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Neuropsychiatric disorders, specifically mental disorders, generally lack a quantitative

and biophysiological basis for diagnostics and treatment due to fundamental limitations in

theoretical knowledge of the disorder and brain-mind duality. Due to the complex multiscale

nature of the brain, large and multimodal datasets as well as biophysically-based simulations are

required to elucidate its functioning. As such, computational methods exist to bridge these scales.

Specifically, probabilistic graph models are utilized here to capture inherent uncertainty in the

system while being computationally efficient and tractable to allow for scaling and combining

biophysically and theoretical-based models with Big Data in order to model and diagnose known
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mental disorders. First, a theoretically-driven computationally efficient reaction-diffusion model

of synaptic transmission using Markov models and eigenmode decomposition is presented to

scale molecular simulations to neural networks with applications in pharmacological simulations,

artificial neural networks, and neuromorphic engineering. The second part connects the network

level to behavior using deep learning, graph models, and manifold learning applied to neuroimag-

ing data in adolescent depression using a combination of theory- and data-driven techniques. In

addition to creating scalable models, this work interrogates structural and functional biomarkers

and creates a neuroimaging pipeline resulting in automatic disorder detection. Finally, the focus

shifts to diagnostics of anxiety and depression using behavioral data in the form of natural

language processing, making use of transformer deep learning architectures.
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Chapter 1

Introduction

1.1 The Problem: Mental Disorders

Mental disorders are pervasive with serious negative consequences. Nearly one in four

adults in the United States have a mental illness at any given time. In 2021, there were 2.6

million suicide attempts in the US, and costs associated with mental disorders are in the trillions

worldwide. Additionally, those with any mental disorder are significantly more likely to have

substance abuse issues (Fig. 1.1) [21].

Figure 1.1. Pervasiveness of mental disorders in the United States, as obtained by the 2021
National Survey of Drug Use and Health (NSDUH) by the Substance Abuse and Mental Health
Services Administration (SAMHSA) [21].
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1.1.1 The Pervasive Impacts of Mental Illness

Mental illness stands as an undeniable issue in contemporary society, compounded by

its inextricable ties to substance abuse. A comprehensive study conducted in 2010 revealed

disconcerting estimates of over four million excess deaths attributed to mental disorders during

that year [52]. Tragically, suicide accounts for over one in a hundred deaths [10], with a

staggering projection of 703,000 suicides documented in 2019 globally [13]. Furthermore, for

every suicide death, there are approximately 20 attempted suicides [5]. Suicide is the third

and fourth leading cause of death among young individuals aged 15 to 29, females and males

respectively. These disorders are also a primary contributor to global disability, responsible

for one-sixth of all years lived with disability. Combined with substance use disorders and

neurological conditions, it becomes a quarter. Depressive disorders alone are the second leading

cause of disability after back and neck pain [10]. The impact of severe mental disorders, such as

schizophrenia and bipolar disorder, is particularly disheartening, curtailing the average lifespan

by 10 to 20 years [54]. Moreover, mental disorders significantly contribute to the occurrence of

preventable noncommunicable diseases, most notably cardiovascular and respiratory diseases, as

well as infections [7]. The global scale of suffering due to mental health issues is incontestable.

Beyond the profound social implications, mental disorders carry significant economic

ramifications. As elucidated by The World Economic Forum, these conditions accounted for

a staggering $2.5 trillion loss to the global economy in 2010. This encompassed $1.7 trillion

due to diminished productivity and an additional $0.8 trillion incurred as direct costs of care.

Projections estimate that by 2030, this economic burden will escalate to $6 trillion [38].

The ubiquity of mental disorders is deeply concerning. In 2019, the World Health

Organization (WHO) estimated that approximately 1 in every 8 people worldwide (970 million

people) were actively grappling with a mental disorder. Among these conditions, anxiety and

depression were identified as the most prevalent afflictions, impacting an estimated 301 million

and 280 million individuals, respectively [8]. These numbers have only worsened in the aftermath
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of the COVID-19 pandemic, with initial estimates indicating a more than 25% increase in anxiety

and depression cases [61]. Notably, women are more vulnerable to mental disorders, with a

prevalence rate 50% higher than that of men, although men demonstrate a greater propensity for

substance use disorders. [8]. While the peak burden is typically observed during early adulthood,

mental disorders affect individuals across all age groups [10]. For instance, 1 in 7 individuals

aged 10 to 19 has endured a mental disorder at some point in their lifetime [8].

These trends exist in all countries, regardless of their income level. In fact, mental disor-

ders exhibit an increased prevalence in high-income countries (15.1% compared to 11.6%) [9] .

However, this discrepancy is predominantly ascribed to differing attitudes surrounding mental

health which lead to underreporting [120]. In the US, a recent survey conducted by SAMHSA

revealed that more than one in five adults (22.7% or 57.8 million individuals) experienced

mental illness in 2021. Again, females were affected at a higher prevalence compared to males

(27.2% vs 18.1%),with the highest rates observed among young adults aged 18 to 25 (33.7%),

followed by adults aged 26 to 49 (28.1%), and finally adults over 50 (15.0%). Perturbingly, out

of the 57.8 million affected individuals, only 47.2% received any form of mental health services.

Additionally, the survey also found that nearly half of US adolescents (49.5%) had encountered

a mental disorder in their lifetimes, specifically within the age range of 13 to 18 [21].

It is worth acknowledging that the aforementioned study did not encompass individuals

without a fixed address (e.g. homeless individuals), those serving in active military duty, or

those residing in institutional group quarters (e.g. correctional facilities, nursing homes, mental

institutions, long-term hospitals). These particular groups often exhibit elevated rates of mental

illness, suggesting an overall underestimation of the prevalence [21].

Notwithstanding these challenges, there exists a burgeoning recognition of the pivotal

role of mental health, providing a glimmer of hope for the future. Initiatives such as the WHO

Special Initiative for Mental Health: Universal Health Coverage for Mental Health (2019) and

the World Mental Health Report: Transforming Mental Health for All (2022) exemplify an

increasing emphasis on addressing mental health concerns on a global scale [15].
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The pervasive occurrence of mental disorders worldwide can be attributed to a myriad of

interconnected factors. The WHO highlights a multitude of contributors, including economic

downturns, social polarization, public health emergencies, widespread humanitarian emergencies,

forced displacement and housing crises, protracted conflicts, violence and war, and the escalating

impact of climate change [15, 136, 51]. The discussion of these macroscopic phenomena, while

important, is out of the scope of the current work.

The imperative for mental health services is undeniably evident. However, the current

state of care falls significantly short of effectiveness, plagued by persistent gaps and imbalances.

These services remain chronically underfunded, with a disconcerting prioritization of physical

disorders despite their inextricable connection to mental health [195, 14, 176, 11]. According to

The Mental Health Atlas 2020, expenditures dedicated to mental health care constitute a mere

2% of health care budgets in high-income countries and a meager 1% in low- and middle-income

countries (LMIC) [12]. Moreover, the allocation and utilization of these funds raise concerns, as a

substantial 70% of the funding in middle-income countries is directed solely towards psychiatric

hospitals [12].

Furthermore, a profound scarcity of services exacerbates the crisis. Many nations lack

formalized mental health care systems, and even in countries where such services exist, they

often remain inaccessible or unaffordable, resulting in a significant portion of those in need going

undiagnosed and untreated. Shockingly, half of the global population resides in a country where

there is only one psychiatrist for every 200,000 or more citizens. Even when access to mental

health services is attainable, the quality of care exhibits considerable variability and is generally

subpar. Patients may encounter challenges in affording prescribed medications which often come

with undesirable side effects. Compounding these issues, there is a pervasive dearth of health

literacy in mental health fostering a climate of widespread stigma and discrimination [15].

This confluence of factors highlights the pressing need for comprehensive and equitable

reform in mental health care, spanning from adequate funding and resources allocation to

improved accessibility, affordability, and quality of services. Additionally, addressing the
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pervasive stigma and enhancing health literacy are critical components in fostering a supportive

and inclusive environment for individuals grappling with mental health challenges.

The urgency to increase investments in mental health research is paramount, considering

that a mere 7% of global health research funds are currently allocated to this domain. Moreover,

the distribution of research efforts tilts heavily towards basic research, neglecting the requisite

emphasis on clinical or applied research that directly addresses the impact of specific disorders.

A stark example of this imbalance is evident in the allocation of mental health research funding,

where suicide and self-harm receive less than 1% of the global funds dedicated to mental health

research [223].

The benefits of improving mental health are indisputable. Enhanced mental well-being

equips individuals with improved coping mechanisms to navigate life’s stressors, strengthens

their capacity to forge meaningful connections with others, and enhances their ability to learn

and perform effectively. From a public health perspective, fostering mental health yields a

multitude of advantages, including reduced suffering, enhanced physical well-being, elevated

quality of life, improved functional capacity, increased life expectancy, closure of the care

gap, and diminished inequalities. Many argue that mental health care is an inherent human

right. Furthermore, from an economic standpoint, investing in mental health not only boosts

productivity but also curtails indirect costs, thus yielding a substantial return on investment [15].

Indeed, a global modeling study estimated that expanding treatment for depression and anxiety

alone would yield a remarkable benefit-cost ratio of 5 to 1 [55]. Overall, it is clear there is a

pressing need for advancement of the mental health field from basic research all the way to

policy-level implementations.

Collectively, these considerations emphasize the dire necessity for progress in the field

of mental health, spanning from advancing basic research to implementing policies and inter-

ventions. There is an imperative to allocate adequate resources, enhance research efforts, and

translate findings into tangible actions at the policy level. Addressing this pressing need is vital

to ameliorating mental health outcomes, fostering societal well-being, and realizing the full
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potential of individuals and communities.

1.1.2 A History of Mental Disorders and Neuropsychiatry

The historical presence of mental disorders can be traced back to the earliest written

records, with references dating back to ancient Mesopotamia [182]. Paradoxically, despite

the long-standing existence of these conditions, significant advancements in their diagnostics,

treatment, and fundamental understanding have remained elusive. The intricate connection

between the brain and the mind continues to bewilder researchers and remains an enigma to this

day. The annals of neuropsychiatry bear witness to recurring cycles of hopeful “golden ages”

that ultimately falter as well as complex politics stemming from contending and unanswered

theories on the mind.

The brain has uniquely prompted the establishment of two distinct medical specialties:

neurology and psychiatry, each addressing supposedly disparate disorders of the brain and mind,

respectively. As mounting evidence suggests that the mind is an emergent property of the brain,

the partition between these disciplines becomes increasingly questionable. The historical division

between neurology and psychiatry arose due to diverging opinions among experts in the field

over the past century as various approaches and theories were introduced in attempts to tackle

the elusive field of mental illness with varying degrees of success. Indeed, the classification of

mental illness as either rooted in biological factors or influenced by social elements is a viewpoint

that has oscillated over time, reflecting the ebb and flow of perspectives within the field.

Across different regions of the world, varying degrees of distinction were observed

between neurology and psychiatry, yet in many instances, the recognition of the interplay

between the brain and the mind precluded a clear separation. However, in the United States,

a notable division between these fields materialized in 1948 when Archives of Neurology and

Psychiatry, a singular journal until then, was bifurcated into two distinct journals, reflecting

the emerging schism between the two disciplines [143]. Psychiatry, as a dynamic and ever-

evolving discipline, has undergone substantial transformations and redefinitions throughout the
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past century and a half. The history of psychiatry in North America, in particular, has been

marked by a mixture of distinction, controversy, and significant shifts in its conceptualization.

The division between neurologists and psychiatrists originated in the 1850s when neurol-

ogists emerged. Neurology gained significant momentum as a separate entity in the 1870s with

the “brain localization project” – later called “brain mythology”– which sought to identify precise

brain anatomy associated with mental disorders [90, 41]. Following the unsuccessful endeavors

of anatomists, there was a brief era of “Big Data Psychiatry” catalyzed by Eric Kraepelin’s

pioneering longitudinal study in 1891, which popularized the field of neuropsychiatry in the US

[1, 68, 143]. This empirical perspective on psychiatry persisted into the early 20th century with

the influence of Adolf Meyer. As well as serving as the president of the American Psychiatric

Association (APA), Meyer ardently advocated for empirically grounded psychobiology, empha-

sizing the necessity for rigorous study of both mind and body [18, 35, 66, 93]. He advocated for

comprehensive collection of all available data, encompassing brain tissue and heredity studies, as

well as developmental, social, and environmental factors shaping of a patients’ life. Furthermore,

famous neurologist Stanley Cobb asserted that “the mind is the living brain in action, and the

brain is subject to physical and chemical changes just as any other cell or tissue in the body”

[33]. Both Cobb and Kraepelin are widely considered to be founders of biological psychiatry in

the US [199]. As the 20th century commenced, a conceptualization of mental disorders similar

to the present understanding began to emerge, albeit with fewer technological advancements at

their disposal.

Significant progress in understanding the brain and mind was hindered during this time

by technological limitations paired with the intricate nature of these subjects. As a result, focus

shifted towards the emergence and increasing popularity of psychoanalysis during the 1920s and

‘30s. Particularly in America, Neo-Freudianism gained prominence, presenting a perspective

that moved away from predominantly sexual explanations and instead highlighted anxiety as the

primary factor driving mental disorders [154]. The appeal of Freudianism can be attributed to its

ability to provide a coherent causal explanation for disorders, consequently enabling actionable
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treatment strategies that did seem to aid patients [233]. Moreover, into the 1940s, the field

of psychiatry faced a general skepticism towards biological approaches due to the negative

outcomes associated with practices such as electroconvulsive therapy (ECT) [2], lobotomies [3],

and eugenics [93]; the last of which being met with particular revulsion after the second world

war.

A significant turning point occurred in the field of psychiatry with the approval of

chlorpromazine by the US Food and Drug Administration (FDA) in 1954, marking the first

sanctioned drug for the treatment of mental disorders. This milestone ushered in an era of

pharmaceutical therapy, propelled by the concurrent advertising revolution and the prevailing

“age of anxiety” caused by the Cold War [93]. The impact was immediate and profound, as

evidenced by the remarkable boost in sales experienced by Smith, Kline, and French (SKF, today

GlaxoSmithKline or GSK), the manufacturers of chlorpromazine. Within a year of its approval,

the drug exponentially increased their sales figures, and within a decade, an astounding 50

million prescriptions had been filled. This extraordinary success continued, with SKF’s revenues

doubling three times within a span of 15 years [4]. The advent of chlorpromazine paved the way

to a flurry of other psychiatric drugs, including the widespread use of meprobamate. By the end

of the 1960s, one in three prescriptions written in the US were meprobamate. Another notable

drug was Valium, which became the most prescribed drug in the country within a year of its

introduction, a position it held until 1982 [151].

The perceived efficacy of these pharmaceutical interventions, coupled with the prevailing

neo-Freudian attitudes of the time, contributed to an unexpected consequence of mass deinstitu-

tionalization. The process of deinstitutionalization gained momentum in 1963 with Congress

passed the Mental Retardation Facilities and Community Mental Health Centers Construction

Act, signaling a shift towards community-based care. This trend was further solidified during the

economic recession of the 1970s [116, 117]. The consequences of this policy change reverberate

to this day, with correctional facilities now serving as the three largest providers of mental health

services in the US [171]. The lasting impact of these transformations highlights the intricate and
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ongoing challenges faced by the modern mental healthcare system.

The shortcomings of neo-Freudian leaders of the time paired with the popularity of

pharmaceutical interventions and emerging technological innovation ushered in the biological

psychiatry revolution of the late 1970s and 1980s. In an effort to establish psychiatry as

a legitimate medical field rather than a purely sociological field, psychiatrists increasingly

emphasized emerging developments in biological research and pharmacology to persuade the

public of the medical nature of mental disorders. This period was characterized by overly

confident statements, exemplified by a 1982 article in The Washington Post proclaiming that

“scientists have unlocked the doors to understanding the body’s most complicated and baffling

organ: the brain” [60]. Furthermore, in 1990, the US Congress in collaboration with President

George H. W. Bush declared the subsequent decade the “Decade of the Brain”, signaling an

optimistic belief that the resolution of humanity’s perplexity regarding the brain and mind was

within reach [45].

Despite optimistic claims, the words of Thomas Insel – the director of the National

Institutes of Mental Health (NIMH) at the time – prompted sobering contemplation. In 2010,

Insel remarked that despite the proclaimed “Decade of the Brain,” there was no discernible

increase in the rate of recovery from mental illness, nor a detectable reduction in the burden

of mental illness [107]. This statement serves as a reminder of the complex and multifaceted

nature of mental health challenges, urging us to acknowledge the limitations of the current

understanding and approaches.

While there was limited advancement in the diagnosis and treatment of mental disorders,

significant discoveries emerged from diverse areas of basic research, ranging from the genomic

revolution to a deeper comprehension of the cellular complexity to remarkable progress in the

study of brain circuits. Technological innovation in the form of computerized tomography (CT),

positron emission tomography (PET), magnetic resonance imaging (MRI), and functional MRI

(fMRI) have revolutionized the field of neuroimaging. Additionally, in 1987 Deep Brain Stimu-

lation (DBS) emerged as a breakthrough technique for modulating brain activity [201]. These
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tools have expanded the understanding of the brain, unveiling novel concepts and complexity;

however their translation to clinical applications has been limited.

Again, Thomas Insel emphasized the scarcity of novel therapeutic targets, primarily due

to the continued limited understanding of the underlying pathophysiology of neurodevelopmental

disorders [109]. While psychiatric medications have seen little improvement in efficacy, their

sales have increased exponentially, largely driven by the relaxation of regulations surrounding

direct-to-consumer (DTC) pharmaceutical advertising, perpetuating the trend of overmedication.

Psychiatry, in particular, has been heavily impacted, with psychiatric medications being the most

heavily advertised [26]. Despite the absence of functional innovation, revenue generated by

psychiatric drugs increased sixfold from 1987 to 2001, surpassing the growth rate of general

prescription drug sales [126]. Instead of truly embodying the era of biological psychiatry as

heralded by scientist, journalists, and politicians alike, the 1980s witnessed an era dominated

by pharmaceutical sales. The field still lacks the requisite knowledge to effectively translate

fundamental neurobiology into innovative diagnostics and therapeutics [109]. This realization

underscores the necessity for embracing alternative approaches and harnessing additional tools

to advance the understanding and treatment of complex mental disorders.

1.1.3 The Issue of Psychiatric Diagnostics

A recurring theme throughout psychiatry’s history is a dearth of quantitative biophysi-

ological underpinnings for characterizing diseases, setting it apart from other domains within

medicine. As such, diagnostics is a particular area of concern in the field. In parallel with

prevailing views of empirical psychiatry as advocated by Kraepelin and Meyer during the time,

the American Medico-Psychological Association published the Statistical Manual for the Use of

Institutions for the Insane in 1918 [160]. Subsequently, through numerous revisions, it evolved

into the inaugural edition of the Diagnostic and Statistical Manual (DSM), which was first

introduced by the APA in 1952 [165]. Presently in its fifth iteration, the DSM remains the key

tool for classification of mental disorders. Primarily utilized in the US, it is a qualitative checklist
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that associates each mental disorder with predetermined criteria, with the APA assuming the

role of defining, determining, and demarcating the disorders. Consequently, this classification

system offers a binary perspective whereby a patient either possesses the disorder or does not.

The advent of the biological psychiatry revolution in the 1980s fostered optimism that these

checklists would eventually be supplanted by quantitative biomarkers, thereby facilitating the

establishment of substantial and reproducible diagnostic criteria. However, this expectation

remains unfulfilled.

Since its inception in 1952, the DSM has become a subject of increasing scrutiny.

Following a significant gap since DSM-IV in 1994, the release of DSM-5 in 2013 sparked a

crescendo of discontent. The APA had envisioned the fifth edition as the culmination of the long-

awaited integration of biological principles into diagnostics, thereby realizing the aspirations of

the biological revolution. Despite numerous experts cautioning against premature publication,

the APA forged ahead. As anticipated, DSM-5 faced severe criticisms, as the promised scientific

foundation and identifiable biomarkers were conspicuously absent. In response, Thomas Insel

proclaimed that the NIMH would redirect its research endeavors away from DSM categories.

Instead, the focus would shift towards the development of an improved system, one that rested

on the bedrock of neuroscientific and cognitive science discovery, rather than relying solely on

manifest symptoms [109, 107, 108]. Another esteemed former NIMH director, Steven Hyman,

also voiced sharp criticism of the APA’s misstep. He underscored that the field of psychiatry

had failed to generate novel insights into molecular targets for diagnoses and treatments since

the 1950s [93]. Regarding the DSM-5, he stated “the underlying science remains immature

and. . . therapeutic development in psychiatry is simply too difficult and too risky” [103, 104, 105].

Since then, both Insel and Hyman have left the NIMH and have begun work in digital big data

analytics with hopes of unveiling complex patterns. Psychiatric diagnostics still remain a

persistent issue to this day.
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1.1.4 Convergence of Neuropsychiatry

Today, the growing body of compelling evidence points towards the resurgence of a

unified field known as neuropsychiatry, which embraces the intrinsic interconnectedness of the

brain and mind. This inseparable dyad challenges the increasingly arbitrary and unsubstantiated

division between neurology and psychiatry, which predominantly stems from theoretical schisms

within professional guilds. The perpetuation of this division sustains the fallacy of brain-mind

dualism, yielding negative consequences such as the stigmatization of individuals with mental

illness, a general confusion around the biological basis of mental disorders, and inadequate

insurance coverage for psychiatric and mental health services.

Historically, a crude demarcation between neurological and psychiatric conditions was

established based on whether the disorder was considered organic (brain) or functional (mind).

Neurology focused primarily on disorders originating from observable lesions, while psychiatric

disorders were attributed to disturbances in affective function without clear-cut biological

correlates. Specifically, neurology has predominantly relied on observational correlations,

linking symptoms to structural changes or associating disorders with specific pathologies. This

neurology-psychiatry classification scheme becomes increasingly tenuous in light of burgeoning

research. For instance, epilepsy was considered a mental disorder until electroencephalography

(EEG) was invented and used to localize epileptic attacks in the temporal and frontal lobe during

the 1950s [183]. Afterwards, it was reclassified as a neurological disorder. Mounting research

reveals that major psychiatric disorders manifest as brain diseases, further undermining the

notion of a rigid separation between these domains.

The convergence of neurology and psychiatry has emerged through the biologization of

psychiatry and softening of neurology. Disorders that were once considered purely psychologi-

cal, lacking identifiable biological foundations, have undergone a transformative shift in their

perception, owing to the undeniable link between biology and behavior. This paradigmatic shift

has been largely facilitated by remarkable advancements in neuropharmacology, which have
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elucidated the intricate interplay between brain chemistry and behavioral manifestations. Ground-

breaking research on neurotransmitters and the demonstrated impact of existing pharmaceutical

medications have unequivocally established this connection.

Noteworthy examples include the profound impact of interventions like Deep Brain Stim-

ulation (DBS) and Transcranial Magnetic Stimulation (TMS) on mood and cognitive function,

respectively, underscoring the physiological effects of these treatments in addressing depression.

In parallel, neurology has witnessed a softening of its stance, shifting from its previous skepticism

of concepts such as plasticity, regeneration, and recovery, largely due to the blanket dismissal

of psychiatric principles including talk therapy [143]. The rise of cognitive neuroscience has

provided a contextual framework for integrating psychotherapy within the domain of neural

plasticity [109]. It is now widely recognized that the most optimal therapeutic outcomes for

mental disorders often emerge from a comprehensive approach that combines medication and talk

therapy. A crucial lesson gleaned from the retrospective examination of these disciplines over the

past century is that many theories that have staunchly divided the field have frequently proved

erroneous. Nonetheless, challenges persist regarding professional boundaries and territorial

disputes, impeding the seamless integration of these fields.

1.2 The Strategy: Computational Neuropsychiatry

1.2.1 The Brain as a Complex Multiscale System

It is important to emphasize the biological complexity of the brain as an organ, particularly

its multiscale nature. Multiscale here refers to different levels of resolution and complexity in

which one can study the brain. Despite efforts, for most mental disorders, there is no single

definitive underlying cause that can be determined. As was discovered by the pseudoscientific

phrenologists of the 19th century, measurements of the skull and brain are not informative enough

to predict behavior and mental traits [90, 41]. Unfortunately, there is no single gene mutation

that causes most mental disorders. Instead, it becomes necessary to probe at varying levels
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of resolution from genes to DNA to proteins, molecules, cells, circuits, networks, cognition,

behavior, and the environment (Fig. 1.2). The latter is a particularly important scale to include in

neuroscience due to the notion of embodiment – neural system functioning depends on feedback

from the body and the world around it. Therefore, the system cannot be accurately described as

closed loop unless the external environment is included.

