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Abstract 

A theoretical model of electronically non-adiabatic collision processes 

is proposed which ?escribes all degrees of freedom, electronic and heavy 

particle (translation, rotation; and vibration), by classical mechanics. 

The advantage of such an approach is that since all degrees of freedom are 

treated on the same dynamical footing (i.e., via classical mechanics), all 

dynamical effects are described correctly (even resonance effects in electronic 

to vibrational/rotational energy transfer). Calculations can be carried out 

within the framework of the standard quasi-classical trajectory method. The 

key element in making this approach successful is being able to construct a 

classical model for the electronic degrees of freedom, and several approaches 

for doing this are described. 

I 
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I. Introduction 

. 1 
It is well-known that classical trajectory methods are extremely 

useful for describing atomic and molecular collision processes that take 

place on one electronically adiabatic potential energy surface, i.e., that 

stay within one adiabatic (Born-Oppenheimer) electronic state throughout 

the collision. This usefulness stems from the fact that trajectory methods 

are general, simple to apply, and need involve no approximations other, of 

course, than the use of classical rather than quantum mechanics. (The errors 

introduced by using classical rather than quantum mechanics are well under-

d2 , 'f d I' ff i d·b t h stoo --1.e., 1nter erence an tunne 1ng e ects are m sse -- u t ese 

quantum mechanical effects can in principle, and to some extent in practice, 

be incorporated by semiclassical methods. 2) 

In attempting to extend these types of methods to the treatment of 

electronically non .... adiabatic collision processes, Le., those that involve 

more than one Born-Oppenheimer potential energy surface, one is faced with 

considerable difficulty.3 It is desirable to retain the facility and accuracy 

of using classical mechanics to describe the heavy particle degrees of 

freedom (i.e., translation, rotation, and vibration), but it seems clear 

that the electronic degrees of freedom must be described quantum mechanically, 

i.e., as states. O~e is thus forced to mix dynamical descriptions--i.e., to 

describe some degrees of freedom by quantum mechanics and others by classical 

mechanics--andit is in general not possible to do this without introducing 

inherent dynamical approximations. Any theory, therefore, that treats the 

heavy particle motion classically, i.e., via trajectories, and the electronic 

degrees of freedom quantum mechanically, Le., as states, will contain 
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dynamical approximations and thus fail to describe certain aspects of these 

collision processes correctly. 

, . 4 
Tully and Preston s surface hopping model for treating non-adiabatic 

collision processes is of the type mentioned above: the heavy particle 

degrees of freedom are described classically, as trajectories moving on a 

potential energy surface, and transitions from one potential energy surface 

(Le., electronic state) to another are accomplished by localized "hops" 

that take place with a probability determined semiclassically. Although 

this model is a considerable improvement over earlier approaches that treat-

ed both electronic and vibrational degrees of freedom quantum mechanically 

(the vibronic representation)--for it is usually more important to treat 

the interaction between translation and vibration (arid rotation) consistently 

(and therefore by classical mechanics) rather than to treat vibrational 

motion by quantum mechanics--the model has some failings because. it does 

not treat all degrees of freedom on the same dynamical footing. One failure 

of the surface hopping model is its inability to describe resonance effects 

in energy transfer between electronic degrees of freedom and heavy particle 

·56 degrees of freedom,' for example, near-resonance in electronic-rotational 

energy transfer, . 

F* + H2(j=O) + F + H2(j=2) (1.1) 

and in electronic-vibrational energy transfer, 

* Br + H2 (v=O) + Br + H2 (V=l) (1. 2) 

It is clear also that the model will fail if the non-adiabatic transitions 

are not localized. 
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.The generalized Stueckelberg model devised by Miller and George7 is 

essentially a more sophisticated version of the surface hopping model that 

incorporates interference effects between different trajectories that "hop" 

from one potential energy surface to another. Although this ~emicla,ssical 

theory is more satisfactory and internally consistent in some ways than 

the Tully-Preston model--it is capable, for example,. of describing the above 

resonance effects correctly6_-it , too, has inherent limitations: ·the 

generalized Stueckelberg model is essentially adiabatic perturbation theory 

and is thus rigorously valid. only if the non-adiabatic transition probabilities 

are exponentially small. 7,8 

To have a truly correct dynamical theory of non-adiabatic collision 

processes one thus needs .to treat all the degrees of freedom, electronic 

and heavy particle (translation, rotation, and vibration), on the same 

dynamical footing. It would be best, of course, to treat them all quantum 

mechanically, but this typically leads to such an enormous number of coupled 

channel Schrodinger equations that it is out of the question. In most cases, 

too, the result~ desired from a calculation are not sufficiently detailed 

to justify a completely quantum mechanical scattering calculation. 

The opposite extreme, which is explored in this paper, is to treat 

all the degrees of freedom, electronic and heavy particle, by classical 

mechanics. This approach is one step further down the ro.ad of classical 

mechanics than the Tully-Preston and Miller-George models in that electronic, 

as well as the heavy particle degrees of freedom are to be treated classically. 

The electronic states are thus replaced by coordinates and momenta (more 

precisely, by action-angle variables) whose time evolution will be determined, 
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along with that of the heavy particle coordinates and momenta, by Hamilton's 

equations of motion. 

It may at first seem absurd to think that electronic degrees of freedom 

can be treated classically, and indeed we do not plan to follow the classical 

orbits of all 11 electrons, for example, in the F + H2 collision system. For 

non-adiabatic transitions to have significantprobabilitie!?, however, the 

electronic energy spacing must be com{>arable (at least 10cC3,lly) to vibrational/ 

rotational energy level spacings. Energy level spacings, however, correspond 

to freq~encies (Le., w = !1E/h) of classical motion. This implies that 

there is at least some aspect of the electronic motion that is slow, Le., 

that corresponds to the classical motion of something that varies on the 

same time scale as the coordinates and momenta of the heavy particle degrees 

of freedom. From this point of view, therefore, it does not seem completely 

unreasonable that one should, be able to construct a classical model for the 

I 
relevant aspects of the electronic degrees of 'freedom. This paper is a first 

attempt in showing how this can be done. 

