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Out of clutter find simplicity.
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The aim of this dissertation is to establish a framework to describe multi-scale

transport through porous media. Transport of mass and momentum in porous media

can be studied at two different scales: the macro-scale (averaged-, continuum- or

Darcy-scale) and the micro-scale (pore-scale). Particularly challenging from the mod-

eling perspective are coupled systems (e.g. channel-matrix systems) and/or inherently

unstable phenomena (e.g. multiphase transport). The former require multiscale ap-
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proaches since the quantities of interest on one scale (e.g. macro-scale) may depend

on the properties or physics at another scale (e.g. micro-scale). The latter challenge

the very basic concept of system reproducibility as well as the perturbative approaches

on which upscaling methods are generally based upon. The first part of this disserta-

tion focuses on multi-scale mass transport in a two-dimensional channel embedded

between two porous surfaces. By means of perturbation theory and asymptotic anal-

ysis, we first derive the set of upscaled equations describing mass transport in the

coupled channel-matrix system and an analytical expression relating the macro-scale

dispersion coefficient with the surface properties, namely porosity and permeability.

Our analysis shows that their impact on dispersion coefficient strongly depends on

the magnitude of Péclet number, i.e. on the interplay between diffusive and advective

mass transport. Our analysis shows the possibility of controlling the dispersion coeffi-

cient, or transversal mixing, by either active (i.e. changing the operating conditions)

or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet

number. Then, we compare the upscaled model against experiments conducted on mi-

crochannels with surfaces patterned with different topologies. The experimental data

are in agreement with the developed theory and quantitatively confirm the impact

of the matrix geometry on dispersion at different Péclet numbers. Furthermore, we

demonstrate that patterned microchannels can be used as benchmarks experiments

to model flows in coupled channel/fracture-matrix systems. The second part of this

dissertation focuses on experimentally quantifying and improving the reproducibility

of pore-scale multiphase flow experiments. The unstable nature of multiphase flows

xxi



in porous media questions the basic concepts of both reproducibility and experi-

mental benchmarking for numerical codes’ validation and calibration. Subpore-scale

heterogeneity and temporal fluctuations of experimental equipment can strongly

control two-phase flow displacement data. We experimentally demonstrate that the

introduction of spatial heterogeneity in pore-scale microfluidic models improves the

reproducibility of multiphase flow experiments, and variability in fluid displacement

between different realizations of the same experimental pore structure can be numeri-

cally captured by stochastic numerical simulations. The latter appears to be a more

appropriate framework to describe unstable pore-scale displacement in multiphase

transport.
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Chapter 1

Introduction

Authors have different ways to start their scientific articles (e.g. books, journal

papers, thesis). Especially the very first sentence of the introduction. Some may em-

phasize the great importance of their work, while others may convey the sense of the

difficulty of the research topic. As a PhD student who has been working (“working”

serves as a forgiving euphemism for “struggling”) on this subject for years, and yet has

still decided to continue exploring this field as a life-time career, I started wondering

that there must be something more than "a great importance to environmental/indus-

trial applications" or "a commitment to solve such a difficult problems".

The old saying "Fortune favours the bold" also applies to the scientific world.

Great pioneers like Newton, Maxwell, Schrödinger, and Prandtl, among others, had

great bravery and the vision to establish something did not exist before and later

became the foundation of entire new fields. When reading the establishment of any

new field or development of new methods, one can always find a conflict between

1
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great minds, painfully struggling to strip away the old, and, most importantly, the

enjoyment of seeing a complete new landscape after overcoming all the obstacles. It

is not the success of applying something that already exists that excites us, but the

moment of saying "Oh, wait! This is counter-intuitive, isn’t it interesting?!".

Therefore I would like to start my PhD dissertation by sharing a brief history

of the multi-scale transport in porous media. Not only is the story itself serving as a

respect of scientific giants, but also it ignited the passion and curiosity of exploring.

1.1 A Brief History

An old saying in our country is: ‘A great man is one who contributes enormously

to one or several fields, finds links between those fields, and then opens a brand new

way of looking at the world for people’. Sir G.I. Taylor surely fits this description as he

made great contributions to many different fields: solid mechanics, fluid mechanics,

turbulence, diffusion processes, hydrology and so on. As far as multi-scale transport,

Taylor proposed a general approach of coupling physics at different scales. In 1921,

he showed interest in diffusion processes [317] and introduced a general approach to

derive the so called "longitudinal diffusion coefficient". In 1953 Taylor [316] proposed

the idea of incorporating solute diffusion at a smaller scale (Taylor studied dispersion

in a single tube, thus it is not "pore-scale") into dispersion at a larger scale. Such idea

also links two different time scales (diffusion time scale and advection time scale) and

provides a general framework to investigate the phenomenon at the macro-scale.
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Figure 1.1: Sir Geoffrey Ingram Taylor

In the paper, Taylor intuitively proposed two conditions (later refined and de-

rived theoretically by Aris[12]) which allow one to relate the transport process perpen-

dicular to the flow direction with the longitudinal concentration gradient according to

[316, Eq. (19)]

∂2c

∂z2
+ 1

z

∂c

∂z
= f (z)

∂c

∂x
, (1.1)

where c is the concentration, z is the radial coordinate and x is the longitudinal axis.

This equation is key to link micro-scale transverse with macro-scale longitudinal

transport processes. Furthermore, the dispersion coefficient was derived. A similar

idea was later adopted for the derivation of the dispersion in many other different

scenarios (e.g., channels with reactive walls and with varying cross-section).

To illustrate why Taylor’s work is of such great importance, we may look at

the two separate paths undertaken by scientists before/after Taylor’s work and the
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Figure 1.2: Schematic of the three story lines and their interaction.

missing link in between. As the terminology “multi-scale transport” suggests, we are

interested in transport phenomena at/across different scales or, more specifically, on

transport processes of mass and/or momentum in single/multi-phase flow in porous

media at different scales and their coupling. Two paths (figure 1.2) originated from

two fundamental physics laws in this field: Fick’s Law [99]

J =−D
∂c

∂x
, (1.2)



5

and Darcy’s Law [74]

q =−k

µ

∂p

∂x
. (1.3)

For simplicity, we used the one-dimensional form of these two laws. Here J is the

molar flux (mol m−2s−1), D is the molecular diffusion coefficient (or diffusivity), and c

is the concentration. In Darcy’s law, q (m/s) is the discharge per unit area (i.e. q =Q/A

where Q is the volumetric flow rate and A is the area), and p is pressure. In equation

(1.2), or (1.3), the molar (or volumetric) flux depends on some intrinsic properties

(D, k, µ) and the gradient. The negative sign indicates the direction of the flux is

opposite to that of the gradient, i.e. transport always occurs from higher to lower

concentrations/densities.

Figure 1.3: Scan of the preface of Lamb’s 1st edition of “Hydrodynamics” (or as

pointed out by himself the 2nd edition of his previous publication).

Interestingly, these two laws were proposed at the same time (1855 Fick’s Law

and 1856 Darcy’s Law). Yet, they laid the foundations of two different perspectives
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(micro-scale and marco-scale) on how scientists in this field study and interpret the

physical world.

After Darcy proposed the macroscale transport equation (1.3) in 1879, Lamb

published his book “A Treatise on the Mathematical Theory of the Motion of Fluids”

[170], which was later named “Hydrodynamics” [171]. This book has been revised

and re-published for the following hundred years and serves as one of the classic text-

books in hydrology. In 1904, Prandtl’s extraordinary work “Über Flüssigkeits bewegung

bei sehr kleiner Reibung” (or “On the motion of fluids of very small viscosity”) [250]

presents the boundary layer theory and, due to its revolutionary contribution, many re-

fer him as the “father of modern fluid mechanics”. Later Blasius[38], Schilichting[277]

made great contribution to the theory. Onsager and von Karman’s work on turbulence

provided theoretical foundation for studying vegetated surfaces, drag-reduction etc.

On the Fick’s Law side of the diagram, Maxwell and Bolzmann studied move-

ment of particles. Clarslaw’s work later became a classic textbook in heat transfer.

Crank’s “The mathematics of diffusion” and Bird and et al.’s work “Transport phenom-

ena” provided a general framework for solute transport problems. These transport

governing equations solve the field point-wise whereas the quantities we are inter-

ested in (or physical laws we want to apply, e.g.the turbulent models) are at another

scale and usually are averaged quantities. To find the bridge between these two paths,

people adopt (or sometimes "re-discover") Taylor’s approach.

Through Taylor and Aris’s revolutionary work, now we are able to combine

methods from both sides of the diagram (e.g. combine turbulent theory with transport
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over nano-patterns, incorporate boundary layer theory with solute dispersion in

fractured porous media). Methods that link transport physics at different scales then

developed into the modern multi-scale transport theory.

In the following sections, we will introduce analytical and experimental ap-

proaches to systematically study multiscale transport.

1.2 Development of Multiscale Transport Theory

From the brief introduction of the multiscale transport history, one may have

a hint of the importance of the “definition”. In almost all scientific research work,

without a proper definition (of variable, operator, scale, dimension etc.), argument will

lose all of its meaning. Some quantity/equation is defined “point-wise”, others may

need a volume (or time interval) to ensure their validity. To get a rough (using “rough”

is because we are, by default, looking at the scales where the continue mechanics

is still valid) idea about this difference, one may look at the example we used in the

introduction of the history: Darcy’s equation and Fick’s equation. q (or very often

used as “averaged velocity”) and the permeability all defined for a volume in Darcy’s

equation. On the other side, in Fick’s law, the concentration c , the molecular diffusion

coefficient (D) are all defined at every point in the domain of interest. Or when one

is studying the turbulence, the Reynolds decomposition of velocity: v =< v > +v ′

where < v > indicates the average/mean velocity and v ′ is the fluctuation also relies

on a time interval to let the < · > operator be valid, but if one is solving the Navier-
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Stokes equation then she/he can solve it for any time instance. The development of

multiscale transport theory, thus, can be regarded as finding a definition of quantity

or physics (the governing equation) which incorporate properties from a different

scale. For instance, one of the main purpose of the Chapter 2 is: How to define (finding

the expression of) the continuum scale dispersion coefficient which incorporates

geometrical property at pore scale. At this point, one may ask: isn’t that just taking

averages? Yes, just taking averages (spatial or temporal), but in a smart way. The first

part of this section is an introduction of different methods of taking averages using

rigorous mathematical approach: upscaling methods. Then we will present how the

upscaling technique is applied to find dispersion coefficient in coupled system.

1.2.1 Upscaling methods

The essence of multiscale transport theories is to define the relationship be-

tween the physics at one scale and the properties at another scale under certain

conditions. This could be achieved by upscaling or downscaling. If one is interested in

macro-scale behavior (e.g.concentration field at the continuum scale, average velocity

at the Darcy scale etc.) and wants to relate the physical properties at the micro scale

(complex geometry at the pore-scale, reactive surface at the micro-scale, etc.), she/he

may use upscaling methods for such a purpose. Some of these approaches include

• Homogenization theory [5, 129, 136, 144];

• Volume-averaging method [346, 151, 117, 259];
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• Method of moments [272, 282, 283, 159, 48, 104];

• Statistical averaging [164, 276, 246].

These approaches involve perturbative methods in various forms (single- and

multiple-scale expansions, Reynolds-type decomposition, etc.) and allow a rigorous

derivation of the macroscale equations satisfied by spatially averaged microscale

(pore-scale) quantities. A critical aspect that distinguishes upscaling methods from

a straightforward averaging of pore-scale equations is the error analysis associated

with, or the approximation error of, the upscaling procedure. For instance, using

homogenization theory by multiple-scale expansion one expands pore-scale quantity

as a perturbation series: c = c0 + εc1 + ε2c2 +O (ε3). If one solves for c0, c1 and c2

explicitly, then the approximation error in c̃ = c0 + εc1 + ε2c2 is at the order of ε3,

where ε is a small parameter. Regardless of the number of terms one explicitly solves

for, an error bound can always be obtained, provided that certain conditions are

met. Such error bounds not only provide the accuracy of the upscaled solution, but,

more importantly, information about its predictive capabilities, i.e. under which

conditions the macroscopic (upscaled) solution can represent pore-scale processes

with the accuracy prescribed by the upscaling procedure. This is the formal criterion

to determine whether an effective model is predictive or not.

In Chapter 2, we demonstrate how to construct a continuum approximation of

transport in a channel-matrix coupled system by means of perturbation theory and

provide error bounds for the macroscopic approximation. Some details about the
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system investigated as well as the tools employed are provided in the following section.

For technical details of the derivation, we refer the reader to Chapter 2.