Figure 1.2. Multiscale nature of mental disorders spanning from the molecular and cellular level
through networks and systems to behavior.

In theory, it should be possible to model continuously through the scales from the lowest

level of genes to the highest level of behavioral presentations recognized clinically. Indeed,

this is what would causally and mechanistically describe mental disorders, from which clear,

concrete, and quantitative biomarkers and brain dysfunction pathways would emerge. Such a

framework would truly exemplify an understanding of the brain and its function. Unfortunately,

there lacks a fundamental lack of understanding, particularly of human cognition, to build such

a bridge from the biophysical to the phenomenological. A major limitation in this is that tools

have not yet been invented in order to experimentally probe and visualize brain dysfunction at

every scale. Furthermore, precisely how t mind is an emergent property from the brain is not yet

mechanistically understood making the link from networks to cognition and behavior particularly

difficult. Translation from advances in neuroscience to clinical applications has been slow due to

these factors. Eventually, the hope would be for a multiscale model that allows for the prediction

of brain dysfunction effects, and this is something the field is working towards.

Being able to bridge these levels of investigation is important for a causal explanation

around mental disorders. For example, in the case of depression, pharmaceutical intervention
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strategies operate on the cellular and subcellular level, affecting neurotransmitters, such as

serotonin and dopamine, but diagnostics as well as psychotherapy operate in the behavioral realm.

Being able to fully bridge the observations between scales would allow for better mechanistic

understanding of disorder development and improved treatment methods from beginning to end.

Especially given that the best outcomes to date have been demonstrated with a combination of

treatment methodologies. The question then becomes, especially given the limitations associated

with experimentation, how do we do this?

1.2.2 The Era of Computational Neuropsychiatry

In the continuum of psychiatry’s transformative revolutions, today is a new era–the era of

computational neuroscience and psychiatry, marked by the inaugural international computational

psychiatry meeting held in 2013 [82]. This computational revolution extends beyond psychiatry

alone. Virtually every field from biology to finance to communications is undergoing a paradigm

shift driven by computational advancements.

This age emphasizes the development and utilization of novel methodologies, rather than

solely focusing on uncovering underlying causal mechanisms. Computational methods have

gained popularity for two primary reasons: the “Big Data Revolution” and better, faster comput-

ers. “Big Data” here refers to large and complex datasets which are now being produced faster

and at a larger scale than ever before, including in neuropsychiatry. Technological innovations

have vastly expanded the availability of neuroscientific data, such as the “omics” revolution

enabling large-scale -omics studies encompassing genomics, proteomics, and metabolomics.

Additionally, the advent of structural and functional MRI in the 1990s has further contributed to

the wealth of neurological data available. Recently, numerous initiatives have emerged, dedicated

to collecting large-scale neurophysiological datasets, including the BRAIN Initiative, Human

Connectome Project (HCP), and Adolescent Brain Cognitive Development (ABCD) study.

Furthermore, the exponential growth of computational power is a driving force behind

the burgeoning fields of artificial intelligence (AI), computer science, and data science. Indeed,
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neural networks used in AI today are rooted in computational neuroscience models conceived

approximately half a century ago. However, it is only now that these fields are exploding due to

the unprecedented magnitude of available data and processing capabilities.

In conjunction with the technological landscape shaping the backdrop for this revolution,

it assumes a pivotal role as an indispensable instrument in its own right. The brain, being an

intricately complex and multiscale organ, necessitates computational endeavors to bridge the

explanatory gaps in fundamental neuroscience and elucidate profound insights that elude experi-

mental means. Furthermore, computational modeling operates in tandem with experimentation,

serving as an auxiliary tool to guide and optimize experimental pursuits, thereby enhancing their

efficacy and precision. Sole reliance on experimentation proves exceptionally challenging when

attempting to establish connections between lower-lever information-theoretic measurements and

dysfunctions in cognition and semantic processing. Computational modeling permits quantitative

exploration of intricate systems across various levels of interest, acknowledging that explanations

are not confined to a solitary level but necessitate investigations that traverse multiple levels. A

pertinent illustration of this is witnessed in the genomics revolution, which witnessed numerous

unsuccessful endeavors to localize singular genes as biomarkers for psychiatric disorders [220].

By employing computational models, researchers gain the capacity to traverse different

testing environments, transitioning from animal models to human models, thereby widening the

scope and applicability of their findings. Moreover, contemporary methodologies suffer from

imprecision, as they lack both biomarkers and a methodological framework to quantify treatment

outcomes, rendering the efficacy of interventions uncertain. Finally, software tools emerge as

a compelling avenue for translating neuroscientific discoveries into practical instruments that

ameliorate the lives of patients, effectively bridging the gap between theoretical advancements

and tangible clinical applications.

There are numerous applications that show promise in this field including computational

phenotyping, diagnostic classification, treatment selection, and biophysical modeling, although

there are and will be many more. Generally, there are two primary approaches to computational
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methods, both within neuropsychiatry as well as other fields: theory-driven and data-driven.

Theory-driven approaches are limited by existing prior knowledge and mechanistic understanding

while data-driven approaches aim to be theory-agnostic and look to ascertain insights from

data. The hallmark of theory-driven approaches in neuropsychiatry are biophysically-detailed

models. These models utilize simulations and mathematical analysis informed by scientifically-

backed data, model, and parameter choices as well as physically accurate models of dynamics.

These models are appropriate for studying systems in which there exists detailed knowledge

of the structure and function of the area of interest. Such models are particularly useful for

understanding causal relationships at specific levels of analysis or to bridge scales. Of note,

biophysical models do typically involved substantial simplifications or abstractions. Nonetheless,

they have been shown to be useful in linking biological abnormalities involved in psychiatric

disorders to certain levels of dysfunction.

Navigating between the molecular and network level tends to be the primary focus of

such biophysical models due to their relatively high level of mechanistic understanding in the

field relative to other scales. Since the efficacy of pharmaceuticals, neurotransmitter studies have

been particularly popular. One analysis built a biophysically realistic neural network model to

investigate the impacts of serotonin and glutamate disruptions implicated in obsessive-compulsive

disorder (OCD), in which patients typically display decreased serotonin and increased glutamate

relative to controls [138]. The model found that OCD network abnormalities could be assuaged

by increasing serotonin amounts, regardless of whether the disruptions were originally caused by

serotonin or glutamate, suggesting a possible mechanism for the relative efficacy of selective

serotonin reuptake inhibitor (SSRI) usage for OCD treatment. Furthermore, they were able to

implicate a specific serotonin receptor (5HT2A), demonstrating promise for precise treatments

moving forward. Another study built similar networks to relate excitatory neurotransmitter

receptor density to neuron activity signals obtained from fMRI. The focus was on two populations

of neurons shown to be affected in psychosis – the resting state and task-based networks. It

was found that when excitatory receptor function on inhibitor interneurons was reduced, neuron
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activity signals matched those found in psychosis [27]. It was also shown that excitatory

neurons in the cortex called pyramidal neurons were not implicated. Thus, biophysically realistic

models provide a tool to bridge scales and probe mechanistic causes of psychiatric disorders

that experimentation cannot. Working together, such computational models are able to motivate

particular experimental studies.

In applications where prior knowledge is lacking, data-driven approaches provide an

alternative method to uncover patterns in complex data and tend to be more oriented towards

developing clinically useful applications. Typically, they utilize machine and deep learning

methods to elucidate insights. Computational phenotyping seeks to find measurable neural

or behavioral traits defined in terms of a computational model [156]. Similar to standard

phenotyping, it is expected to show variation across individuals. Large-scale and multimodal

computational phenotyping has not yet occurred but holds promise as a method to quantitatively

capture psychiatric differences. Related is the task of automatic diagnosis classification, which

is compounding into a substantial body of work [166, 224]. Given the limitations of current

psychiatric diagnostics, this work seeks to automatically classify patients with disorders compared

to controls, typically using machine learning. For example, a recent competition was launched

to classify schizophrenia from healthy controls using MRI data, and the top performing entry

achieved an area under the curve (AUC) of 0.89 [204]. The top three methods used different

approaches and reached similar performance metrics [192], and an ensemble approach achieved

0.93 AUC [204]. This is significant given psychiatric overlap in diagnostics. While deep learning

models now are not interpretable, there is promise for learning biomarkers based on automatic

classification as well. Additionally, attention-based mechanisms provide some amount of insight

to decision factor weighting for deep learning models.

Once diagnosed, psychiatric disorders generally have multiple treatment strategies per

disorder, so treatment selection provides another area of application for computational methods.

Similar to recommender systems used in movie recommendations by Netflix, patients’ simi-

larity can be used to predict effective treatment strategies. One study used EEG to predict a
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pharmacologic treatment strategy for patients in a randomized clinical trial [67]. The dataset

contained 17,000 depression treatment attempts for over 1,800 subjects, averaging a disturbing

nearly 10 treatment attempts per subject. The treatment selection used EEG features to predict

the medication that would be most likely to be successful significantly outperformed clinical

selection [102]. Another study looked to predict treatment regimens based on patient data,

finding that comorbid personality disorders responded better to antidepressants than cognitive

behavioral therapy (CBT) while patients that were married, employed, had more life events, and

failed more antidepressants attempts responded better to CBT [69]. Using data-driven treatment

selection as opposed to standard treatment selection led to a larger reduction on depressive

symptoms as quantified by the Hamilton Rating Scale for Depression [79]. It is clear utilizing

data for treatment selection shows significant promise for psychiatry moving forward. This is a

particularly important area for improvement given claims surrounding psychiatrist medication

selection being heavily influenced by pharmaceutical companies [93].

While these methods are typically utilized in isolation, their true power emerges when

they are artfully unified. Despite demarcation between theory and data-driven approaches,

their collaboration seemingly yields the most optimal outcomes. Nonetheless, studies gravitate

towards one of these two camps. Clinical applications, by and large, embrace data-driven

methodologies, while the pursuit of theoretical understanding utilizes theory-driven approaches.

An illustrative example of the benefit of merging the two lies in grappling with the “curse of

dimensionality.” When confronted with many dimensions of data–consider a scenario where

an exhaustive collection of data on every topic for a given subject is available–there exists the

peril of overfitting. Essentially, the model might excessively fit to the provided data, severely

hampering its ability to generalize to novel examples. Put differently, the model will learn the

subjects used for training too specifically such that it is unable to generalize to new subjects. In

domains where mechanistic understanding is sufficient, theory-driven models can be used to

obtain features with fewer dimensions than the original dataset. Subsequently, these new features

can be employed in a data-driven manner for clinical applications.
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One example of this approach combining theory and data methods was exemplified

in a study that used EEG data to classify patients as on or off DBS. Raw data was compared

with theory-driven measures obtained from the raw data as features. Specifically, a drift-

diffusion model (DDM) was used to obtain a model of decision making. Indeed, classification

improved when leveraging the fitted DDM model parameters rather than the raw data [221]. This

demonstrates potential for combined theory- and data-driven methodologies to elucidate new

insights to mental illnesses.

Overall, the current era of computational neuropsychiatry presents an opportunity to

make significant gains in the understanding, diagnostics, and treatment of mental disorders by

making use of a combination of theory- and data-driven approaches. It seeks to supplement

experimental methods while providing objective and quantitative measures to move the field

forward.

1.3 The Tools: Artificial Intelligence and Probabilistic
Graph Models

1.3.1 Artificial Intelligence Today

Artificial intelligence (AI) is more popular now than ever, with the number of AI publica-

tions having more than doubled between 2010 (200K) to 2021 (500K). The number of AI code

repositories associated with publications has grown almost 27 times in the past 12 years, and

the total number of GitHub AI repositories has grown from just over 1,500 in 2011 to nearly

350,000 in 2022. Additionally, the AI conference attendance has been generally increasing,

although the COVID-19 pandemic did affect this trend. Neural Information Processing Systems

(NeurIPS), the largest international conference has over a 10-fold increase from 1300 participants

to over 15,000 in 2022. Numbers even reached over 22,000 in 2020 when the conference was

virtual-only. At the same time, AI performance is also increasing exponentially. The ImageNet

annual challenge saw an accuracy of over 40% between 2011 to 2022, going from 63% to 89%
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without additional training data and 91% with additional images. Demand for AI-related skills in

the labor markets has also increased internationally. In the US alone, the percentage of all jobs

requiring AI skills is 2.05% in 2022 compared to 0.58% in 2014. Overall corporate investment

in AI saw a peak in 2021, reaching $276.14B. Likely due to post-pandemic economic downturn,

this has decreased by approximately a third to $189.6B in 2022. Both of which are significantly

higher than even 2013, in which the global investment was only $14.57B. The number of newly

funded AI companies in the US in 2022 was 542, compared to 337 in 2013. The focus areas that

received the most investments globally in 2022 were medical and healthcare ($6.1B), data tools

($5.9B), financial technology ($5.5B), security ($5.4B), and retail ($4.2B). Interestingly, medical

and healthcare investments have risen 165% from $2.3B in 2017 to $6.1B in 2022, suggesting an

increase in investments due to the COVID-19 pandemic [144].

Education further represents the increased prevalence of AI as the proportion of US

computer science PhD graduates specializing in AI was 19.1% in 2021, compared to 10.2% in

2010 and even 14.9% in 2020. Of note though, these graduates are increasingly joining industry

over academia. In 2011, the percentage of AI PhD graduates that stayed in academia was equal

to industry at approximately 40% (41.6% and 40.9% respectively). A decade later, 65.4% took

a job in industry compared to 28.2% in academia. This is likely related to the availability of

faculty positions, which has actually slightly decreased since 2012 (710 hires in 2021, 733 hires

in 2012). Concurrently, there has been an increase in number of students graduating with a

computer science bachelor’s degree, from 9K in 2010 to just over 33K in 2021, nearly four times

more [144].

Today, there are even the beginnings of policy and governance surrounding AI, which

was never before seen. Globally, the number of bills related to AI that were passed into law grew

from only 1 in 2016 to 37 in 2022, with the majority of 9 from the US. US government spending

on AI-related contracts has also increased approximately 2.5 times since 2017, from $0.66B to

$1.7B in 2022 [144].

It seems virtually impossible to escape the conversations surrounding AI, especially with
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the release of ChatGPT. Amongst all the media and public’s outcry, it is clear there is a general

sense of confusion as to what artificial intelligence is in practice.

1.3.2 The Interdisciplinary Nature of Artificial Intelligence

In theory, AI seeks to create machines that display intelligence where intelligence is

defined primarily in the context of natural intelligence, using cognitive terminology such as

perceiving, understanding, predicting, and manipulated the world around it. Indeed, the ultimate

test of a successful AI is The Turing Test, in which a human tests a computer using written

questions, and the machine passes if the tester cannot discern whether it is human or machine.

In practice, artificial intelligence is a long way off from artificial general intelligence (AGI),

although performance in human-like tasks gets better each year.

The field of artificial intelligence is commonly perceived as exclusively computer science,

however it is inherently interdisciplinary. In building the AI models, numerous fields of math are

represented, including logic, probability, statistics, and calculus to name a few. Economics helps

to answer questions surrounding decision and game theory, tradeoffs, and utility optimization.

Obviously, computer engineering is critically important to build efficient hardware systems to

run software models on and control theory provides quantitative methods of feedback. To many,

the engineering side of AI is clear. What is often forgotten about is the scientific side. In order

to design an intelligent system, natural intelligence must, to some degree, be understood and

implemented. Understandably, this introduces philosophy around the definitions of intelligence,

reasoning, and knowledge. Then looking towards the fields of psychology and neuroscience

to answer the questions of how humans and animals think and act becomes a natural next step.

Indeed, this is where neural networks emerged from. Lastly, linguistics is important to relate

language to thought. The field of cognitive science even emerged from all these as an attempt to

house all the fields under one title with the goal of bringing together AI models and psychological

experimentation to quantitatively describe the human mind. Data science has emerged similarly

to attempt to handle the complexity of data surrounding AI questions [191]. It can be said with
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certainty that these will not be the last fields that emerge in humanity’s quest to understand and

recreate its own intelligence. It is an elusive mystery that still pervades to this day despite each

human having a brain.

1.3.3 A History of AI

The history of AI and natural intelligence has been understandably intertwined. AI as

we know it today began in the 1940s with the creation of the first mathematical model of an

artificial neuron by Warren McCulloch and Walter Pitts (1943) [147]. A neuron, the nerve cells

that primarily compose the brain, takes in signals from surrounding neurons. In response, it will

either fire itself, perpetuating the signal, or not. The McCulloch-Pitts neuron similarly took in

multiple inputs from neighboring neurons and would respond by either turning “on” or “off” as

a sort of biological logic gate. They were followed by Donald Hebb who, in 1949, developed

a rule for changing connection strengths between the neurons based on firing, called Hebbian

learning, which still remains popular today [96]. The first ever neural network was built soon

after in 1950 by Marvin Minsky and Dean Edmonds out of 3000 vacuum tubes and a B-24

bomber automatic pilot mechanism. It could simulate 40 neurons in total [191, 111]. It was also

the year that Alan Turing introduced the Turing test as well as the ideas of machine learning

and reinforcement learning in his article “Computing Machinery and Intelligence” [213]. In

1956, ten top researchers in the field got together at Dartmouth with the goal of solving artificial

intelligence, coining the first usage of the term “Artificial Intelligence” to describe this field of

study [152]. While general intelligence was not solved, the 1950s and early 1960s did see AI

successfully take on numerous tasks never before seen, including games, puzzles, and IQ tests.

Another major event occurred in 1962 with the advent of the perceptron, a simple linear classifier

artificial neuron still used in neural networks to this day, by Frank Rosenblatt [187, 188].

Research in the second half of the 1960s into the 1970s slowed down significantly due

to fundamental limitations with the approaches being used. Many early AI systems were not

general models but rather built from “informed introspection” on how humans perform a task,
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generally utilizing logic tools. Furthermore, computational complexity theory was not yet

developed leading to a naı̈ve view of the intractable nature of the AI problems. It was believed

that larger problems could easily be solved simply with faster and better hardware despite the

combinatorially explosive nature of these problems [130]. Lastly, the tools available were limited.

The final nail in the coffin seemed to be when Minsky and Seymour Papert published the book

Perceptrons in 1969, which proved that perceptrons could represent very little [153]. Multilayer

neural networks were not addressed in this book, but the damage had been done and funding

dried up.

Neural networks returned with a vengeance in the mid-1980s when multiple groups,

including Geoffrey Hinton, in parallel reinvented the back-propagation learning algorithm for use

in neural networks and disseminated their results in Parallel Distributed Processing [189, 190].

Interestingly enough, the backpropagation algorithm was already developed in the early 1960s

by Henry Kelley (1960) [115] and Arthur Bryson (1962) [43], but remained unused in neural

networks for twenty years, again highlighting the importance of interdisciplinary collaboration.

This sparked the connectionist movement centered around using neural networks as the basis of

AI, which was in contrast to the previously used symbolic approaches by Newell and Simon in

the 1970s [161] and logic by the Dartmouth men in the 1950s [152]. Thus, machine learning

and probabilistic reasoning took over hard-coding and Boolean logic. Popular networks still

used today were invented or popularized during this time, including hidden Markov Models

(1980s), Bayesian networks (1988) [172], Markov decision processes [209], and convolutional

neural networks (CNNs). It also set the stage for communally-sourced shared benchmarks as

performance measures, including MNIST (handwritten number images), ImageNet, and COCO

(image object recognition), datasets which are still used to this day.

After the connectionist heyday of the 1980s, there was a brief slow down in progress due

primarily to lack of compute power and unavailability of large datasets. This changed at the turn

of the century with the Big Data Revolution caused by advances in computing and the emergence

of the World Wide Web. Since then, there has been exponential growth in the creation of large
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and complex datasets in a wide variety of forms, including text, audio, video, and images. The

connectionist movement paired with the Big Data Revolution paved the way for deep learning,

the field of AI most common today. In 2011, the first CNN trained on a graphical processing unit

(GPU) with a very large dataset by Geoffrey Hinton’s lab swept the competition, launching the

field into the Deep Learning Revolution, which we are still in today.

1.3.4 AI in Medicine

While more straight-forward problems have been the main focus for AI for quite some

time, increasing attention is being paid to AI in medicine with the push for data standardization

and the development of large medical datasets. Much like a digital thermometer or stethoscope,

AI acts as another tool that can be used by doctors to better diagnose and treat their patients, rather

than replacing doctors. Recently, AI has proven particularly useful in diagnostics, matching or

surpassing doctors diagnostic accuracy. These diagnostics employ a wide array of AI techniques

generally dependent on the disease and data available. The major areas utilized for diagnostics

are computer vision applied to static images and time series or sequential data analysis.

Use of computer vision for diagnostics has the largest body of work. In fact, the FDA

approved uses of AI for healthcare using computer vision applied to medical scans (MRI/PET)

and pathology images. It functions theoretically similar to other applications where a model,

typically a CNN, is trained using many images of a particular disease or disorder, allowing it

to classify future images as representative of said disease or not. For example, applications

include the detection and quantification of breast densities using mammography [127], detecting

stroke and brain bleeds from computerized axial tomography [139, 6], and classification of

dermatological conditions [78]. A systematic review and meta-analysis comparing deep learning

performance to clinicians in detecting disease from medical images found them to be currently

equivalent [131], although some studies have even surpassed clinicians. For example, the LYNA

system which diagnoses metastatic breast cancer is more accurate than a clinician, achieving

accuracy of 99.6%. It turns out that the most effective is the combination of doctor and AI
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tool, which is able to surpass performance measures of either method independently, suggesting

the features used to diagnose by clinicians is different to some extent than AI [133, 206]. This

highlights to importance of machine and human expert partnerships, rather than the typical

notion of AI as a replacement for humans.

Times series applications focus on temporal data, or more generally on ordered sequential

data. It uses existing sequential data to classify a state for the data or detect anomalies within

it. Popular models for sequential data types are recurrent neural networks (RNNs) or, more

recently, transformers, although CNNs can also be used. Applications include detecting and

classifying arrhythmias in electrocardiograms [92]. These models can also be applied to speech

for detection of diseases that impact natural speaking. This method has been used for chronic

pharyngitis [129], Parkinson’s disease [227], Alzheimer’s disease [80], post-traumatic stress

disorder [142], and major depressive disorder [184]. A specific type of sequential data analysis

is natural language processing (NLP), which seeks to make predictions using written language.

A large area of research lies in applying NLP techniques to electronic health records (EHR). For

example, one study used EHRs to predict patient mortality after hospitalization [179]. Another

study sought to predict disease severity and therapy efficacy from EHRs combined with medical

data [73].

This is just the beginning of AI’s usage in medical diagnostics, and these examples

provide exciting evidence for its usage in neuropsychiatry moving forward. In using models

under the general class of AI, it becomes critically important to break the system into it’s

constituent parts and approach the problem using design principles.

1.3.5 Design of an Intelligent Agent and Task Environment

The pursuit of artificial intelligence revolves around the design and development of

intelligent agents, defined as entities capable of perceiving their environment and taking action

based on those perceptions. Like many other complex challenges, it is advantageous to approach

the problem using design principles. Typically, the design task entails creating an agent with
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appropriate software and hardware components, although this is not always the case. In general,

an agent requires a computing architecture and a mechanism for executing actions. An agent’s

behavior is encapsulated by its agent function, which serves as an abstract mapping from percepts

or sequences of percepts to actions. A percept here refers to any content an agent’s is aware of.

The primary focus of AI lies in the development of a concrete and internalized agent program

that defines this agent function. This program establishes the link between percepts received as

inputs and the corresponding actions generated as outputs. The resulting action undertaken by

an agent is a product of both its inherent knowledge and the complete sequence of percepts it

has observed. Historically, an input-output table approach was utilized, however this quickly

becomes intractable as the complexity of the environment and the agent’s interactions grow.

In contrast, the field has increasingly shifted towards internalized computation, seeking more

efficient and flexible methods of agent programming. Moreover, drawing insights from human

intelligence, there is no analog of a fixed table mapping percepts to actions. The challenge

therefore lies in devising programs that engender meaningful, rational, and intelligent behavior

while maintaining computational tractability. By employing sophisticated design strategies, AI

endeavors to create intelligent agents capable of exhibiting behavior that aligns with human-like

intelligence while remaining computationally viable.

The simplest type of agents is a simple reflex agent, which selects actions based on its

current percepts using condition-action or if-then rules. This means that if a certain condition

is met, then an action occurs. Although not generally discussed in the context of AI, humans

possess reflexes that parallel this agent archetypes, such as the knee-jerk or patellar reflex. When

the patellar tendon is struck in the correct spot, an automatic kick response is elicited. Such

an agent is said to lack autonomy as it relies entirely on its preprogrammed prior knowledge

rather than its percepts or any form of learning. The efficacy of this agent program hinges on

the environment being entirely observable and predictable, allowing the agent to have complete

visibility of the environment’s state at each moment and determine the subsequent state based

on the current state and the agent’s action. An illustrative example of such a program can be
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found in the equations of motion in physics, where the agent in question is an object in motion.