Section II considers first the specific case of fine structure transitions 

in a 2p atom caused by collision with a IS atom or a IE diatomic molecule. 

The specific examples we have in mind are 

(1. 3) 

where X is a rare gas atom or a diatomic molecule such as H2; j and j' can 

have the values 1/2 or 3/2. ··As will be seen, it is relatively simple to 

construct a classical model for the relevant electronic degrees of freedom 

in this case because the origin'of the different ~lectronic states (i.e., 
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spin-orbit coupling) has a simple classical analogue. 

In Section tIl it is shown how a classical model for a general two 

(electronic) state system can be constructed. For an atom-atom or atom

diatom collision system, for example, in which two adiabatic electronic 

states are involved, it is shown how the two electronic states can be 

replaced by a generalized 'coordinate and momentum. It is seen that this 

can be done in both a diabatic electronic representation or the adiabatic 

electronic representation. It is also suggested how this scheme can be 

generalized to an arbitrary number of states. 

For the cases discussed in both Sections II and III the idea is that 

non-adiabatic transitions will be described by computing the complete 

classical trajectories involving all the degrees of freedom, electronic 

as well as heavy particle. Transitions between specific electronic states 

can be determined by the usual quasi-classical prescription,l namely the 

action variable corresponding to the electronic degree of freedom is 

initially set to an integer, and its final (non-integral) value is assigned 

to the nearest integer quantum number "box". Since all the degrees of 

freedom are treated on the same (i.e., classical) dynamical footing, one 

expects· this approach to describe all dynamical effects correctly. Even 

the resonance effects of Eqs. (1.1) and (1.2) should be described correctly 

since resonance energy transfer occurs in classical as well as quantum 

mechanics; the Tully-Preston surface hopping model miss~s these effects5 ,6 

only because electronic and heavy particle degrees of freedom are described 

on different dynamical footings, 1. e., by quantum and by classical mechanics, 

respectively. There are, of course, the purely quantum mechanical inter-

ference and tunneling effects that this completely classical model will miss. 
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These effects can in principle, however, be incorporated by using classical 

2 S-matrix theory. 

In concluding this Introduction it should be noted that there are other 

contextsin which 'classical models have been used to describe' electronic degrees 

of freedom. Perhaps the most common situation is to describe highly 

excited Rydberg states classically,9 for these states can be modeled 

as one·electron systems. 10 Work by Green and Zare, showing that the 

electronic states arising from the interaction of a 2IT diatomic molecule 

1 . 
and a S atom can be modeled as a symmetric top molecule plus an atom, 

is an example of the general correspondence we are trying to develop here, 

but they did not proceed to construct the actual classical Hamiltonian for 

this system. 

/ 
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II. 
2 

Fine Structure Transitions in P Atoms 

2 1 
a. P Atom + S Atom 

The goal here is to construct a classical Hamiltonian that describes 

21' 
the collision of a P atom and a, S atom, where one is interested in 

transitions between the 2p 1/2 and. the 2p 3/2 states of the a,tom. 

For the isolated 2p atom we thus introduce two classical angular 

-+ -+ 
momenta, Land S, each of which consists of two degrees of freedom.character-

ized by the usual action-angle 

(ms,qm ), where L,S,~, and mS 
S 

variables: 11,12 (L,qL)" (~'~)' 
-+ -+ 

are the magnitudes of Land Sand 

(S,qS)' 

their 

projections onto the interatomic axis, respect.ively, and the q's are 

-+ -+ ' 
their .conjugate angle variables. Land S are the electronic orbital and 

2 spin angular momentum, respectively, of the P atom, so that L = 1 and 

S = 1/2. The classical Hamiltonian for the/isolated 2p atom is 

-+-+2 2 2 -+-+ 
BIL+sl = B(L + S + 2L-S) (2.1) 

-+ -+ 
where B is a constant, and L-S is given in terms of the canonical variables 

by13 
( 

-+ -+ . I 2 2' I 2 2 '. . 
L-S = am + vL -m.. V S -m cos(Cl." -q ) 

L S . L S L mS 
(2.2) 

As shown in the Appendix, the electronic energy for the two-atom 

system is given in terms of the canonical variables by 

2 2 
= (l-~ ) Vl: (R) + ~ Vrr(R) , (2.3) 
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2· 2 2 I where Vr(R) and V~(R) are the rand TI potential curves for the P + S 

diatomic system. One may simply think of Eq. (2.3) as an interpolation 

formula: when ~ (which is called A in usual spectroscopic notation) is 

0, the energy is Vr , and when ~ ± I it is V~. 

The complete classical Hamiltonian for the system is thus 

(2.4) 

where (P,R) ate the momentum and coordinate for the relative translational 

motion of the two atoms and i is the orbital angulat momentum fot relative 

motion of the atoms. 
, + 

Sitice the total angular monietitUm J, 

+ -t -+ -+ 
J=X,+L+S 

is conserved, it can be used to eliminate t from the Hamiltonian; 

7 + -+ + 
x, = J - (L+S) 

i. e. , 

(Table I sunnnatizesthe different angular momenta that appear in this 

(2.5) 