1.2.2 Advection-Diffusion Equation (ADE) in Coupled Systems

In this thesis, we are particularly interested in predicting the concentration field

in coupled systems (figure 1.4) where a channel (or fracture) is embedded in a porous

medium (matrix). Such a system can be used to model both natural processes such

as flows in fractured rocks (figure 1.4-(a)) and over sediment beds [112, 229, 32, 188],

coral reefs and canopies [108, 223, 240, 29], nutrients uptake from roots [197, 110]

and passive predatory strategies in some carnivorous plants [112, 189, 279], as well as

engineering and biological systems including superhydrophobic [268, 237, 27] and

slippery liquid-infused porous surfaces [71, 137], shear sensors, flows in blood vessels

[340, 7] and above carbon nanotube forests [78, 26, 28].

One of the greatest technical difficulties in handling such systems is the dispar-

ity of scales between the characteristic length associated to the porescale (e.g. width of

the fracture/channel) and the system scale (e.g. length of the fracture/channel). Such

disparity requires the use of upscaling methods and the construction of a macroscopic

approximation. However, one obstacle in achieving this lies in (semi)analytically

solving advection-diffusion equations while accounting for the non-uniformity of the

velocity profile in the channel and/or matrix: this complication is generally overcome,

or better avoided, by assuming uniform velocity in the channel, purely diffusive trans-

port in the matrix or both. The first analytical treatment of transport mechanisms in
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(a)

(c)

(b)

Figure 1.4: (a) Fractured rock (work by Knight and Grab, Geomorphology 2014[161]);

(b) An intragranular porous domain for pore-scale modeling (work by Liu and

et al.[188]; (c) Channel-Matrix coupled system.

channel-matrix systems is generally attributed to [303] (formulas are listed in appendix

B), who considered a one-dimensional thin channel embedded in an impermeable (to

flow) porous matrix. More recently, Dejam and et al.[79] coupled a two-dimensional

ADE for the channel with a one-dimensional diffusion equation for the matrix. They

considered a parabolic flow profile in the channel, and applied Reynolds decompo-

sition to obtain an upscaled equation for the average concentration. By means of

Laplace transform and numerical inverse Laplace transform, they studied transport
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dynamics for different Péclet numbers. [118] considered transport in a cylindrical

tube with a thin porous wall.

Most authors studied this problem by upscaling the transport equations in

the channel and deriving the dispersion coefficient through a boundary flux type

interfacial condition imposed on the channel-matrix interface, while ignoring flow

in the matrix. Dispersion coefficients so derived can not only take the diffusion and

advection effects into account but also couple the reaction on the interface. Similar to

Taylor’s derivation, these dispersion coefficients provide a physical insight of the flow

and transport in the coupled system without explicitly solving the equations at the

pore-scale. Here we list some dispersion coefficients commonly used and found in

the literature.

• 1953, Taylor [316, Eq. (25)]:

DTayl or−Ar i s = 1+Pe2 1

192
(1.4)

• 1983, Horne, Rodriguez [134, Eq. (10)]:

DHR = Pe2 2

105
(1.5)

• 1996, Berkowitz, Zhou [37, Eq. (6)]:

DB Z = 1+Pe2 8

945
(1.6)

• 2006, Parks, Romero [242, Eq. (14)]:

DPR = 1+Pe2 1

210
(1.7)
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• 2007, Dentz, Carrera [80, Eq. (75)]:

DDC = 1+Pe2 2

105
(1.8)

• 2012, Wang, Cardenas, Deng, Bennett [337, Eq. (28)]:

DW C DB = 1+Pe2 72

π6

∞∑
n=1

[cos(nπ)+1]2
[

1−exp(−Dn2π2t

b2
)

]
≈ 1+Pe2 1

213

(1.9)

• 2013, Griffiths, Howell, Shipley [229, Eq. (96)]:

DG HS = 1+Pe2 A2

48(A+2)2(1+λπ)2
, A = αp

k
, λ= 16φαk

α+4
p

k
(1.10)

• 2014, Dejam, Hassanzadeh, Chen [79, Eq. (71)]:

DD HC = 1+Pe2 1

175
(1.11)

In (1.4)-(1.11), the Péclet number is defined as Pe =Ub/D0 with U the average velocity,

b the aperture of the channel/fracture and D0 the molecular diffusion coefficient. All

the dispersion coefficients listed above conveyed the same idea of using multi-scale

transport theory to incorporate micro-scale physics/properties into the macro-scale

effective equations by the dispersion coefficient.

1.3 Multiscale Transport: Experimental Methods

After the equations are derived and solutions achieved, an immediate question

would be: can they predict the transport behavior? To answer this question, one
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may compare the upscaled model with direct numerical simulations. YEt, pore-scale

simulations are generally computationally expensive. Well controlled experiments are

one irreplaceable evidence for model validation (analytical or numerical models).

In Chapter 3 and Chapter 4, we establish benchmark experiments for single

phase and multiphase transport in porous media. In Chapter 3, a series experiments

are performed on micro-patterned surfaces to validate the upscaled model derived in

Chapter 2. This is based on the working hypothesis that a micro-patterned surface

can be treated as porous media under certain conditions despite the fact that the

number of arrays (≈ 5−10) is much smalled than the number of pores and obstacles

in conventional porous media ( tens of thousands or even millions). The solution

developed for porous media using upscaling approach and effective media theory is

still predictive.

In Chapter 4, a more difficult problem is tackled: multiphase displacement in

porous media. People spent many decades in studying multiphase flow theoretically,

numerically and experimentally. Different models have been developed to predict

immiscible fluids displacement. A common question scientists are facing is quite

fundamental: reproducibility of multiphase flow experiments. The inherently unstable

nature of multiphase flows introduce large uncertainty in experiments. Point-wise

comparison (at the pore scale) becomes infeasible while comparing the averaged

quantity (at the continuum scale) can not provide enough information for validation.

In order to solve this dilemma, experimental technique and analysis algorithms are

developed in Chapter 4, which evaluate the multiphase flow stochastically both for
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the experiments and the simulation.

The possibility of realization of all these well controlled experiments relies on

the fast development of the equipment and experimental methods. In this section,

we will provide a general guide line of microfluidic devices including the fabrication,

visualization, data analysis and how these are being applied in our studies.

Figure 1.5: Sophisticated micromodel with valves patterned for flow control (Work by

S. Maerkl, from Squires and Quake [291]).

1.3.1 Micromodels Fabrication

Different techniques can be adopted for the fabrication of microfluidic devices.

They can be categorized in (i) material deposition and (ii) material removal methods.

In 1958, Saffman and Taylor [270] performed a series of experiments on the

penetration of a fluid into a porous medium using Hele-Shaw cell (figure 1.6). In 1959

Chuoke and et al.’s work [62] showed the instability of the liquid-liquid displacement

in the Hele-Shaw cell. Recent experimental study [54] by Bunton and et al. utilizes the
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Figure 1.6: Hele-Shaw cell experimental set up reported in Saffman and Taylor’s

work[270].

Hele-Shaw cell to investigate viscous fingering (figure 1.7).

An early experimental study [57] applied one layer of glass beads in between

of two parallel plates. As Chatenever and Calhoun pointed out, introducing multiple

layers of beads would make the visualization more complicated. Recently, the use

of polymer beads designed to match the optical index of the fluid allowed scientists

to render the beads “invisible” (figure 1.8) and to visualize the velocity field at a fine

temporal resolution [128, 96] by combining such indexed-matched techniques with

Particle Image Velocimetry (PIV).

Optical lithography (or photo-lithography) has experienced a fast development

during in the past few decades. Due to the precise realization of designed pore struc-

ture, network and etc., more and more experimentalists started using micromodels

fabricated by lithographic techniques. Early studies (1980s) of the procedure can be

found in Thompson et al.’s work [318]. A more recent review of the method can be

found in Cheng et al. [59], and in the review paper by Karadimitriou and Hassanizadeh
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Figure 1.7: Viscous fingering observed in the Hele-Shaw cell [54].

[147]. In our study, the micromodels for the experiments (both non-reactive solute

transport and multiphase transport) were fabricated using optical lithography.

Stereo-lithography, similar to 3D-printing, is an additive fabrication method

by computer-aided system. Figure 1.9 shows a cortoon of the method: by means of a

movable platform and a computer-controlled laser, different layers of the structure

are deposited and melted. A review paper by Melchels et al. [213] provides a general

introduction to this technique. Recent developed micro-stereo lithography is able to

construct complex geometry as shown in Figure 1.10.

The general procedure of soft lithography shares many similarities with optical

lithography, with the only difference that soft materials are utilized for the micromod-

els or replicas. As listed in the review paper by Xia and Whitesides [361], four different

methods have been developed:

• Replica molding (REM)[94, 281];
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Figure 1.8: Same beads placed in different fluids with different Reflection Index (RI)

[128].

• Microtransfer molding (µTM) [372, 154];

• Micromoling in capillaries (MIMIC) [155, 156];

• Solvent-assisted micromolding (SAMIM) [158, 176];

Schematics of the methods are shown in Figure 1.11. In our study, we applied the REM

to produce micromodels for both single- and multi-phase flow experiments.

The fabrication method by material removal is based upon a wet etching

technique developed in 1980s [338, 60]. The basic idea of wet etching is to remove the

designed part on the wafer (silicon or glass) by etchants (e.g. acid). The remainder of

the surface is covered by photo-resist or other resistance material (e.g. copper). Other

etching methods exist that employ ions or laser as the “etchants”. The largest issue

with etching is the vertical surface profile or property. Specifically, during wet etching

the vertical walls are always curved due to the lack of control in vertical direction. The

surface property can be largely improved with the newly developed technique of deep
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Figure 1.9: General procedure and illustration of stereo lithography, work by Melchels

et al.[213].

reactive ion etching (DIRE) or plasma/laser etching [22, 275, 132, 142, 20, 204], yet the

equipment cost may be prohibitive.

1.3.2 Visualization

As multi-scale transport requires, we need to observe and record transport

physics at different scales. Generally, the more information one wants to achieve
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Figure 1.10: Complex three-dimentional structure created by stereo lithography, work

by Tse et al.[321].

the greater effort she or he needs to spend. A review by Werth et al.[343] provides

guidelines on how to select between different methods based the Field of View (FOV)

and the temporal resolution needed. In table 1.2, we list the typical data for each

method. A more detailed study can be found in Werth et al.’s [343].

Optical imaging method is a direct recording of light intensity. This may be the

most straightforward method of measuring concentration fields. In order to indicate

the transport of mass or momentum (solute transport, immisible fluid displacement,

particles, velocity field, etc.) probing medium is added. For instance, florescent dye is

frequently applied to the field. The florescent tracer only emits light in a certain range

of the spectrum. In optical imaging, several methods can be used:

• Direct visualization [56, 65, 354, 289];
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• Regular microscopy [261, 330, 153, 243];

• Florescent microscopy [235, 368, 351, 347, 236];

• Confocal microscopy [115, 127, 368, 179, 212];

• Micro Particle Imaging Velocimetry (µPIV) [211, 274, 262, 344, 214];

Direct visualization, regular and florescent microscopy share the same idea of

“using cameras to take pictures”. The main difference is the resolution scale and how

to identify different substances we are interested in. For macro-scale (or Darcy scale)

experiments, regular color-dye is generally used to indicate certain fluid’s displace-

ment or mimic the behavior of the solute. To record the field without magnification,

a regular camera or a high speed camera can be utilized. Instead, microscopes with

different magnification objectives are used to observe the micro-scale fields. A charged

coupled device (CCD) or a complementary metal-oxides semiconductor (CMOS) high

speed camera is attached to the microscope and through a computer, the images can

be recorded at 10−100 frames per second (fps).

One of the limitation of the three methods discussed above is that they can

only record two-dimensional information. One can either take pictures from the top or

from the side of the micromodels. Confocal microscopy can be used to overcome these

shortcomings. Confocal microscopy was invented by Minsky in 1980s [219]. It uses

optical apertures to enhance the contrast of images. It provides point-wise imaging by

eliminating out-of-focus light signal and only the points close to the focal plane are

recorded. By adjusting the focal plane, it is possible to reconstruct three-dimensional
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information up to the maximum light penetration depth. The main limitation of

confocal microscopy is the time needed for recording one image. As a result, it is

suitable for studying steady or immobile transport systems but for three-dimensional

unsteady problems, one may apply micro particle imaging velocimetry (µPIV). Similar

to conventional PIV[251, 6, 350, 150], the µPIV introduces probing particles into the

system and by taking two consecutive images the velocity vectors can be calculated.

The difference between PIV and µPIV is the size of the probing particles.

1.3.3 Data Analysis

One could argue that the majority of experimental results are images, i.e. arrays

of pixels with the values of intensity (light intensity or florescent intensity). There are

many different ways to use these intensity data. The critical step is to convert them to

physical quantities, e.g. concentration, fluid type, etc.In this brief introduction, we

will present two different approaches employed in the experimental study of solute

and multi-phase transport.