By providing the initial position and velocity of the object, it becomes feasible to predict its

subsequent location at the next time point using the equation s2–s1 = v× t. While this equation

suffices for describing simple cases, its efficacy diminishes rapidly when additional factors such

as friction and air resistance are introduced. Indeed, the real world encompasses a level of

complexity that cannot be adequately captured by a simplistic and deterministic equation. In

essence, reflex agents serve as the rudimentary building blocks of agent design, demonstrating

the limitations of deterministic and rule-based approaches when confronted with the intricacies

of real-world environments.

The aforementioned examples highlight the significance of accurately capturing the task

environment, which is the surroundings in which the agents are problem-solving. Observability

is a key factor, where environments are considered fully observable if the agent is able to detect

all aspects relevant to its choice of action. If not, typically due to the noisy input or because parts

of the environment’s state are missing, it is considered partially observable. The extreme case is

if the agent is unable to sense the environment at all, resulting in an unobservable system. If the

environment is not fully observable, the next simplest agent program is that of a model-based

reflex agent, which is able to keep track of parts of the world that are not currently observable as

some sort of internal state. In order to do this, there needs to be a model of how the environment

changes over time, typically including the effects of the agent’s actions as well as how the

environment independently evolves. This is called a transition model. If a particular goal is

assigned to the agent, the model-based agent becomes a goal-based agent. The last category

of agents is the utility-based agent, which has a more nuanced modeling of success than the

goal-based agent in the form of performance measures. Typically, the model seeks to maximize

overall expected utility, which often addresses tradeoffs [191].

The categories of agents previously discussed can be further extended into learning

agents, which provide an alternative to programming everything a priori. Learning agents

possess the ability to take in information from their surroundings and update their internal

28



model, enabling them to generalize more effectively to complicated environments and tasks. A

substantial portion of contemporary AI research focuses on learning agents, particularly within

the subfield of machine learning, where the machine assumes the role of the agent and learns

from environmental data provided by the designer.

When designing AI problems, careful attention must be given not only to agent but also

to the task environment design. In addition to previously mentioned observability, there are other

relevant dimensions to consider. Related to but distinct from observability is determinism. If the

next state of the environment can be completely determined or predicted based on the current

state and the agent’s actions, it is considered deterministic. The majority of real world situations

are characterized by such complexity that they are inherently nondeterministic.

Another significant dimension is the episodic or sequential nature of the environment.

In episodic environments, decisions made by the agent are independent of past decisions while

in sequential environments, prior decisions impact subsequent ones. Furthermore, the concept

of dynamics refers to whether the environment undergoes changes while the agent is in the

process of decision-making, as opposed to remaining static. An environment’s state space is yet

another dimension to consider. A discrete environment comprises of a finite number of distinct

states, whereas continuous environments involve an infinite range of possible states. A known

environment refers to the agent (or the agent’s designer) knowledge of the environment. If it is

known, then the outcomes for all actions are given while unknown required learning. Lastly, it is

crucial to consider whether the AI problem involves a single agent or multiple agents interacting

within the environment.

By carefully considering these various dimensions of the task environment design,

alongside agent design, researchers and practitioners can effectively tackle AI challenges and

develop intelligent systems that operate optimally within their respective domains, including in

neuropsychiatry.
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1.3.6 Representing Uncertainty Using Probabilistic Graph Networks

In scenarios where an agent encounters challenges in navigating the world with absolute

certainty, such as in environments that are nondeterministic or not fully observable, the ability

to handle uncertainty becomes crucial. Uncertainty arises when it is impossible to exhaustively

list all possible outcomes, often due to an abundance of possibilities resulting in a large state

space or theoretical knowledge gaps. In this context, probability theory serves as the primary

mathematical language for handling uncertainty. Rather than possessing unwavering certainty in

actions, the agent’s knowledge is characterized by the degree of belief in a particular outcome.

For instance, when predicting weather, it is impossible to achieve 100% certainty. Instead,

forecasts are expressed with a degree of belief in the form of probability (e.g. a 20% chance of

rain tomorrow). However, maintaining probabilities, also referred to as knowledge representation,

for all components in a system quickly becomes a daunting task without effective tools.

Knowledge representation in uncertain domains is commonly handled by employing

probabilistic graph models (PGMs), also known simply as graph models. Graph models are a par-

ticularly useful mathematical and computational construct for handling the inherent uncertainty

that exists due to the complex, nondeterministic, and not fully observable nature of the real world.

In this context, a graph encompasses both the concept from graph theory in discrete mathematics

and the abstract data type in computer science. A graph is characterized by a set of nodes (also

referred to as vertices or points) connected by edges (also referred to as links or lines). In PGMs,

the nodes represent random variables or states, while the edges signify dependencies or transition

likelihoods, which are quantified using probabilities. Typically, the states are predetermined and

the weights are either known a priori due to some theoretical understanding of the system or

learned from data, as is the case in neural networks, which are a special case of graph models. In

essence, the PGM can be used to model the agent program, making use of the task environment.

Leveraging PGMs offers a relatively efficient and tractable method of representing

probabilistic distributions in a visually intuitive manner. That being said, the assembly of these
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Figure 1.3. Simple 2-state probabilistic graph model for predicting weather where the blue
circles represent the state of the weather (sunny or rainy), the purple arrows depict the transition
probabilities given the current state is sunny, and the green arrows depict the probabilities
associated with the rainy state.

models is a non-trivial task that can get complicated quickly. Despite the breadth of the field,

it can broadly be categorized into two distinct types. If the edges are undirected, the model is

referred to as a Markov random field or Markov network. On the other hand, if the edges are

directed, the model is known as a Bayesian network. Bayesian networks possess the additional

property of being acyclic. Machine learning models, such as neural networks, are special

cases of Bayesian networks. These models can be intuitively extended to encompass temporal

uncertainty by introducing an additional dimension, resulting in graph models associated with

each time step. The effective representation of uncertainty through PGMs facilitates tasks such

as inference–approximating inference utilizing known distributions and learning of unknown

distributions–and simulation.

1.4 Unified Ideology

In the forthcoming chapters, there will be discussions of various agents spanning multiple

scales with the goal being to scale specific levels of investigation for use in neuropsychiatric

applications. To provide a comprehensive foundation, it is worth discussing each within the

rigorous framework of AI design combined with computational neuropsychiatry ideologies
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before proceeding further. In line with the previous discussion, all task environments are not

fully observable and nondeterministic.

Beginning at the microscopic scale, Chapters 2 and 3 focus on building theory-driven,

efficient graph models of biophysical synaptic reaction-diffusion systems to connect the molec-

ular and cellular levels to networks. This intricate system embodies a multi-agent problem,

with the intelligent agents being the particles. As is customary in such scenarios, the system

operates within a partially observable environment. While substantial knowledge has been

amassed regarding the system’s dynamics through in vivo and in vitro experimentation, it remains

fundamentally nondeterministic. Therefore, the states and their probabilistic transitions are

provided a priori, without learning. The system manifests sequential, dynamic, and discrete

characteristics. Markov models act as the PGM framework operating primarily in the spectral

domain to assess spatiotemporal dynamics in a computationally-efficient manner.

Both Chapters 4 and 5 operate on the macroscopic scale. Specifically, Chapter 4

looks to connect the networks level through systems to behavior using a combined theory and

data-driven approach. Here, graphs are employed for segmentation, dimensionality reduction,

and as usable biomarkers. Segmentation is done with a pretrained deep learning model, meaning

it is a single agent system with previously learned weights. Dimensionality reduction is done

using using low-dimensional graph-based manifold learning. Both of these data-driven task

environments are episodic, static, and discrete in nature with machines assuming the role of

the agent. Lastly, functional connectivity graphs are built for the subjects. These graphs are

combined theory- and data-driven, sequential, dynamic, and discrete.

Finally, Chapter 5 looks solely at scaling data-driven methods at the behavioral level

using natural language processing (NLP). The learning agent is a transformer-based automatic

diagnostics model, which is static, discrete and single-agent. Typically, NLP is implemented

with sequential approaches, but transformers provide a spectral alternative that is episodic and

readily scalable.

Overall, the following work seeks to bridge levels of investigation for neuropsychiatry
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Figure 1.4. Structure of thesis and breakdown into specific chapters.

applications with computationally-efficient scaling acting as a primary point of optimization.
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Chapter 2

Efficient Markov Chain Reactions for Scal-
able Models of Synaptic Transmission

2.1 Introduction

It has been known since the pioneering of computer architecture by John von Neumann

that brains are far more effective and efficient in processing sensory information than digital

computers, owing to the massively parallel distributed organization of neural circuits in the

brain that tightly couple synaptic memory and computing at a fine grain scale [218]. Modern

day computers still follow the “von Neumann” architecture where computing and memory

are kept separate, incurring severe penalties in computing bandwidth due to the bottleneck in

data flow between centralized processing and vast memory. Moore’s law’s relentless scaling of

semiconductor technology, with a doubling of integration density every two years, has allowed the

von Neumann architecture to remain fundamentally unchanged since its advent. As the shrinking

dimensions of transistors supporting the progression of Moore’s law are approaching fundamental

limits, it has become essential to consider alternative novel computing architectures to meet

increasing computational needs in this age of the deep learning revolution, which itself is driven

by advances rooted in a deeper understanding of brain function [196]. At the forefront of this

movement are neuromorphic systems, introduced by Carver Mead ([150]) as a solution to these

limitations. Neuromorphic engineering looks towards human brains as inspiration for hardware

systems due to their highly efficient computational nature. The human brain is regarded as the
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pinnacle of efficient computing, operating at an estimated rate of 1016 complex operations per

second while consuming less than 20 W of power [58, 48]. Therefore, neuromorphic engineering

looks to mimic the function and organization of neural structures using hybrid analog and digital

systems. This is possible because there is significant overlap in the physics of computation

between the brain and neuromorphic engineering (Figure 2.1). In both systems, information is

carried in the form of charge, and, in hardware, neuronal membrane dynamics are represented

using metal-oxide-semiconductor field-effect transistors (MOSFETs) [149]. In the MOSFET

sub-threshold region of operation, electrons and holes are the carriers of current between n-

or p-type channels and behave akin to ions flowing through ion channels that mediate current

across the neuronal cell membrane. Fundamentally, these hardware systems share analogous

properties to their biological counterparts, including charge stochasticity, diffusion as the primary

mechanism of carrier transport, and energy barriers modulated by gating voltage. Paired with

Boltzmann distributions of charge, these systems are able to emulate current as an exponential

function of the applied voltage, capturing the same biophysics underlying the neuronal dynamics

[149, 42].

Since the introduction of neuromorphic engineering, computational models of different

complexity have been introduced to describe neuronal dynamics, typically ranging from more

detailed and realistic conductance-based Hodgkin-Huxley models to simpler integrate-and-fire

models allowing for better scalability. Synaptic connectivity between neurons is of primary

concern in the field currently because synaptic strength and plasticity are fundamental to learning

and memory in both biological and artificial representations of neural networks [42, 106]. In

neuromorphic architectures, synapses instantiate both computation and memory, and a new

focus on compact electronic implementations of this computational memory has been emerging

recently including the use of memristors [39]. Efficient representation of synapses is a crucial

topic of concern as there are roughly 104 synapses for each neuron, totalling approximately

1016 in the human brain. They are diverse in nature and have highly complex temporal and

spatial dynamics, which further complicates their representations [42]. Currently, there is a
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Figure 2.1. (A) Computational neuroscience and neuromorphic engineering relation. Repro-
duced with permission from [58, 48]. (B) Thermodynamic equivalence between MOSFETs and
ion channels giving current as an exponential function of applied voltage for sodium (left) and
potassium (right) [99, 149].

push for efficient synaptic models while maintaining the intricate dynamical behavior exhibited

biophysiologically. Current models include time-multiplexing synapses, analog bistable synapses,

and binary synapses to name a few, but the need for scalable and dynamically complex models

of synaptic function and transmission is still existent and critical [42, 31].

Modelling synapses is a challenging task due to their intricacy and sheer quantity. As

noted above, there are an estimated 1016 synapses in the human brain. They vary in function and

type, including both chemical and electrical synapses and exhibit behavior spanning multiple

different temporal and spatial scales, as well as being highly stochastic in nature [214, 219].

Additionally, synaptic plasticity causes changes in synaptic strength over time associated with

learning and memory. Synaptic transmission involves a multitude of mechanisms and molecular

components, making simulations including all components not readily scalable. In order to

capture the sophisticated dynamics of synapses in a scalable manner, abstractions have to be made

according to the research problem in question. The stochastic nature of synapses also makes
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large scale simulations more complicated as modelling stochastic processes is typically more

computationally demanding. It has been shown in multiple instances that the noise present due to

the stochastic variability in synapses is highly integral to synaptic transmission, so this becomes

an important feature to maintain [141]. For example, [155] proved that models including ion

channel noise in Ca2+ channels paired with the existence of a presynaptic mechanism causing

random delays in synaptic vesicle availability best capture the interspike interval behavior of

auditory nerve fiber models. Additionally, multiple experimental works have found the existence

of presynaptic vesicles that are released into the synaptic cleft with some probability [47, 121].

There are multiple similar conclusions found in modelling and experimental results as recently

discussed by [148].

Synapses form the connections between neurons and the strength of these connections

changes over time, forming the basis of learning and memory in both biological and artificial

neural networks. The computations involved in accurately modelling the biophysics of synapses

are complex due to the highly nonlinear nature of their dynamics, yet most of the neural network

models in use today abstract synaptic strength to a single or small number of scalar values, tuned

to a specific task. The learning rule for updating synaptic strength is then typically applied

using abstractions of synaptic plasticity such as spike-time dependent plasticity and its causal

extensions for scalable real-time hardware implementation [174]. Physical constraints and

limitations in VLSI implementations restrict the functional form of synaptic representation.

In turn, these abstractions restrict the potential computing power of neuromorphic systems

and restrain achievable benchmarks in approaching the functional flexibility, resilience, and

efficiency of neural computation in the biological brain. Our work addresses the need for

a more biophysically realistic model of the synapse with biologically tunable parameters to

represent synaptic dynamics while offering a path towards efficient real-time implementation in

neuromorphic hardware.

Synaptic transmission is dictated by a series of events initiated by presynaptic stimulation

in the form of action potentials. An action potential causes membrane depolarization which
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leads to stochastic opening and closing of voltage-dependent calcium channels (VDCCs) lying

on the presynaptic membrane and a resulting influx of calcium (Ca2+) to the presynaptic

terminal. Neurotransmitter release is modulated by Ca2+ binding to calcium sensors near the

neurotransmitter filled vesicles at the active zone, but Ca2+ has other fates as it diffuses from the

VDCCs. In addition to binding to the Ca2+ sensors, it can bind to calbindin (CALB), which acts

as a buffer, or it can be removed by plasma membrane Ca2+ ATPase (PMCA) pumps. If enough

Ca2+ is able to bind to the Ca2+ sensors, though, then neurotransmitters are released across the

synaptic cleft and initiate downstream effects at the postsynaptic membrane [30]. This process

of synaptic transmission is the basis of communication in the brain.

Abstracting this for computational efficiency, we created a series of Markov state transi-

tions to realize the system with multiple internal states allowing for a biophysically tunable model

of synaptic connectivity implementable in neuromorphic architectures. Markov models have a

history of use as a stochastic discrete state alternative to Hodgkin-Huxley type formulations since

their introduction [99, 28, 62]. Additional stochastic models have been introduced, including

the Gillespie method (1977), which has been used to model neural channel noise [84, 202, 56].

Markov models have also found use in whole-cell models [222]. Further extensions utilize a

particle model [119]. The importance of the inclusion of stochasticity in ion channel behavior

and synaptic transmission generally cannot be understated. Its inclusion has been demonstrated

time and time again in experimental work and is thought to be integral in the form and function

of synaptic transmission [148]. This provides an additional complication in modelling synapses

and has been handled at various different stages of transmission, including the stochastic models

of vesicle release using probabilistically generated quantal components, stochastic models of

transmitter diffusion, and stochastic models of receptors [47, 30, 214]. These simulations are

computationally expensive due to the high transition rates paired with the small number of

transitions necessitating a small timepoint. Specifically, Markov models have shown to be an

effective method of modelling ion channels but require high computational cost to effectively do

so.
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This paper looks to abstract the computationally complex and nonlinear nature of synaptic

transmission dynamics in a manner that is efficient and readily scalable for implementation in

neuromorphic silicon very large-scale integrated (VLSI) circuits. This is done by introducing an

efficient stochastic sampling scheme within a Markov chain representation of the components

integral to stochastic presynaptic quantal transmission.

2.2 Materials and Methods

2.2.1 Markov Chain Models

The cascade of events from the action potential stimulus input to the presynaptic neuro-

transmitter release output can be equivalently modelled as a Markov chain to realize the system

with multiple internal states instead of directly tracking all molecules and their kinetics in a

computationally complex spatiotemporal 3D reaction-diffusion model. Each internal Markov

state is assumed to be dependent solely on the state at the previous timepoint and is conditionally

independent of all previous timepoints, simplifying simulations. Therefore, the fully biophysi-

cally complex system of synaptic transmission can be abstracted and sampled to create a Markov

Chain Monte Carlo (MCMC) simulation which answers the same question of neurotransmitter

release utilizing tunable biophysical parameters while providing scalability for implementation

in neuromorphic architectures.

Figure 2.2. State diagram for voltage-dependent calcium channels and resulting calcium influx
in the presynaptic membrane. Reproduced with permission from [30].

For any given stimulus input, the VDCCs are assigned transition probabilities between

states based on a five-state kinetic model (Figure 2.2) found experimentally and validated

computationally with four closed states and a single open state [37, 57, 30]. Prior to the stimulus,
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all VDCCs begin in the initial closed state, C0, and the concentration of Ca2+ in the presynaptic

terminal is at steady-state. The transition probabilities are voltage dependent akin to a Hodgkin-

Huxley model where αi(V ) = αio exp
(

Vm
Vi

)
and similarly βi(V ) = βio exp

(
Vm
Vi

)
with parameter

values from [37]. The number of open VDCCs at any given moment is used to determine the

number of Ca2+ entering the presynaptic terminal based on experimental I-V curves and the

resulting I-V equation found in [37] and used in [30], which gives the value for kCa. Ca2+ influx

is captured by including transitions from the final closed VDCC state, C3, to the open VDCC

state and an internal Ca2+ generation. Using this, influx of Ca2+ is modelled over the entire

stimulus input due to the VDCCs opening.

Figure 2.3. State diagram for calbindin binding where HaMb describes the ath high-affinity
binding state and the bth medium-affinity binding state. Reproduced with permission from [30].

Once Ca2+ has entered the presynaptic terminal, much of it binds to CALB, which

acts as a buffer and primarily modulates the amount of Ca2+ that is able to reach the Ca2+

sensors at the active zone. The state transitions are reversible first-order reactions, thus transition

probabilities are dependent on the free Ca2+ in the system and updated as that amount changes

over time. CALB has four binding sites, two of high affinity and two of medium affinity, leading

to a nine-state Ca2+ concentration-dependent kinetic model (Figure 2.3) [159]. By modelling

the binding and unbinding of Ca2+ to CALB as a loss or gain of free Ca2+ respectively, Ca2+

transients can also be elucidated.
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Our Markov chain is a discrete-state chain in discrete time. Markov chains are modelled

by a probability that the chain will move to another state given its current state and is conditionally

independent of all previous timesteps. The probabilities are by nature only dependent on the

current state of the Markov chain. The probability of the state of a molecule X can typically be

predicted for a certain timepoint t +∆t as some particular state x j using the states at all previous

timepoints from the start of the simulation, t = 0, to the timepoint just before that in question,

t. For a Markov chain simulation solely dependent on the previous timepoint, it is possible to

predict the probability that a molecule is in a given state, x j at the timepoint t +∆t using solely

the state of the single timepoint just before, Xt , which is known to be a particular state xi. Thus

the probability of the molecule being in state x j given that at the previous timepoint it was in

state xi is given as Pi j. Succinctly, this is written as

P(Xt+∆t = x j|Xt = xi,Xt−∆t , ...,X0) = P(Xt+∆t = x j|Xt = xi) = Pi j (2.1)

For state transitions, the probability of transitioning to an adjacent state is the transition

rate inherent in the system (ki j for the transition from state i to state j, and ki j is not necessarily

equal to k ji) times the timepoint, ∆t. In the case of CALB transitions, this is further multiplied

by the amount of free unbound Ca2+ for forward reactions as it is a first-order reaction. For the

VDCCs, the transition rates are the α , β , and kCa. The probability that a molecule stays in its

current state is the sum of the probabilities it transitions to an adjacent state subtracted from unity.

For a multi-state system, this gives a transition probability matrix for the likelihood of transition

from a given state at the current timepoint to any other state at the next timepoint. This matrix is

sparse, with nonzero probabilities only for adjacent states to which a transition is possible. In the

case of the five-state VDCC system, this gives the probability of a transition from state i to to

state j as
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Pi j =


ki j ∆t j = i±1

1−∑
Nad j
k=0 Pik j = i,k ̸= i

0 otherwise.

(2.2)

where transitions to adjacent states are given by the transition rate ki j times the timepoint,

∆t; the probability of staying in the current state is the sum of probabilities of adjacent state

transitions subtracted from unity, where Nad j is the number of possible adjacent states. The

probability of transitioning to a non-adjacent state is set to zero.

Typically Markov state transitions are modelled via a discrete inverse transform method,

where given a random variable X , the transition probabilities Pi j describe a partition of unity

(Figure 2.4). Therefore, we can generate a random number uniformly, R ∼U(0,1) and map

it onto discrete values of X . For example, in a two state system, X j = 0 if R ≤ Pi0 or X j = 1

if Pi0 < R ≤ Pi0 +Pi1 = 1. This involves searching the state space for the next state given the

current state for each molecule in the system at each timepoint, which can be a slow process for

systems with a large number of states and molecules.

Figure 2.4. Markov sampling scheme for state transitions using partitions of unity.

Here we have implemented a more efficient MCMC sampling strategy involving sampling

from a multinomial distribution. Therefore, instead of sampling from a uniform distribution for
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each of n molecules, we sample from a multinomial distribution once for each state, using n

molecules as the number of experiments, where X ∼Multi(n, p1, . . . pk). For simulations where

the number of possible states is less than the number of molecules, this is a more efficient

sampling strategy. Since we are particularly interested in the number of molecules in each

state at each timepoint, this is an effective approach. Multinomial sampling thus describes

the distribution of the n experiments across k possible outcomes each with a probability of pk,

where nk is the number of experiments falling into the kth outcome following a probability mass

function of

f (n1, . . . ,nk;n, p1, . . . pk) =
n!

n1! . . .nk!
pn1

1 . . . pnk
k (2.3)

In our model, for each state i, we have an initial number of molecules in that state at a

given timepoint t, or ni,t . As previously described, there exists a probability that the molecules

will transition to any state at the next timepoint, including staying in the original state given by

Pi j. Thus, to determine the distribution of molecules ni,t across all states at the next timepoint,

we sample from a multinomial distribution according to

Xi,t+∆t ∼Multi(ni,t ,Pi1, . . .Pik) (2.4)

for k possible states. We do this sampling for each state at each timepoint and sum accordingly.

This expedites computation by only requiring a single computation at each timepoint, sampling

the distribution of all n molecules at once. Algorithm 1 highlights the pseudocode for this

process.
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Algorithm 1: Markov Multinomial Reaction Sampling
Result: The number of molecules in each state at each timepoint for a simulation

initialize number of states;

initialize matrix of number of molecules per state per timepoint;

for each timepoint do

for each state do

calculate transition probability according to eqtn 2.1;

sample multinomial distribution with current number of molecules in the

state and transition probability;

end

update number of molecules in each state using samples;

end

Markov simulations for the VDCCs were run for 65 VDCCs all starting in the closed state,

C0. CALB molecules were initiated in the different binding states according to the steady-state

concentration of Ca2+ and at a baseline concentration of 4.510−5 M. All simulations were run

for 10 ms with a timestep of 1 µs. The simulations were repeated 1,000 times to obtain an

average and standard deviation. Markov simulations were implemented using Python.

2.2.2 MCell Models

MCell is a modelling software that uses spatially realistic 3D geometries and Monte Carlo

reaction-diffusion modelling algorithms, which allows for biophysically realistic simulations of

high complexity as it specifically tracks the state of every molecules in space and time [30]. Due

to the accuracy and specificity, it provides a ground truth for biological simulations but does so

at the cost of computational complexity.