(2.6) 

system.) Also, one notes that the Hamiitonian does not involve the angle 

variables qL and qs' so that Land S are conserved quantities. The 

Hamiltonian thus becomes 

2 1+ + + 2 
( ) = 1- + J-(L+S) 1 

HJLS' P ,R,~,~ ,ms'<Im
S 

'2]1' 2]1R2 

(2.7) 

where the vatiables J,L,S are conserved and appear in the Hamiltonian only 

as par'ameters. 
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Before going further it is useful to make a canonical transformation 

to the "good" action-angle variables of the 2p atom; 1. e., since the 

atomic Hamiltonian of Eqs. (2.1) and (2.2) involves, and ~S' the 

action variables ~ and mS are not constants of the motion of the isolated 
2 . 
P atom. The desired canonical transformation replaces the momenta ~ 

and mS by jand mj , where j :: It+sl is the magnitude of the total electronic 

2 angular momentum of the P atom and m. its projection onto the inter--
J 

atomic axis. This canonical transformation has been discussed in considerable 

detail by Miller;ll it is the classical analogue of the Clebsch-Gordan 

transformation of quantum mechanics. With (~,q~) and (ms'~s) replaced 

by (j ,qj) and (mj ,~,), the Hamiltonian of Eq. (2.7) becomes 
. J 

H (P R ' ) = p2 + 11-1"12 + B,,2 
JLS "J ,q , ,m, ,~ 211 2 .J 

J J j 211R 

(2.8) 

where IlL is now a function of the "new" variables j, q. ,m, ,q ; the explicit 
L J J mj 

expression for it is 

(2.9a) 

where 

ex = (2.9b) 

Proceeding further, one has 

(2.10) 
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13 and in terms of the action-angle variables one has 

, 

where m
J 

is the proj ection of J op.to the, interactomic axis, and q is 
m

J 
its conjugate angle. Since the Hamiltonian is independent of m

J
, q' 

, mJ 

(2.11) 

is a constant and can be set; to '0'. (This is possible since the 2rr-l.ength 

interval chosen for the domainof~.is arbitrary.) Furthermore, since 
J 

the interatomic axis has been chosen as the quantization axis, it must be that 

"7 "7 + + 
mJl.' the projection of x, along it, is 0 (because x, =R x P); since by Eq. (2.6), 

one has 

which implies that 

"7 ++ 
x, = J-j 

= 0 

m = m 
'J j 

Using Eqs. (2.12) and (2.11) in Eq.: (2.10) gives 

2 2 . 2 'j 2 2'J 2 t = J +j -2m. - 2"J -m. j -m. cos~. 
J J J J 

which may be recognized as the expression obtained ear1ier
12 

for the 

atom-diatom system in the he1icity representation. 

(2.12) 

(2.13) 

The classical Hamiltonian of Eq~·{2.8) can nOw be written in its final form 
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H (P R j q m 0 ) = p2 + L + Bj2 + (1-11L 2) V,\,,(R) + m 2 V .... (R) 
JLS '" j' j' ~j 2~ 2~R2 L u L II 

(2.14) 

with i 2 and ~ given in terms of the canonical variables by Eqs. (2.13) and 

(2.9), respectively. 

The various terms in Eq. (2.14) have rather .obvious interpretations as 

coriolis interactions, etc. This classical Hamiltonian is, in fact, the 

direct analogue of the quantum mechanical Hamiltonian Mies14 obtained for 

describing this same problem quantum mechanically, and the two Hamiltonian's 

are essentially identical in structure. 

With'this Hamiltonian one can carry out completely classical trajectory 

calculations for all the degrees of freedom. According to the standard 

1 quasiclassical procedure, the electronic angular momentum j is initially 

set to an integer, 1/2 or 3/2, and q. is chosen as a random number in the 
J 

interval (0,27r), etc. 

It could turn out to be easier in practice to compute the classical 

trajectories in the uncoupled representation, i.e., with (~,q ) and 
. ~ 

(mS'~ ) as the dynamical variables, rather than in the coupled representa
S 

tion described above, i. e. ,with (j, q .) and (m., q ) as the dynamical 
. J J m. 

. J 
variables. If so, the Hamiltonian in the uncoupled representation, 

HJLS(P,R,~,~,ms,~s), is giVen' still by Eq. (2.14) but with j2 and i
2 

expressed in terms of the variables (mL'~ ), (ms,qm)' From the analysis 
. ~ . S 

described above it is not hard to show that these expressions are. 

2 2 L2 2"2 2' = L + S + 211Lm.S + 2VL -11L YS.-m cos(q -0 ) 
L ., LS . ~ ~S 

(2.15) 
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and 

2 -+ -+ -+ 2 
~ -IJ-L-SI 

12 2'/2 2' 
- 2VJ -(~+mS) ~L -~ cos~ 

_ 2l.J2-(m.:+m r JS2_m 2' cosa 
L S S 1nS 

(2.16) 

The results of a claSsical trajectory calculation are, of course, independent 

of the representation in which the calculation is carried out. 

As a final comment, we note that since J» L,S,j, it is likely that 

many of the centrifugal coupling terms in Eq. (2.13) or Eq. (2.16) can be 

discarded with little error. The simplest such approximation is to take 

2 2 
~ = J in both cases; this corresponds to a "he1icity conserving" approxi-

mation of the type now often used to simplify quantum mechanical scattering 

15 calculations. 

b. 2p Atom and 1E Diatom 

Here we show how the above analysis can be generalized to describe 

a 2p atom + 1E diatom collision system, the example we have in mind 

being F(2p) + H2• Just as the Hamiltonian of Section IIa is analogous 

14 
to the quantum mechanical Hamiltonian of Mies, the Hamiltonian of this 
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section is the classical analogue of the quantum mechanical Hamiltonian 

b d ' 16 d . d f h F(2) operator that Re entrost an Lester er~ve or t e P + H2 system. 

,To a large extent, therefore, we follow their notation and approach in 

constructing the classical Hamiltonian for the system. 

t and S again denote the electronic orbital and spin angular momentum 

of the 2p atom, r = t + S, and the Hamiltonian for the isolated atom is 

again given by Eq. (2.1). The diatomic molecule ,is treated initially as 

a rigid rotor and thus has only a rotational degree of freedom. Nand 

~ are the action-angle variables for this rotational angular momentum 

of the diatom--N is the magnitude of the rotational angular momentum and' 

~ its projection onto the R axis (see Figure l)--and qN and q are their 
~ 

conjugate angle variables. The various angular momenta of the system are 

summarized in Table II. The Hamiltonian for the isolated diatom is 

N2 
--2 
2mrO 

where m is the reduced mass of the diatom and rO its bound length. 