As shown in figure 1.15, in a typical florescent image we can have the intensity

for different time instances recorded on a line. The bright green indicates a higher

concentration of the fluorescent dye (ALEXA-488 is used in this image). In order to

convert this intensity profile to concentration field, we need to perfrom calibration.

For instance, the initial concentration (c0) of the dye solution used in this figure is

34.40 µmol/L. We prepared solutions with 100%c0, 75%c0, 50%c0, 25%c0 and 0%c0

DI-water. The intensity of each solution at a fixed exposure time is measured at the
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inlet of the micromodel. Figure 1.16 shows a linear relationship between intensity and

concentration. By using this calibration result, we can convert all the intensity values

in corresponding normalized concentration values.

For multiphase transport experiments, one may be more interested in the

location of a given fluid (wetting phase or non-wetting phase) inside the micromodel.

To analyze this, we can perform image processing. Figure 1.17 shows the procedure

we employed in our study. After we collect bright field images (figure 1.17-a) or

fluorescent images (figure 1.17-d), we use a Matlab boundary detecting code to convert

the raw image into images shown in figure 1.17-b and 1.17-e. Then by using “Flood”

algorithm [4], we can identify isolated fluid regions and find the space occupied by

either the wetting or non-wetting fluid. Quantitative measurement of the interface

length, saturation condition etc. of the experiments will be based on the processed

images. The images (1.17-c and 1.17-f) processed from different experimental results

are similar, therefore, all of our experimental results will be presented using bright

field images.

In multi-phase fluid displacement experiments, due to the instability, the

experimental results may be different even under the same condition and in the same

micromodel. To identify and quantify these differences, we process the images and plot

a “3-D histogram” of the probability of occupancy of each phase (wetting/nonwetting)

at any given location in the micromodel. To illustrate this process, we introduce the

idea of mater-plane. If one point A(ξ,η) on the master plane corresponds to a point

A′(x, y) that is occupied by the non-wetting fluid, we add 1 to the two-dimensional
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function P (ξ,η) which is defined on the master plane. A normalized function p(ξ,η)

is defined as: p(ξ,η) = (1/N )P (ξ,η) where N is the number of results analyzed. The

transformation from A to A′ is done by multiplication of a transformation tensor.

Figure 1.19 represents the p value from ∼ 40 experimental results. Some areas have a

larger p value: this indicates the high probability of occupancy by a non-wetting fluid.
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Figure 1.11: Illustration of general procedures of four methods in soft lithography,

work by Xia and Whitesides [361].
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Figure 1.12: Image of the concentration field indicated by the Florescent dye ALEXA-

488. Bright green corresponds to higher concentration regime. Images were taken

using exposure time 75ms.
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Figure 1.13: Direct visualisation (a and c) and gamma scan of the same model. Work

by Oostrom et al.[234].

Figure 1.14: Schematic illustration of confocal microscopy. Work by Minsky [219].
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Figure 1.15: Intensity measured in the shown micromodel for different instence.

Figure 1.16: Calibration procedure used in the solute transport study
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Non-wetting Fluid

Wetting Fluid

(a)

(b)

(c)

(d)

(e)

(f)

Non-wetting Fluid

Wetting Fluid

Figure 1.17: (a) Original bright field image collected form the experiment; (b) Bound-

ary detected image; (c) Flooded image; (d) Original florescent image collected form

the experiment; (e) Boundary detected image; (f) Flooded image
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Figure 1.18: Mater-plane and 3D histogram plot

Figure 1.19: Result of image process by using the “3D histogram” analysis



Chapter 2

Macro-scale Dispersion in Coupled

system: Theory

2.1 Introduction

The unique features of patterned surfaces and porous coatings have been long

recognized [e.g. 196]. Of particular interest are coupled flows and transport processes

through and above permeable and/or (micro-) patterned layers as they are ubiquitous

in environmental, biological and engineered systems. Examples of natural systems

systems include transport in fractured rocks and flows over sediment beds [112, 229, 32,

188], coral reefs and canopies [108, 223, 240, 29], nutrients uptake from roots [197, 110]

and passive predatory strategies in some carnivorous plants [112, 189, 279]. Coupled

flows are critical to many engineering applications including superhydrophobic [268,

237, 27] and slippery liquid-infused porous surfaces [71, 137], shear sensors, flows in

33
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blood vessels [340, 7] and above carbon nanotube forests [78, 26, 28], just to mention

a few. Distinctive characteristics of micro-structured surfaces and nanoimprints are

routinely adopted in a variety of other manufacturing processes including, but not

limited to, ultrafiltration of colloids [200] and nutrient delivery in bioreactor devices

[121, 118]. Channel transversal mixing is critical to, e.g., reduce membrane fouling

or increase system’s overall reactivity. This is particularly challenging in microfluidic

devices where mixing is controlled by diffusion with resulting slow reaction rates.

Surface patterns have been successfully employed to enhance transverse mixing in

microchannels [298, 297] and reduce membrane fouling [341].

Yet, a clear connection between properties of the surface and its macroscopic

response still remains an open question [43]. Notwithstanding significant theoretical

advancements, attempts to relate surface properties to macroscopic quantities, such

as the dispersion coefficient and average velocity, remain mostly phenomenological

[e.g. 185, 363, 199, 137] and analytical expressions are available only for tractable

geometries [e.g. 174, 75].

Here, we consider non-reactive tracer transport through a symmetric (micro-

)channel embedded in a permeable porous matrix, and characterize the latter by its

permeability and porosity. In this work, we are concerned with analytically relating

the macroscopic response of the coupled channel-matrix system, i.e., the longitudi-

nal dispersion coefficient, with the porous layer porosity and permeability and the

channel transport regimes. We assume that the flow and transport are governed by

the combination of Stokes, Brinkman and advection-diffusion equations subject to
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appropriate initial and boundary conditions.

This formulation, relevant to study and control transversal mixing in micro-

channels, is especially suitable to model Navier-Stokes flows (both laminar and turbu-

lent) above patterned surfaces, e.g. micro-riblets [27] and carbon nanotube forests

[28, 26], where the idealization of the pattern as a porous layer has been shown appro-

priate.

Two approaches are routinely employed to relate channel and matrix proper-

ties to dispersion in a coupled channel-matrix system: (i) analytical and semianalytical

solutions of a system of coupled advection-diffusion equations (ADEs) and (ii) up-

scaling perturbative methods. While exact, analytical solutions of a system of ADEs

can often be obtained only under restrictive simplifying assumptions. The greatest

technical difficulty in (semi)analytically solving advection-diffusion equations is ac-

counting for the non-uniformity of the velocity profile in the channel and/or matrix:

this complication is generally overcome, or better avoided, by assuming uniform

velocity in the channel, purely diffusive transport in the matrix or both. The first

analytical treatment of transport mechanisms in channel-matrix systems is generally

attributed to [303], who considered a one-dimensional thin channel embedded in

an impermeable (to flow) porous matrix. Their result was later extended by [300]

to account for the presence of neighboring parallel channels. A detailed review of

this approach is provided by [40]. More recently, [269] solved semi-analytically the

transport problem for a uniform flow in a two-dimensional channel embedded in

an impermeable two-dimensional infinite matrix, where mass transport was purely
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diffusive.

Alternative approaches to connect macroscale transport properties to surface

properties are upscaling methods, such as homogenization [135, 42], volume averag-

ing [346], thermodynamically constrained averaging [116], stochastic homogenization,

the method of moments [47] etc. These approaches involve perturbative methods in

various forms (single- and multiple-scale expansions, Reynolds-type decomposition,

etc.), which allow rigorous derivation of the macroscale equations satisfied by spa-

tially averaged microscale (pore-scale) quantities. The connection between the micro-

and the macro-scale is formally established through effective parameters (e.g. dis-

persion coefficient, effective contact angle, macroscopic reaction rates, slip velocity),

which depend on the specific structure of the coupled channel-matrix system. Unlike

(semi)analytical solutions, these methods allow one to relax many of the assumptions

concerning the shape of the velocity profile in the channel-matrix system. This is

achieved at the cost of obtaining an asymptotic approximation of the full microscopic

solution, generally truncated at the first or second order. In this work, we focus on

perturbative approaches, since our main objective is to explicitly account for steady

non-uniform flow conditions and the impact of matrix permeability on dispersion.

Since the problem of transport in a channel (with or without porous walls)

has been historically handled in the context of homogenization theory, we limit our

attention to the results obtained with this specific technique. We emphasize that

equivalent results have been achieved with other upscaling methods. The seminal

result on the upscaling of passive tracer transport in a channel with planar walls is
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generally attributed to the works by [316] and [12], who, by means of perturbation

methods, derived the well-known Aris-Taylor formula for the dispersion coefficient.

More recently, [216] studied transport in a two-dimensional channel with reactive

walls. The leading order solution was found by asymptotic homogenization and the

two-dimensional solution obtained in terms of the leading order solution and its first

derivative. Recently, [79] coupled a two-dimensional ADE for the channel with a one-

dimensional diffusion equation for the matrix. They considered a parabolic flow profile

in the channel, and applied Reynolds decomposition to obtain an upscaled equation

for the average concentration. By means of Laplace transform and numerical inverse

Laplace transform, they studied transport dynamics for different Péclet numbers.

[118] considered transport in a cylindrical tube with a thin porous wall. In a two-

domain approach, they coupled Stokes and Darcy flow by means of the Beavers and

Joseph condition for the effective slip at the free fluid-porous medium interface [34].

Asymptotic analysis was used to derive the corresponding macroscopic equation and

effective dispersion coefficient.

Here, we model a coupled system composed by a planar channel embedded in

a porous matrix of prescribed porosity and permeability and establish an analytical

relationship between the effective transport properties of the system (i.e. macroscopic

dispersion coefficient), those of the porous matrix, i.e. porosity and permeability, and

different transport regimes identified by the Péclet number. We also investigate the

scaling behavior of the normalized dispersion in various limits and for thin and thick

porous matrices.
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2.2 Model Formulation

We consider tracer transport in a single phase fully-developed pressure-driven

laminar flow in a semi-infinitely long (micro-)channel embedded in a porous matrix

with permeability k and porosity φ (Figure 2.1). While the Carman-Kozeny equation

establishes a unique relationship between porosity and permeability, it is unable to de-

scribe permeability dependencies over a broad range of porous media configurations

[325]. Without loss of generality, we consider porosity and permeability as indepen-

dent variables in order to account for the unknown relationship between k and the

microstructure arrangement. The boundaries between the channel and the matrix

walls are located at ỹ = 0 and ỹ = 2b. The porous matrix width (thickness) is H , i.e.,

the matrix occupies the domains ỹ ∈ (2b,2b +H) and ỹ ∈ (−H ,0). A dilute Newtonian

solution with density ρ and solute concentration c0 is injected at the domain inlet

x̃ = 0. Flow and transport occur both in the channel and the matrix, and are affected

by the momentum and mass transfer across the channel-matrix interfaces.

We denote the concentration and the x̃-component of the velocity in the chan-

nel and the matrix by c̃ f , ũ f , c̃m and ũm , respectively. Due to the symmetry of the

domain, we restrict our analysis to ỹ ∈ (−H ,b).

2.2.1 Flow Equations

Fully-developed Stokes flow in the channel-matrix system can be described by

coupling the Stokes equation in the channel with a Darcy-Brinkman equation in the
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Figure 2.1: Problem domain.

matrix,

µ
d2ũ f

dỹ2
− dp̃

dx̃
=0, ỹ ∈ (0,b), (2.1a)

µ
d2ũm

dỹ2
− µ

k
ũm − dp̃

dx̃
=0, ỹ ∈ (−H ,0), (2.1b)

respectively, where ũi (ỹ) with i = { f ,m} is the x̃-component of the velocity in the chan-

nel and the matrix, µ is the fluid dynamic viscosity, k [L2] is the matrix permeability,

and dx̃ p̃ is a constant pressure gradient driving the flow in the x̃-direction. Equations

(2.1) are subject to no-slip and symmetry boundary conditions at the bottom solid

wall (ỹ =−H) and channel centerline (ỹ = b), respectively, and continuity of velocity

and shear stress conditions at the interface separating the channel and the porous

matrix (ỹ = 0),

ũm |ỹ=−H = 0,
dũ f

dỹ

∣∣∣∣
ỹ=b

= 0, ũ f
∣∣

ỹ=0 = ũm |ỹ=0 ,
dũ f

dỹ

∣∣∣∣
ỹ=0

= dũm

dỹ

∣∣∣∣
ỹ=0

. (2.2)
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While many boundary conditions have been proposed to couple free and filtration

flows, see [175] for a review, continuity of velocity and shear stress has been proven

accurate in a number of applications, e.g., [28, 26, 29].