To validate and compare our Markov models of synaptic transmission, we built a biophys-

ically realistic stochastic 3D reaction-diffusion system with all major components for presynaptic

vesicle release variability in response to a stimulus input (Figure 2.5) based on the models of
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[158] and [30]. The model includes realistic geometry for a CA3-CA1 en passant synapse

focusing primarily on the presynaptic Schaffer collateral axon of a CA3 pyramidal cell found in

the hippocampus with parameters set from experimental data [158, 30]. The CA3-CA1 synapse

was chosen for the simulations as it is highly studied experimentally and is important for learning

and memory. Furthermore, CA3-CA1 synapses are relatively small, containing one to two

neurotransmitter release zones. Release from this region is also known to be highly stochastic

in nature, necessitating the inclusion of stochasticity in biologically realistic models [158]. All

kinetics and parameters match those used for the equivalent Markov models.

Figure 2.5. MCell model for synaptic transmission containing voltage-dependent calcium
channels (red), calcium (blue), calcium sensors (green), and plasma membrane calcium ATPase
pumps (purple). (A) Entire box representing one vesicular release site in CA3 and (B) a close-up
of the release site.

The MCell model includes the canonical presynaptic geometry for an average CA3-CA1

synaptic terminal as a rectangular box measuring 0.5µm by 0.5µm by 4µm. This box captures

the dynamics of a single synaptic active zone, referring to the region on the presynaptic membrane

specialized for neurotransmitter release. Initially, the terminal contains the CALB buffer, steady-

state Ca2+ concentration, PMCA pumps, VDCCs and Ca2+ sensors modulating neurotransmitter

release [158]. The detailed diffusion dynamics and kinetics of these systems are based on

experimental data and have been discussed in further detail in [30]. The active zone is based

on that of an average presynaptic active zone containing seven docked neurotransmitter vesicle
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release sites. The VDCCs, of type P/Q, are stationed at a biophysically realistic distance from

the active zone. They transition states in response to the membrane depolarization. The location,

number, and Ca2+ conductance of the VDCCs is replicated from experimental data [158].

PMCAs are homogenously placed across the presynaptic membrane while CALB molecules are

in a uniform concentration within the volume. This is a flexible architecture that can respond

to any stimulus input and allows for monitoring of the states of each molecule in the system.

The MCell CA3-CA1 synaptic transmission models were originally created and validated in

[158] and [30]. To compare with the Markov models, we used the same single action potential

stimulus.

MCell models were also run 1,000 times for 10 ms with a timestep of 1 µs.

2.3 Results

2.3.1 Voltage-Dependent Calcium Channels

The efficient Markov chain implementation has strong agreement with the full MCell

model in terms of the internal state transients in response to an external stimulus. The number of

closed VDCCs (state C0) decreases over the duration of the stimulus (Figure 2.6A). The internal

states (C1-C3) subsequently increase and decrease as the membrane voltage increases and the

forward rates for the VDCCs increase (Figure 2.6B-D), leading to an exponential increase in the

open VDCCs while the membrane depolarizes. Figure 2.6E shows the fraction of open VDCCs

over time in response to the action potential, which controls the amount of Ca2+ influx to the

system. At the maximum membrane potential, almost all VDCCs are in the open state. As the

membrane repolarizes, the reverse reaction rate constants increase, and the VDCCs close. This

leads to another increase and decrease in the internal VDCC states as the receptors go from their

open to resting closed state (C0).

In its open state, VDCCs allow for the probabilistic influx of Ca2+ through the channels

into the presynaptic bouton. This is exemplified in Figure 2.6F, where there is an increase in the
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Figure 2.6. Fraction of voltage-dependent calcium channels (VDCCs) in each state: (A)-(D)
internal closed channel states, C0-C3, and (E) open channel state, O. (F) Calcium influx through
open VDCCs due to action potential stimulus for stochastic MCell, Markov, and deterministic
ODE simulation.

Ca2+ influx through the open VDCCs over the course of the stimulus. Again, there is strong

agreement between the more computationally complex MCell model and the computationally

efficient Markov equivalent model.
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2.3.2 Calbindin Buffer

Simulations of homogeneous Ca2+ and CALB were run using the MCell, Markov and

deterministic simulation schemes. In the presence of Ca2+, the forward binding reaction is

heavily favored, and this is highlighted in Figure 2.7A where free Ca2+ exponentially decreases.

A similar transient is apparent for the unbound state of CALB, as it quickly transitions to different

stages of high and medium binding (Figure 2.7B). Over the course of the simulation, all the free

Ca2+ is removed from the system, and CALB states reach a new steady-state where there is

still CALB. Similarly, the fully bound state, H2M2, rapidly increases and reaches a new steady

state that is still only 1% of all CALB (Figure 2.7C). This is due to the high concentration

of CALB in the presynaptic bouton. Even once all the Ca2+ is in a bound state, there is still

plenty of unbound or partially bound CALB remaining in the system. CALB acts as a strong

buffer allowing for Ca2+ storage and asynchronous neurotransmitter release, so this and slow

unbinding rates become an important feature of CALB. The rapid extent to which Ca2+ binds to

CALB shows the impact of buffering on Ca2+’s ability to diffuse and bind to the Ca2+ sensors

in the active zone. The inclusion of CALB at such high concentrations becomes a key feature

of maintaining the relatively low release rates of neurotransmitters even in the presence of a

stimulus.

Figure 2.7. (A) Transients for homogeneous calcium-calbindin buffer binding in the presynaptic
bouton for free calcium; (B) the calbindin state, H0M0; and (C) the fully bound calbindin state,
H2M2 in all simulation types.
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2.3.3 Complexity Analysis

MCell uses a scheduler which allows for only making changes to the scheduled particles,

though in the worst-case, this still scales with the total number of particles in the simulation,

n, where nV DCC is 65 and ncalb is 2.7×104. It also scales with the length of the simulation, t,

described by the number of time points for a discrete simulation. The simulations for the VDCC

and CALB both use 10k timepoints. At each timepoint, a particle can transition to any of its

adjacent or branched states, b, which is similarly described by a fan-out factor in electronic

implementation. From the VDCC kinetic model described in Figure 2.2, bV DCC is 1-2 depending

on the state while the CALB kinetic model in Figure 2.3 gives bcalb of 2-4. The overall time

complexity for MCell is O(bnt). The classical Markov representation tracks every particle.

It also searches through the space of each adjacent state for potential state transitions at each

time point. Therefore, classical Markov implementation similarly results in an O(bnt) time

complexity, or O(nt log2 b) at best for implementation with an efficient search algorithm. Both

the multinomial Markov model and the Euler ODE implementation describe the system in terms

of the number of molecules in each state leading to a dependence on the total number of states,

s≥ b, rather than the total number of particles. The total number of states for VDCC is 5 (Figure

2.2) while the number of states for CALB is 9 (Figure 2.3). Due to efficient sampling methods,

the multinomial Markov method is independent of the number of adjacent states, leading to a

time complexity of O(bst) for both the multinomial Markov and Euler ODE methods. Thus,

our stochastic multinomial Markov model is equally amenable to large scale simulations as the

deterministic ODE method that is typically used in simulations involving more synapses.

The traditional Markov sampling model and the MCell representation store the molecular

states in bits for each particle as well as the states adjacent to the current state, leading to a

space complexity of O(bn log2 s) The efficient Markov model and ODE solution both simply

store the number of molecules represented by bits in each state at each timepoint as well as the

branched states resulting in a space complexity of O(bs log2 n). There exists a trade off here
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Table 2.1. Space and time complexity for the various simulation strategies.

between the number of particles in each state compared to the number of states where one is

stored directly and one is stored as an index. Thus, for simulations where the number of states is

less than the number of particles, the multinomial Markov model is an efficient representation of

the system, which is typically the case for biochemical simulation. MCell is more efficient with

large state-space systems, but the number of states could be sparsified in a multinomial Markov

representation by implementing dynamic instantiation and annihilation of states. Additionally,

unseen or rarely seen states could be ignored by truncating based on probability of a particle

being in that state. This would functionally decrease the number of states in the system allowing

for use of the multinomial Markov simulation method.

2.3.4 Benchmarks

Runtime and total floating point operations were used as metrics for comparison between

the simulation methods (Table 2.2). We also looked at the number of pseudorandom number

generator calls (nPRNG) between the simulations as this provides a metric to elucidate the

differences observed in execution time between the simulations. Here we compare MCell, the

standard Markov model, and the multinomial Markov stochastic models. The deterministic

Euler solution is included as well for a non-stochastic comparison. Again, it is valuable to note

the importance of stochasticity in these models. Significant work has shown the necessity of

stochasticity in models of synaptic transmission in order to match experimental work. It has

been demonstrated that deterministic models at this scale generally underestimate quantal release
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as concentration fluctuations are not captured [214, 148, 30]. Thus while deterministic ODE

models provide efficient simulation techniques, they are not able to capture the full complexity

of the dynamics of synaptic transmission, hence motivating the need for an efficient stochastic

model.

In the VDCC simulations, the multinomial sampling MCMC model has a runtime on the

order of the forward Euler deterministic solution. The MCell and the standard Markov stochastic

models exemplify a runtime an order of magnitude higher. The number of operations is also

higher for the MCell and the standard Markov models compared to the multinomial Markov

model. The standard Markov case generates a pseudorandom number for each molecule and

each timestep, so nPRNG is equivalent to the number of molecules multiplied by the number of

timesteps, nV DCCt. In the multinomial Markov simulation, a pseudorandom number is generated

for each occupied state and possible branching points at each timepoint, which gives (bs)V DCCt

in the worst-case scenario. Therefore, nPRNG is smaller for the multinomial case as long as

(bs)V DCC < nV DCC, which is always the case here.

Table 2.2. Benchmarks for different simulation types for both voltage-dependent calcium channel
and calbindin binding simulations.

For the CALB model, the multinomial Markov method is again an order of magnitude

faster than the MCell model although it is also an order of magnitude slower than the deterministic
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model. The standard Markov model is an order of magnitude slower than the multinomial model.

The operations are also fewer for the multinomial case than the standard case. Again, the

standard Markov case gives nPRNG equal to ncalbt while the multinomial Markov simulation

is (bs)calbt. Again we see a smaller nPRNG in the multinomial case because (bs)calb < ncalb

even in the worst-case scenario where b is at its maximum value. Simulations are not currently

optimized on hardware suggesting opportunities for further decreases in runtime. Overall, the

multinomial Markov simulation provides a computationally efficient alternative to stochastic

MCell simulations while maintaining the biological accuracy.

2.3.5 Neuromorphic Implementation

Thermodynamic foundations of neuromorphic engineering suggest direct biophysical

implementation of populations of ion channels with individual stochastic opening and closing of

gating variables driven by thermal noise fluctuations [149]. So it seems only natural to consider

implementations using stochastic ODEs describing the rates of reaction kinetics under additive

white Gaussian noise (AWGN):

dXi,t

dt
= ∑

j
ki j X j,t +ξi,t (2.5)

where ξi,t is normally distributed with zero mean and variance dependent on the magnitude of

Xi,t . Fully parallel, continuous-time analog implementation of reaction kinetic rate equations

of the type (2.5) have been demonstrated in micropower integrated circuits, e.g., cytomorphic

chips in BiCMOS integrated silicon technology [225]. Abundant intrinsic noise present in these

micropower cytomorphic circuits can serve as AWGN, although its magnitude is determined

by thermal processes that are hard to control and other non-white Gaussian sources of intrinsic

noise contribute strongly colored low-frequency spectra. Thus, discrete-time implementation of

the ODEs (2.5) through Euler integration on a digital computer offers greater control over the

shape and amplitude of the AWGN distribution, limited by the quality of pseudo-random number
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generation by deterministic algorithms.

Although purely digital algorithmic implementations go against foundational principles

of neuromorphic engineering rooted in the physics of computation [149], the convenience of their

programmability and reproducibility have made ODE-based digital emulation platforms such as

Loihi a popular choice among more software-focused neuromorphic computer scientists [65].

The computation involved in such discrete-time ODEs (2.5) can be performed at varying degrees

of parallelism in custom or reconfigurable digital hardware, with the variables Xi being updated

in sequence through time-multiplexing a single processing core in one extreme case, or all

Xi updated in parallel with dedicated processing elements for each in the other extreme case.

Ultimately in practice, the energy efficiency is relatively independent of the compute implemen-

tation, and depends more critically on the available memory bandwidth in accessing the rate

parameters defining network connectivity [173]. In essence, discrete-time Euler-integration ODE

implementation of (2.5) amounts to sampling from a normal distribution

Xi,t+∆t ∼ (ni,t+∆t ,σi,t) (2.6)

with mean and standard deviation

ni,t+∆t = ∑
j

Pi j n j,t (2.7)

σi,t =
√

ni,t (n−ni,t) (2.8)

incurring computational complexity O(bst) (Sec. 2.3.3).

More fundamentally, the main disadvantage of implementing stochastic ODEs (2.5) or

their discrete-time digital versions (2.6) is that they are primarily based on the Central Limit

Theorem for very large number of variables, n→ ∞. As such, they have limited accuracy in

approximating the reaction kinetics in systems with smaller numbers of molecular variables.

While one may be tempted to assume that molecules are always excessively abundant, this
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is not typically the case since reactions are rate limited by the least abundant of reagents.

Low numbers in molecular dynamics are prevalent in biologically relevant settings, giving

rise to significant amounts of biological noise that are critical in neural dynamics, the highly

stochastic quantal release of neurotransmitter in synaptic transmission. Thus, there is need for

a mathematical description of stochastic synaptic transmission dynamics able to capture the

accuracy in simulations with relatively small numbers of variables.

Here we have shown that our multinomial Markov alternative, which directly samples

the variables from the multinomial distribution (2.4) rather than the limiting normal distribution

(2.6), produces accurate results for any value of n while offering nearly identical implementation

complexity O(bst) (Sec. 2.3.3). Hence we see the Markov chain abstractions of reaction kinetics

not only as a means to approach biophysical realism in modeling molecular cellular dynamics

without molecular-scale representation, but also as a means towards efficient neuromorphic

hardware without biophysical compromise. The key point is that the computational complexity

of implementing our multinomial Markov model is essentially identical to that of stochastic

ODEs (see Table 2.1), whether in software executing serially on a von Neumann programmable

digital computer or in massively parallel digital or analog hardware. Hence, the neuromorphic

circuit designer tasked to implement brain-inspired models of information processing faces an

easy choice: more bio-realistic models that account for detailed stochasticity in reaction kinetics

incur the same resource utilization and energy costs, and use similar design principles, as their

stochastic ODE approximations.

In addition to field-programmable gate array (FPGA) reconfigurable [173] or custom-

integrated neuromorphic programmable [65] instantiations in digital hardware, we envision phys-

ically neuromorphic instantiations in micropower analog continuous-time compute-in-memory

hardware that obviate sampling from posterior distributions and directly implement Markov

state transitions through parallel implementation of sum-product rules with self-normalizing

probabilities [49, 50], at throughput density and energy efficiency that are orders of magnitude

higher than today’s most advanced general-programmable computational platforms.
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2.4 Discussion

The goal of this work was to create a more computationally efficient model of biologically

realistic synaptic transmission for use in large-scale neuromorphic systems. We created a

multinomial MCMC sampling strategy for capturing the internal states of vital molecules in the

system in response to stimulus where transition probabilities could be voltage- or concentration-

dependent, and the next timestep could be predicted solely using the current timestep. This

scheme was implemented to capture the dynamics of the stochastic opening and closing of

VDCCs through multiple internal states as well as the resulting Ca2+ influx into the presynaptic

bouton through the open VDCCs. Once Ca2+ has entered the presynaptic terminal, we also

simulated Ca2+ binding to the CALB buffer which modulates Ca2+ levels in the bouton, directly

impacting the amount of Ca2+ that reaches the Ca2+ sensors in the active zone. This amount

impacts the neurotransmitter release from the presynaptic side and the resulting effects on the

postsynaptic side.

All simulations were modelled using the multinomial Markov sampling method as well

as a typical Markov sampling method and compared to highly detailed 3D geometric stochastic

reaction-diffusion simulations done using MCell. The Markov simulations show agreement

with the MCell simulations for the system dynamics including the number of open VDCCs

and Ca2+ influx in response to an action potential stimulus as well as the binding of Ca2+ to

the CALB buffer. Differences are observed from the deterministic solution to the stochastic

simulations implying the importance of stochasticity in these simulations to capture more

biologically-realistic systems.

Exemplified by runtime and total number of operations, the multinomial MCMC method

of simulations was shown to be more efficient than the standard Markov model while also being

faster than the MCell equivalents. This is hopeful for scaling these biologically-realistic models

to large-scale systems while maintaining biological tunability.

Next steps involve modelling the remaining kinetics in a similar fashion including the
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binding and removal of Ca2+ by the plasma membrane Ca2+ (PMCA) pumps as well as binding

to the Ca2+ sensors. In addition, to capture the diffusion of Ca2+ through the presynaptic terminal

but specifically to the Ca2+ sensors at the active zone, a diffusive kernel must be included to the

system. Upon inclusion of these elements, the entire process from stimulus to neurotransmitter

release can be captured as a series of Markov chains leading to powerful implications for synaptic

transmission modelling. The whole synapse can be included as well with the inclusion of a

diffusive kernel across the synaptic cleft as well as downstream effects on the postsynaptic

side, of which many mirror similar kinetics and dynamics as the presynaptic side leading to a

natural extension of this modelling framework. The resulting system would be a biologically

tunable model of synaptic transmission for any stimulus input in a highly efficient manner. This

opens the door for large-scale implementations of synaptic transmission and learning readily

implementable into neuromorphic architectures with strong biological realism.

Through the utilization of Markov-based abstractions applied to biophysically realistic 3D

reaction-diffusion models of a chemical synapse, we have created a compact and efficient internal

state space representation of synaptic transmission. This is in response to the challenge presented

by the high dimensionality and complex nature of molecular-scale interactions in synapses and

across scales making implementation in very large-scale systems previously unattainable. The

model is directly amenable to efficient emulation in parallel neuromorphic hardware systems

while maintaining biophysically relevant and interpretable parameters that are readily tunable.

This opens the door towards neuromorphic circuits and systems on very large scale that strike

a greater balance between integration density and biophysical accuracy in modelling neural

function at the whole-brain level.
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Chapter 3

Grid-Free Scalable Synaptic Reaction-
Diffusion Models Using Spectral Methods

3.1 Introduction

Synapses form the connections between neurons and are electrochemical in nature.

They form the basis of learning and memory and are the building blocks for neural plasticity.

Messages pass between neurons using neurotransmitters, which also affect the neuron connection

strength. Furthermore, as the location of neurotransmitter activity, it is of primary importance for

neuropharmacological intervention strategies. As such, the ability to scale biophysically realistic

models of synaptic transmission is necessary to model the impact of cellular dysfunction and

pharmaceutical intervention at scale. Unfortunately, synaptic transmission involves a multitude of

mechanisms and molecular components, making biophysically-accurate simulations not readily

scalable.

Creating accurate models of biophysical properties at the single-neuron level provides

the foundation for understanding network dynamics. However, these detailed neuron descrip-

tions require significant computational resources. Consequently, when studying large neural

circuits, researchers often resort to using simplified models that overlook much of the biological

complexity, representing neurons and synapses in an artificially simplistic manner. Therefore,

there is a need to develop neuron models that can maintain essential biological characteristics

while minimizing computational demands allowing for scaling to the network level. A significant
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impediment to the implementation of large-scale, biologically realistic neural network lies in the

intricate nature of these reaction-diffusion synaptic transmission systems.

Conventionally, when dealing with neural network models, stochasticity in neuronal

reaction-diffusion systems is often neglected. However, extensive evidence highlights the crucial

role played by stochasticity in neuronal information processing across various scales [70]. For

instance, in experimental scenarios, cortical neurons exhibit slight variations in responses to time-

dependent stimuli between repeated trials of the same input [203]. Furthermore, even in tightly

controlled experiments where the input current is directly injected into the soma, the stochastic

opening and closing of ion channels introduce channel noise, resulting in subtle fluctuations in the

membrane potential and the precise timing of output spikes. Neurons also display subthreshold

membrane potential fluctuations, which are not captured in deterministic simulations despite their

demonstrated contribution to sensory signal processing and synchronization among neighboring

neurons. The development of computational models to include stochasticity at the network and

systems level include the utilization of noise-driven harmonic oscillators to capture oscillatory

dynamics, but the source of the stochasticity is the noise rather than of biophysical origin.

Regardless, the inclusion of stochasticity is an important consideration in these models.

Reaction-diffusion models describe the dynamics of chemical reactions and diffusion

processes in space and time using partial differential equations (PDEs). Simulating these

systems involves solving PDEs numerically with the primary methods used being grid-based

or meshing schemes, including finite difference, finite element, and finite volume methods.

All of these techniques involve discretizing space and solving the PDE in small domains then

modeling simulations using time stepping. in order to accurately capture the intricate nature of

molecular diffusion, it is imperative to have sufficiently small discrete volumes. Unfortunately,

this approach faces challenges when dealing with large spatial volumes as the number of nodes

rapidly increases, leading to computationally expensive models. Consequently, as the length and

size of the simulation expand, both of these methods become increasingly burdensome in terms

of computational resources. The issue becomes particularly formidable when scaling synaptic
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reaction-diffusion processes as there are trillions of synapses in the human brain. The methods

mentioned are deterministic but can easily be made stochastic by adding noise or sampling

probabilistic distributions.

Simulations incorporating stochasticity in neural networks involve an approximation of

the continuous diffusion process through discretization of both the state and time domains. Diffu-

sion, being inherently spatiotemporal, necessitates modeling approaches that effectively capture

its dynamics. Two primary methods have emerged for modeling diffusion. The first method

involves approximating the diffusion process through a random walk with infinitesimally small

time steps, which the most commonly employed approach. Mathematically, this approximation

entails constructing a random walk with very small displacements and time intervals approaching

zero. The accuracy of this algorithm relies on the chosen value for the time interval. Diffusion

occurs with probabilistic movements to adjacent spatial locations. The second method involves

employing a discrete approximation to the stochastic differential equation (SDE) that describes

the diffusion process where the SDE is governed by Fick’s law of diffusion with an added noise

term. The discretized version of the SDE can be conceptualized as a random walk characterized

by normally distributed displacements.

Spectral methods offer an alternative approach to solving dynamical systems, character-

ized by representing the solution as a summation of specific “basis functions”, as introduced

by Steven Orszag [167]. For example, Fourier series utilize sinusoids as basis functions. The

coefficients of these basis functions are then determined to satisfy the given differential equation.

Various techniques fall under the purview of spectral methods, including Fourier series methods

for problems involving periodic geometries, polynomial spectral methods for both finite and

unbounded geometries, and spectral iteration methods for efficiently solving steady-state prob-

lems (add citations). While finite element methods rely on basis functions that are only nonzero

within localized subdomains, spectral methods employ basis functions that have nonzero values

across the entire domain. This global scope allows spectral methods to capture variable dynamics

comprehensively, in contrast to the local nature of finite elements. While this characteristic

60



may pose limitations depending on the specific application, it proves advantageous for scaling

biological simulations.

An alternative approach to modeling synaptic transmission would be to create an effi-

cient graph representation of the components in synaptic transmission that would allow for a

biophysically meaningful yet scalable models (Fig. 3.1). The system would then act as an input-

output system with tunable experimental parameters allowing for elucidation around synaptic

connectivity changes, including in the presence of pharmaceuticals. Specifically, it could be

used to interrogate the effect of changes at the molecular scale on neural network connectivity.

The idea is that of a lumped compartmental model where the focus is on amounts of particles in

particular states rather than individually tracking each component in the system. This can be

done by making use of spectral methods.

Figure 3.1. Synaptic transmission input-output system using efficient graph representations to
model molecular components.

The biological system of interest is the synapse, specifically the presynaptic terminal.

When an action potential reaches the presynaptic terminal, it is depolarized, leading to influx

of calcium (Ca2+) into the terminal. Neurotransmitter release is modulated by Ca2+ sensors

in the active zone region. Therefore, release is impacted by calcium dynamics. In addition to

the diffusive profile of Ca2+, its dynamics are primarily affected by calbindin (CALB), which

is a volumetric buffer that diffuses through the terminal. CALB is at high concentrations with

fast forward binding meaning it quickly binds to the available Ca2+ (CaCALB) and acts as a
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store for neurotransmitter release on longer time scales. Calcium dynamics therefore directly

mediate neurotransmitter release with modulation according to reaction-diffusion with the CALB

volumetric buffer.

3.1.1 Eigenmode Decomposition as a Dimensionality Reduction Tech-
nique

Eigenvectors or principal components, are a fundamental concept in linear algebra and

are widely used in various fields. They represent the characteristic patterns or modes of variation

in a system or dataset and are orthogonal in nature, meaning each eigenvector corresponds to a

distinct and non-overlapping pattern. The first vector captures the largest amount of variance in

the data, and subsequent vectors capture decreasing amounts of variance in orthogonal directions.