Analogous to Section IIa, the complete Hamiltonian for the system 

is thus given by 

where, as before, total angular momentum conservation can be used,to 

, 2 
express t in terms of the total angular momentum J and the other 

(2.17) 

(2.18) 
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angular momenta of the system, 

2 '-+-+-+2 
R, = IJ-N-jl 

-+ -+ -+ -+ -+-+ 
2J·N-2J· j+2N· j (2.19) 

using the general relation in footnote 13 and the fact that mR, = mJ-~-mj = 

-+ o (since R is the quantization axis), which implies that mJ = ~ + mj , 

explicit expression for R,2 in terms of the action angle variables is 

It is shown in the Appendix that HeR,' the electronic energy of the 

system; is given in terms of the canonical variables by 

H +H 
(R ) = m.. 2( xx 2 YY) + (1-m.. 2)" H

zz HeR,'Y'~" L L 

the 

(2.20) 

(2.21) 

where the electronic matrix H , H , H , etc., is determined by a quantum xx xy yz 

chemistry calculation; these matrix elements are functions of Rand y. 

These diabatic potential energy surfaces H (R,y), H (R,y)~ etc., have , xx xy 
, '16 2 

been calculated, for example, by Rebentrost and Lester for the F( P) + H2 system. 
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To complete the specification of the Hamiltonian one needs to express 

. '-+-
y, the angle between the center of mass coordinate R and the diatomic axis, 

in terms of the action angle variables; this is the same expression derived 

earlier12 for the.atom-diatom collision system on a single potential energy 

surface, 

I 2 2' 
cosy = V1~~ IN cosqN (2.22) 

~ is still given in terms of the canonical variables by Eq. (2.9), and. it 

is also necessary now to express q in terms of the "coupled variables" 
~ 

(J,qj) and (mj'~,);thiS expression can also be worked out from the generat-

ing function deri~ed by Mil1er,11 ana one obtains 

[ 
aj sinq; ] 

tan -1 -am-, -C-o-S-q-. -_-J"1"j=;;;2=_m=J~' ~;In'-(-j-;:-2 +-L-:2;:""_-s-;:"2) 
J J 

(2.23) 

In summarizing the final result we generalize to the case that the 

diatom is allowed to vibrate. If r is the diatomic coordinate and pits 

conjugate momentum, this adds the term p2/2m to the Hamiltonian and rO in 

Eq. (2.17) becomes the variable r. The final result is then 

2 2 
+ .L + _N_ + BJ,2 + H . (R ) 

2m 2mr2 e~ ,y,r,~,~ , (2.24) 

where ~2 is given by Eq. (2.20), He~ by Eq. (2.21) (the matrix elements H
XY

' 

etc., now depend on R, y, and r), .~ by Eq. (2.9), q by Eq. (2.23), and 
, .~. . ,," ,".,. . 
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Y by Eq. (2.22). With this Hamiltonian one can proceed to compute 

classical trajectories by numerically integrating Hamilton's equations 

in the usual way. 

We also note the expression for the Hamiltonian if the uncoupled 

representation, with variables (~'~) and (ms'~s)' is used instead 

of the above coupled representation with variables (j,q.) and (m.,q ). 
J J m. 

J 
The Hamiltonian HJLS(p,R,p,r,N,qN'~'~ ,mS'~ ) is the same as that 

2 2 ~ S 
in Eq. (2.24) but with j and i expressed in terms of the appropriate 

variables. j2 is given by Eq.(2.l5) of the preceeding section, and 

it is not hard to show (since mJ = ~ + ~ + mS) that 

2 1+ + + + 2 i - J-N-L-SI 

/2 2'/22' 
-2VJ -(~~+mS) VN-~ cos~ 

- 2JJ2_(~~+ms)2'JLZ-~ZI cos, 

2J.r2 _ (m.~+m- +m ) tJs2 -m 21 cosq 
~ L s. S . ms 

+ 2JN2_~2IJL2_~ Z' COS(q~-,) 

_12 Z' 12 Z I 
+ 2VN -~. 'Is -ms . cos (~-~s ) 

+ ~L2_~21v's2_ms2 i cos(~-~s) (2.25) 
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Again, since J » N,L,S,j it is likely that many of the angular moment.um 

coupling terms in Eq. (2.20) and Eq. (2.25) can be dis~arded with little 

error being introduced. The simplest such approximation is, in both cases, 

·22 to take JI. = J . 
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III. The General Two-State Problem 

Here we consider the general problem of a molecular collision system 

involving heavy particle degrees of freedom ~ and £ and two electronic 

states. We want to show in genera1--without taking any account of the 

physical nature of the electronic states as was done above for the examples 

in Section II--how a classical electronic degree of freedom can be constructed 

to replace the two electronic states. To include both atom-atom, atom-diatom, 

etc., systems we omit a detailed specification (i.e., angular momentUm 

coupling, etc.) of the heavy particle degrees of freedom. 

a. Diabatic Electronic Representation 

We look for a classical Hamiltonian of the" form . 

E2 
H(p,x,n,q) = 2].1+ HeR, (n,q;~) . , (3.1) 

where the first term is the kinetic energy of the heavy particle degrees 

of freedom; and HeR, is the Born-Oppenheimer electronic energy of the s'ystem 

in terms of the electronic action-ang1e variables (n,q); HeR, also depends 

parametrically on ~, the positions of the heavy particles (Le., nuclei). 

The goal is to show how the classical function H o(n,q;x) should be constructed 
eiV -

from the quantum mechanical 2 x 2 diabatic Hamiltonian matrix 

i.e., suppressing the dependence on x for the moment, One wants to show 

how the 2 x 2 Hamiltonian matrix H, ,n,n' = O}lsRou1d--in the most 
n ,n 

(3.2) 
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consistent and correct way possible--be replaced by a classical Hamiltonian 

function H(n,q). 