We define the following dimensionless quantities:

x = x̃

L
, y = ỹ

b
, p = p̃

p0
, ui = ũi

U
with i = { f ,m}, (2.3)

where L is a characteristic macroscopic/observation length scale, e.g., the distance

far from the inlet where data are collected, p0 is a characteristic pressure, e.g., the

ambient pressure, and U is the average velocity across the channel. Then, (2.1)-(2.2)

can be cast in dimensionless form

d2u f

dy2
−Ψ=0, y ∈ (0,1), (2.4a)

d2um

dy2
−λ2um −Ψ=0, y ∈ (−h,0), (2.4b)

subject to

um |y=−h = 0,
du f

dy

∣∣∣∣
y=1

= 0, u f
∣∣

y=0 = um |y=0 ,
du f

dy

∣∣∣∣
y=0

= dum

dy

∣∣∣∣
y=0

, (2.5)

where

λ2 = b2

k
, Ψ= p0b2

µU L

dp

dx
, and h = H

b
. (2.6)

The system (2.4) admits an analytical solution for the velocity profiles in the channel

and the matrix, u f and um , respectively,

u f (y) = Ψ

2
y2 + Ay +B , y ∈ [0,1], (2.7)

um(y) =−Ψ
λ2

+Eeλy +Fe−λy , y ∈ [−h,0], (2.8)



41

where A, B , E and F are integration constants

A =−Ψ, (2.9a)

B =−Ψ
λ2

(−1+eΛ
)(−1+eΛ+λ+λeΛ

)(
1+e2Λ)−1

, (2.9b)

E =−Ψ
λ2

eΛ(−1+λeΛ)(1+e2Λ)−1, (2.9c)

F =−Ψ
λ2

(
λ+eΛ

)
(1+e2Λ)−1. (2.9d)

Also,

Λ=λh, (2.10)

which represents a characteristic dimensionless length scale, also known as penetra-

tion length, associated to the thickness of the boundary layer between the free and

filtration flows [224]. A classification between thin (Λ¿ 1) and thick porous media

(ΛÀ 1) can be introduced based on the magnitude of Λ [26]. The slip velocity, Uslip,

can be readily calculated as Uslip := um(y = 0) = u f (y = 0), i.e.

Uslip =−Ψh
(
eΛ−1

)[
Λ

(
eΛ+1

)+h
(
eΛ−1

)]
Λ2

(
1+e2Λ

) . (2.11)

2.2.2 Transport Equations

We consider transport of a passive scalar injected at the channel inlet, i.e., x̃ = 0

and ỹ ∈ (0,b), with concentration c0 for t̃ > 0. The solute concentration in the channel
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c̃ f and the matrix c̃m satisfy a system of coupled advection-dispersion equations

∂c̃ f

∂t̃
+ ũ f

∂c̃ f

∂x̃
= D̃ f

(
∂2c̃ f

∂x̃2
+ ∂2c̃ f

∂ỹ2

)
, ỹ ∈ (0,b), x̃, t̃ > 0, (2.12a)

∂c̃m

∂t̃
+ ũm

∂c̃m

∂x̃
= D̃mx

∂2c̃m

∂x̃2
+ D̃my

∂2c̃m

∂ỹ2
, ỹ ∈ (−H ,0), x̃, t̃ > 0, (2.12b)

where D̃ f is the molecular diffusion coefficient, D̃mx and D̃my are the x̃ and ỹ com-

ponents of the dispersion coefficient in the matrix, and ũ f =U u f and ũm =U um are

defined by (3.7a) and (3.7b), respectively. Equations (2.12) are subject to initial

c̃ f (x̃, ỹ , t̃ = 0) = 0 and c̃m(x̃, ỹ , t̃ = 0) = 0, (2.13)

and boundary conditions

c̃ f (0, ỹ ∈ [0,b], t̃ ) = c0, c̃ f (∞, ỹ ∈ [0,b], t̃ ) = 0,
∂c̃ f

∂ỹ
(x̃,b, t̃ ) = 0, (2.14)

∂c̃m

∂x̃
(0, ỹ ∈ [−H ,0), t̃ ) = 0, c̃m(∞, ỹ ∈ [−H ,0], t̃ ) = 0,

∂c̃m

∂ỹ
(x̃,−H , t̃ ) = 0. (2.15)

Additionally, on the channel-matrix interface, the continuity of concentration and

mass flux are satisfied,

c̃ f (x̃,0, t̃ ) = c̃m(x̃,0, t̃ ) and
∂c̃ f

∂ỹ
(x̃,0, t̃ ) = φD̃my

D̃ f

∂c̃m

∂ỹ
(x̃,0, t̃ ), (2.16)

where φ is the matrix porosity. We define the following dimensionless quantities

t = U

L
t̃ , D f =

D̃ f

D?
, Dmi = D̃mi

D?
, ci = c̃i

c0
, with i = { f ,m}. (2.17)

Here, D? =O (D̃ f ) is the order of magnitude of the solute molecular diffusion coeffi-

cient such that D f = O (1). Since we investigate the dynamics of transport in a time

frame much larger than the diffusion time τd = b2/D? and close to the advection time,
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τa = L/U , all the timescales are scaled by τa . Then, Equations (2.12) can be written in

dimensionless form as follows

εPe
∂c f

∂t
+εPeu f

∂c f

∂x
= ε2D f

∂2c f

∂x2
+D f

∂2c f

∂y2
, y ∈ (0,1), x, t > 0, (2.18a)

εPe
∂cm

∂t
+εPeum

∂cm

∂x
= ε2Dmx

∂2cm

∂x2
+Dmy

∂2cm

∂y2
, y ∈ (−h,0), x, t > 0, (2.18b)

where

ε= b

L
, and Pe = τd

τa
= Ub

D?
. (2.19)

Equations (2.18) are subject to

c f (0, y ∈ [0,1], t ) = 1, c f (∞, y ∈ [0,1], t ) = 0,
∂c f

∂y
(x,1, t ) = 0, (2.20)

∂cm

∂x
(0, y ∈ [−h,0), t ) = 0, cm(∞, y ∈ [−h,0], t ) = 0,

∂cm

∂y
(x,−h, t ) = 0, (2.21)

c f (x,0, t ) = cm(x,0, t ) and
∂c f

∂y
(x,0, t ) = φDmy

D f

∂cm

∂y
(x,0, t ). (2.22)

In the following section, we employ asymptotic homogenization to relate dispersion

coefficient in the coupled channel-matrix system with the effective properties of the

matrix.

2.3 Homogenization and Upscaled Equations

To derive the upscaled transport equations, we apply rescaling and asymptotic

analysis to the ADEs (2.18). We introduce the rescaled longitudinal coordinate ξ and a

coefficient α such that

x := ξpε, and Pe := ε−α. (2.23)
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Equations (2.18a) and (2.18b) take the form

εPe

(
∂c f

∂t
+ u fp

ε

∂c f

∂ξ

)
= εD f

∂2c f

∂ξ2
+D f

∂2c f

∂y2
, (2.24a)

εPe

(
∂cm

∂t
+ ump

ε

∂cm

∂ξ

)
= εDmx

∂2cm

∂ξ2
+Dmy

∂2cm

∂y2
. (2.24b)

Let us define the cross-sectional averaging operator

〈·〉 = 1

L?

ˆ L?

0
· dy, (2.25)

where L? = 1 for the channel and L? =−h for the matrix. Also, we employ the ansatz

ci = c(0)
i (ξ, t )+p

εc(1)
i (ξ, y, t )+εc(2)

i (ξ, y, t )+O (ε
p
ε), i = { f ,m}, (2.26)

where c( j )
i is the j th-order term in the expansion of concentration ci . Substituting (2.26)

in (2.24) while applying the averaging operator (2.25) leads to a system of coupled

upscaled (effective, macroscopic) equations (see Appendix)

ε2Pe

(
∂〈c f 〉
∂t

+〈u f 〉
∂〈c f 〉
∂x

)
= ε3D?

f

∂2〈c f 〉
∂x2

−φ
[
ε2PeN1

∂〈cm〉
∂x

+ 3Dmy

h
(〈c f 〉−〈cm〉)

]
,

(2.27a)

ε2Pe

(
∂〈cm〉
∂t

+〈um〉∂〈cm〉
∂x

)
= ε3D?

m
∂2〈cm〉
∂x2

+ 1

φ

[
ε2Pe

M1

h

∂〈c f 〉
∂x

+ 3D f

h
(〈c f 〉−〈cm〉)

]
,

(2.27b)

where

M1 =−
(
Ψ

6
+ A

2
+B

)
and N1 = Ψh

λ2
− F

λ

(
eλh −1

)
+ E

λ

(
e−Λ−1

)
. (2.28)

subject to

〈c f 〉(x = 0, t ) = 1, 〈c f 〉(x =∞, t ) = 0, 〈c f 〉(x, t = 0) = 0, (2.29)

∂〈cm〉
∂x

(x = 0, t ) = 0, 〈cm〉(x =∞, t ) = 0, 〈cm〉(x, t = 0) = 0, (2.30)
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under the assumption that 〈c(1)
i 〉 = 〈c(2)

i 〉 = 0, i = { f ,m}, and provided the conditions

1. ε¿ 1,

2. Pe < ε−1/2,

are met. Condition (1) ensures that geometric scales separation exists and is satisfied

when the channel is long and thin. Condition (2) provides an upper bound on the

Péclet number. To ensure the higher order correction terms have zero mean, we set

〈c(1)
i 〉 = 〈c(2)

i 〉 = 0 [216].

The advection dispersion equations (3.6) are coupled through a source term

describing the mass exchange between the matrix and the channel. Unlike existing

works [266, 149], that postulated the coupling in the form of a storage term only, i.e.

(〈c f 〉−〈cm〉), our analysis demonstrates that an additional contribution due to con-

centration gradients along the channel, i.e. ∂〈ci 〉/∂x, i = {m, f }, must be considered

as well. We emphasize that the flux ∂〈cm〉/∂x is an advective term contributed by

the non-zero permeability matrix. This is different from [303], [79] or [269], who only

consider diffusive transport in the porous medium.

In (3.6), D?
f and D?

m are the dispersion coefficients for the channel and the

matrix, respectively. The channel dispersion coefficient D?
f is defined as

D?
f = D f +Pe2 I f

D f
, (2.31)

or, equivalently and without loss of generality,

D?
f = 1+Pe2I f , (2.32)
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if D? ≡ D̃ f and D f ≡ 1 in (2.24) and (2.31), respectively. In the following, we will use the

second expression (2.32) (i.e. D f ≡ 1) as it allows a direct comparison with formulas

derived by other authors [134, 118, 79]. In (2.32), I f = 3
560Ψ

2+ 1
40 AΨ+ 7

360 BΨ+ 7
240 A2+

1
24 AB , i.e.

I f =
Ψ2

105

[
1+ g (λ,Λ)

]
(2.33)

where

g (λ,Λ) = 7

3

(
eΛ−1

)[
eΛ−1+λ(1+eΛ)

]
λ2

(
1+e2Λ

) (2.34)

or, equivalently,

g (λ,Λ) = 7

3λ

[
tanhΛ+ 1

λ
(1− sechΛ)

]
. (2.35)

Also, from (2.11) it is immediate to show that

Uslip

Ψ
=−3

7
g (λ,Λ), (2.36)

i.e. the normalized interfacial velocity −Uslip/Ψ is solely controlled by the porous

matrix properties.

We emphasize that D?
f explicitly depends on λ (inverse of the dimensionless

permeability) through I f . The matrix dispersion coefficient is

D?
m = Dmx −Pe2 Im

Dmy
, (2.37)

where

Im = 1

h

ˆ 0

−h
um(y)N (y)dy, (2.38)
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and

N (y) =
ˆ y

0
dy ′
ˆ y ′

0
um(y?)dy?, 0 < y? < y ′, 0 < y ′ < y. (2.39)

The derivation details are presented in Appendix.

2.4 Dispersion Coefficient and Matrix Properties

In order to investigate the impact of matrix effective properties, h and λ, on

macroscale transport in the channel, we compare D?
f in (2.32) with the dispersion

coefficient Dd obtained by [79] for a coupled system with purely diffusive transport

in the matrix (i.e. λ→∞ or k → 0, and h 6= 0). To isolate the effect of the width of the

porous medium and its permeability, h and λ, on channel macroscopic transport, we

normalize both coefficients by the Aris-Taylor dispersion coefficient DAT for a single

channel (i.e. λ→∞ or k → 0, and h = 0) and define

κ f :=
D?

f

DAT

and κd := Dd

DAT

(2.40)

where [79, 134]

Dd = 1+ 1

175
Pe2 and DAT = 1+ 2

105
Pe2. (2.41)

In Figure 2.2, we plot κ f and κd as a function of Pe and λ, for a fixed h. It

shows that two thresholds exist such that κ f is constant for Pe < Pemin and Pe > Pe?.