They can be used for dimensionality reduction by projecting data onto a subspace spanned by

top few vectors to obtain a lower-dimensional representation of the data that preserves most of

its variance. A system, therefore, can be decomposed into its fundamental components in the

form of eigenvectors

In the case of complex dynamical systems, these eigenvectors become eigenmodes where

eigenmodes are used to describe the stable modes of oscillation of a system. When dealing

with linear partial differential equations, such as in the case of reaction-diffusion systems, the

eigenmodes take the form of cosine and sine functions, similar to those use in Fourier series and

are referred to as Fourier modes (Fig. 3.2 left). Because they use sine-type functions, they can be

described in terms of frequency of oscillation. The idea here is that all dynamical systems can be

approximated as oscillating systems, typically with some decay, and any dynamical oscillating

system can be described by a collection of normal modes. The intuition here is that these normal

modes of oscillation are similar to harmonics in a string instrument.

Furthermore, operator splitting is a numerical technique employed to solve PDEs, includ-

ing the reaction-diffusion equation. It is used for equations that are difficult or computationally

expensive to solve directly, including complex physical systems with multiple interacting pro-
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Figure 3.2. (Left) Eigenmode decomposition of a dynamical system. (Right) Markov model of
synaptic transmission reaction-diffusion system where eigenmodes model diffusion and reactions
mediate transitions between eigenmodes.

cesses. This method breaks down the original PDE into simpler subproblems which can then be

solved individually. For example, in reaction-diffusion, it becomes possible to separate the PDE

into a linear superposition space and time.

In the synaptic transmission system, diffusion is a linear process while the reactions are

non-linear, causing the majority of the complexity. Diffusion can then be handled using the

aforementioned eigenmode decomposition techniques while reactions are handled otherwise.

The eigenmodes then capture the spatial dynamics of the system in the spectral domain due to

the use of Fourier modes. Afterwards, it is possible to build a graphical model of the system with

eigenmode states and transitions between eigenmodes mediated by reactions (Fig. 3.2 right).

As long as the number of eigenmodes remains less than the number of spatial locations in a

grid-based method, this provides a computationally-efficient alternative method for modeling

reaction-diffusion.

In the following formulation, first we build a deterministic reaction-diffusion model

describing Ca2+ influx into and diffusion through the presynaptic terminal in addition to its

reversible binding with CALB. This is done using an eigenmode formulation. Afterwards,

we build a stochastic model of Ca2+ diffusion using Markov models in the spectral domain.

Both models are validated against grid-based methods where the number of eigenmodes used is
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equivalent to the number of spatial locations in the grid-based formulation.

3.2 Deterministic Spectral Reaction-Diffusion

Ca2+ dynamics directly determines neurotransmitter activity making it the focus of these

simulations. Here, we look to simulate Ca2+ influx to the presynaptic terminal with reversible

second-order binding to the CALB volume buffer. Ca2+ is initially introduced to the system as

an impulse injection at time zero, which is described mathematically as a dirac delta. The length

of the terminal is significantly longer than the cross-section, so a 1D simplifying assumption can

be used. Furthermore, the presynaptic terminal is adjacent to neighboring similar presynaptic

terminals. As such, the boundary conditions can best be described as reflective or zero-flux

Neumann conditions. Therefore, the problem formulation seeks to find the amount of Ca2+ in

the system, described as

u = u(x, t) (3.1)

Initial Conditions

where the initial conditions is given by a general function over space:

u◦ = u(x◦, t = 0) = δ (x◦) (3.2)

Boundary Conditions
du
dx

∣∣∣∣∣
x=0

=
du
dx

∣∣∣∣∣
x=L

= 0 (3.3)

3.2.1 Spectral 1D Diffusion with No Reactions

The following solution technique uses Fourier series to decompose the diffusion equation.

Focusing initially on the 1D homogeneous general diffusion PDE formulation using Fick’s law

of diffusion with no sink or source term
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∂u
∂ t

= D
d2u
dx2 (3.4)

For a linear time-variant system, we can utilize operator splitting or separation of variables

to formulate a solution to the homogeneous PDE factorized as a superposition of the product

of independent variables of the form. Using an eigenmode decomposition paired with the

principle of superposition further states that a linear system can be described by an infinite sum

of eigenmodes

u(x, t) = ∑
n

Xn(x)Tn(t) (3.5)

Substituting (3.5) into (3.4) and solving gives the independent equations in both space

and time as

X(x) = Acos
(nπ

L
x
)
+Bsin

(nπ

L
x
)

(3.6)

T (t) = Ce−Dλ t (3.7)

where A, B, and C are constants determined by the initial conditions and λ =
√

nπ

L

For Neumann boundary conditions, the sin terms become zero. Combining the indepen-

dent equations for X(x) (3.6) and T (t) (3.7) into (3.5) gives the overall equation:

u(x, t) =
∞

∑
n=0

An cos
(nπx

L

)
e−D( nπ

L )
2
t (3.8)

where n indexes the eigenmodes and where An is a combined constant given by the initial

conditions. For a dirac delta input function at some position, xo, this is

An = Z
∫ L

0
δ (x◦)cos

(nπx
L

)
dx = Zcos

(nπx◦
L

)
(3.9)
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where the normalization constant Z is either
√

2
L or

√
1
L for the nonzero and zero

eigenmodes respectively.

Therefore, the overall equation for diffusion with Neumann boundary conditions for

concentration is

u(x, t) =
1
L
+

2
L

∞

∑
n=1

cos
(nπ

L
x◦
)

cos
(nπ

L
x
)

e−D( nπ

L )
2
(t−to) (3.10)

3.2.2 Spectral 1D Diffusion with Reactions

In general, reaction-diffusion systems in 1D are described by

du
dt

= D
d2u
dx2 +q(u) (3.11)

Again, we begin with an equation for concentration separated into a sum of spatial and

temporal components, using the premise of separation of variables.

uA(x, t) = ∑
n

Xn(x)T A
n (t) (3.12)

where uA(x, t) is the concentration of species A, which can be described by the product

of spatially-dependent and species-independent eigenmodes X(x) for eigenmodes 0 to n and

the temporal component, T A
n , which is dependent on species A. Spatial eigenmodes X(x) only

depend on the boundary conditions, so they are the same between species if and only if the

boundary conditions are the same between the chemical components, which is the case here. As

such, both X(x) and the resulting λ are not dependent on the chemical species and are of the

same cos form as seen in (3.10) The temporal component is dependent on the reaction system in

question.

66



Second Order Reversible Reaction

Upon entering the presynaptic terminal, Ca2+ binds reversibly to the volumetric buffer

CALB. The binding can be described simply as a second-order reversible reaction with Ca2+

and CALB as reactants and the bound CaCALB complex as the product according to

A+B
k f−−→←−−
kr

C (3.13)

where A is Ca2+, B is CALB, and C is CaCALB and the reaction rates are obtained

experimentally.

This system is described by a flow or reaction term that is positive entering and negative

leaving Ca2+ and CaCALB respectively. The differential equation describing this reaction using

reaction rates is

d[C]
dt

=−d[A]
dt

=−d[B]
dt

= k f [A][B]− kr [C] (3.14)

In addition to the stoichiometric conversions between the species due to the reaction,

the three species each undergo diffusion at species-dependent diffusivities resulting in the

reaction-diffusion equation describing Ca2+ as:

∂ [A]
∂ t

=−k f [A][B]+ kr [C]−DA|
−→
∇ |2−→r [A] (3.15)

Similar such equations can be written for CALB and CaCALB as well.

The concentrations can be written using separation of variables, as seen in (3.12). For

Ca2+, this is:
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∑
i

Xi(x)
d
dt

T A
i (t) =−k f ∑

i
Xi(x)T A

i (t)∑
j

X j(x)T B
j (t)+ kr ∑

l
Xl(x)T C

l (t)−DA
∑

i
λiXi(x)T A

i (t)

(3.16)

To obtain an equation in terms of the spatial dependent component, it is possible to

integrate the temporal components out of the equation. As a result of the temporal components

forming an orthonormal basis, this becomes possible by multiplying the equation by any of the

eigenmodes and integrating the result over the space.

Further simplification occurs as a results of the orthonormality of the eigenmodes given

by ∫
L

Xi(x)Xn(x)dx = δin (3.17)

Therefore, the temporal component of a given eigenmode is described simply by the

summation of the temporal components across all eigenmodes for the forward reaction. The

reverse and diffusion components are in terms of the temporal component of the given eigenmode.

d
dt

T A
n (t) =−k f ∑

i
∑

j
αi jnT A

i (t)T B
j (t)+ krT C

n (t)−DA
λnT A

n (t) (3.18)

d
dt

T B
n (t) =−k f ∑

i
∑

j
αi jnT A

i (t)T B
j (t)+ krT C

n (t)−DB
λnT B

n (t) (3.19)

d
dt

T C
n (t) = k f ∑

i
∑

j
αi jnT A

i (t)T B
j (t)− krT C

n (t)−DC
λnT C

n (t) (3.20)

where

αi jn =
∫

L
Xi(x)X j(x)Xn(x)dx (3.21)

In the double summation, we are left with αi jn nonlinear interaction terms as coupling

coefficients from the product of the three orthonormal spatial components giving cross terms.

68



In particular, for 1D diffusion with Neumann boundary conditions, Xn(x) is given by

(3.6). Therefore, αi jn is of the form

αi jn = ZiZ jZn

∫ L

0
cos(ax)cos(bx)cos(cx)dx (3.22)

From the cosine product rule, this simplifies to

∫ L

0
cos(ax)cos(bx)cos(cx)dx =


1 a±b± c = 0

0 otherwise
(3.23)

Therefore

αi jl =
ZiZ jZl

4
L for n = |i± j| (3.24)

The overall equations for Ca2+ is then

uA(x, t) =
T A
◦ (t)√

L
+

√
2
L

∞

∑
n=1

cos
(nπ

L
x
)

T A
n (t) (3.25)

with equations of the same form for CALB and CaCALB.

Simulation Setup

The prior derivation can then be applied to model Ca2+ and CALB in the synapse.

Initially, Ca2+ is injected into the system at time t = 0. CALB is initially in its unbound state,

uniformly distributed throughout the system, and there is no initial bound CaCALB. Therefore,

the initial conditions of each species can be described as

Initial Conditions
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uA(x◦,0) = [Ca2+]◦

uB(x,0) = [CALB]

uC(x,0) = 0

(3.26)

The initial conditions for the temporal component of the overall equation are equivalent

to the spatial components integrated over the volume in which the particle initial conditions exist.

For Ca2+, the simplifies to the value sampled at the location of the impulse injection. Since

CALB is uniformly distributed, the zeroth eigenmode is the only nonzero component, which is

given by the initial number across the spatial dimension. Bound CaCALB is initially at zero.

T A
n (x◦, t = 0) = [Ca2+][Ca2+][Ca2+][Ca2+]◦Zn cos

(
nπ
L x◦

)
(3.27)

T B
n (x, t = 0) =


[CALB]Z0 =

[CALB]
L n = 0

0 n ̸= 0
(3.28)

T C(x, t = 0) = 0 (3.29)

In order to model this simulation, first the system of ODEs describing the temporal

component (Eqs. 3.18 - 3.20) is solved numerically using Runge-Kutta of order 5(4) with initial

conditions given by (Eqs. 3.27 - 3.29). Afterwards, the temporal component time courses can be

used to obtain the molecular concentration dynamics of each species using (3.12). See 3.2.2 for

an algorithmic approach to the previous description.

Validation Against Finite Difference with Reactions

In order to validate the functionality of this method, it was compared to a finite difference

(FDM) reaction-diffusion model. Both simulations used the biophysical constants as defined in
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[30]. For the simplified CALB-binding reaction, the reaction rates for the first medium-affinity

binding site in CALB were used as it is the largest forward reaction rate. Each method was run

with 100 time points and 150 spatial points, which meets von Neumann stability criteria for

FDM.
Algorithm 2: Deterministic Spectral Diffusion Algorithm

Result: The number of molecules in each state at each timepoint for a simulation

initialize temporal initial conditions T(t = 0) (Eqs. 3.27 - 3.29);

initialize temporal system of equations (Eqs. 3.18 - 3.20);

solve system of equations using RK45 for each timepoint do

for each spatial node do

for each species do
sample (3.12)

end

end

end

3.3 Stochastic Spectral Markov Diffusion using Random
Walk Eigenmode Decomposition

Markov models can be incorporated to add stochasticity to the diffusion solution. This

can be done with an eigenmode decomposition of the diffusion solution, specifically of random

walk diffusion, which is the typical method used to model diffusion with stochasticity. Random

walk is a grid-based approach, meaning the spatial domain is converted to a discrete spatial mesh.

After defining a spatial grid for diffusion, a general random walk diffusion model for a given

particle can be described according to

ni
k ji−−→←−−
ki j

n j (3.30)
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Figure 3.3. Random walk grid-based formulation

where ni and n j are the number of molecules in spatial location i and j, respectively with

their associated rate constants ki j and k ji. For a small enough time step, the probability can be

analyzed in terms of the change in number of particles in the i state in the context of the transfer

of a single particle (Fig. 3.3). There are three possible cases: a particle being added to state i, no

change in the number or one being removed from state i.

lim
∆t→0

P(ni(t +∆t)|n j(t)) =


∑ j ki jn j(t)∆t, if ni(t +∆t) = ni(t)+1

1−∑ j ki jn j(t)∆t if ni(t +∆t) = ni(t)

∑ j ki jni(t)∆t, if ni(t +∆t) = ni(t)−1

(3.31)

In the limit of the time step going to zero, the derivative of the mean is then given by

dµni(t)
dt

= lim
∆t→0

µni(t +∆t)−µni(t)
∆t

= ∑
j

ki jn j(t)−∑
j

k jini(t) (3.32)

which is just the difference of influx and efflux at the given node.
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3.3.1 Eigenmode Decomposition

The derivative of the mean can equivalently be written in matrix form as

d
dt
−→
µ −→n (t) = A−→µ −→n (t) (3.33)

The matrix A represents the diffusive transitions (transition matrix) according to

Ai j = ki j−∑
h

khiδi j (3.34)

where the diagonals represent rates associated with staying in the current spatial location

and off diagonals represent the transition to other spatial locations.

The transition matrix can be decomposed into its eigenmodes according to

AU = UΛ

A = UΛU
−1

(3.35)

where U represents the eigenmode matrix and Λ are the associated eigenvalues.

Eigenmode decomposition allows navigation between the spatial and spectral domains.

To eliminate space from the solution, it is critical to explicitly define the number of particles

in the spatial domain, the number of particles in the spectral domain, and how to go between

the domains. The number of particles in the spatial domain (−→n ) is given by the product of the

eigenmodes and the number of particles in the spectral domain (−→m ) according to

−→
µ −→n = U−→µ −→m (3.36)

3.3.2 Spectral Markov Diffusion Statistics

To capture the varying eigenmode dynamics, the modes can be described as a 2-state

system where the states represent possible fates for particles – either removal or addition to a
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given mode. The total particle count in a particular mode can then be given as the difference

between these to states. Without reactions, each eigenmode is an independent system.

+mk

λ

2−−→←−−
λ

2

−mk (3.37)

where m is the number of particles in mode k, either associated with particle gain (+) or

loss (-) and λ is the eigenvalue for the mode given by the eigenmode decomposition.

Relationship Between Spatial and Spectral Domains

The probability pi of finding a particle at spatial node i is given by the sum of the product

of the eigenvector vik, representing spatial node i and eigenmode k, and the probability qk of

finding a particle at eigenmode k. In general, the eigenvectors can be used to transform variables

between the Cartesian spatial representation and the spectral domain.

pi =
ni

N
= ∑

k
vikqk =

1
N ∑

k
vikmk

qk =
mk

N
= ∑

i
vik pi =

1
N ∑

i
vikni

(3.38)

where N is the total number of particles, ni is the number of particles at spatial node i,

and mk is the number of particles in eigenmode k.

In this formulation, a particle has exactly two possible outcomes; it can be in the gain or

loss state. As such, this is a Bernoulli process. Therefore, the probabilities of the two outcomes

sum to unity according to

q+k +q−k = 1 (3.39)

where q+k and q−k are the probabilities of a particle ending up in either the gain or loss

state, respectively.
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3.3.3 Model Statistics

There are multiple particles, so the overall diffusion process is captured by the Binomial

distribution. Therefore, the mean and variance are given by the following:

Mean

E[mk] = +ηk ·P(mk =+ηk)−ηk ·P(mk =−ηk)

= ηk (q+k−q−k) = qk

(3.40)

Variance

Full variance derivations can be found in Appendix 3.5

E[m2
k ] = η

2
k = ∑

i
pi(vik)

2 (3.41)

Multiple Particle Extension

These are true for a system with 1 particle. To extend this formulation to N particles, the

sum becomes equal to N rather than 1, and ηk needs to be adjusted to scale properly according

to:

q+k +q−k = N

ηk (q+k−q−k) = Nqk

(3.42)

3.3.4 Transforming Between Spatial and Spectral Domains

From Spatial Particle Count to Spectral Domain

In order to obtain the initial conditions for use in the spectral simulation, it is necessary

to transform the distribution of particles in the spatial domain to the spectral domain. This can be
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done making use of the model statistics and eigenmode decomposition by solving the system of

equations in 3.38 - 3.40 and 3.59. In terms of particle count, we obtain the resulting relationship

to transform particles

m±k =
1
2

(
1± ∑i nivik√

N ∑i ni(vik)2

)
(3.43)

where again mk is the number of particles in eigenmode k, ni is the number of particles at

spatial node i, and N is the total number of particles.

If the simulation is an impulse of N particles at node x, then the number of particles at

each spatial node is zero, except for the location of the impulse injection, simply giving

m±k =
1
2

(√
N2(vxk)2±Nvxk

)
(3.44)

From Spectral Particle Count to Spatial

The number of particles at each spatial node can be found by taking the difference

between the number of particles gained and lost in each mode and transforming it back to the

spatial domain according to

ni = ∑
k

vikmk = ∑
k

vik(m+k−m−k) (3.45)

3.3.5 Markov Validation Against Random Walk Formulation

To validate the Markov spectral method, we compare it to a random walk simulation

using a toy example for 1D diffusion. This is a relatively simple diffusion problem but acts as a

proof of concept. The random walk simulation has a given number of spatial nodes from which a

transition matrix can be built using the rate of diffusion as defined by the rate constant for a given
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particle. Then the eigendecomposition of the dynamics matrix is taken to obtain a set of linearly

independent eigenvectors and eigenvalues with which the initial conditions can be transformed

to the spectral domain. Afterwards, a Markov simulation is run using a 2-state system for each

mode and probabilities associated with the eigenvalues. The simulation is then transformed to

the spatial domain to obtain particle counts at each spatial location.

The System

Here, we are modeling a 1D Ca2+ diffusion system divided into 10 spatial locations.

There are no reactions, and the boundaries are reflective Neumann. The time steps (1 µs) are

small enough such that Ca2+ can diffuse or stay stationary in each step. Ca2+ is injected into the

system as an impulse at the center at the beginning of the simulation. The length used was the

4 µm terminal distance with a spatial step of 0.36 µm and was run for a total of 1 ms. Again,

the number of eigenmodes used was equivalent to the number of spatial locations and both

simulations were run 1000 times to get the mean and standard deviations.

States

Each eigenmode is described by an independent two-state system, except the zeroth

mode which just has one state. This is because the zeroth eigenmode represents the total number

of particles in the system, and there is mass conservation. The total number of eigenmodes is

initially equal to the number of spatial locations, although not all may be necessary to fully

capture the dynamics of the system. Therefore, the overall number of states is 2M−1 = 2S−1

where M is the number of eigenmodes and S is the number of spatial nodes.

Transitions

Transitions are only possible within an eigenmode. Particles can transition between

states or stay in their current state through a self-loop, resulting in 4 possible transitions per

eigenmode, except for the zeroth eigenmode which cannot transition. In the rest, the total number
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Figure 3.4. Graphs representing Markov states, where each eigenmode is described by a two
state system capturing particle loss and particle gain. The zeroth eigenmode is one state as there
is conservation of mass in the current formulation.

of transitions is 4(M−1) = 4(S−1). Transitions are given by the eigenmode decomposition of

the transition matrix, and therefore depend on the spatial diffusion resolution.

Figure 3.5. 2-state eigenmode Markov model showing transitions given as the half the eigenvalue
multiplied by the time step where the eigenvalue is obtained from eigendecomposition of the
dynamics matrix.
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Transition Matrix

In 1D, there are three possible outcomes for where a particle could lie which dictate the

particle’s movement.

For particles in the middle of the line:

dni

dt
= kni−1−2kni + kni+1 (3.46)

At the left edge:
dni

dt
=−kni + kni+1 (3.47)

At the right edge:
dni

dt
= kni−1− kni (3.48)

Therefore, for an example 5-node 1D diffusion system, the overall dynamics matrix is

written as

A =



−k k 0 0 0

k −2k k 0 0

0 k −2k k 0

0 0 k −2k k

0 0 0 k −k


(3.49)

The eigenvalues and eigenvectors are then obtained according to (3.35). They are real

and positive.

Initial Conditions

Initial conditions are given by the transformation of number of particles in the spatial

domain to the spectral domain, according to (3.37).
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Algorithm 3: Eigenmode Markov Diffusion Algorithm
Result: The number of molecules in each state at each timepoint for a simulation

initialize number of spatial nodes;

initialize initial conditions across spatial nodes;

initialize dynamics matrix (1.49);

solve eigendecomposition of dynamics matrix;

initialize transition probabilities (Fig. 1.3);

transform spatial initial conditions to spectral using (1.44);

for each timepoint do

for each eigenmode state do

for each particle do

draw a random number, U ;

move particles based on transition probabilities;

end

end

end

transform spectral simulation to spatial domain using (1.45);

3.4 Deterministic Spectral Diffusion Results

Initially, Ca2+ is injected into the system at the location of the voltage-dependent Ca2+

channel (VDCC) with a magnitude equal to the number typically produced by an action potential,

and CALB is uniformly distributed throughout the volume. The time step used is 1 microsecond

and the diffusive length was the standard terminal distance of 4 µm, with a step of approximately

30 nm. Ca2+ dynamics are shown for various time steps in Fig. 3.4, looking at the distances

near the VDCC, located at 2.35 µm. Additional figures for Ca2+ dynamics as well CALB and

CaCALB can be found in Appendix 3.5.
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Figure 3.6. Calcium dynamics for deterministic calcium and calbindin simulation in 1D using (A)
finite difference and (B) eigenmode decomposition methods. Red arrows highlight oscillations
at time zero and differences in early time step dynamics.

Calcium influx is visible at the VDCC seen in Fig. 1.4 in red, at time zero. As time

passes, Ca2+ diffuses through the length, creating smoother curves. Additionally, rapid binding

to calbindin occurs. In this comparison, the number of eigenmodes is equivalent to the number

of spatial locations, allowing assessment of the accuracy-efficiency trade off. At time zero,

slight oscillations are visible in the eigenmode decomposition formulation (Fig. 1.4B red), and

slight differences in the dynamics are visible at early time steps (Fig. 1.4B orange, yellow).

This is a product of Gibbs phenomenon, a known feature of these spectral methods, where

oscillations appear in the presence of jump discontinuities such as the impulse function if not

enough eigenmodes are used to fully capture the dynamics. As expected, at time zero the series

oscillates around the expected value. With fewer modes, these oscillations are larger. Because

this is a product of the impulse function, these oscillations quickly disappear after time zero and

the simulation is the same by the 5th time step at 5 µs. If calcium is introduced as a smooth

function through the VDCC, this oscillation is expected to disappear.

The majority of the difference lies in the Ca2+ dynamics. Looking specifically at the

difference between the two methods, it is clear that it is localized due to the impulse injections
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(Fig. 3.4). The difference is specific to the location of the VDCC (Fig. 3.4A) and early time

steps (Fig. 3.4B). In fact, the difference only reaches 4 spatial locations away from the injection

site. Over time, it is apparent that the difference levels out pretty quickly to what is visible at

time point 10.

Figure 3.7. Percent difference between finite difference and eigenmode decomposition methods
of reaction-diffusion for calcium dynamics plotted (A) over time for injection site and adjacent
locations and (B) over space, looking at initial time steps.

These simulations set a strong foundation for spectral-based reaction-diffusion systems,

but it is important to add stochasticity to these simulations. Furthermore, it is apparent that there

is a trade off between accuracy and efficiency with more efficient models losing out on some

biophysical accuracy, as is generally the case with scalable biophysical models.

