

Hxx ='fperfo> |

ny-= <px|Hlp&>

e = pliles e
etc.
~--where the x,y,z axes are as. shown in Figure 1. The anglés eF’¢F (éf.

Figure 1) specify the orientation of the "hybrid" p-orbital Pp»
> = : y. > 1 f
pr sineF _cosd)F.lpx + 31n6F s1n¢F|py>

+ cos6F|pz> R | (A.2) -
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and the electronic energy in this general hybrid state is easily found

to be
2 2 2, .2 2
<pF|H|pF> = gin"6F cos=¢F Hxx_+ sin 6F31n ¢F Hyy + cos BF sz
+_2vsin GF sin¢F ;os¢F ny + 2 sineF coseF cos¢F sz

f,Z sinGF coseF>31n¢F Hyz | | - .‘ (A.3a)

Hez(eF,¢F} . | | (A.3b)
Eq. (A.3) gives the éléégronic energy as a function of the orientation of

the p-orbital, and the task now is to deduce what GF and ¢F are in terms

of thé action-angle variables'(m,qm).

To do this we first transform the electronic matrix H o ny, etc.,

from the cartesian basis set'(px, py; pz) to the polar basis {pm},

m = ~-1,0,+1, where as usual
P0_= pz
) px+1p
P 2
p_-ip_ - :
Py = -_x‘/z_‘._l . (A.4)
or invefsely,
Py V2
_PhTPg
P, = Py (A.5)
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Straight-forward matrix multiplication gives

(A.6)

‘The quantum number m of _tvhis represéntation is clearly the quantum mechanical
anélog of the classical "\}ariable m, the component of the electronic orbital
anguiar momentum about the z-axis. Eq. (A.6). thus gives the matrix Hm, ,m’°
and we desirevthe cla‘svsical function of the'éction—angle variables, ‘Heﬂ,(m’qm)’
which corr.ésponds | to it.

To find the class_ica.l func‘tion Hez(m,qm) from the Iquantum mechanical
matri%c Hm, m-in Eq. (A.6), we appeal to the precription discuséed in Section

5

ITIa and IIIc. For the presvent 3-state situation Eq. (3.39') gives

H ‘(m ) = m(m-1) Hxx+ yy
el ’qm = 2 ( ) + (l—m ) H +

N {m(mz—l) (14-:;2)' [Hx;'iH i -e—iqm;+ H  +iH eiqm]
| JHE
& {m(m;-l) (l [ x H i ]

) ' H ’ . _Zi‘ Zi
- /Am (m4—l)» [( szly _ iny) e n + (——X—XT-XZ + iny) ‘,e qm]

2 Hxx-l'H R
D + ()

m(mt+1) (Hn+Hyy )
2 2
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+ Vl-m.Vm(m—l)' (sz cosq - HYZ siéqm)
+ Vi-m Vm(ﬁ+1§ '(szvcosqm - Hyz sihqm)
H -H
_ +-Vm2(m2-1)[—lg%rzz-:cos(ZQm) - ny‘sin(qu)] . AT

As discussed in SectionsulIIa and IIIc,‘one is quite confident that the
prescription described there gives the d—independent;part of Hel(m’qm) .
correctly?—i.e., the first two terms of Eq. (A,7)--ahd also.that the off-
diagonai matrix elementé ny, sz’.Hyz appéar #n the correct combination
with the trigbnometric.functions of qm. One is not sure, however, that the
prescription gives:thé éofréct m-dependence of the gq-dependent terms in
Hel(m’qn?; ife., one cahnotlbe sure that,this‘prescription:gives the
mdependent factors in the last threebtermsvof Eq. (A.7)'c6rrectly.

. To determine the correct functions of m in the last three terms of

) of Eq. (A.3) and Hez(m,qm) of Eq. (A.7);

Eq. (A.7) Qe equate Hez(eF,¢F

i.e., we require that the coefficients of each matrix element Hxx’ ny,
etc., be<identica1; This criterionkdetermines both the relation between
(GF,¢F) andA(m,qm) and.also how the m-dependent coefficients of last three
terms of ‘Eq. (A.7) should be modified. Oﬁe_readily concludes that the

following three factors in the last three terms of Eq. (A.7), respectively,

should be modified as

so that‘Eq. (A.7) then bécomes
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Z‘Hxx+azz 2
Hyg(mrqy) = m (=== + (I-m)H
+ ZmVE—m  (sz cosq - Hyz sinqm) |

H_-H - '
+m’ (BT coszq - m® B sin2q, . @a.7")

Eqs. (A.3) and (A.7") are then identical if one makes the following

identification between»(eF,¢F) and (m;qm):

(A.8a)

[}
B

sin6F
¢p = "9,

This completes the task, Eq. (A.7') being the desired classical electronic
Hamiltonian function. |

- For the case the 2P-atom interacts with a 18 atom, one.has

H = H =V

XX vy T

sz = VZ
H =H_=H_=0 |, '

Xy XZ yz

so that Eq. (A.7') becomes
B, (m,q ) = m2V_ + (1-m>)V ' | (A.9)
er (M) =V, : (4.

.where V2 and VTr are the I and T potential curves for the lS—ZP system.
For the case the 2P atom interacts with a 12 diatomic molecule

(cf. Figure 1) one has16
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so that in this case Eq. (A.7') becomes
L 2‘H:'<;x+sz o 2
H,(m,q ) =n (=) + (I-n)H

H -H '
2, XX vy 6 VA .
+ m 5 ) coqum 2my1-m Hyz sing . (A.10)
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Table I. Various Angular‘MoméntA‘in the 2? Atom + 1S Atom Collision System.

= electronic orbital angular momentum of the "P atom.
= electronic spin angular momentum of the 2P atom.

L+S = total electronic angular momentum of the P atom.

= orbital angular momentum: of relative motion of the two atoms.

LR A S A
IH

<> > ->
T414S = z4j = total angular momentum

Table Ii. Various Angular Momenta in the 2P Atom + lZ Diatom Collision System.

> . v ;

L = electronic orbital angular momentum of the atom.

> : .

S = electronic spin angular momentum of the atom.

e S I )

j = L+S = total electronic angular momentum of the atom.
> . '

N = rotational angular momentum of the diatom.

I = orbital angular momentum of relative motion of the atom

and the center of mass of the diatom.

e > > > > >

J = I+N+L+S = 3¥N4j = total angular momentum.
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Figﬁre Caption. Coordinate.System_fo¥ the F(ZP);+.H2 System;"f;R, and ¥y
are the usﬁal coordinates thaf specify‘thebrelative
‘ positioné of fhe nucléi in an atpm—diétom system. -For
’ fixed nuclei, the axis g_is along i,‘§ is' perpendicular to .
the plané of the three huclei;‘and § is ‘in the'blane. GF

aqd’¢F are the polar and azimuthal angles, respectively,

of the p-orbital of F in this body-fixed coordinate system.



45—

XBL 785-8974A

{14

U.S.GP0:1978-789-1 58/(F)17



This report was done with support from the Department of Energy.
Any conclusions or opinions expressed in this report represent solely
those of the author(s) and not necessarily those of The Regents of the
University of California, the Lawrence Berkeley Laboratory or the
Department of Energy. i




TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720