For small Péclet number (Pe < Pemin ≈ 1), κ f → κd , i.e., the dispersion coefficient for

the coupled system with permeable matrix (finite λ) converges to its non-permeable
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Figure 2.2: Normalized dispersion coefficients κ f (solid red lines) and κd (dashed

back line) versus Pe for different values of λ and Λ. Also, Ψ=−0.78 and h = 10.
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matrix limit (λ→∞, h 6= 0) independent of h and λ. When Pe < 1, advective mixing

both in the matrix and channel is negligible relative to diffusive mixing. As a result,

κ f → κd and κd → 1. In the intermediate range of Péclet numbers (1 < Pe < Pe?), κ f

changes from κ f = 1, to κ f = κ f (λ,h) when Pe > Pe?. It is worth noticing that the

dispersion coefficient can overcome its purely diffusive limit when λ< 1, i.e. mixing is

enhanced compared to a channel of halfwidth b. When 1 < Pe < Pe?, κ f is a function

of Pe, h and λ. Therefore, the matrix properties (or λ and h) and boundary conditions

(or Pe) can be independently modified to achieve the desired dispersion coefficient.

As mentioned above, for large Péclet number (Pe > Pe?), κ f reaches a Pe inde-

pendent asymptotic value κλ,h , i.e. limPe→∞κ f = κλ,h . In this regime, for any given Pe,

the dispersion coefficient increases with decreasing λ (Figure 2.2). This phenomenon

is attributed to a decreasing mass flux at the interface between the channel and the ma-

trix, and a resulting decreasing mass loss toward the matrix. Such mass loss is smaller

compared with the zero-permeability case, where no solute is transported from the

upper steam by the flow in the matrix. This is a newly identified mechanism regulating

mass exchange between the channel and the matrix, which is purely controlled by the

matrix properties (λ and h) at fixed operating conditions (i.e., constant Péclet number).

This mechanism is different from the mass transfer mechanism first proposed by [360]

and then quantified by [79], where the channel-matrix interface flux increases (and

dimensionless dispersion coefficient κd decreases) with increasing Péclet number

and is independent of matrix properties λ and h. In the zero permeability limit, i.e.,

λ→∞, and for fixed Pe, κ f → κd , as expected. In the following, we focus on the study
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of the dispersion coefficient in the matrix only κ f , since it is deemed more relevant to

many engineering applications where transversal mixing enhancement in the channel

is the primary target.

Threshold value and scaling for thin and thick porous matrices We aim to

identify the scaling behavior of κ f in different regimes, if it exists. Combining (2.33)

and (2.32) with (2.40), leads to

κ f = 105
1+Pe2I f

105+2Pe2 (2.42)

with I f given by (2.33). We define κ f ,Pe→0 and κ f ,λ→∞ as the fracture dimensionless

dispersion coefficients in the two purely diffusive limits: Pe → 0 for any λ, and λ→∞

for any Pe, respectively. The coefficientκ f ,Pe→0 corresponds to the scenario where mass

transport in the matrix is driven solely by diffusion since Pe = 0; κ f ,λ→∞ corresponds

to the case of diffusive transport in an impermeable matrix. The latter differs from

Aris-Taylor dispersion in that the channel-porous interface is impermeable to flow,

but permeable to mass. If Pe → 0, D?
f = 1 and

κ f ,Pe→0 :=
limPe→0 D?

f

DAT

= 105

105+2Pe2 . (2.43)

Since Λ→∞ when λ→∞ for h 6= 0, then

κ f ,λ→∞ :=
limλ→∞ D?

f

DAT

= 105+Pe2Ψ2

105+2Pe2 . (2.44)

Combining (2.43) and (2.44) with (2.42), leads to the following expression for κ f ,

κ f = κ f ,Pe→0 + g (Λ,λ) · (κ f ,λ→∞−κ f ,Pe→0), (2.45)



51

where g (Λ,h) is defined in (2.35). In order to isolate the dependence of κ f from

the matrix properties, λ and h, we define the normalized dimensionless dispersion

coefficient Π

Π := κ f −κ f ,Pe→0

κ f ,λ→∞−κ f ,Pe→0
(2.46)

which satisfies

Π= g (Λ,λ) =−7

3

Uslip

Ψ
, (2.47)

i.e. it is independent of Pe number. It is worth noticing thatΠ scales as Uslip normalized

by Ψ. In Figure 2.2, κ f reaches a Pe-independent threshold when Pe → ∞. Since

limPe→∞(κ f ,Pe→0) = 0 and limPe→∞(κ f ,λ→∞) =Ψ2/2, then

lim
Pe→∞

κ f ∼ lim
Pe→∞

Π. (2.48)

From (2.47), we obtain

κthreshold

f = lim
Pe→∞

κ f =−7Ψ

6
Uslip = Ψ2

2
Π, (2.49)

i.e. in the advective limit the dispersion coefficient is controlled by the slip velocity at

the interface between the porous matrix and the channel.

In the following, we study the scaling behaviour ofΠ (or Uslip/Ψ) for thin (Λ¿ 1)

and thick (ΛÀ 1) porous matrices.

2.4.1 Thin porous matrix limit,Λ¿ 1

The asymptotic expansion of (2.47) about Λ= 0, leads to

Π= 7

3

[(
h + h2

2

)
−

(
h

3
+ 5h2

24

)
Λ2 +O(Λ5)

]
. (2.50)
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Figure 2.3: (a) Scaling behavior of the normalized dispersion coefficient Π defined in

(2.46) for thin porous media (Λ. 1) and (b) h < 1 and h > 1. The coefficient Π, i.e.

transverse dispersion, is controlled by the width h of the porous matrix when Λ. 1;

this dependence goes from linear to quadratic as h increases above the threshold

h ≈ 1.
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since tanhΛ≈Λ−Λ3/3+O(Λ5) and sechΛ≈ 1−Λ2/2+5Λ4/24+O(Λ6). Retaining the

leading order term, we obtain

Π∼ h

(
1+ h

2

)
, for Λ¿ 1, (2.51)

which shows that dispersion is controlled by the matrix thickness h for thin porous

layers. Figure 2.3(a) shows the scaling behavior of Π(h2 +2h)−1 versus Λ and suggests

that the scaling (2.51) be a valid approximation for Λ→ 1 as well, i.e.

Π∼ h

(
1+ h

2

)
, for Λ. 1. (2.52)

Further, two scaling regimes exist for h ¿ 1 and h À 1, i.e.

Π∼ h, for Λ. 1, h ¿ 1 (2.53a)

Π∼ h2, for Λ. 1, h À 1 (2.53b)

In Figure 2.3(b), we plotΠh−1 as a function of h for differentΛ ∈ [0.001, 1]. As expected

Πh−1 is constant when h ¿ 1 and grows linearly with h when h À 1. This result

suggests that transversal mixing in a channel with a thin porous coating (Λ¿ 1) is

controlled by h, and is more sensitive to the matrix width when h À 1, i.e. for a given

increase in H , ∆H , better mixing can be achieved if H > b.

2.4.2 Thick porous matrix limit,ΛÀ 1

In the limit Λ À 1, i.e. for thick porous matrices, we expand (2.47) about

1/Λ= 0 and obtain

Π= 7

3

(
hΛ−1 +h2Λ−2

)
e2Λ−h2Λ−2eΛ−hΛ−1

1+e2Λ
+O(Λ−2), (2.54)
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Figure 2.4: Scaling behavior of the normalized dispersion coefficient Π defined in

(2.46) for thick porous media (ΛÀ 1). The normalized dispersion coefficient is con-

trolled by matrix permeability only, whenΛÀ 1.

since eΛ(1+e2Λ)−1 → 0 and e2Λ(1+e2Λ)−1 → 1 whenΛ→∞. At the leading order

Π∼ 1

λ
, for ΛÀ 1, (2.55)

i.e. the normalized dispersion is controlled by matrix permeability only. Figure 2.4

shows that Πλ reaches a Λ-independent value for ΛÀ 1, as suggested by (2.55). This

analysis shows that when increasing the thickness of the matrix for a given λ, further

increments of h will no longer affect the slip velocity when ΛÀ 1. In this regime,

the bottom wall of the matrix (located at y =−h) becomes “invisible” to the flow and

transport in the channel, and changes in h will not influence the channel dynamics.

For a given channel-matrix system withΛÀ 1 an effective control of the dispersion

can be achieved by modifying the permeability of the porous medium.
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2.5 Validation and Model Accuracy: Numerical Experi-

ments

The system (3.6) is composed of two one-dimensional transient coupled up-

scaled equations. The coupling is due to the mass exchange at the interface between

the channel and the matrix. Here, we solve the coupled system (3.6) numerically. We

test the accuracy of the upscaling approximation (3.6a) and (3.6b) by comparison with

the averaged 2D solution obtained from numerically solving (2.18a) and (2.18b).

2.5.1 Code validation

For the discretization of the 1D equations (3.6), we use implicit Euler in time

and second-order central finite differences discretization in space. For the 2D equa-

tions (2.18), we use backward Euler for the time discretization and second-order

discretization in space, with upwinding for the advective term and central finite dif-

ferences for the other terms. A convergence study is performed on the 1D solver

by refining the grid size and time step. We validate the 2D solver by setting φ = 1,

D f = Dmx = Dmy and u f = um = u? in (2.18). This corresponds to passive transport in

a single channel (and no porous medium) with uniform velocity u? for which a closed

form analytical solution is available [233]. We compare the numerical average of the

pore-scale concentration c f with the analytical solution for the continuous injection
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Figure 2.5: Comparison between the averaged 2D concentration in the channel and

the 1D analytical solution, equation (2.56) [233], for passive scalar transport in a sin-

gle channel with uniform velocity and constant injection. The average concentration

〈c f 〉 is plotted in terms of the dimensionless distance from the channel inlet at dif-

ferent instances in time t̃ . h = 10, φ = 1, ε = 0.01, D f = Dmx = Dmy = 1 and and

u f = um = u? = 0.01.

of a passive solute. The mean concentration profile satisfies [233]

〈c f 〉(x, t ) = 1

2

[
erfc

(
x −u?t

2
√

D f t

)
+exp

(
u?x

D f

)
erfc

(
x +u?t

2
√

D f t

)]
. (2.56)

Figure 2.5 shows the match between the numerically upscaled 2D concentra-

tion and the analytical solution (2.56).

2.5.2 Upscaled Model’s Accuracy and Predictivity

We verify the accuracy of the upscaling procedure by comparing the macroscale

concentrations 〈c f 〉1D and 〈cm〉1D obtained from (3.6) with the numerical averages



57

of the microscale two-dimensional concentrations obtained from (2.18), 〈c f 〉2D and

〈cm〉2D. The upscaled model (3.6) is considered predictive of pore-scale behavior if

the absolute error between upscaled and microscale quantities is bounded by
p
ε, as

prescribed by the homogenization procedure. All parameters in the 2D pore-scale

equations are uniquely mapped onto the effective parameters of the corresponding

macroscopic system.

Without loss of generality, we consider a continuous injection at the channel

inlet, i.e. c f (x = 0, y, t ) = 1 and ∂xcm(x = 0, y, t ) = 0. This corresponds to the inlet

boundary conditions 〈c f 〉(x = 0, t ) = 1 and ∂x〈cm〉(x = 0, t ) = 0 in the upscaled model.

In Figure 2.6, we compare the averaged fully-resolved two-dimensional and the

upscaled approximated solutions 〈c f 〉2D(x, t ) and 〈c f 〉1D(x, t ), respectively, for different

values of Péclet, Pe = {0.1,10,100,1000}, and porosity, φ = {0.01,0.1}, and plot the

absolute error E f (x, t ) := ∣∣〈c f 〉2D −〈c f 〉1D

∣∣ . The simulations in Figure 2.6 are run for

ε = 0.02, λ = 10 and φ = 0.1. As predicted, the 1D equations capture the pore-scale

dynamics within errors of order
p
ε for Pe < ε−1/2 ≈ 7. Importantly, for 10 < Pe < 100,

the 1D simulation is still accurate. For Pe = 1000, the error is not bounded by
p
ε at

early times, but the 1D model’s accuracy is recovered at later times. The simulations

parameters are ε = 0.02, λ = 10, Ψ = −0.78, φ = 0.1, D f = 1, Dmx = 0.1, Dmy = 0.1,

h = 10.

In Figure 2.6, we show that the absolute error between the 2D and the 1D

models decreases with increasing time and distance from the inlet for all scenarios.

More specifically, the macroscopic 1D model performs within the expected accuracy
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Figure 2.6: (Left) Average concentration profiles 〈c f 〉 along the channel obtained

either from the upscaled 1D (solid lines) or the pore-scale 2D equations (dashed

lines) for different instances in time and Péclet numbers, i.e. Pe = {0.1,10,100,1000}.