3.4.1 Stochastic Markov Spectral Diffusion Results

There is clear agreement in the dynamics of the system between the Markov solution

and the random walk solution, shown in Fig. 3.8, where the dark lines are the mean value and

clouds are the standard deviation. Ca2+ is injected initally at the center point, node 5 (purple),

and diffuses to the neighboring nodes. The means between the two methods are overlapped for

approximately the entire simulation, but there is some disagreement in the variance (Figs. 3.8

and 3.9).
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Figure 3.8. The normalized number of particles in each spatial location over time from the
transformed spectral Markov simulation and random walk simulations.

Specifically, the variance of the spectral methods is larger than random walk when the

number of particles in a given spatial node is close to zero. At small values of particles close

to zero, there is a larger variance cloud in the eigenmode implementation. For a small number

of modes, this method will again have small oscillations around zero. This can similarly be

attributed to the Gibbs phenomenon causing numerical instability. Furthermore, there is currently

no explicit handling of potential negative particles in this formulation.

3.5 Discussion

The work described here represents an alternative method for modeling reaction-diffusion

systems by utilizing spectral methods as opposed to grid-based methods. The benefit of spectral

methods is it allows for reducing the required number of dimensions to model the system by
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Figure 3.9. The normalized number of particles in each spatial location over time from the
transformed spectral Markov simulation and random walk simulations. Red arrows indicate
oscillations around zero associated with Gibbs phenomena.

only requiring a subset of eigenmodes to accurately capture the system’s dynamics.

The primary limitation of this method, as is true with all spectral methods, is the pres-

ence of Gibbs phenomenon leading to oscillations around jump discontinuities. A formal and

quantitative analysis of the impact of this limitation would be useful. Additionally, depending

on the system, if the same number of eigenmodes as spatial locations are required to model the

dynamics then the benefit of using spectral methods for computational efficiency is limited.

There is plenty of future work to be done. Particularly, the spectral reaction-diffusion

method can be extended to three dimensions and applied to a more biophysically realistic model

of synaptic transmission. Furthermore, it is worth testing the impact of adding stochasticity

to this formulation using SDEs to describe the temporal components. Additionally, further
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complexity can be added with VDCCs and the SNARE complex. The Markov model should

additionally be extended to include reactions as well as diffusion. Furthermore, extending the

results for Chapter 2, a binomial sampling scheme could be applied to the Markov simulations.

Overall, this study demonstrates the importance of spectral and graph methods in captur-

ing probabilistic dynamics while allowing for scalability. There is promise in using such models

going forward for bridging scales from molecular to network level models of neurodynamics.
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Appendix

A.1 Derivations

A.1.1 Derivation of 2-State Spectral Diffusion System

Generally to model capture diffusion in the spectral domain, there is a Markov process

associated with each eigenmode. An eigenmode Markov chain can be modeled in terms of the

three possible methods of changes to the number of particles: +1, 0, -1. The eigenmodes have to

reflect these three outcomes. Each eigenmode has three possible states with transitions given by

the eigenmode. Thus, for a given eigenmode ℓ

m+1ℓ
λ ℓ−−→←−−
λ ℓ

m0ℓ
λ ℓ−−→←−−
λ ℓ

m−1ℓ (3.50)

Mean Rate

The mean rate is given by

µmℓ(t) = µm+1ℓ(t)−µm−1ℓ(t) (3.51)
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The derivative with respect to time is then

dµmℓ

dt
=

dµm+1ℓ

dt
−

dµm−1ℓ

dt

= λℓ

(
µm0ℓ−µm+1ℓ

)
−λℓ

(
µm0ℓ−µm−1ℓ

)
=−λℓ

(
µm+1ℓ−µm−1ℓ

)
=−λℓµmℓ

(3.52)

This derivation proves the model can be equivalently captured by a reduced, two-state

form containing the +1 and −1 states according to

m+1ℓ

λ

2−−→←−−
λ

2

m−1ℓ (3.53)

The two state model’s derivative is similarly given by

dµmℓ

dt
=

dµm+1ℓ

dt
−

dµm−1ℓ

dt

=
λ

2
(
µm−1ℓ−µm+1ℓ

)
− λ

2
(
µm+1ℓ−µm−1ℓ

)
=

λ

2
(µm−1ℓ−µm+1ℓ−µm+1ℓ +µm−1ℓ)

=−λℓ

(
µm+1ℓ−µm−1ℓ

)
=−λℓµmℓ

(3.54)

This proves that the 3-state system can be equivalently described using a 2-state repre-

sentation where the mean is the difference between the +1 and -1 values.

A.1.2 Eigenmode Variance

Within an eigenmode
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E[m2
k ] = η

2
k ·P(mk =+ηk)+(−ηk)

2 ·P(mk =−ηk)

= η
2
k (q+k +q−k) = η

2
k

(3.55)

Between eigenmodes

E(mkmℓ) = ∑
i

∑
j

vikv jℓE(nin j)

= ∑
i

∑
j

vikv jℓpiδi j

= ∑
i

vikviℓpi

(3.56)

At equilibrium, the particles are diffused homogeneously to equal concentrations, so

pi =
1
N

E(mkmℓ) =
1
N ∑

i
vikviℓ =

1
N

δkℓ (3.57)

Therefore, the modal variables will all have the same variance as the nodal variables,

simply 1
N .

Out of equilibrium, pi = ∑h µihqh

E(mkmℓ) = ∑
i

∑
h

vikviℓvihqh (3.58)

Given ∑i pivikviℓ = δkℓvk, we can obtain a closed-form solution for the variance

η
2
k = ∑

i
pi(vik)

2 (3.59)

In terms of particle counts, the variance can be written as

η
2
k =

1
N ∑

i
ni(vik)

2 (3.60)
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A.1.3 Particle Transformation to Spectral Domain

Using Probability

Using the following equations 3.39, 3.40, 3.38, 3.59

q+k +q−k = 1

ηk(q+k−q−k) = qk

qk = ∑
i

pivik

η
2
k = ∑

i
pi(vik)

2

(3.61)

We can substitute the definitions of qk (Eq. 3.38) and ηk (Eq. 3.59) into Eq. 3.40.

√
∑

i
pi(vik)2(q+k−q−k) = ∑

i
vik pi

q+k−q−k =
∑i pivik√
∑i pi(vik)2

(3.62)

We are left with an easily solvable system of equations for q+k and q−k

q+k +q−k = 1

q+k−q−k =
∑i pivik√
∑i pi(vik)2

(3.63)

The resulting equations are

q±k =
1
2

(
1± ∑i pivik√

∑i pi(vik)2

)
(3.64)

This equation describes the probability of particles in eigenmodes as a function of

particles in spatial nodes and can be used to solve for the eigenmode simulation initial conditions.

It also scales linearly with the number of total particles, N.
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Using Particle Count

We would like to get an equation that relates the total number of particles between the

spatial node and eigenmode simulations. This can be obtained from equation 3.64, scaling for

the total number of particles, N:

m±k =
1
2

(
1± ∑i nivik√

N ∑i ni(vik)2

)
(3.65)

This relationship is used to translate the initial conditions from the spatial simulation to

the eigenmode space.
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A.2 Deterministic Spectral Diffusion Results

Figure 3.10. Normalized particle count across space (A-C) and time (D-F) for 1D Ca2+ (A/D),
CALB (B/E), and CaCALB (C/F) reaction-diffusion simulation modeled using Finite Difference
Method.
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Figure 3.11. Normalized particle count across space (A-C) and time (D-F) for 1D Ca2+ (A/D),
CALB (B/E), and CaCALB (C/F) reaction-diffusion simulation modeled using Spectral Reaction-
Diffusion Method.
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Figure 3.12. Temporal component of spectral methods solution across eigenmodes (A-C) and
time (D-F) for 1D Ca2+ (A/D), CALB (B/E), and CaCALB (C/F) reaction-diffusion simulation
modeled using Spectral Reaction-Diffusion Method.
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Chapter 4

Structural and Functional Connectivity
Biomarkers for Adolescent Major Depres-
sive Disorder using Automated Neuroimag-
ing Pipeline

4.1 Introduction

Depressive disorders are severe psychiatric disorders characterized by low moods,

lethargy, and a high risk of suicide. They are pervasive and exhibit severe social and eco-

nomic impacts globally. In 2019, an estimated 280 million people (3.8%) were living with

depressive disorder globally, making up 29% of all mental disorders [10], the second leading

disorder after anxiety disorders. The number further increased by an estimated 26% to 28% in

response to the COVID-19 pandemic in 2020 [61]. Suicide, an unfortunately common outcome

of depressive disorders, accounts for more than one in every 100 deaths globally [10], and for

every one suicide, there are an estimated 20 attempts [5]. As of 2019, suicide was the third and

fourth leading cause of death in 15-29 females and males respectively [10]. World Economic

Forum researchers further estimated that mental health costs the world economy approximately

$2.5 trillion in 2010 due to combined loss of economic productivity and direct cost of care, a

number expected to rise to $6 trillion by 2030 [38].

Adolescents also suffer from depressive disorders, with 1 in 100 adolescents (1.1%)
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ages 10-14 diagnosed. The number increases to 2.8% for ages 15-19 [10]. Moreover, 20% of

adolescents age 12-17 have a major depressive episode each year (Fig. 4.1) [21]. A seminal

United States study found that half of the mental disorders found in adulthood had appeared

by the age of 14 and three quarters by the age of 24 years old [178]. This demonstrates the

importance of early risk detection and intervention in adolescents with depressive disorders to

protect against suicide or other negative outcomes.

Figure 4.1. (Left) Prevalence of major depressive episode per year amongst US adolescents age
12-17 [21]. (Right) Results of study finding 50% of lifelong mental disorders are present by the
age of 14 [178].

Despite the clear negative repercussions of depressive disorders, there does not yet exist

a reliable and biologically-backed method of diagnoses, leading to further downstream issues

of treatment validity. In other medical specialties, diagnostic tests are typically used, but of

the over 3000 standardized laboratory diagnostic tests that exist, few, if any, are used routinely

in psychiatric diagnostics [114]. The lack of biological underpinnings in mental disorders is

due to a number of different factors including the use of underpowered studies without large

enough sample sizes; approximate replications of studies to to a lack of standardized analysis

methods; the tendency to average across patients to strengthen the statistical power of a study;
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heterogeneity that is not well-handled, including in demographics and in the severity and quality

of mental disorders; confounding factors that are not explicitly addressed, such as disease

comorbidity and medication effects; and a missing diagnostic gold standard for mental disorders

leading to unclear divides in populations between disordered and control groups. Historically,

there has been a fundamental lack of large, standardized studies and datasets making downstream

analyses difficult.

The standard used for psychiatric diagnostics in the United States is the Diagnostics and

Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), which is a symptomatically

taxonomy of mental disorders, where symptoms are qualitative in nature and based on patient

or care-taker expressed feelings and behaviors. For example, some of the symptoms listed for

Major Depressive Disorder include “Depressed mood, Insomnia or hypersomnia, Fatigue or loss

of energy.” They are fundamentally non-quantitative and archaic methods of diagnosing. Its

use has undergone criticisms due to its lack of biological basis for disorders. The most notable

being Thomas Insel in 2013, the then director of the National Institute of Mental Health (NIMH),

stating the DSM-5 was “at best, a dictionary” and that the NIMH will be moving its research

away from DSM categories in order to begin to develop a better system [108]. Furthermore, as a

result of limited diagnosis accuracies, a significant portion of patients fail to respond to treatment

with antidepressants, and the response can only be determined after about 1 month [32].

With each new release of the DSM, the American Psychiatric Association (APA) tests

its reliability across multiple sites in the US and Canada. Reliability is tested in the form of a

inter-rater reliability, which measures the degree to which two clinicians could independently

agree on the presence of a DSM-5 diagnoses. The DSM-5 was found to do a particularly poor

job of detecting, classifying, and diagnosing major depressive disorder (MDD) in both adults and

adolescents. Of the adult patients that were considered to have MDD via a previous diagnosis

or qualifying symptom profile, only 49% were correctly identified as having MDD by one or

both the clinicians using the DSM-5. Additionally, the degree to which the clinicians agreed

about the diagnoses of the population given as kappa was 0.25. For adolescents, it was a similar
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kappa of 0.28. The interpretation of these diagnoses given their interrater overlap was listed as

“Questionable” by the APA [181].

Naturally, improved diagnostics and identifying biomarkers is an important area of re-

search. In 2010, the NIMH began the Research Domain Criteria (RDoC) initiative to create

a new data-driven taxonomy for mental disorders that seeks to connect behavioral and cogni-

tive symptoms to a neurobiological and genetic basis [114]. It therefore attempts to identify

quantitative biomarkers (i.e. genetics, imaging) or cognitive tests for diagnostics and treatment.

Previous attempts to find useful biological psychiatry tests have failed due to limited accuracy or

generalizability in clinical settings [134, 163]. This is primarily due to previously underpowered

and heterogeneous studies. For example, a review that evaluated 30 clinical studies using working

memory and fMRI in schizophrenia found a median sample size of 12 subjects [24]. Such studies

are too small to have much statistic power and are unable to be combined due to their study

differences. Numerous meta-analyses have concluded it is impossible to obtain an accurate

quantitative conclusion due to the differences in protocols, tools, patients selected, and outcomes

measured [24, 97]. As such, there is a push for large and standardized datasets for analysis, such

as the Allen Brain Atlas [208] and the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

[175].

4.1.1 Automatic Diagnosis

A promising area of research is in using a data-driven methods for diagnostic classification

to elucidate complex statistical patterns in large and multimodal datasets. Computer vision

applied to medical scans shows particular promise with nearly 400 Food and Drug Administration

(FDA) approved AI and Machine Learning (ML)-enabled medical devices as of October 2022

[95]. While these data-driven methods are powerful on their own, they can also be combined

with theory-driven mechanistic approaches in the form of prior knowledge. Applying theory

to raw data can be used to obtain lower-dimensional feature representations of that data while

also allowing room for testing scientific queries while maintaining higher interpret ability and
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reliability. One example of this method was a study that used EEG data to classify patients as

on or off deep brain stimulation (DBS). Raw data was compared with theory-driven measures

obtained from the raw data as features. Specifically, a drift-diffusion model (DDM) was used to

obtain a model of decision making. Indeed, classification was better when using fitted DDM

model parameters rather than the raw data, suggesting the power of combining theory and data

(i.e. machine learning) approaches [221]. This demonstrates potential for combined theory- and

data-driven methodologies to elucidate new insights to mental illnesses.

4.1.2 Neuroimaging Data Types

Magnetic resonance imaging (MRI) is a method used to image the brain. Structural

MRI (sMRI) is takes a static image of the brain at a higher resolution to provide anatomical

data. It is a series of 2D images stacked to form a 3D image of the brain. Functional MRI

(fMRI) indirectly measures brain activity through its hemodynamic response. That is, active

neurons receive oxygen from blood at a higher rate than inactive neurons. The protein in blood

associated with oxygen transport, hemoglobin, displays different magnetic properties, allowing

for blood-oxygen-level-dependent (BOLD) imaging used in fMRI [164]. As such, fMRI takes

multiple 3D images over time at a lower resolution to capture brain activity, resulting in 4D data,

the fourth dimension being time. It can be measured either in resting state or during a task. In

both data types, each (x, y, z) coordinate in 3D space is called a voxel and contains a numerical

measurement.

MRI images contain a wealth of information, yet they are highly dimensional data types

with upwards of millions of voxels per image. As such, dimensionality reduction is an important

aspect. Segmentation of images into “Regions of Interest” (ROI) is a common method, where

the regions will be given a single representative value. ROIs vary and depend on the scientific

question at hand, but a common way to segment is by brain structure. Therefore, the image can

be segmented into structures, each of which can be assigned a representative value (i.e. average

intensity). Such segmentation can also be useful to assign labels to raw data voxels, so further
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analysis is grounded in anatomically meaningful areas.

Neuroimaging data allows for estimation of brain connectivity. Structural connectivity

defines the existence of white matter tracts physically interconnecting brain regions whereas

functional connectivity (FC) describes the statistical dependencies between neural signals ac-

quired from different brain areas using measures such as correlation and coherence. It is a

derived measure from fMRI that measures the connectivity between brain regions that share

function properties and are typically spatially distanced or anatomically distinct. The most

popular method to obtain FC is pairwise covariance, which is a symmetric measure meaning it

cannot detect directional coupling or disambiguate a common input. Furthermore, it assumes the

data is stationary, which is often not the case.

Structure as a feature

The structure and function of numerous brain regions has been implicated in depression,

but few findings have been reliably and consistently reported. Structural abnormalities, includ-

ing volumes of brain regions, have been associated with multiple brain disorders, including

depression, suggesting their promise as potential biomarkers for diagnosis. A 2012 review

analysing neuroimaging and neuropsychiatric studies found that the more commonly observed

differences include decreased volumes of the frontal lobe [170, 59, 123, 194], orbitofrontal

cortex [40], hippocampus [194, 135], amygdala [198], and caudate [135] have been implicated

in depression. Additionally, the insular volume has been found to correlate with depression

scores [205]. Overall, structural differences in the form of region volumes have been implicated

frequently enough to suggest them as potential biomarkers for depression worth interrogating

further in large datasets.

Function and functional connectivity as features

Functional differences have been implicated depression in existing research. Decreased

metabolism in the prefrontal cortex, specifically the dorsolateral and dorsoventral regions has
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been frequently replicated [118, 170]. Abnormalities in the anterior cingulate cortex (ACC) and

insula have also been demonstrated [75, 146, 25]. The limbic regions also exemplify dysregulated

activation, including the amygdala and thalamus [145, 74, 211, 124, 83]. There is significant

disparity in existing work on the exact functional differences associated with depression, which

has led many researchers to believe the abnormalities are associated with connectivity differences,

rather than function exclusively [170, 76, 81, 145].

Dysfunctional brain networks have been highly associated with MDD [100, 112] leading

to multiple studies seeking to elucidate functional connectivity as a potential biomarker for an

MDD diagnosis [186, 231]. Between 1990 and 2017, over 200 papers were published using

FC, and its been used for a multitude of brain and mental disorders including major depressive

disorder, schizophrenia, bipolar disorder, autism spectrum disorder, ADHD, Alzheimer’s disease,

and mild cognitive impairment [77]. Corticolimbic and intracortical connectivity abnormalities

have frequently been found present in depression, although different studies report an increase

or decrease [205, 146, 177, 89, 88]. These studies primarily focus on adults, so little is known

about adolescents’ brains neurological function between healthy and disordered populations.

To capture function, the brain can be depicted as a graph or network, where the nodes

represent the brain regions and the edges are the FC between them. FC, unlike structural

connectivity, does not represent physical connections but rather similar activity in different

regions. To obtain FC between two regions, the similarity of the time series of the two regions

is analyzed, which can be done through multiple different methods that assess the similarity

matrix. A major limitation of these studies is their focus on multivariate statistical analyses of

static derived data, neglecting available rich data on dynamics and topology, which have also

been highly associated with the pathophysiology of MDD [101, 180, 197].
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4.2 Methods

4.2.1 Adolescent Brain Cognitive Development Dataset

This study utilized the Adolescent Brain Cognitive Development (ABCD) baseline

dataset, which obtained data from 21 different collection sites across the United States [217].

THE ABCD study is the largest longitudinal study of brain development and child health in the

United States. Currently, $440 million has been put into this study from various arms of the NIH,

including the National Institute on Alcohol Abuse and Alcoholism (NIAA), the National Institute

of Drug Abuse (NIDA), National Institute of Mental Health (NIMH) and National Institute of

Neurological Disorders and Stroke (NINDS) to name a few [17, 162]. The overall structure of

the study collects data from multiple different domains annually from both the participating

adolescents as well as their primary caretakers. There are 11,880 adolescents participating in

the study. Data collection began in 2017 and 2018, when the subjects were 9-10 years old.

Currently, there is funding through 2027, when the subjects will be 19-20, but the goal is to

continue data collection until they are 25. There are a multitude of subgoals to be achieved by

this study, but the primary goal is to discover which factors, biological and/or environmental,

cause adolescents to diverge from normal brain development resulting in issues such as mental

disorders and substance use. Early risk detection is a major focus of this work. Previous studies

have been unable to definitively and replicably answer these questions due to the lack of size,

scope, and methodological standardization seen in the ABCD study [217, 46].

The primary methodological reasons for discrepancies in previous work is due to data

heterogeneity, confounding factors, underpowered studies, and averaging across patients. Specif-

ically, heterogeneity is often seen in demographics, severity and quality of mental disorders, data

acquisition techniques, and analysis methods. Confounding factors to account for are medication

effects, effects of substance abuse, and comorbid disorders. In general, there has previously been

a fundamental lack of large, standardized datasets.

At a baseline, the domains that the ABCD study addresses for its adolescent subjects
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includes mental and physical health, brain imaging, biospecimens, neurocognition, substance

use, and culture and environment. In year 2, mobile data in the form of FitBit was also added.

Physical and mental health, substance use, and culture and environment data is also collected

from the primary care takers. All data modalities are collected annually except for neuroimaging

data which is collected semi-annually [17]. The true power of this study lies in the magnitude of

data. As such, to truly take advantage of it, this study must be treated as a Big Data problem.

The analysis uses the labels provided by the Achenbach System of Empirically Based

Assessment (ASEBA). ASEBA is a dimensional and empirically-based response to the DSM,

although it also lacks a biological basis. It was formulated using data on numerous items that

describe particular behavioral and emotional problems. The data was then analyzed via multi-

variate statistical analysis, including principal component analysis (PCA) to obtain syndromes.

It is bottom-up method of classifying disorders rather than top down [22].

The following analysis has been done with the baseline dataset as a proof of concept, but

it is important to note that the rates of depressive disorders are expected to be at their lowest in

the baseline year. At the baseline, subjects in the ABCD study were ages 9 to 10. Patients with

MDD were included if they met the ASEBA threshold for clinical diagnosis of MDD. Control

subjects were selected if they did not meet the ASEBA threshold for clinical diagnosis of any

mental disorder screened. Subjects with missing data were excluded. The resulting number of

subjects were 353 and 1,429 for depressive and control populations respectively.

In the ABCD study, all measures are taken in one session. First, sMRI with T1-weighting

is done at a 1 mm isotropic resolution for cortical and subcortical segmentation. The T1w

acquisition is a 3D T1w inversion prepared RF-spoiled gradient echo using prospective motion

correction, when available (Siemens and GE scanners, not Philips scanners). After, two 5 minute

sessions of resting state fMRI data are collected at a resolution of 2.4mm (TR = 800 ms). Then,

T2-weighted sMRI is done for white matter, lesions, and cerebral spinal fluid analysis followed

by two more 5 minute sessions of resting state fMRI. Then diffusion-weighted MRI is done

at 1.7mm isotropic resolution to allow for DTI analysis and fractional anisotropy. Lastly, the
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task fMRI is collected. Prospective motion correction was not implemented for dMRI or fMRI

acquisition. The fMRI acquisitions used multiband EPI with a slice acceleration factor of 6 as

well as field map scans for B0 distortion correction. Data is then collected by ABCD’s Data

Analysis, Informatics, and Resource Center (DAIRC) [91].

Preprocessing was primarily handled by DAIRC and involved several steps outlined in

Hagler et al., 2019, Image processing and analysis methods for the Adolescent Brain Cognitive

Development Study. Neuroimage, 202:116091 with updates to the preprocessing pipeline

specified in the ABCD Data Release 4.0 Release Notes. Quality control (QC) was handled

through a combination of manual and automated methods. Preprocessing followed fMRIPrep

methodologies. The data used here was from ABCD Release 4.0 minimally preprocessed dataset.

In the segmentation section, a comparison was made with the data segmented by the DAIRC,

which used FreeSurfer v7.1.1. In addition to the minimal preprocessing done by the DAIRC, the

fMRI data was band-pass filtered and Z-scored. For this study, only the T1w sMRI and resting

state fMRI (rs-fMRI) data types are used.

4.2.2 Automated Neuroimaging Pipeline

The neuroimaging pipeline is composed of multiple stages (Fig. 4.2). We start with

the sMRI images as input to the pipeline. First, we automatically segment the high resolution

sMRI using SynthSeg+, a robust deep learning MRI segmentation tool. This segmented sMRI

can be directly interrogated for biomarkers or used for automatic diagnosis. For diagnosis, the

dimensionality is reduced followed by training a classifier.

Alternatively, the pipeline can be extended to fMRI by downsampling the segmentation

and apply it to the fMRI data to extract the average brain activity in each brain region (Fig. 4.3).

Afterwards, DDC is applied to obtain functional connectivity per subject as biomarkers. From

this, a graph is obtained for each subject with anatomical regions as the nodes and FC as the

weights between them.
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Figure 4.2. Automated neuroimaging pipeline for large-scale structural analysis. Structural
MRI images are automatically segmented using deep learning. The brain region volumes
act as biomarkers or their dimension can be reduced using manifold projections followed by
classification to diagnoses.