,Before proceeding further, it is useful to digress briefly to consider 

how a diabatic Born-Oppenheimer electronic matrix can be constructed 

uniquely. This is a topic with a considerable history,l7 and we only wish 

to make some elementary comments here. The two adiabatic eigenfunctions 

'l/Jo and 'l/Jl' and corresponding eigenvalues EO and E
l

, depend parametrically 

on the nuclear positions x. It is always possible to define functions ~o 

and ~l' and the related electronic Hamiltonian matrix Hn' ,n,n,n' = 0)1, that 

are a unitary transformation of the adiabatic quantities: 

(~o) -= (CO~W SiOW) ('l/Jo ) 

~l -s~nw cosw. 'l/J 1 (3.3a) 

(

cosw Sinw) 

-sinw cosw (c~sw -SiOW) 
s~nw cosw (3.3b) 

where EO,El,w, and Hn',nare related by the usual expressio~s: 

(3.4a) 

(3.4b) 

(3.4c) 

In general, the functions 4>0 and ~l will depend parametrically on x. If, 

however, there exists .. a function w(x) so that~o arid ~l 'of Eq. (3.3a) are 
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independent of ~--or at least approximately so--then all the x dependence 

'of 1/1
0 and 1/11 is contained in the angle w(x): 

G:)= COSW 
-SinOO) Co) (3.5) 

sinw cosw. . <1>1 

If this is true, then it is easy to show that the non-adiabatic coupling 

function is given by 

(3.6) 

For the case of just one nuclear variable x, for example, it is thus possible 

to start with the 

coupling functio·n 

adiabatic 
a1/ll 

<1/10 1 ax >, 

potential curves EO(X)' El(x), and the non-adiabatic 

and determine the diabatic Hamiltonian matrix 

H, (x) as follows: n ,n . 

00 

w(x)·= f dx' 

x 

a 1/1 
<," I~> 

'1'0 ax' 

and then Eq. (3.3b) gives H, (x): n ,n 

'(E 2 + E .2 OCOS W . ls~n w 

= 
(El-Eo');inW cosw 

Eqs. (3.7) and (3..8) give the diabatic Hamiltonian matrix explicitly in 

(3.7) 

(3.8) 

terms of the adiabatic eigenvalues. and the non-adiabatic coupling. Whether 

or not this diabatic Hamiltonian is actually a good representation of the 
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non-adiabatic coupling depends on the extent to which it is physically 

true that the coupling-does arise primarily from the interaction of just 

two states. 

For the present, therefore, we ass,ume that the diabatic electronic 

Hamiltonian matrix H, (x) is provided by quantum chemistry. How then 
n ;n.-· 

is H n(n,q;x) to be constructed? The basic clue comes from an approximate 
e;v -

semiclassical relation sometimes called the Heisenberg Correspondence 

P · ·'1 18 rl.ncl.p e. Suppressing the x dependence of all quantities, this relation 

is 

H 
n' ,n 

-i(n'-n)q -e H(n,q) (3.9) 

1 where n is usually taken to be 2 (n+n'), but this should be viewed only 

as a rough approximation:. If Eq. (3.9) were truly correct, then one could 

construct H(n,q) as a Fourier series by inverting it: 

00 

H(n,q) 

f1n=-oo 

if1nq 
e 

Since we have only two states, and n,n' = 0 or 1, it is clearly not 

possible to apply these relations in detail, but they dp give some 

clues as to how R(n,q) should be constructed from the matrix elements 

H, • For example, Eq. (3.10) suggests that the q-independent part n ,n 

of H(n,q), i.e., the average of H(n,q) over q, should be such that 

1 
2'lT 

2'lT , 

. jdq H(n,q) = H 
, n,n 

.. 0 

(3.10) 

(3.11) 
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for n = 0,1. The simplest way to accomplish this is to use lowest order 

(i.e., linea~ interpolation, so that the q-independent part of H(n,q) is 

chosen as 

(l-n)HOO + nHll (3.12) 

for n =0 and 1 this becomes HOO and Hll , respectively. (For the 3-state 

case one would need quadratic interpolation to do the job; i.e., Eq. (3.12) 

would be replaced by 

.1 1 2" (1-n)(2-n)HOO + (2-n)n Hll + 2" n(n-l)H22 .) 

For the two-state case it is clear that only the lowest order terms in 

Eq. (3.10) should be retained, so that one expects the q-dependent 

part of 
1 . 

H(n,q) to be proportional to cosq; also since cosq = 2" e~q + 
1 -iq 2" e , this gives rise to lm = ± 1 coupling,. which is physically correct. 

It is also clear that this term should be proportional to the off-diagonal 

matrix element HOI but it is not clear how it should depend on n. The 

form that we have chosen for the q-dependent part of H (n, q) is 

(3.13) 

so that the complete diabatic electronic Hamiltonian function is 

(3.14) 

and it is to be remembered that the matrix elements H depend parametrically 
n' ,n 

on the nuclear coordinates x. 
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As indicated above, it is not obvious that the n-dependence of the 

last term'in Eq. (3.14) should be chosen as it is, namely as In(l-n): 

Indeed, this was not the first thing we tried~ but it is the only function 

we have found that satisfies the criterion discussed below. It does seem 

reasonable that the function be required .tovanish for n = 0 or 1, but 

there are of course other functional forms that do this. 

The primary requirement we make of the classical electronic Hamiltonian 

function He.R.(n,q) is that, for fixed·~, it give the correct adiabatic eigen

values when the system is quantized semiclassically. If E is the adiabatic 

electronic energy, therefore, one defines n(q,E) by the equation 

E = He.R.(n,q) ., (3.15) 

and then determines the semiclassical eigenvalues E(N), N 0,1 by the 

Bohr-Sommerfeld phase integral relation 

2~N =st>dq n(q,E) (3.16) 

For He.R.(n,q) of Eq. (3.14), Eq. (3.15) gives 

{ 
2 2 2 2 .. '. . 2 1/2} n(q,E) = 6H(E-HOO ) + 2 HOI cos q ± 2 HOlcosq[HOl cos q + 6H(E-H

OO
)-(E-H

OO
)] 

where 6H = Hll-HOO ' The phase integral in Eq. (3.16) can be evaluated 

to give 

2 1/2 

[
6H +4 (E-HOO ) (E""Hll)] .} 

6H2 + 4 H 2 . . 10 
J 

(3.17) 

(3.18) 
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'. ~ .. '> 

and this can be algebraically converted to give E(N)' as follows:' 

(3.19) 

which is seen to be the correct adiabatic eigenvalues for N = O,l. 