(Right) Absolute error E f (x, t ) := ∣∣〈c f 〉2D −〈c f 〉1D

∣∣ corresponding to each simulation.

The dashed horizontal line represents the error bound
p
ε prescribed by homoge-

nization theory.
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Figure 2.7: Simulation parameters: ε = 0.02, λ = 31.6, φ = 0.1, Ψ = −0.78, D f = 1,

Dmx = 0.1, Dmy = 0.1, h = 10. (Left) Average concentration profiles 〈c f 〉 along

the channel obtained either from the upscaled 1D (solid lines) or the pore-scale

2D equations (dashed lines) for different instances in time. (Right) Absolute error

E f (x, t ) := ∣∣〈c f 〉2D −〈c f 〉1D

∣∣ corresponding to each simulation. The dashed horizontal

line represents the error bound
p
ε prescribed by homogenization theory.

for Pe < ε−1/2 (≈ 7 for ε= 0.02), i.e. E f (x, t ) is bounded by
p
ε, see Figure 2.6(d). The

error bound is satisfied even when the constraints on the Péclet number are relaxed,

i.e. O (ε−1/2) ≤ Pe ≤ O (ε−1), or 10 ≤ Pe ≤ Pe? in Figures 2.6(b) and (c). This result

highlights that the conditions (1) and (2) are sufficient, but not necessary, to guarantee

that error bounds prescribed by homogenization theory are realized. For Pe >O (ε−1)

(or Pe > Pe?), E f (x, t ) >p
ε for early times; the 1D model regains its accuracy at late

(dimensionless) times t > εPe, i.e. t > 20 in Figure 2.6(a).

In Figure 2.7, we plot the profiles of the average concentration in the channel

obtained from the numerically averaged 2D equations and the 1D upscaled equations.

The simulations are run for λ= 31.6 and φ= 0.1. The error between the microscale
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and the macroscale equations, Figure 2.7(right), is lower compared to the scenario

with the same Péclet number and higher permeability and porosity, specifically Figure

2.6(c). This is consistent with the upscaling approach, where higher-order terms in the

transverse direction are neglected, thus leading to increased error for highly permeable

matrix.

To further investigate the accuracy of the upscaled equations in different

regimes and the temporal dependence of the error, we plot the solute breakthrough

curves at a given location x = x? along the channel.

In Figure 2.8, we plot the concentration profile for three Péclet numbers and

two values of dimensionless permeability, λ=
p

102 and λ=
p

103. For Pe ¿ 1, there is

an excellent agreement between the upscaled and two-dimensional solutions for all

times and both permeability values. The match is within the expected error bounds,

Figure 2.8, top. For higher Péclet numbers, Pe = 1 (Figure 2.8, middle) and Pe = 1000

(Figure 2.8, bottom), the upscaled solution can still capture the averaged pore-scale

concentration despite condition (2) is violated for Pe = 1000. Good performance of

the model in regimes where (2) is violated can be expected since such a constraint

is simply a sufficient (and not necessary) condition to guarantee that the upscaled

equation (3.6) describe spatially averaged pore-scale processes within errors of order

p
ε. For Pe = 1000 the match between the upscaled and the averaged pore scale

solution improves at later times. Since condition (2) is violated, the transient terms

in the expansion, specifically ∂t c(0)
f and ∂t c(0)

m , in (A.3a), are not negligible and should

be accounted for at the leading order. Failing to do so yields to a slightly higher
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Figure 2.8: Time evolution of the channel average concentration 〈c f 〉 calculated at

location x? = b for different λ and Péclet numbers. The parameters used in the sim-

ulations are φ= 0.01, Ψ=−0.78, ε= 0.01, D f = 1, and h = 10.
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Figure 2.9: Difference between the average concentration in the channel 〈c f 〉 for two

values of dimensionless permeability λ =
p

102 and λ =
p

103 and different Péclet

numbers, obtained from (3.6). A set of parameters used in the simulations is: φ= 0.5,

Ψ = −0.78, ε = 0.02, D f = 1, Dmx = 0.1, Dmy = 0.1, h = 10. Concentration
〈

c f
〉

is

measured at x = 1.

approximation error, which decreases in time as the solution approaches the steady

state and the transient terms become increasingly small, i.e. ∂t c(0)
f → 0 and ∂t c(0)

m → 0

as t →∞.

2.5.3 Upscaled model results

Figure 2.9 shows the difference between the average concentrations in the

channel calculated from (3.6) for two values of λ, λ=
p

102 and λ=
p

103 at a given

location along the channel, and for different Péclet numbers. Figure 2.9 shows how
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differences in matrix permeability become more relevant for intermediate Péclet

numbers, i.e., Pe ∈ (1,Pe?), when the interplay between advective and diffusive mass

transfer is strongly controlled by matrix properties. For Pe < 1, diffusive transport

is dominant. In this scenario, the geometrical characteristics of the matrix have a

small impact on transport. Similarly, for Pe > Pe?, the impact of matrix permeability

decreases. In advection-dominated regimes, concentration reaches saturation (c f =

1) in a short period of time: this leads to a weak dependence of the macroscale

concentration on the matrix topological features.

Figure 2.10 shows the temporal evolution of the macroscopic concentration in

the channel and the matrix at a given location along the flow direction. In diffusion-

dominated regimes, i.e. when Pe < 1, Figure 2.10 (top), the concentration difference

in the matrix and the channel is very small. Fast diffusive mass transport enhances

transversal mixing at the interface between the matrix and the channel, and leads to

decreased differences in concentration between the former and the latter. For high

Péclet numbers, Figure 2.10 (bottom), the difference in the average concentration in

the matrix and the channel increases due to the delay in advective mass transfer in the

matrix. As a result, the concentration gradient, and therefore the mass flux, across the

matrix-channel interface increases with Pe for a given permeability value.

2.5.4 Comparison with existing models

In this section, we compare the proposed model with that introduced by Dejam

et al., who assume that mass transport in the porous matrix is purely diffusive and
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Figure 2.10: Comparison between 〈c f 〉 (solid lines) and 〈cm〉 (dashed lines) for low

(top) and (high) Péclet numbers. The simulation parameters are φ = 0.5, Ψ = −0.78,

ε = 0.02, D f = 1, Dmx = 0.1, Dmy = 0.1, h = 10. Concentration
〈

c f
〉

and 〈cm〉 are

measured at x = 1.
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transverse to flow (i.e. y-direction). This corresponds to the k = 0 (or λ→∞) limit

in the present model. To analyze differences and/or similarities in performance

between the two models, we consider two configurations: a highly permeable (λ= 0.3)

and a nearly impermeable (λ = 100) matrix. Dejam et al.’s solution for the average

concentration in the fracture 〈c〉 f ,DHC is [79]

〈c〉 f ,DHC (x, tD ) = eαtD

tD

{
1

2
Ĉ f ,DHC(x,α)+ℜ

[
n∑

l=1
(−1)lĈ f ,DHC(x,α+ lπ

tD

p−1)

]}
(2.57)

where ℜ[·] represents the real part of a complex function, α controls the accuracy of

the numerical Laplace transform and tD = t̃/(b2/Dmy ). In the following comparative

study, we use the dimensionless time defined in (2.24), instead. Also, we set αtD = 4

and use n = 1e5 terms in the summation.

In Figure 2.11 we compare the models (3.6a) and (2.57) (by Dejam et al.) with

the macroscopic concentration obtained from averaging the pore-scale solution. For

low Péclet numbers, both models perform well independently of matrix permeability.

For high Péclet number (Pe = 100) and low permeability (or high λ), Dejam et al.’s

solution shows a better accuracy than the upscaled model proposed here. This is

apparent from the error E f plotted in Figure 2.11 as a function of time: while model

(3.6a) can be still considered predictive since E f is bounded by
p
ε, Dejam et al.’s

solution has a lower maximum error. Instead, for Pe = 100 and high permeability

values (or low λ), our upscaled equation (3.6a) is more accurate than (2.57). Impor-

tantly, in this scenario, the error in Dejam et al.’s solution is not bounded by
p
ε, i.e.

the error is larger than that prescribed by the upscaling procedure. Finally, for very
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Figure 2.11: (Left) Comparison between the breakthrough curves obtained from

(3.6a) and (2.57) (by Dejam et al.) with the averaged pore-scale solution for two

permeability values, λ = 0.3 and λ = 100. (Right) Absolute errors between up-

scaled solutions (3.6a) and (2.57) and the averaged pore-scale solution E1D(x, t ;λ) :=∣∣〈c f 〉2D −〈c〉 f ,1D

∣∣ and ED (x, t ;λ) := |〈c f 〉2D −〈c〉 f ,Dejam et al. |, respectively. The simulations

parameters are: ε= 0.02, φ= 0.1, Ψ=−1, D f = 1, Dmx = 0.1, Dmy = 0.01, h = 10.
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large Pe (Pe = 1000), both models give higher errors at early times, regardless of the

permeability value. This analysis demonstrates that the model described by (3.6a)

and Dejam et al.’s solution are complementary to each other since the former can

accurately describe macroscopic mass transport in advection-dominated regimes in

coupled systems with highly permeable matrices, while the latter captures transverse

diffusion into the matrix only in the low permeability case.

2.6 Conclusions

Flow and transport above micro-patterned and porous surfaces occur in a vari-

ety of systems, ranging from engineered surfaces to bioreactor devices. The achieve-

ment of optimal macroscopic properties, e.g. improved mixing, in a number of such

applications is hampered by the lack of understanding of how surface/matrix proper-

ties (e.g. porosity, permeability and thickness) relates to the system- or macro-scale.

In this work, we use perturbation methods to study passive scalar transport

in a coupled channel-matrix system and obtain an analytical relationship between

matrix properties and solute transverse dispersion. To the best of our knowledge, this

is the first analytical relationship that establishes a connection between macroscopic

transport features, matrix properties and transport regimes (i.e. Péclet number).

We accomplish this by deriving upscaled equations for mass transport in a channel-

matrix coupled system, while accounting for two-dimensional diffusion and non-

uniform velocity field both in the channel and the matrix. The average velocity profile
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in the coupled system, as well as the slip velocity at the channel-matrix interface,

is determined by a two-domain approach where the Stokes’ and Darcy-Brinkman

equations are coupled to describe flow in the channel and the permeable matrix,

respectively.

Our results show that the impact of matrix properties on solute transversal

mixing and, more specifically, on the macroscopic dispersion coefficient is controlled

by the magnitude of Péclet number. In particular, for Pe < 1, transport in the channel-

matrix system is dominated by diffusion, and matrix properties have little to no impact

on macroscopic transport. In this regime, mixing is controlled by diffusion in the

direction transverse to the mean flow and the dimensionless dispersion coefficient

is independent of both Pe number and matrix permeability. When 1 < Pe < Pe?, so-

lute transport is controlled by both diffusion and advection. The interplay between

these mass transport mechanisms is strongly dependent on both matrix permeability

and Péclet number. In this regime, macroscale dispersion can be controlled both by

active and passive mechanisms: the former consist in modifying the operating flow

conditions of the device (i.e. Péclet number), while the latter are based on modify-

ing the surface coating properties (i.e. permeability). For Pe > Pe?, mass transport

is dominated by advection and the dispersion coefficient reaches a constant value

independent of Péclet number and function of matrix permeability only. By means of

asymptotic analysis, we demonstrate that different scaling regimes of the normalized

dispersion coefficient Π exist for thin (Λ . 1) and thick porous layers (ΛÀ 1). In

particular, Π is controlled by the dimensionless width h of the porous matrix, when
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Λ. 1, and scales linearly or quadratically with h, when h < 1 or h > 1, respectively.

In the thick porous medium regime, Π is controlled by matrix permeability λ. This

provides specific design guidelines to optimize mixing in channel-porous systems.

The upscaled model was validated against numerical simulations of the fully

resolved two-dimensional channel-matrix coupled system. The upscaled solution

agrees with the average concentration obtained from the exact two-dimensional ADEs

within the error bound prescribed by the homogenization approach and performs

well for large Pe, despite condition (2) is violated. This is to be expected since the latter

is a sufficient (and not necessary) condition to guarantee that the upscaled equation

(3.6) describe spatially averaged pore-scale processes within errors of order
p
ε.

Finally, a detailed comparison between our model and that of Dejam et al.

[79], which only considers one-dimensional transverse diffusion in the matrix, shows

that the two models are complementary to each other. For systems with permeable

matrices, we found our model to be superior to Dejam et al.’s for all considered Péclet

numbers. Instead, unlike Dejam et al.’s, our model cannot accurately capture the

tailing effect introduced by the purely diffuse interfacial mass flux in impermeable

matrices.