Figure 4.3. Functional connectivity neuroimaging pipeline. After segmentation shown in Fig.
4.2, the regions are mapped onto functional MRI data. Dynamical differential covariance is then
used to obtain directed functional connectivity graphs for each subject as biomarkers.

4.2.3 SynthSeg+: A robust, automated segmentation tool

The first step of the pipeline involves the automatic segmentation of structural MRI data.

Segmentation is an important step in MRI analysis as it breaks the image into its anatomical

regions or other meaningful ROIs. It also reduces the dimension of the data, allowing for

averaging or other representative measures per region. Traditionally, manual delineation has

served as the gold standard for MRI segmentation. However, this approach is laborious, expensive,

and requires specialized expertise, making it untenable for large scale usage. Existing software

packages designed to automatically segment MRI data are unable to handle heterogeneous data

types encountered in clinical settings. Instead, they work best with high-quality MRI scans at high

resolution. To address these challenges, SynthSeg+ has emerged as the first automated algorithm

robust enough to handle high variability found in MRI acquisitions, including variations in

contrasts, resolutions, orientations, artifacts, and subject populations. By encompassing a wide

range of MR sequences and contrasts, as well as accounting for real-life artifacts such as low

104



signal-to-noise ratio or incomplete field of view, SynthSeg+ serves as an AI segmentation suite

that facilitates robust analysis of heterogeneous clinical datasets. It is able to provide whole-brain

and cortical segmentation, intracranial volume estimation, and automatic detection of faulty

segmentation.

The underlying framework of SynthSeg+ is composed of hierarchical networks and

denoisers. For the segmentation task, three-dimensional U-Net convolutional neural networks

(3D U-Net CNNs) are employed, trained on synthetic MRI scans possessing fully randomized

contrast and resolution. Specifically, the image is fed into a hierarchical system of 3D U-NET

CNN segmenters and denoisers. This training strategy enables the networks to acquire domain-

agnostic representations, thereby exhibiting excellent generalization capabilities when confronted

with heterogeneous MRI data. T The automated quality control (QC) is implemented with a

regressor that provides QC scores for 10 regions. Importantly, SynthSeg+ has demonstrated its

efficacy in effectively handling large datasets, further solidifying its practicality and reliability

for widespread use. It was applied to 14,752 scans from 1,367 patients and was able to reproduce

well-known aging atrophy patterns [36].

SynthSeg+ was used to segment the overall baseline ABCD sMRI dataset, including the

subset used for depression analysis. It was segmented using the Desikan-Killany atlas consisting

of 98 ROIs, including 68 cortical and 30 subcortical regions. For analysis including automatic

QC, the same threshold was used as in the original SynthSeg+ analysis where a segmentation is

rejected if at least one region obtains an automated QC score below 0.65.

4.2.4 Dynamical Differential Covariance

Functional connectivity is a measure of connectivity between brain regions that share

functional properties. There are multiple statistical methods that are used to estimate functional

connectivity. Pairwise covariance is most commonly used. It is a symmetric measure which

cannot detect directional coupling or disambiguate unconnected nodes with a common input. It

also assumes stationary data, which is not good for changing brain states. Another approach,
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time series interactions such as Granger causality and cross convergent mapping (CCM), are

the degree to which one time series can predict another time series, but it requires model

selection and is computationally intensive. Lastly, generative models such as dynamic causal

modeling and Bayes network models search all possible causal graphs and fit the dataset to

every hypothesis. They make statistical assumptions and are also computationally intensive.

Recently, dynamical differential covariance has been introduced as an improved measure of

functional connectivity which links differential covariance and dynamical models of network

activity. It has been experimentally validated to accurately emulate connectivity information and

is computationally efficient thus readily scalable. Unlike standard covariance, it can uncover

directional connectivity as well as disambiguating unconnected nodes with a common input.

Additionally, it is statistically robust with low bias and high noise tolerance. It also is able to

handle nonstationary data [53].

At the macroscopic level measured with fMRI, the collective activity of a population of

neurons and interactions between brain regions can be approximated by linear dynamics because

of ensemble averaging. For example, a simple linear auto-regressive model performed best

on modeling fMRI. Therefore, we can use a Linear dynamical model (4.1) to describe global

recordings. Where the neural activity over time can be described by the product of the square

connectivity matrix, W, and the neural activity (such as a fMRI signal) given as a column vector,

x.

dx
dt

= Wx (4.1)

where x is the neural activity given by the BOLD signal and W is the functional connec-

tivity matrix.

From (4.1), we can obtain an estimate for the linear connectivity matrix, given here as

∆L. The DDC estimator for the connectivity matrix is the product of two matrices. The first is

differential covariance, which is the time averaged outer product of the derivative of the signal
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and the signal. The second is an entry in the partial covariance matrix, which is the inverse of the

time averaged outer product of the signal and itself.

⟨dx
dt

,x⟩= W⟨x,x⟩

∆L := ⟨dx
dt

,x⟩⟨x,x⟩−1
(4.2)

where ∆L is the DDC estimator for a linear connectivity W. Inverting the partial co-

variance allows DDC to account for confounding effects such as correlation due to common

input. Differential covariance carries information about sources and sinks, therefore giving the

directionality.

DDC has be proven to be able to recover common input connectivity, a case where pair-

wise covariance fails. It has also been shown to perform better than covariance in recovering the

underlying connectivity matrix of a network, especially in nonstationary data which covariance is

not able to do. Lastly, when applied to the resting state fMRI (rs-fMRI) recordings obtained from

the large-scale Human Connectome Project (HCP) dataset, DDC is shown to obtain accurate

connectivity compared to ground truth [53].

4.2.5 Biomarker Detection

Structural Volumes

In addition to brain volume segmentation, SynthSeg+ automatically detect the ROI

volumes. In order to test the volume accuracy, the obtained ROI volumes were compared with

volumes obtained using FreeSurfer segmentation, as FreeSurfer is known to underestimate

obtained volumes [140]. Furthermore, robustness across different collection conditions by

comparing differences between MRI manufacturers. This is an appropriate proxy as ground

truth segmentations should not show significant differences between manufacturer types. The

comparisons were run on the segmentations for the entire ABCD dataset, which is composed
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of 11,402 subjects, as well as the depression subset used. For subsets of data less than 5,000,

the Shapiro-Wilk test was used to determine normalcy. Between methods of segmenting, the

data is considered dependent. As such, a related T-test or Wilcoxon test was utilized to compare

the null hypothesis that the two repeated samples have identical expected values for normally

and non-normally distributed datasets, respectively. The number of statistically different ROI

volumes between manufacturer type was also analysed for each segmentation method using the

aforementioned statistical tests.

After validating SynthSeg+, the volumes were compared between control and depressed

populations. Again, the Shapiro-Wilk test was used to determine if the volumes followed a

normal distribution. In this analysis, the populations are considered independent. As such,

the comparison was done using independent T-test and Mann-Whitney U tests for normal and

non-normal distribution, respectively.

Functional Connectivity

Using regularized DDC, we are able to obtain functional connectivity graphs for each

subject which we are then able to compare between populations. The DDC dataset is non-

normally distributed, so the Mann-Whitney U test is used to obtain statistically significant

connection differences. In addition to comparing whole brain connectivity differences, it is

useful to analyze meaningful subnetworks in the cortex.

Specifically, three subnetworks were compared across subject populations. The first is

the Default Mode Network (DMN), which is composed of the medial prefrontal cortex, posterior

cingulate, and precuneus cortex. It is mostly employed during rest, spontaneous or self-generated

cognition, self-referential processing and emotion regulation. As such, it is expected to be most

active during rs-fMRI. The second is the Central Executive Network (CEN), composed of the

lateral and dorsomedial prefrontal cortex and posterior parietal cortex. The CEN is primarily

activated during cognitive tasks including attention and working memory and is thus implicated

in cognitive functioning. The last subnetwork is the Salience Network (SN), which consists of
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the insula, dorsal anterior cingulate, amygdala and temporal poles. This subnetwork is activated

in response to salient stimuli and plays a central role in emotional control. Furthermore, it is

implicated in switching between DMN and CEN dominated states [157].

4.2.6 Dimensionality Reduction and Automatic Detection

As mentioned, the ability to use biological features for automatic disease detection is an

important area of research in neuropsychiatry. Here, a dimensionality reduction technique is

applied to the volumetric data to allow for classification. Specifically, Uniform Manifold Approx-

imation and Projection (UMAP) was used as a manifold learning technique for dimensionality

reduction. It is similar in nature to t-distributed stochastic neighbor embedding (t-SNE), but it

has demonstrated a superior ability to preserve global structure with better run time performance.

UMAP functions based on Riemann geometry and algebraic topology by first building a high

dimensional graph representation of the data then optimizing it to a low-dimensional space while

maintaining as much information as possible. The main differences from t-SNE are that UMAP

uses exponential probability distributions in high dimensions but not necessarily Euclidean dis-

tances, the probabilities are not normalized, it uses the number of nearest neighbors rather than

perplexity, and it uses a slightly different symmetrization of the high-dimensional probability.

UMAP was applied to the SynthSeg+ derived volumes to obtain a lower dimensional

representation of the dataset. UMAP uses weighted graphs as discrete representations of mani-

folds where the nodes are the brain region volumes and the connectivity is obtained by a nearest

neighbor probabilistic algorithm. In this work, supervised manifold learning was applied which

did make use of the labels. The number of nearest neighbors used was 50 and various target

weights were tested where target weight scales the weight labels are assigned in the learning

process. The goal was to maintain separability while minimizing label weight.
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4.3 Results

4.3.1 SynthSeg+ compared to FreeSurfer

Compared to SynthSeg+, FreeSurfer consistently and significantly underestimates the

intracranial volume (Fig. 4.4A and B). The datasets with and without subjects that failed QC

have the same mean intracranial volumes. This suggests that, even though the subjects did not

pass QC, their segmentations overall are relatively similar to the whole dataset. Furthermore,

larger differences exist in intracranial volume estimation between MRI manufacture types

for FreeSurfer-obtained segmentations compared to SynthSeg+ (Fig. 4.4B). Further analysis

shows that the number of statistically different ROI volumes between manufacture types is

largest for the FreeSurfer dataset 4.5 yellow). In two of the three manufacture comparisons, the

FreeSurfer depression subset data varies the second most between scanner types as well. The

SynthSeg+-derived segmentations for the depressive subset vary the least between scanner types,

exemplifying a large robustness against scanners. In the Siemens manufacture comparisons, the

SynthSeg+ dataset with automated QC removal was the most robust. Between GE and Philips,

though, the dataset without QC removal is slightly more robust.

Figure 4.4. Comparison of ROI segmentation methods across the entire baseline ABCD dataset.
(A) Total intracranial volume estimated SynthSeg, SynthSeg with automated quality control, and
FreeSurfer. (B) Intracranial volume separated by manufacturer type.
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Figure 4.5. Number of statistically significantly different ROI volumes across MRI manu-
facturers using various segmentation methods. Subset is the depression subset; ABCD are
FreeSurfer-derived segmentations. QC denotes removal of subjects that failed automated Synth-
Seg+ QC.

4.3.2 Structural Volume Biomarkers for Depressed Adolescents

Across all the subjects in the control and depressed populations, there were seven primary

regions that displayed differences between groups (Fig. 4.6). These were the left and right

postcentral gyrus, right supramarginal gyrus, right cerebrellar white matter, right precentral

gyrus, left caudate, and left hippocampus. All regions showed decreased volumes in depressed

patients.

Using SynthSeg+’s automated QC, 352 subjects were removed from the dataset, leaving

1,430 subjects in total (1,156 control and 274 depressed). All the aforementioned regions were

still different between the populations, but there were an additional four regions as well. These

regions included the brain stem, right ventral diencephalon (DC), left cerebrellar white matter,

and left cerebral cortex. Again, all volumes demonstrated a decrease in depressed patients.

Across both analyses, the top two differing regions were the left and right postcentral

gyrus. It is on the lateral surface of the parietal lobes and contains the primary somatosensory

cortex, which is responsible for proprioception. Specifically, this region perceives sensations

from the body including pain, touch, pressure, and temperature [72].

Previous studies that focused on depressed adults have also shown decreased hippocampal
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Figure 4.6. Regions with brain region volume differences between the control and depressed
subject populations for all subjects (left) and only subjects that passed SynthSeg+ automatic
segmentation quality control

and cerebrellar white matter volumes. Hippocampal volume reduction is the most commonly

cited brain anatomical change in patients with depression. This region plays a vital role in memory

processing and emotional management as an essential part of the limbic system. Decreased

frontal lobe is also one of the most frequently cited differences, but adult studies implicate the

prefrontal and frontal cortex primarily rather than the precentral gyrus [64].

Focusing on the common different regional structures, the precentral gyrus is associated

voluntary motion. The supramarginal gyrus’s main function is in phonological processing, or

the processing of spoken and written language and emotional responses. Lastly, the caudate is
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involved with movement planning as well as learning, memory, reward, motivation, and emotion

[72]. Other regions that have been implicated elsewhere and not here include the cingulate cortex

and putamen [64].

Abnormal white matter is also heavily implicated in depression although there are

inconsistent findings in these studies as well. Right cerebrellar white matter in addition to

changes in the corpus callosum are most typically cited. Here, changes in the right cerebrellar

white matter are observed, although the left cerebrellar white matter also noticed differences once

the subjects were removed with failed segmentations, suggesting possible skew in previously

published works [64]. The left cerebrellar cortex also showed an associated decreased volume.

In addition to the left cerebrellar matter, the brain stem had a decreased volume in

depressed patients after QC removal. This has been found previously and is considered to be

related to the nuclei of neurotransmitters implicated in depression and used for antidepressants

being located in the brain stem. This includes the raphe nucleus for serotonergic neurons, the

substantia nigra and ventral tegmentum for dopaminergic neurons, and the locus coeruleus for

norepinephrine neurons [169].

The right ventral DC was also smaller in depressed adolescents. This region is located

between the telencephalon and the midbrain as part of the forebrain. It consists of the tha-

lamus, hypothalamus, epithalamus, and subthalamus. Thalamus reduction has been cited in

depressed patients previously and is related to memory, information transmission, and emotional

management [64].

4.3.3 Dimensionality Reduction and Automatic Detection

UMAP applied to the brain volumes obtained from the segmented sMRI displays clear

separation between class types when using label weighting (Fig. 4.7), even with low label

weighting. The completely unsupervised representation (Fig. 4.7 left) does not show visible

separability between classes. With even a moderate label weighting of 0.5, the classes are

completely distinct with no outliers (Fig. 4.7 middle). In the low label weighting, there are four
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outliers from the depressed grouping in the control cluster. These outliers are worth interrogating

further to assess the true nature of their disorder. Such outliers shown here could, in theory,

represent inaccurate or variant diagnoses. Additionally, there is a slight break in the depressed

group resulting in two almost distinct clusters further worth interrogating.

Figure 4.7. Low dimensional representation of depressive structural volume dataset using
Uniform Manifold Approximation and Projection (UMAP) with label weighting of 0.5 (left), 0.1
(middle), and 0.0 (right)

This methodology is worth experimenting with and optimizing further as a data-driven

mental disorder clustering technique. In addition to this dataset, it would be interesting to apply

a similar analysis to the entire ABCD dataset as well as at later timepoints.

4.3.4 Functional Connectivity Biomarkers for Depressed Adolescents

There are observed differences in cortical connectivity differs between healthy and

depressed adolescents (Fig. 4.8). The top five regions that exhibit disruptions are connections

from the lingual (ROI 11) and rostral middle frontal (ROI 25) gyri in the left hemisphere;

and the caudal middle frontal gyrus (ROI 36), temporal pole (ROI 65), and entorhinal cortex

(ROI 38) in the right hemisphere. Fig 4.8A shows the top regions colored by the number of

different connections observed between population. Fig 4.8B shows a matrix representation

of the statistically different functional connections between populations and, notably, the top

regional differences are all in the outgoing direction.

The lingual gyrus, also known as the medial occipitotemporal gyrus, lies in the occiptal

114



Figure 4.8. (A) Top cortical regions with disrupted functional connectivity (FC) colored by the
number of different connections. Statistically different FC between populations shown in matrix
(B) and graph format (C). Outgoing connections are on the horizontal axis and incoming are on
the vertical.

lobe. It is considered to play an important role in vision, dreaming, and word processing [168].

The middle frontal gyrus is located in the frontal lobe, and its function is still an ongoing area

of research. In general, the frontal lobe is considered to be the seat of higher-order executive

functioning. The left (dominant) middle frontal gyrus has been shown to play a role in literacy

development and the right (nondominant) in numeracy [122]. The frontal eye fields, which

control eye movement, are also located in the caudal middle frontal gyrus [210]. Disruption

in middle frontral gyrus connectivity has been observed in other depression studies and is
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considered to be closely related to patients’ low mood symptoms as well as maladaptive mood

regulation [64].

The entorhinal cortex lies in the medial temporal lobe and is the main interface between

the hippocampus and neocortex. As such, it is important in declarative memories including

spatial navigation in memory formation, memory consolidation, and memory optimization [110].

Lastly, the temporal pole is in the temporal cortex and is a paralimbic region involved in high

level semantic representation and socio-emotional processing. Moreover, it is heavily implicated

in discussions of the mind [64].

Figure 4.9. Functional connectivity in the Default Mode Network. (Top) Connectivity matrix for
DMN in the control (left) and depressed subjects (middle). (Right) Significantly different FC
as an increase (blue) or decrease (red) in depressed subjects. (Bottom) Changed connectivity in
depressed patients.

In the DMN, the connectivity of multiple regions is increased in depressed patients (Fig.
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Figure 4.10. Functional connectivity in the Central Executive Network. (Top) Connectivity
matrix for DMN in the control (left) and depressed subjects (middle). (Right) Significantly
different FC as an increase (blue) or decrease (red) in depressed subjects. (Bottom) Changed
connectivity in depressed patients.

4.9). This phenomena has been seen in other studies and is considered to be closely related to

rumination symptoms [64]. Specifically here, the connectivity from the left temporal pole (TP) to

the right increased while the reverse decreased. There was an increase from the right TP to both

inferior parietal lobes (IPL). Lastly, there was an increase from the left and right precuneus cortex

(Prec) to the posterior cingulate (PCC) and medial orbitofrontal cortex (mOFC), respectively.

In the central executive network, there is also increased connectivity between a number of

regions (Fig. 4.10). This is contrast to some prior studies which found decreases in connectivity

within this network in depressed patients, although again primarily from adult studies and using
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Figure 4.11. Functional connectivity in the Salience Network. (Top) Connectivity matrix for
DMN in the control (left) and depressed subjects (middle). (Right) Significantly different FC
as an increase (blue) or decrease (red) in depressed subjects. (Bottom) Changed connectivity in
depressed patients.

pairwise covariance [64]. The region exhibiting the largest changes are the outgoing connections

from the middle frontral gyrus (mPF), which is the same as found in prior works as mentioned

previously. Connectivity is increased from the left mPF to the left mOFC, right mPF and both

superior frontal gyri (SPG). Additionally, there is increased connectivity from the left SPG to the

left IPL, from the right mPF to the right IPL, and from the right SPG to the left mOFC.

Lastly, the salience network showed the largest change between populations (Fig. 4.11),

which is in agreement with what has been found elsewhere leading to abnormal salience network

connectivity being considered one of the most crucial links in the pathogenesis of depression
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[64, 169]. Prior works have also found increased connectivity between the anterior cingulate

cortex (raACC) and insula (Ins), but here we find a decrease that is specific to the outgoing

connections from the left Ins. This change is suspected to impact the connectivity between the

default mode network and salience network, thus hindering the transition from rest state to task

state.

Again, there significant changes in the TP connectivity with increased connectivity from

the left TP to the right, but the outgoing connections from the right TP to all regions except the left

Ins is markedly decreased. As mentioned previously, this region is involved with socio-emotional

processing and heavily implicated in the concept of the mind.

Overall, this analysis demonstrates significant network disruption for depressed adoles-

cents. The majority of the changed regions corroborate previous findings, but directionality is

different in some cases. This is likely due to the usage of DDC, a directional measure, while

most studies use pairwise covariance. Of the three network, the salience network showed the

most differences, suggesting future investigations should focus on this subnetwork.

4.4 Discussion

Overall, we have built an automated pipeline for biomarker analysis and automatic

disease detection for neuroimaging data in adolescent depression. There are multiple benefits

of developing such a tool. It automates tasks that were previously manually intensive, which

is expensive, tedious, and typically requires domain expertise. As a result, it is scalable to

large datasets such as this. It further provides a standardized and thus reliable and replicable

analysis methodology. Furthermore, it is generalizable to other scientific questions of interest.

For example, here we investigate depression, but it could be easily used to investigate any mental

disorder screened for in the ABCD study. Lastly, it is a precision medicine approach meaning

that, instead of averaging across patients, it utilizes per subject information, creating a truly

personalized framework.
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In order to obtain a realistic understanding of the biophysiology associated with mental

disorders, including depression, large and multimodal datasets are required. Naturally, these

datasets become difficult to utilize with existing manual tools. As such, there is a need for

automated methodologies to preprocess and analyze the Big Neuroscience datasets. Presented

here is an automated neuroimaging pipeline for obtaining structural and functional biomarkers

associated with adolescent MDD with associated depressive biomarkers and automatic diagnosis.

Given the automated and modular nature of the pipeline, it can easily be generalized

to any mental disorder screened for in the ABCD baseline dataset, including anxiety, ADHD,

oppositional defiant problems, conduct problems, avoidant personality problems, and antisocial

personality problems. Furthermore, follow-up neuroimaging studies after the baseline can also

be analyzed. The current pipeline solely utilizes resting fMRI data, so a natural extension would

be to include the task fMRI data types, including the Monetary Incentive Delay Task, Stop

Signal Task, and Emotional N-Back Task. fMRI can be similarly assessed using dimensionality

reduction techniques and combined with the structural data to provide additional predictive

power for automatic diagnosis. Furthermore, the ABCD dataset provides many other data types

that can be integrated into this pipeline, including genetics and neurocognition.

The ABCD is particularly powerful due to its longitudinal nature. Therefore, utilizing

multiple time points in this dataset would allow temporal analysis and early risk detection.

It would also provide insight to the time course of disease progression in mental disorders.

Furthermore, as the subjects undergo potential treatment as the study progresses, analysis of

treatment efficacy can be integrated as well. Additionally, while better than DSM labels, using

supervised ASEBA labels is a limitation of this work. The unsupervised aspect of UMAP

dimensionality reduction can be used to assess the entire dataset to analyze how these biological

biomarkers cluster in relation to existing diagnosis labels, both DSM and ASEBA.

Lastly, such a large dataset is rich for usage with deep learning models. Specifically,

attention-based deep learning methods, such as 3D CNNs with attention [200, 229] for sMRI and

Graph Attention Networks (GAT) [216] or attention-based spatio-temporal graph convolutional
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networks (STGCN) [226]. These models would operate on the data without dimensionality

reduction while the attention aspect would provide explainable insight to the biological features

being used for automatic detection. In addition to more complicated deep learning models,

different machine learning models could be tested in place of the current SVM as well as

hyperparameter optimization.

This is an exciting area of research that holds significant promise for translational

applications to clinicians. The field of psychiatry is on the precipice of a quantitative and

biological revolution bringing into the modern age of medicine, where it will be possible to

identify, diagnose, and treat mental disorders using concrete and actionable items.
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Chapter 5

Using Natural Language Processing as
a Scalable Mental Disorder Evaluation
Technique

5.1 Introduction

There is currently a mental health crisis as the demand for mental health services vastly

outstrips the availability of quality care. In the United States and Canada, approximately 60

million people grapple with mental health concerns, yet regrettably, over two-thirds of those

in need are unable to receive care despite a staggering $250 billion in healthcare expenditures

[20, 19]. The prevailing model of care delivery relies on one-on-one interactions between

clinicians and patients, which is labor-intensive and thus lacks scalability. The paucity of

mental healthcare clinicians hampers the efficacy of this traditional format. The World Health

Organization estimates around half the world’s population lives in countries where there is one

psychiatrist for 200,000 or more citizens [16]. Furthermore, the considerable degree of clinician

involvement further inflates the cost of conventional treatment. The COVID-19 pandemic has

exacerbated this mismatch in care by increasing demand for services, fostering mental health

awareness and diminishing the stigma associated with seeking care. This has created a persistent

disparity between the supply and demand for mental healthcare, enduring even beyond the

pandemic’s cessation. Consequently, it is imperative to prioritize the development of innovative
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solutions that streamline and automate the delivery of mental healthcare in order to address this

public health concern.