It is this above analysis that makes us think that HeR,(n,q) of Eq. (3.14) 

is the "best" classical moclel for the two-state system. There may, of course, 

be other functions that satisfy this criterion, but we have not found any 

(ancl a number have been tried). In the spirit of Ockham's razor, too, one 

does prefer the simplest, most physically reasonable function that meets 

this criteria. 

In sunnnary, the classical Hamiltonian for the collision system is 

2 
H(p,x,n,q) = ~1l + (l-n) HOO(~) + n HU (~) 

(3.20) 

for which the 'classical equations of motion are easily found to be 

• aH x = ap = PIll (3.2la) 

• aH . aHOO aHIl aHOl I i 

£ = - ax = -(l";n) --ax- - n --ax- - 2 --ax vn(l-n) cosq (3.2lb) 

(3.2lc) 

• aH ,...~~ 
n = - aq = 2 HOI vn(l-n)'sinq (3.2ld) 
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b. Adiabatic Electronic Repres.entation 

Rather than carry out the calculatipn in the diabatic electronic 

representation of the previous section, it may be more useful to change 

to the adiabatic representation. One thus wishes to replace the "old" 

action-angle variables (n,q) by the "new" variables (N,Q), where N is the 

adiabatic action variable; i.e., N is defined in terms of (n,q) by the 

relation 

HeR. (n,q) = E(N) (3.22) 

where E(N) is the semiclassical eigenvalue function in Eq. (3.19); more 

specifically, this equation is 

(l-n)HOO + n Hll + 2 HIO In(1-n)' cosq 

(3.23) 

which can be solved for n to give 

n(q,N) 

(3.24) 

where t = 2 HIO/~H. 

The generating function which accomplishes this canonical transformation 

is of the F
2
-type,19 

(3.25) 
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where £' and ~' are the "new" canonical variables for the heavy particle 

degrees of freedom; the function n(q,N;x) is given by Eq.' (3.24), and it 

has been emphasized that n also depends on the nuclear coordinates ~ 

because the matrix elements H, do. The canonical transformation is 
n ,n 

specified by the usual derivative relations19 

,+.1...f· ( ) £ ax q n q,N;x 
-

aF2 " 
n = -. = n (q N' x) aq , '-

aF
2 . x' = -- = x dp' -

Q = aF2 =.1... . ~q n(q,N;~) 
. aN aN)JJ. _ 

Eq. (3.26c) shows that x' = x, but Eq. (3.26c) shows that the nuclear -
momenta are changed; i.e., 

p = p' + L\p - -
where 

with q replaced (after differentiation with respect to x) by what it is 

C3.26a) 

C3.26b) 

C3.26c) 

(3.26d) 

(3.27) 

(3.28) 

in terms of the "new" variables (this is determined from Eq. (3. 26d». The 

classical Hamiltonian is still given by Eq. (3.20) but with the "old" 

variables ~,~,n,q replaced by what they are in terms of the "new" variables 

~',~' ,N,Q; this gives 
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H(p' ,x' ,N,Q) = !p'+llp!2/2]l + E(N) (3.29) - -
where E(N) is the adiabatic eigenvalue function of Eq. (3.19). Carrying out 

the calculation for IIp, the nonadiabatic correction to the nuclear. momenta, 

is extremely tedious, but the answer is extremely simple. We leave it as 

an interesting (but not trivial) exercise for the reader to show that 

(3.30) 

where w(x) is the rotation angle that diagona1izes the 2 x 2 quantum 

mechanical matrix: 

(3.31) 

Dropping the prime from the "new" heavy particle variables, one thus 

obtains the complete Hami1tqnian in the adiabatic representation as 

2lJ 
H(p,x,N,Q) 1 =-

(3.32a) 

or 

H(p,x,N,Q) - -
2 a ( ) 2 ·2· 

+]l ! ~x ~ ! . N(l-N) sin Q + (l-N) EO(:) + N E1 (:) • 

(3.32b) 
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This classical Hamiltonian function has essentially the identical structure 

as the quantum mechanical Hamiltonian operator in the adiabatic representation: 

identifying 

one sees that the princi~l non-adiabatic coupling, the second term in Eq. 

(3.32b), looks just like the quantUm mechanical non-adiabatic coupling 

operator, 

.. t<.a 
where here p is the momentum operator -.1)1 ax; 

the sinQ dependence corresponds to 6N = ± 1 coupling,and the N dependence, 

IN(l-N)', is of pr~cisely the same form guessed in Section IlIa for the 

off-diagonal par.t of the diabatic classical Hamiltonian.. Since 

211 
sin Q = ~ - I cos(2Q) (3.33) . 

the third term in Eq. (3.32b) gives a small correction to the adiabatic 

potential curves (from the first term iil. Eq. (3.33), the "diagonal" part 

of this term), just as in the corresponding quantum mechanical case; the 

cos(2Q) part gives rise to 6N = ± 2 transitions and is thus presumably 

unimportant sinceN cannot vary below 0 or above 1. Under most conditions 

one would thus expect that this term could be discarded wi.th little error, 

as is usually done quantum mechanically. 

The advantage of carrying out the classical trajectoryc~lculations 

in the adiabatic representation is that if the non-adiabatic transitions 
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are localized, N(t) will be constant and Q(t) will be a linear function of 

t except in the region where non-adiabatic transitions occur. This would 

mean that the time dependence of the electronic variables would not sig-

nificantly slow down the trajectory calculation. 