To the best of our knowledge, this is the first study, which provides (i) a rigorous

basis to relate matrix permeability to dispersion coefficient in coupled channel-matrix

systems and (ii) quantitative guidelines for the design of porous/micro-patterned

surfaces. The analysis also shows the possibility of controlling dispersion by either

active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling
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matrix properties) in the appropriate range of Péclet numbers.

Ling, B., Tartakovsky, A., Battiato, I., (2016), ’Dispersion controlled by perme-

able surfaces: surface properties and scaling’. Journal of Fluid Mechanics, 801, 13-42.



Chapter 3

Patterned microchannels as

benchmark experiments for transport

in fracture-matrix systems

3.1 Introduction

Microfluidic devices are widely used to study transport in porous media. Pore-

scale experiments on microchips are in fact routinely employed to test and validate

macroscopic approximations and models. One of the many advantages of using mi-

cromodels is the possibility of controlling the micro-scale topology of the medium

and, consequently, studying the impact of pore-scale topological features on system-

scale (macroscale) phenomena, e.g. flow and transport as well as solute mixing and

reactions[351, 368]. Combined with advanced imaging methods[343], solute concen-

71
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tration field can be measured at a fine temporal resolution (10 ∼ 100 ms per frame).

The underlying assumption to relate flow and (reactive) transport processes at the

pore-scale with their macroscale counterpart (i.e. system-scale response) is the (mini-

mum) requirement that separation of geometrical length-scales between the micro

and the macro-scale must exists, i.e. the typical length scale associated with the obsta-

cles, e.g. their mean diameter d , should be much smaller than a characteristic length

at the mascroscale, e.g. the length of the microfluidic chip L. This effectively translates

in the possibility of defining a Representative Elementary Volume (or REV), i.e. an

averaging volume whose characteristic scale W is associated with the width of the mi-

crofluidic ship (or the porous layer) such that d ¿W < L. This condition can be easily

enforced by design when the microchip is occupied by solid obstacles throughout its

width. For example Willingham et al.’s and Zhang et al.’s microchips[351, 368] have

d ≈ 200−300µm, W = 1 cm and L = 2 cm. Numerous other studies have used similar

configurations to investigate, e.g., the impact of pore-scale geometry on macroscopic

reaction rates, mixing dynamics, multiphase flow dispacement etc.

Systems with a fracture embedded in a matrix with interfaces allowing ex-

change of mass/momentum between the two regions exist in a variety of natural and

industrial processes. Some examples include nutrient uptake from roots [197, 110],

contaminant transport in fractured rocks, flows over sediments beds [112, 229, 32, 188],

slippery liquid-infused porous surfaces [71, 137], flows above carbon nanotube forests

[78, 26, 28], ultrafiltration of colloids [200], nutrient delivery in micro-fluidic biore-

actor devices [121, 118] and chaotic mixing in microchannels [298, 297]. Coupled
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fracture-matrix systems present unexpected experimental and theoretical challenges

both in terms of controlled pore-scale experiments and macroscale models validation

and verification, compared to the study of more classical Darcy-type experiments on

microchips. Theoretically, the difficulty of studying solute transport in such systems

lies in the dynamic coupling between the two regions (fracture of aperture 2b and

matrix of width W ) and in the need to incorporate different geometrical properties

of the matrix into solute transport models at the macroscale. Both objectives are

addressed, though partially, by employing upscaling methods (e.g.homogenization

method, stochastic homogenization, volume averaging) to derive 1D macroscopic

models for the average concentration in the fracture
〈

c f
〉

(and the matrix 〈cm〉) under

the assumption of a thin fracture (i.e. b ¿ L), and to determine the effective disper-

sion coefficient in the fracture in terms of the effective matrix properties (generally

porosity only). Yet, most one-dimensional thin fracture models [303, 79], as well as

two-dimensional dispersion models [269], assume purely diffusive transport in the

matrix, and routinely neglect permeability of and dispersive transport in the matrix.

Only recently, attempts to account for matrix permeability have been undertaken

[118, 187]. Ling and et al.[187] utilize perturbation theory and upscaling techniques to

obtain the fracture dispersion coefficient in terms of matrix porosity and permeability.

Notwithstanding the variety of proposed models, there is no experimental evidence of

their validity, or regimes of applicability. While experiments on real fractured porous

media can be conducted, there is little control on porous matrix topology. As a result,

identification of a relationship between pore-scale matrix structure and fracture dis-
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persion becomes challenging. Experiments on microfluidic devices would overcome

such a difficulty. Yet, the challenge of employing microchips to study fracture-matrix

systems and validate corresponding theoretical models lies in (i) the presence of a

‘virtual’ interface between the fracture and the patterns, (ii) the open question of

whether or not few layers of discrete obstacles can be modelled as an effective medium

and (iii) how to properly define a REV across interfaces with discontinuos properties.

In this work, we compare experimental data from microfluidic cells patterned

with different topologies (transverse riblets and arrays of cylinders) with the macro-

scopic models by Dejam et al.[79] and Ling et al.[187], that account for purely diffusive

and dispersive transport in the matrix, respectively. The scope of the study is twofold.

On the one hand, we demonstrate that patterned microfluidic chips can be used as

experimental surrogates of fracture-matrix systems, and on the other, we examine

the influence of pore-scale matrix topology on macro-scale (continuum-scale) solute

dispersion. The experiments are designed to highlight the significance and influence

of matrix geometry on the accuracy of the theoretical solutions in different Péclet num-

ber regimes, and to develop a phase diagram to identify the applicability conditions of

each macroscopic solution.
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Figure 3.1: Schematics of the experimental setup: (a) micromodel design with valve

system, (b) exterior flow system, and (c) an example of measured concentration

distribution, where the dye concentration increases with the intensity of the green

colour.

3.2 Material and Methods

3.2.1 Micromodels

The micromodels used in this study have been fabricated at the Pacific North-

west National Laboratory, applying standard microphotolithography techniques. First,

the flow layer features, including the fracture and the porous matrix are printed on a

mask, Figure 3.1(a). A separate silicon wafer is then spin-coated with SU-8 photoresist
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before the wafer is exposed to UV light with the printed mask placed on top of it. The

exact same pattern is created on the silicon wafer during the developing process. The

silicon wafer is subsequently placed on a hot plate for heat treatment at a temperature

of 180◦C and kept for 30mins. After this treatment, the developed features have a depth

Hz = 28.0µm. A mixture of polydimethylsiloxane (PDMS) base and PDMS curing agent

is employed to produce replicas of the silicon micromodels using the wafer as the

mold. PDMS is poured onto the wafer and, after the curing process, the flow layer of

the micromodel is obtained, Figure 3.1(a). A control layer is bound to the flow layer

to keep the interior surfaces uniform and to control the inlet flow. The control layer

is patterned with an air valve, a thin elastomeric membrane which deforms when

air pressure (∼ 10 psi) is applied. The deformed membrane seals the flow channel to

prevent flow coming from the inlet. In the final step, the micromodel is bounded to a

glass slide using plasma and cured for 12 hours at 75◦C.

3.2.2 Visualization and Measurement

Alexa Flour 488 (ThermoFisher Scientific Inc., San Diego, CA), a green fluo-

rescent dye, is used for visualization and measurement of the concentration in the

micromodels. The initial concentration (c0) of the dye solution is 34.40 µmol·L−1.

The molecular diffusion coefficient of Alexa 488 in water is D0 = 4.35×10−10 m2s−1

at 20◦C [245]. Other properties (e.g. viscosity and density) of the dilute dye solution

are considered the same as those of DI-water. In all experiments, the laboratory tem-

perature is set to 21±0.5◦C. Thus, all fluid and transport properties are assumed to



77

c
0 0.2 0.4 0.6 0.8 1

I

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

t = 70 ms
t = 80 ms
t = 75 ms
I = 622:73 + 1:34e4 " c
I = 559:38 + 1:60e4 " c
I = 363:31 + 1:56e4 " c

c

I

Ic=1

Ic=0

Figure 3.2: Intensity-concentration relations for three exposure times. The error bar

represents three standard deviations.

be the same for all experiments. The micromodels are placed on a motorized stage

(Prior Scientific Instrument Inc., Rockland, MA), controlled by NIS-Element (Nikon,

Melville, NY) software, and Images of fluorescent intensity fields are recorded by a

CCD camera attached to a Nikon Ti Epi-fluorescence microscope (Nikon, Melville,

NY) with a 4X objective. During each experiment, typically lasting approximately 30

minutes, 500-1500 pictures are taken. In every experiment, the micromodel is first

saturated with DI-water, using inlet B before injection of the dye solution, see Figure

3.1(b). After visual inspection of the saturation, water injection is interrupted. To

prevent pre-mixing during this phase in the exterior tubing system, the air valve (A in

Figure 3.1(b)) is kept closed. Dye solution is then injected from inlet C (Figure 3.1-b)
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by a syringe pump (New Era, Farmingdale, NY) at a constant volumetric flow rate (Q).

Since the dye solution would occupy the tubing components between valves A, B, and

C, at the beginning of the dye injection experiment, valve A is opened while B is closed.

After each experiment, the tubing system and the micromodel are thoroughly cleaned.

3.2.3 Data Analysis

In this study, fluorescence concentration is computed using intensity concen-

tration calibration curves, c(I ), where c [-] is the concentration normalized by the inlet

concentration c0, and I [-] is the light intensity. To prevent ambient light pollution

during the measurement, the micromodel is covered by black foil. First, we test several

exposure times to determine those that lead to the best linear relationship between

light intensity, I , and concentration, c, as shown in Figure 3.2. The calibration is

performed using the linear relationship

I1 = I0 +αc, (3.1)

where α is the calibration constant, and I0 and I1 are the light intensities measured in

zero-concentration and fully fluorescence saturated domains (inset of Figure 3.2). The

results show that an exposure time of 75ms yields the best linearity (with α=1.56e4 [-]).

As a result, the exposure time was set to 75ms in all experiments.

3.2.4 Porous Structure and Experiment Matrix
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Table 3.1: Overview of experimental conditions: volumetric flow rate Q, Péclet num-

ber Pe, structure porosity φ, and obstacles dimensions d and w , as defined in Fig-

ure 3.1. For all micromodels, the chip’s length and depth are L = 15 mm and Hz =

28.0µm, respectively, the porous matrix width is W = 1.5 mm, and the fracture aper-

ture is b = 0.25 mm.

Q Pe φ d w

(µL hr−1) (-) (-) (mm) (mm)

C1-10 10 40.3

0.65 0.08 0.12C1-50 50 201.9

C1-100 100 403.7

C2-10 10 40.3

0.48 0.24 0.3C2-50 50 201.9

C2-100 100 403.7

C3-10 10 40.3

0.65 0.08 0.04C3-50 50 201.9

C3-100 100 403.7

R1-10 10 40.3

0.65 0.11 0.2R1-50 50 201.9

R1-100 100 403.7

R2-10 10 40.3

0.48 0.11 0.1R2-50 50 201.9

R2-100 100 403.7
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To test the ability of patterned microchannels to act as surrogates of coupled

channels/porous media flow systems, we design different pattern geometries to repre-

sent both highly permeable and nearly impermeable matrices (Table 3.1): (i) aligned

and staggered cylindrical posts (referred to as C structures), and (ii) rectangular riblets

perpendicular to the main flow direction (referred to as R structures), respectively. The

different matrix structures and obstacles’ dimensions are illustrated in Table 3.1. The

transverse riblets can model matrices with zero longitudinal permeability since the

net flux through the pattern is zero in the flow direction. Experiments are performed

at three different Péclet numbers, Pe, for each configuration with

Pe := Ub

D0
(3.2)

where U =Q/(2bHz) is the inlet mean velocity, b and Hz the channel half-width and

depth, respectively, and D0 the molecular diffusion coefficient. Concentration transect

data at two different locations along the flow direction (near the inlet, at x̃ = 2mm,

and near the center of the channel, at x̃ = 8mm) are collected.

3.2.5 Analytical Models

We investigate and quantify how representative the micropatterns are of porous

matrices with different permeabilities by comparing the collected transport data with

two analytical solutions for transport and dispersion in channels/fractures embedded

in non-permeable [79] and permeable [187] matrices. Both solutions describe the

spatio-temporal evolution of the dimensionless concentration in the channel and the
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matrix averaged over the channel and matrix width,
〈

c f
〉

and 〈cm〉, where 〈·〉 defines

an averaging operator

〈·〉 = 1

L?

ˆ L?