The field of mental health care has lagged behind broader innovation in the healthcare

industry. This discrepancy primarily arises from the dearth of robust and precise quantitative

measurements, biomarkers, and evidence-based practices in this domain compared to other

medical specialties. Thus, it becomes essential for the field to center its efforts on the cultivation

of novel data-driven measurement tools which can effectively evaluate the mental status of

patients. Thomas Insel, former head of the National Institutes of Mental Health, argues that a new

diagnostic system based on emerging research that incorporates multiple layers of information is

a pressing need in psychiatry [114, 108]. By doing so, the aim is to construct comprehensive and

objective protocols that are capable of adeptly handling mental health issues, thereby bridging

the existing care gap and ensuring optimal treatment for individuals in need.

Establishing objective measurement tools for mental health evaluation is challenging

due to their inherent complexity. Unlike other chronic diseases which typically utilize one

or few biophysiological target variables, such as blood glucose in diabetes or blood pressure

in hypertension, mental health disorders lack definitive biomarkers. As a result, there is a

reliance on indirect measurements, including changes in sleep pattern or activity level [230]

or changes in body posture [87] and speech tone [113]. While these biophysical symptom

proxies hold significance in a clinician’s decision-making process, the patient’s thought content

remains the most influential factor in diagnosis and treatment determination. The assessment of

thought form and content, mood status, stressors and anxiety level predominantly relies on the

patient’s verbal expression. Consequently, it becomes natural that the pursuit of a readily scalable

technology for appraising a patient’s mental status would incorporate the patient’s linguistic

utilization as a reliable information source. However, patients’ speech is unstructured data, which

makes the process of extracting clinically relevant data a challenging endeavor. Even in clinical

settings, therapists and clinicians must attentively and carefully listen to their patients to extract

well-defined structured data suitable for diagnosis, intervention and monitoring purposes.
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Deep learning methods have gained prominence in the field of mental illness detection,

specifically in the task of natural language processing (NLP) [228, 85, 44, 23, 98]. Unlike

traditional statistical and machine learning methods, deep learning methods do not heavily rely

on feature engineering and can process longer, more complex sentences in a context-dependent

manner. They also exhibit enhanced capabilities in learning languages structures, allowing

for effective transfer learning with limited data. Transformers, newer than convolutional and

recurrent neural networks, show promise in handling sequential and textual data, making them

suitable for mental health applications[71]. In this work, the focus is on fine-tuning a pretrained

transformer model to detect symptomatic sentences related to depression and anxiety in a client’s

narrative. The paper acknowledges the state-of-the-art position of machine learning in NLP and

includes a comparison with commonly used models in the results section.

5.2 Methods

5.2.1 Datasets

Training Dataset

The non-clinical training data for this study was collected from online mental health

forums where individuals share their personal experiences and challenges related to mental

health. To prepare the data, the stories were segmented into sentences, and each sentence was

carefully examined and labeled by an expert clinician (Expert A) as either neutral or exhibiting

signs of anxiety and/or depression. In addition, sentences that relied on the previous or following

sentence for context were flagged as dependent examples. An illustration of this dependency can

be seen in the following pair of sentences: “Would I say my life is perfect and I am happy every

day? No.”. In isolation, each sentence does not provide a clear indication of symptoms, but when

considered together, they reveal relevant information. Therefore, both sentences were marked as

dependent examples. Furthermore, sentences that were unrelated, such as asides or emphatic

statements, were also identified and flagged. These two categories of sentences–dependent and
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unrelated–were subsequently removed from the dataset as they were not suitable for labeling in

the context of this research question. Out of the initial 3,780 sentences, only 97 sentences (2.6%)

were removed based on criteria, resulting in a dataset of 3,683 sentences. Sentences labeled

as displaying signs of anxiety, depression, or both were categorized as symptomatic (positive)

examples while neutral sentences served as non-symptomatic (negative) examples. The resulting

training dataset was 36% symptomatic and 64% non-symptomatic sentences. Once the training

data was prepared, it was shuffled and split into a typical 80% training (2,946 sentences) and 20%

validation (737 sentences) dataset. The test set for evaluation purposes consisted of a clinical

dataset.

The training sentences used in this study had an average length of 19 words and 102

characters for symptomatic sentences, whereas non-symptomatic sentences had shorter averages

of 16 words and 83 characters. In terms of data sources, each user contributed an average of 26

sentences. The highest number of sentences from a single patient in the dataset was 180 while

the lowest contribution was 2 sentences.

Testing Dataset

The clinical data utilized in this study was collected from a board-reviewed and ethically-

compliant online psychotherapy clinical trial conducted at Queen’s University between 2020

and 2021. The study underwent a thorough review process by the Queen’s University Health

Sciences and Affiliated Teaching Hospitals Research Ethics Board to ensure adherence to ethical

standards (File #: 6020045). As part of their participation, patients provided written informed

consent for the utilization of their anonymized data in academic research and publications.

There were 55 subjects that participated in the trial. During the trial, participants diagnosed

with major depressive disorder (MDD) received 12 sessions of therapist-supported electronic

cognitive behavioral therapy (e-CBT) in asynchronous format. This asynchronous therapy

involved engaging with weekly interactive online modules, which were delivered through a

secure cloud-based online platform. During the initial week of the trial, participants were invited
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Figure 5.1. The sentence length by label type, symptomatic and non-symptomatic where
symptomatic sentences were less frequent and shorter.

to share their personal narratives detailing their experiences with mental health challenges.

Participant narratives were segmented into 930 total sentences. Following the same

inclusion criteria as the training dataset, 31 sentences (3.3%) were excluded, leaving 899

sentences for testing the algorithm performance. These sentences were similarly labeled as

neutral or containing signs of anxiety and/or depression by two expert clinicians (Expert J and

Expert M), who were different from the clinician involved in labeling the training dataset. Among

the 899 sentences, Expert J considered 28% as symptomatic and 72% as non-symptomatic, while

Expert M categorized 41.5% as symptomatic and 58.5% as non-symptomatic. Notably, this

resulted in an inter-rater overlap (i.e. proportion of sentences having similar labels from both

Experts J and M) of 76%, indicating a significant level of agreement between the two experts

regarding sentence labeling. To assess label consistency across datasets, Expert J was also tasked

with labelling the training dataset. The inter-rater overlap between Expert A and Expert J for the

training dataset was 80%. These findings highlight the subjective nature of diagnostics in this
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Figure 5.2. Natural language processing mental health task process figure where a narrative
sentence is input to a transformer model with a classifier to predict status as either symptomatic
of non-symptomatic.

field within this field.

5.2.2 Model Design

Due to the vast array of tasks in NLP, it is crucial to clearly define the specific task of

interest prior to any modeling work. In this study, the task is a classification task, where the

objective is to classify the text input based on a predefined label. Specifically, it is a binary

sentence classification task, where the aim is to categorize a sentence input as one of two labels,

symptomatic or non-symptomatic. Two particularly relevant subtasks in text classification are

emotion recognition and sentiment analysis. Emotion recognition aims to assign a specific

emotion (e.g. happy, sad, angry) to the input sentences. On the other hand, sentiment analysis

focuses on capturing the overall attitude expressed in an input sentence (i.e. positive, negative,

neutral). Given the nature of mental health, particularly anxiety and depression, these two subtask

categories exhibit strong interrelationships and relevance to the current study.

5.2.3 Model Training

The Transformer model class was selected due to its superior performance in NLP tasks

related to emotion detection, surpassing previous models that lacked contextual understanding

[71, 215]. A number of models were selected from the HuggingFace transformer model library,

including a standard Bidirectional Encoder Representations from Transformers (BERT) model as

well other BERT-based models including RoBERTa [132], DistilBERT [193], ALBERT [125],

127



DeBERTa [94], and XLM-RoBERTa [63]. BERT was chosen as it has established itself as

the de facto and widely adopted baseline for NLP experiment [185]. In addition to training

the aforementioned baseline models, training was conducted on commonly employed baseline

model variants, such as cased and uncased versions, as well as large-sized models, ensuring a

comprehensive exploration of the model landscape.

A selection of transformer models that had undergone further fine-tuning for text clas-

sification and specific subtasks were also included in the initial model selection phase. While

models from subtasks relevant to the current task (emotion recognition, sentiment analysis)

were of particular interest, a wide range of subtasks were considered. These models were

chosen based on their popularity within the HuggingFace community (as determined by the

number of downloads) and their demonstrated performance in various tasks. A total of 44 unique

models were tested using a standardized set of hyperparameters. Each model was trained for 5

epochs. The remaining training hyperparameters were set to their default values provided by

HuggingFace.

The majority of the models (75%) were baseline models that had been fine-tuned to

another task before our training. Among these fine-tuned models, 57% were specifically fine-

tuned for a text classification task, 16% for token classification, and 2% for fill mask tasks. The

token classification models were exclusively tuned for name entity recognition (NER) subtasks

while the fill mask task was for a biological subtask. The text classification models were primarily

trained on subtasks of sentiment analysis (36%) and emotion recognition (32%) subtasks.

Prior to model training, the training examples underwent tokenization using Hugging-

Face’s tokenizer class, which employs base model-specific (i.e. BERT, DistilBERT, RoBERTa)

tokenization techniques. It is worth noting that the training data exhibits an imbalance, with

only 36% of sentences meeting the criteria for being symptomatic. To address this imbalance, a

weighted cross-entropy loss function was employed during model training, where the weights

were determined based on the distribution of the two classes. Model accuracy was used as the

sole criteria for model selection due to the sensitive nature of the given task, which necessitates
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Figure 5.3. Task and subtask distributions of models used in model selection. BERT models
pretrained on an emotion recognition task prior to current study training.

maximizing correct predictions even if it comes at the expense of computational efficiency, such

as model size or latency. Specifically, the F1 score was used as the model accuracy metric,

as it maintains a balance between precision and recall. For the given task, it is crucial to try

to accurately predict as many symptomatic cases as possible (recall) while also maintaining a

high level of confidence in the positive predictions (precision). Therefore, both metrics were

considered essential in evaluating the model performance.

Data augmentation serves as a valuable approach to enhance the training dataset by

introducing additional examples through slight modifications of existing ones. While in image

datasets this can be achieved through simple techniques such as scaling, rotation, or color manip-

ulation, text datasets require methods that preserve sentence meaning. Simple text augmentations

like random word swap or insertion are not sufficient for complex tasks such as emotion detec-

tion, where sentence meaning plays a pivotal role. Therefore, alternative methods that better

preserve sentence meaning were considered and compared, including the use of back translation.
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Figure 5.4. Back-translation method of data augmentation. An English sentence is translated
to another language – here Turkish, Danish, and Finnish – then translated back to English with
slight variations.

These methods offer more effective ways to generate synthetic training examples that contribute

meaningfully to the training process.

Back-translation, the technique employed in this study, involves translating the original

sentence to another language then back to English. It was implemented here with the NLPAug

library for textual augmentation, utilizing HuggingFace transformer-based translation models.

This approach is expected to maintain the sentiment of the sentence more accurately. The number

and type of language intermediates used in the translation process were treated as additional

tunable hyperparameters. Each available language intermediate on HuggingFace (as of 2022)

was individually tested, effectively doubling the size of the training dataset with the inclusion

of the back-translated synthetic counterparts for each sentence. Moreover, various ratios of

back-translated synthetic sentences to the original sentence were explored, along with different

combinations of language intermediates. A comprehensive investigation was conducted across

20 individual languages, followed by experimentation with the top 11 performing models in

different combinations on the complete dataset. The number of languages used was incrementally

increased until a drop in performance was observed. For details on this analysis, consult Appendix

1.B.

Hyperparameter tuning was conducted using the Tree Parzen Estimation (TPE) method

with HyperOpt, employing an Asynchronous Successive Halving (ASHA) scheduling algorithm

implemented with Ray Tune [34, 128]. The selected hyperparameters and their respective ranges
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Figure 5.5. Schematic of overall training process. Train dataset is augmented then used to
fine-tune a transformer model. The model is optimized through hyperparameter tuning before
the final model is attained.

for tuning were chosen based on their ability to significantly enhance model performance in prior

works [207]. The hyperparameters chosen included the number of training epochs, the random

seed, the number of training examples per batch, and the learning rate. The final hyperparameters

used can be found in Table 5.5.

The fine-tuned model trained on non-clinical data was then evaluated on the clinical

dataset to assess its diagnostic capabilities. The model’s performance was calculated and

compared against the labels of Experts J and M, and the results are presented in Table 5.1.

5.3 Results

Performance evaluation was conducted across 44 different models by comparing their

F1score (harmonic mean of precision and recall) and balanced accuracy (bA) on the training
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Table 5.1. Performance of trained models across datasets.

Hyperparameter-
tuned

Augmented
data

Fine-tuned fastText*

Public dataset F1: 79.3
bA: 84.0

F1: 79.1
bA: 83.6

F1: 77.2
bA: 82.3

F1: 68.1
bA: 75.2

Clinical Dataset
(Expert J Labels)

F1: 73.0
bA: 72.0

Clinical Dataset
(Expert M Labels)

F1: 75.0
bA: 75.0

* All other non-DL models performed worse than fastText. For more details, please refer to the
appendix.

dataset. The top 11 models, based on their performance, were fine-tuned using the augmented

training dataset. A detailed comparison of these models can be found in Table 5.A.1 in the

appendix.

∂u
∂ t

= D
(

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
+q(x,y,z, t) (5.1)

u(x,y,z, t) = ∑
n

Xn(x,y,z)Tn(t) (5.2)

The model that achieved the highest performance in our evaluation was a fine-tuned

RoBERTa model that was previously trained on the TweetEval [29] dataset prior to this dataset.

TweetEval is a dataset specifically designed for multi-class emotion recognition in Tweets,

consisting of over 5000 Tweets categorized into four emotions: anger, joy, sadness, optimism. By

leveraging this dataset, the RoBERTa model demonstrated superior performance, outperforming

word-based, context-free algorithms like fastText by approximately 10%. For a detailed analysis

of each model’s performance, please consult Appendix 1.A.

Subsequently, we assessed the performance of the best-performing model, trained on the

public dataset, using the clinical dataset that was labeled by two additional experts. The model
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achieves an accuracy of approximately 74%. It is worth noting that even human experts do not

exhibit complete consistency. The inter-rater overlap between Experts J and M was found to be

76%, which is comparable to the accuracy of the model.

The results table displays results for the baseline model, which refers to the Emotion

RoBERTa model. The Augmented column refers to the Emotion RoBERTa model applied to the

augmented training dataset. Finally, the Tuned performance is after hyperparameter tuning.

Both the F1 score (F1) and balanced accuracy (bA) are crucial metrics included in our

evaluation. These metrics are specifically employed for classification tasks involving imbalance

datasets, such as this. It is important to highlight that the F1 score maintains a balance between

precision and recall, whereas the balanced accuracy assess specificity and recall. The balanced

accuracy metric directly considers true negatives, making it particularly useful when both true

positives and true negatives are equally significant. On the other hand, the F1 score prioritizes

the positive cases, emphasizing the accuracy of identifying positive instances. By utilizing

both metrics, we ensure a comprehensive assessment of the model’s performance in handling

imbalanced classification scenarios.

5.4 Discussion

In this project, we conducted fine-tuning on a variety of transformer models to identify

symptomatic sentences in a client’s mental health narrative, specifically those related to depres-

sion and anxiety. We aimed to compare the performance of these models and address the limited

availability of labeled data by employing augmentation techniques to expand our dataset.

Our findings demonstrate that our most effective model achieved an impressive accuracy

of approximately 80% (F1: 79.3%, bA 84.0%) when distinguishing between symptomatic

and non-symptomatic sentences, which is comparable to the performance of human experts.

Despite being trained on a public dataset, this model showcased a similar level of accuracy when

classifying sentences from a clinical dataset collected from 55 patients participating in a separate

133



clinical trial (average F1=74%, bA=73.5%). Notably, our model’s performance is in line with

the level of agreement between different expert raters, indicating its reliability.

Through the fine-tuning of various transformer models, augmentation techniques, and

comparative analyses, our project has successfully developed a model capable of accurately

classifying symptomatic sentences. Its accuracy on both public and clinical datasets, combined

with its performance comparable to interrater agreement, highlights its effectiveness and potential

for practical applications.

Our study aimed to identify the most effective model for the given task, and our analysis

revealed that the RoBERTa model, fine-tuned on the TweetEval benchmark, outperformed the

other models examined. RoBERTa is an enhanced version of the original BERT transformer

model, benefiting from robust optimization during pretraining, which ultimately resulted in

improved model performance [71, 132]. Unlike BERT, RoBERTa underwent pretraining using

an expanded dataset, comprising of five English-language corpora that totaled over 160 GB of

uncompressed text. These corpora include BOOKCORPUS [232], WIKIPEDIA, CC-NEWS

[137], OPENWEBTEXT [86], STORIES [212].

The model was further fine-tuned on the TweetEval benchmark prior to our task. Specifi-

cally, it utilized the Emotion Recognition dataset, which contains of over 5000 text statements

sourced from Twitter. Each statement is associated with one of four emotions: anger, joy, sadness,

and optimism. The exceptional performance of the RoBERTa model highlights the significance

of emotion classification as a valuable precursor for mental health diagnostics. It is worth

noting that the BERT base model, XLM-RoBERTa pretrained on a sentiment analysis task, and

DistilBERT base models closely trailed in terms of performance.

By highlighting the superior performance of the RoBERTa model fine-tuned on Emotion

TweetEval, our study underscores its efficacy as the optimal choice for the given task. This

model’s success indicated the potential utility of emotion classification in facilitating health

diagnostics.

One effective strategy for enhancing model training involves employing diverse data
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augmentation techniques to expand the training dataset. In our study, we explored the back-

translation technique and observed a notable improvement in model performance as a result.

Interestingly, we discovered that using intermediate languages from the Indo-European, Turkic,

or Uralic language families yielded superior results compared to other language families, such

as Sino-Tibetan, Japonic, Austronesian, or Afro-Asiatic. This can be attributed to the fact that

languages belonging to the same language family as English tend to capture sentence structure

and meaning more effectively due to their greater similarity.

To maximize the benefits of back-translation, we identified the combination of Turkish

and Danish as particularly effective, allowing us to triple the size of the training dataset by

generating two additional augmented sentences for each origin training sentence. This language

combination produced the highest model performance, achieving an approximate 2% increase in

the F1 score. For a detailed analysis of the language combination, corresponding performance,

and the impact of increasing the ratio of synthetic sentences to original sentences, please refer to

the appendix A2, where a table is provided.

By strategically implementing back-translation and specifically leveraging the Turkish

and Danish languages, we successfully amplified the training dataset and enhanced the model’s

performance. The observed improvements validate the effectiveness of this approach for training

models for the given task.

During the hyperparameter tuning process, we focused on optimizing several key hyper-

parameters, including the number of training epochs, random seed, number of training examples

per batch, and the learning rate. While these hyperparameters were carefully tuned, it is worth

noting that there may still be room for further optimization. After thorough experimentation,

we observed only a modest improvement in the overall model performance, with the F1 scores

increasing by a mere 0.2%. For a comprehensive list of the final set of hyperparameters em-

ployed in this study, please refer to the appendix A3. Moving forwarded, further exploration

and optimization of hyperparameters may garner additional model success. It is an avenue that

warrants future investigation and can potentially yield more substantial improvements.
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The findings from this study highlight the promising potential of training a transformer

model for a nuanced and intricate clinical task, specifically the detection of symptomatic lan-

guage use, even when faced with limited labeled data. Furthermore, the transferability of the

model’s knowledge to diverse datasets collected in distinct clinical settings is a crucial outcomes.

Ultimately, these transformer models have the capacity to revolutionize the field by enabling

scalable and objective mental status evaluations based on patients’ language usage.

As we move forward, it becomes imperative to envision future clinical trials that leverage

these objective measurements to predict essential clinical outcomes. These outcomes could

expand to include factors such as patient engagement, symptom reduction, or even relapse

prediction. By incorporating these objective measurements into the design of future trials, we

can potentially enhance our understanding of the complex interplay between language use and

clinical outcomes.

By utilizing the power of transformer models and their ability to accurately analyze

language patterns, we pave the way for more precise and comprehensive evaluations of mental

health. This has the potential to significantly impact clinical practice and improve patient care.

The next critical step is to strategically integrate these models into clinical trials, enabling the

generation of invaluable insights that can inform treatment decisions and interventions, ultimately

enhancing patient outcomes and well-being.
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Appendix

A.1 Model Selection

Table 5.2. Performance of trained models across datasets.

Model Name (source) Model Type F1 Score Balanced Acc
TweetEmotionEval (elonzo) RoBERTa 77.26% 82.37%
BERT base uncased BERT 77.04% 82.00%
TwitterSentiment (cardiffnlp) XLM-RoBERTa 76.92% 81.95%
DistilBERT base uncased DistilBERT 76.81% 81.81%
TwitterSentiment (cardiffnlp) RoBERTa 76.52% 81.60%

Table 5.2 displays the top 5 performing transformer models using F1 score as the

sorting metric. These scores are without data augmentation, hyperparameter tuning, or any

other optimizations. Balanced accuracy is seen to monotonically increase as well as F1 score.

Interestingly, if the models are sorted by balanced accuracy performance, the top four models

remain the same, and the fifth best model swaps with the sixth best model (F1: 76.50% BA:

81.72%, model type: RoBERTa). Three of the top five models are a RoBERTa model or model

variant. Two are baseline models while three are models fine-tuned on tweets for another related

emotion or sentiment task.

Nine of the forty-eight models performed no better than chance, with an F1 and BA of

0.5 and were thus removed from the following analyses as outliers.
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Figure 5.6. Performance of all transformer models trained during model selection. Models
previously fine-tuned on related subtasks (orange) tended to perform slightly better on average
than base models (blue) .

Table 5.3. Performance of Classical Machine Learning Models

Model Type F1 Score Balanced Accuracy
Logistic Regression 68.12% 75.22%
Multilayer Perceptron 62.64% 71.96%
Linear SVM 62.36% 70.64%
XGBoost 61.47% 70.96%
RBF SVM 57.76% 69.35%
AdaBoost 55.28% 67.18%
Decision Tree 54.82% 64.73%
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A.2 Back-translation Data Augmentation Model Performance

Table 5.4. Performance of top 5 language combinations.

Languages F1 Score Balanced Acc
Turkish + Danish 79.10% 83.64%
Bengali + Turkish + Finnish + Spanish 78.55% 83.38%
Bengali + Uralic + Finnish + Portuguese 78.24% 83.11%
Bengali + Turkish + Dutch + Estonian 78.18% 83.09%
Spanish 78.15% 82.97%

Figure 5.7. Effect of number of intermediary languages on model performance in back-
translation data augmentation. Models performed best with two intermediary languages and
worse with five or more languages.
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A.3 Final Hyperparameters

Table 5.5. Final hyperparameter values after tuning.

Parameter Value
Learning rate 2.528e-5
Random seed 33
Batch size 8
Epochs 1
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Chapter 6

Conclusion and Outlook

Throughout this work, multiple scales have been investigated with scaling and bridging

these scales being of primary concern and probabilistic graph models presenting as particularly

useful constructs in this regard. Chapter 1 provided an extended introduction to the fields of

neuropsychiatry, artificial intelligence, and probabilistic graph models. Chapters 2 and 3 focused

on computationally efficient reaction-diffusion models of synaptic transmission using Markov

models and spectral methods. Chapter 4 used deep learning, graph models, dimensionality

reduction, and machine learning techniques to create an automated neuroimaging pipeline for

biomarker detection and automatic diagnosis of major depressive disorder. Chapter 5 used

transformers for natural language processing as a scalable diagnosis system for anxiety and

depression.

There is a clear need for research into mental disorders due to their pervasive nature

and dire consequences. As such, the benefits of this work are multifaceted. It builds multiscale

tools allowing for movement between multiple scales of the brain that emphasizes computational

efficiency in doing so with the goal of bidirectional movement from biology to behavior. Fur-

thermore, emphasis is placed on the development of quantitative and objective measures to aid

in the diagnosis of such disorders. Tools from the burgeoning field of artificial intelligence and

engineering seek to elucidate insights from molecules to minds.

The future of this work and this field is exciting. Envision a world where a patient
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feels off and goes to the neuropsychiatry office. The patient may first speak with a nurse to

tell them the issues they have be facing, and this story is automatically converted to text and

fed into a system train, on millions of prior psychotherapy stories. From that, the patient is

flagged as requiring further intervention. It is then possible to take a brain scan and build a 3D

reconstruction of the patient’s brain with full granularity, from molecules to systems level. Using

mass collections of similar scans, a new set of disorders has emerged with clear, quantitative,

and objective biomarkers. The doctor can then use the model to pinpoint a disorder with a clear

diagnosis and problem area. After which, it is possible to run simulations in the model to assess

the effects of various pharmacological interventions to determine the best fit for the patient,

specifically. This is the future of mental disorder diagnostics and treatment.
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