Another, perhaps more important advantage of using the classical 

Hamiltonian in the electronic adiabatic representation, Eq. (3.32), is 

that one can completely by-pass the possible ambiguity of constructing an 

electronic diabatic Hamiltonian matrix. In Eq. (3.32) one can thus take 

the adiabatic potential curves EO(~) and EI(~) directly from a quantum 

chemistry calculation, as well as replace the function a~~~) by the non-. a 1/1 . 
I 

adiabatic coupling function <1/10 I ax> that also comes directly from a quantum 

chemistry calculation. 

c. Generalization to N States 

In concluding this section we show how the correspondence established 

in Section IlIa can be extended to the case of an N x N diabatic Hamiltonian 

matrixH, ,n',n=l, ••• ,N. 
n ,n . 

Note that the classical Hamiltonian in Eq. (3.14) can be written as the 

diagonal matrix element of the Hamiltonian matrix 

+ = v "H"v = 
;>t,"'" 

I 

l: 
k,k'=O 

(3.34) 

where H is the 2 x 2 Hamiltonian matrix and v is the complex vector with 
~ 

components 

;;'ikq 
(3.35) 
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k = 0,1, where 

(3.36a) 

,I (3.36b) 

It is easy to show that Eq.' (3.34), with Eqs. (3.35) and (3.36.), reproduces 

Eq. (3.15). 

It-is this above observation that suggests the generalization to the 

N x N case. We thus take 

where 

N 

He'!/' (n,q) = L 
k,k'=l 

v = p (n) -e 
k k· 

It is easy to see that this then gives 

N 

(3.37) 

-ikq 
(3.38) 

~.. . i(k'-k)q (' ) 
He'!/' (n.,q) = LJ ·e Pk ' n Pk (n) ~',k (3.39) 

'k,k'=l 

and if we generalize to allow for the ,case that the matrix elements Hk, ,k 

are complex (f\., ,k is hermitian': * Hk,1 ,k = ~,k')' .this becomes 

N 
.~ 2 

He.!/, (n,q)=£..J Pk (n) ~,k 

k=l 

N 

+ 2 L Pk , (n)Pk(n) {' Re(~, ,k) cos[ (k'-k)q] 
k<k'=l ' 

- Im(I1t •• kisinHk'-k)Ql} 

(3.39') 
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The coefficients Pk(n) are chosen via the logic of Section IIa, i.e., so 

that 

H n,n 

when n is an integer. 2 This is achieved simplest if {Pk(n) } are .the 

20 Lagrangian interpolation coefficients, 

N 
2 =1T (n-m) Pk(n) k-m 

m=l 
m:fk 

(3.40) 

(3.41) 

Eqs. (3.39) and (3.41) define the classical Hamiltonian function in terms of 

the N x N Hamiltonianmatrix~ 

This presciption satisfies the desirable property of Eq. (3.40), and it 

also has the correct feature that the matrix element ~',k in Eq. (3.39) 

i(k' k) . 
is proportional to e - q, as suggested by the Fourier inversion relation 

in Eq. (3.10). It would be good, of course, to apply the "adiabatic eigen-

value test" to this classical Hamiltonian, i.e., to see how the semiclassical 

eigenvalues obtained from it agree with those obtained by diagonalizing the 

matrix. It is clear that this cannot be done algebraically in closed form 

as it was for the two-state case, but numerically tests should be possible. 
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IV • ~cluding Remarks 

The motivation ·for c.onstructing these classical models of electronic 

degrees of freedom is .to allow one to carry out completely classical 

trajectory calculations involving electronic.and heavy.particle degrees 

of freedom. To the extent that the classical model of the electronic 

. degrees of freedom is .realistic, this classical trajectory approach should 

describe all the dynamical effect~ in non-:-adi~batic collision phenomena 

. coq:·ectly. since all the degrees of freedom are treated on the same' 

dynamical footing. Applications are underway to test this. 

Sections II, III, and the Appendix. d~scribe one way of. constructing 

a classical model of the electronic degrees of fre·edom. Anotherapproach 

to this that we are also exploring is based on the idea of a classical 

pseudo-potential, and for the cases discussed in Sections II and III it leads 

to precisely the same classical HaIililtonian obtained there. This classical 

21 . pseudo-potential analysis will be developed fully in a future paper, along 

with other approaches to constructed .classical models of electronic degrees 

of freedom. 

The ability to construct a realistic ,classic;;ll model for the relevant 

electronic degrees of freedom is clearly the key element in the model 

proposed in this. paper.. More formal and applied (Le., computation) 

research on this aspec:tof the approa,ch is needed to see how the idea 

works and how generally it can be carried out. 
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Appendix: Hei of Sec~ion II 

Here we show how Het' the electronic part of the classical Hamiltonian 

of Section II, is obtained. Since ,this part of the Hamiltonian is from 

purely coulombic interactions of the electrons, it is independent of spin 

and is thus a function only of the canonical variables (L,qL) and (~")o 

Also, since the variableL is a conserved quantity in this model--e.g., for 

a P atom one has L=l--He~ must be independent of qL. For'L=l, therefore, we 

Since no other angular momenta are involved 

in the present discussion, we simplify notation by dropping the subscript 

"L"--Le., (m.. ,q' ) -+ (m,q )--for the remainder of this Appendix. 
L Plr. m 

The diabatic electronic matrix H ,H ,etc., is the matrix of the xx xy 

electrorlic interaction in the basis set of cartesian p-orbitals p , p , Pz; 
x Y 

i. e. , 

H =' <p IHlp > xx ; x x 

H = <p IHlp > xy x Y 

H = <p IHlp > xz x z 

etc. 

--where the x, y , z axes are as shown in Figure 1. The angles ~F' <l>F (cf. 

Figure 1) specify the orientation of tl}e "hybrid" p-orbital PF' 

(A. 1) 

(A.2) 
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and the electronic energy in this. general hybrid state is easily found 

to be 

(A.3a) 

(A.3b) 

. ..'1 
Eq. (A.3) gives the e1ec~ronic energy as a function of the orientation of 

the p-orbita1, and the task now is to deduce what 8F and ~F are in terms 

of the action-angle variables (m,~). 

To do this we first transform the electronic matrix H , H , etc., xx xy 

from the cartesian basis set (p , p ., p ) to the polar basis {p }, 
x y z m 

m = -1,0,+1, where as usual 

Po = Pz 
P +ip 

P1 
x y. 
\Ii' 

p -ip 
p = x y. 
-1 "f'r 

(A.4) 

or inversely, 

P1+P...;.1 
Px = vr 

P1-P-1 
Py = i'li' 

Pz = Po (A.5) 
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Straight-forward matrix multiplication gives 

-1 

H = m' ,m o 

1 

-1 

yy 

H +iH 
xz . yz :.;r. 

o 

H -iH xz· yz 
\It 

H zz 

1 

H -H xx yy 
2 

H -iH xz yz 
..fl' 

iH xy 

H +iH xz yz 
VI' (A.6) 

The quantum number m of this representation is clearly the quantum mechanical 

analog of the classical variable m, the component of the electronic orbital 

angular momentum about the z-axis. Eq. (A.6) thus gives the matrix H, , 
m ,m 

and we desire the classical function of the action-angle variables,He~(m,~), 

which corresponds to it. 

To find the classical function Het(m,~) from the quantum mechanical 

matrix H, in Eq. (A.6), we appeal to the precription discussed in Section 
. m ,m 

IlIa and IIIc. For the present 3-state situation Eq. (3.39') gives 

fm(m;l) 
. '[H -iH . -i~ H +iH ei~] + (1_m2) xz{i'Yz . + xz yz 

e if!' 

• [H -iH -iq H +iH iq J + fm(~l) (1- 2)xz. yz e m+ xz yz e m 
. m . 'Vi'. :rr 

. + m (m -1), (xx - yy _ iH ) e '1n + (xx YY + iH ')e '1n f 2 2 i [< H H -2io H -H 2iO] 
. 4 2 xy 2 xy 
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+ Jl-m2~m(m-lj· (H cosq - H sina) 
xz m yz 1n 

(H cosa - H sina) xz 1n yz 1n 

~-..:--.., H ~ H I 2 2 I xx yy. . 
+ Vm (m -1) [ 2 cos (2~) .... Hxy sin(2qni») (A. 7) 

As discussed in Sections IlIa and lIIc, one is quite confident that the 

prescription described there gives the q-independent ,part of HeR,(m,qm) 

correctly--i.e., the first two terms of Eq. (A.7)--and also that the off-

diagonal matrix elements H , H , H appear:l:. the correct combination xy xz yz 

with the trigonometric functions of~. One is not sure, however, that the 

prescription gives the correct m-dependence of the q-dependent terms in 

H n(m,q); i.e., one cannot be sure that this prescription gives the eJV m 

rnrdependent factors in the last three terms of Eq. (A.7) correctly. 

To determine the correct functions of m in the last three terms of 

i.e., we require that the coefficients of each matrix element H ,H , xx xy 

etc., be identical. This criterion determines both the relation between 

(eF'~F) and (m,~) and also how the m-dependent coefficients of last three 

terms of'Eq.(A.7) should be modified. One readily concludes that the 

following three factors in the last three terms of Eq. (A.7), respectively, 

should be modified as 

~ m(m-l)' -+ m 

Vm(m+l)' -+ m 

.~ m2_l' -+ m 

so that Eq. (A.7) then becomes 
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2 H -H 2 
+ m (XX2 yy) cos2~ ~ m Hxy sin2Qm (A. 7' ) 

Eqs. (A.3) and (A.7') are then identical if one makes the following 

identification between (8F,<PF) and (m,qm): 

(A.8a) 

This completes the'task, Eq. (A.7') being the desired classical electronic 

Hamiltonian function. 

For the case the 2P-atom interacts with a IS atom, one,has 

so that Eq. (A.7 ') becomes 

H = H - V xx yy '[ 

H :: V" zz l. 

H = H = H = 0 xy xz yz 

. where VE and 

For the 

1 2 V'[ are the E and '[ potential curves for the S- P system • 

case the 2p atom interacts with a IE diatomic molecule 

(cf. Figure 1) one has16 

(A.9) 
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H xz 

so that in this case Eq. (A.7') becomes 

= 0 

(A.IO) 
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. 2 1 . . 
Various Angular Momenta in the P Atom + S Atom Collision System. 

L electronic orbital angular momentum of the 2p atom. 

S = electronic spin angular momentum of the 2p atom. 

+ ++ . 2 
j L+S = total electronic angular momentum of the P atom. 

+ = orbital angular momentum of relative motion of the two atoms. 
R, 
+ ~++ 7+ 
J =)(,+L+S = )(,+j = total angular.momentum 

Table II. Various Angular Momenta in the 2p Atom + l~ Diatom Collision System. 

+ 
L = electronic orbital angular momentum of the atom. 

+ 
S = electronic spin angular momentum of the atom. 

+ ++ 
j - L+S = total electronic angular momentum of the atom. 

+ 
N = rotational angular momentum of the diatom. 

! = orBital angular momentum of relative motion of the atom 

and the center of mass of the diatom. 

+ -:r+++ -:r++ 
J = )(,+N+L+S = )(,+N+j = total angular momentum. 



Figure Caption. 
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2 Coordinate Systemior the F( P) +H2 System. r ,R, and y 

are the usual coordinates that specify the relative 

positions of the nuclei in an atom-diatom system. For 

A -+ " fixed nuclei, the axis z is al?ng R, x is· perpendicular to 

the pla~e of the three nuclei, and y is in the plane. SF 

a~d <PF are the polar and· azimuthal angles, respectively, 

of the p-orbital of F in this body-fixed coordinate system. 
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