0
·dy (3.3)

with L? = 1 for the fracture and L? =−h for the matrix, and h =W /b the dimensionless

matrix width. The model proposed by Dejam and et al.[79] under the assumption

of only diffusive transport in an otherwise impermeable matrix is here referred to as

‘diffusive matrix model’ for simplicity. It is described by

εPe
∂
〈

c f
〉

∂t
+εPe

7

5
Vm

∂
〈

c f
〉

∂x
= ε2Dd

∂2
〈

c f
〉

∂x2
−3

(〈
c f

〉−〈cm〉) , (3.4a)

εPe
∂〈cm〉
∂t

= Dm
∂2 〈cm〉
∂y2

, (3.4b)

where ε= b/L, Vm is the dimensionless average velocity, Dm is the effective molecular

diffusion coefficient in the matrix normalized by D0, t = t̃U /L, x = x̃/L and y = ỹ/b.

The dispersion coefficient in the fracture is given by

Dd = 1+ 1

175
Pe2. (3.5)

The model proposed by Ling et al.[187] explicitly accounts for a permeable

matrix with porosity φ [-] and permeability k [L2], and is referred to as ‘dispersive

matrix model’. It is governed by the dimensionless system of equations

Pe

(
∂〈c f 〉
∂t

+〈u f 〉
∂〈c f 〉
∂x

)
= εD?

f

∂2〈c f 〉
∂x2

+φPe〈um〉∂〈cm〉
∂x

− 3φDmy

ε2h
(〈c f 〉−〈cm〉), (3.6a)

Pe

(
∂〈cm〉
∂t

+〈um〉∂〈cm〉
∂x

)
= εD?

m
∂2〈cm〉
∂x2

− Pe〈u f 〉
φh

∂〈c f 〉
∂x

+ 3D f

ε2φh
(〈c f 〉−〈cm〉), (3.6b)
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where D f is the dimensionless effective molecular diffusion coefficient in the fracture

and Dmy is the dimensionless effective molecular diffusion coefficient in the matrix in

the y-direction [187]. In this study, we let D f = Dmy = 1. The velocities u f and um in

the fracture and matrix are obtained by solving the coupled Stokes’ equation in the

fracture and Darcy-Brinkman equation in the matrix[187]

u f (y) =−Ψ
2

(y2 + Ay +B), y ∈ [0,1], (3.7a)

um(y) =−Ψ
λ2

(1+Eeλy +Fe−λy ), y ∈ [−h,0], (3.7b)

where Ψ = b2∇P/µU is the dimensionless pressure gradient (with µ the dynamic

viscosity and ∇P the dimensional pressure drop), A = 2, B = 2λ−2(−1+eλh)(−1+eλh +

λ+λeλh)(1+e2λh)−1, E = eλh(−1+λeλh)(1+e2λh)−1, F = (λ+eλh)(1+e2λh)−1, and

λ= b

k
(3.8)

is the inverse of the dimensionless permeability. The dispersion coefficients D?
f and

D?
m , that explicitly depend on λ, are given by

D?
i = 1+Pe2Ii (λ,h,Ψ) (3.9)

where Ii (λ,h,Ψ) = 〈
ui
´ y

0

´ y
0 u′

i (y)d yd y
〉

, u′
i = ui −〈ui 〉, is the velocity fluctuation and

i = { f ,m}. Each model has two fitting parameters. Due to the difficulty of precisely

measuring small pressure gradients in microfluidic devices, and the lack of informa-

tion about the relationship between topology and effective properties of the matrix,

we treat Vm andΨ, and Dm and λ as a fitting parameters in (3.4) and (3.6), respectively.

The fitting parameters are determined by a least-square algorithm.
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3.3 Results: comparison with experimental data

To evaluate the error between the analytical solutions and the experimental

results, we first fit both analytical solutions with each available data set, and then

calculate the mean absolute error,

E j =
∑N

i=1

∣∣〈c f 〉i , j −〈c f 〉i ,Data

∣∣
N

, j = {
Diff, Disp

}
(3.10a)

where 〈c f 〉i , j is the j -model fitted concentration at time ti , i = {1, · · · , N }, and the

subscripts ‘Diff’ and ‘Disp’ refer to the model that accounts for a purely diffusive

and dispersive matrix, described by Equations (3.4) and Equations (3.6), respectively.

Figure 3.3 shows the ratio EDisp/EDiff for all considered geometries as a function of Péclet

number. We find that the dispersive-matrix model (3.6) is more accurate than its

diffusive counterpart for those structures with significant advective transport between

obstacles (i.e. C1, C2 and C3). Instead, the diffusive-matrix model better perfoms on

R1 and R2 structures, where the transverse riblets block any longitudinal advective

flux through the pattern and the transport inside the microstructure is mostly diffu-

sive. These results support the hypothesis that properly designed micropatterns can

represent continuum-scale porous media in coupled fracture/matrix systems. Figure

3.3 shows that structures with smaller porosity exhibit smaller permeability (e.g. C1

and C2), and permeability decreases with increasing tortuosity, for a given porosity

(e.g. C1 and C3).

Furthermore, when λ. 1, the fitted λ value has small variations for the same
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C1 C2 C3 R1 R2

Figure 3.3: Error ratio EDisp/EDiff plotted in Péclet number (Pe) and dimensionless per-

meability (λ) space. Dots are representing exact value of the ratio, colored space filled

is cubic fitting based on the exact value points. Warm color corresponds to values that

are larger than 1.

microstructure (C1, C2 and C3) at different Péclet. This suggests that a unique perme-

ability value k (or its dimensionless counterpart λ) can be experimentally determined

for each microstructure. The scatter in fittedλ increases for R1 and R2 structure, where

the effective property is ill-defined (i.e. the patterns are impermeable). In Figure 3.4

and 3.5, we plot the fitted analytical solutions for the riblet- and the cylinder-like

patterns for different Péclet numbers. Importantly, Figure 3.5 shows an excellent
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Figure 3.4: Comparison between experimental data collected at x̃ = 2 mm along the

channel patterned by transverse R1 riblets (symbols) and the fitted analytical solution

(3.4) (line) for different values of the Péclet number. The error bars represent one

standard deviation of the average concentration from its mean value.

agreement between the experimental data and 〈c f 〉 predicted by using the permeabil-

ity (or λ) value obtained as an arithmetic average of the fitted values at different Péclet

numbers in any given geometry (e.g. C1 and C3). Such experiments (i) support the hy-

pothesis that a relatively thin layer of obstacles (i.e. with a characteristic width smaller

than a typical REV) can be modelled as a porous matrix , (ii) provide a methodology to

measure of the effective properties of the micropattern and (iii). is a novel approach

to determine permeability of a matrix in coupled fracture-matrix systems, different

from traditional measurements where one needs to drill a core or take samples of the

matrix and measure the permeability using Darcy experiment.

We can conclude that (i) patterned microfluidic channels can be used as bench-
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Figure 3.5: Comparison between experimental data collected at x̃ = 2 mm along the

channel patterned by cylinder structures C1 (squares) and C3 (circles) and the fitted

analytical solution (3.6) (line) for different values of the Péclet number. The error bars

represent one standard deviation of the average concentration from its mean value.

mark experiments to model coupled channel/fracture-matrix systems, (ii) the upscaled

model (3.6) can be successfully used to investigate non-reactive solute transport in

fractured systems embedded permeable matrices for a wide range of Péclet numbers,

(iii) the fitted permeability values in the macroscopic model are physical and correctly

represent different topologies, i.e. permeability is lower for more tortuous patterns

and higher for more porous topologies, and (iv) a unique matrix permeability can be

determined from tracer experiments when λ≤ 1.
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Chapter 4

Micro-scale Multi-phase Flow in

Porous Media

4.1 Introduction

In the last several decades, porescale two-phase flow has attracted significant

attention [39, 272, 180, 181, 130]. At the pore scale, multiphase flow is governed by

the Navier-Stokes (NS) equations subject to the Young-Laplace boundary condition at

the fluid-fluid interface and the Young condition at the fluid-fluid-solid interface[365].

These equations are highly non-linear because of the moving fluid-fluid and fluid-

fluid-solid boundaries, which presents a significant challenge for obtaining accurate

numerical solutions [218, 313]. A number of mathematical formulations have been

proposed to simplify the solution of these equations, including methods that de-

scribe interface dynamics implicitly by means of a “color” function[329] (e.g., the

89
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volume of fluid[133], density functional method, and phase-field method[295]). Var-

ious formulations have been used to describe the dynamics of a fluid-fluid-solid

interface, including static and dynamic contact angles, energy-balance considera-

tions, and pairwise forces. Various numerical methods, including mesh-based finite

volume and mesh-less Smoothed Particle Hydrodynamics, have been used to solve

the resulting Navier-Stokes equations. Other (so-called “mesoscale”) methods (e.g.,

Lattice-Boltzmann and Dissipative Particle Dynamics) have been also applied to

model multiphase flow in porous media. The resulting models have different degrees

of complexity in representing fluid-fluid-solid interactions, numerical accuracy, and

the computational cost (for review of numerical methods for multiphase porescale

flow see [207]).

A natural question to ask is, what model complexity and numerical accuracy

are sufficient to correctly model multiphase flow on the pore scale? The qualifier

“correctly” in this question is important because, in many studies, the porescale mod-

els are verified and validated only in a “weak” sense, i.e., by comparing the average

solution (or its properties, such as pressure-saturation relationship) obtained from

a numerical model and the corresponding experiment. Not that the comparison of

average properties of solutions lacks merit; however, it is also reasonable to require a

porescale numerical model to reproduce porescale properties of the solution accu-

rately. Comparison with well-controlled, porescale multiphase flow experiments is a

reasonable way to validate and verify a numerical model. The answer to the preceed-

ing question is complicated by, at least, three factors: 1) depending on the initial and
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boundary conditions, the equations describing multiphase flow could be unstable, i.e.,

small perturbations in initial and boundary conditions may lead to large differences in

the solution; 2) the exact geometry and roughness of the flow domain boundaries (i.e.,

the pore geometry), even when possible to precisely measure, are usually impractical

to fully resolve; and 3) initial conditions are difficult to control in an experiment and

exactly reproduce in the numerical model. Still, even if these challenges could be

overcome, reproducible experimental results are needed to conduct a validation study.

Quasi-two-dimensional microfluidic cells are often used to experimentally

study porescale flow[68, 370, 369]. They afford better control and monitoring of

flow dynamics than three-dimensional small-column experiments. Therefore, the

microcell experiments are perfect candidates to generate results for a validation study.

Often, microfluidic studies use a pore geometry made of a uniform array of cylinders

(e.g., [370]). Multiphase flows in such pore structures are particularly difficult to

reproduce in both experiments and numerical simulations for several reasons: 1)

small manufacturing defects brake “symmetry” and significantly affect the multiphase

flow; 2) even if the actual manufactured geometry could be exactly measured, the

differences between the prescribed (design) and actual geometry could be impractical

to resolve in a numerical model; and 3) small time-variations in the flux rate generated

by syringe pumps may lead to significant changes in the final distribution of fluid

phases. In [97], multiphase flow in both heterogeneous and homogeneous pore

structures was studied, and the “point-by-point” difference in displacement patterns,

obtained experimentally and numerically, was found to be from 17 to 30% in the
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heterogeneous porous structure and from 30 to 40% in the homogeneous domain

depending on a numerical model used. The reproducibility of experimental results

was not addressed in [97].

In the first part of this work, we study the question of reproducibility of experi-

ments by repeating simulations in six microcells with the same (up to the manufactur-

ing error) geometry. We use a microcell with highly non-uniform pore-size distribution

to minimize the effect of small deviations from the design pore geometry and injection

rate on the experimental results. In all experiments, a microcell is initially occupied

with a wetting fluid, and a non-wetting fluid is injected through the left boundary for

15 s with a constant flux q using a high-precision pump (variations in the injections

rate are less than 5% per manufacturer’s specification). Then, a non-wetting fluid is

injected through the right port until the saturation of the non-wetting fluid reaches

steady state. Our study shows a significant variability in the porescale distribution

of fluid phases, interface area, and saturation. In the second part of our study, we

conduct two- and three-dimensional simulations with constant and randomly varying

injection rates to capture average behavior and variability observed in the experiments.

We use a commercial finite volume code STAR-CCM+ (CD-adapco, Melville, NY, USA

) in our numerical study. Our results show that the three-dimensional simulation

with a deterministic flux q better captures the mean behavior observed in the exper-

iment than the two-dimensional model with the constant q . The two-dimensional

simulations with randomly varying (around the prescribed in the experiments) flux

capture the variability observed in the experiments, but the average behaviors, found
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in the simulations and experiments, differ. We also detemine that the average behavior

of stochastic simulations differs from the corresponding deterministic simulations

because of strong non-linearity of the governing equations.

4.2 Microfluidic experiments

4.2.1 Design and photolithography

The reproducibility of pore-scale multiphase flow experiments was investi-

gated in a microfluidic device shown in Figure 4.1-a. For this study, six replicas were

manufactured of the device and up five experiments were conducted for each replica.

To minimize the effect of pore-geometry deviations (manufacturing defects) from the

prescribed geometry, pore-scale heterogeneity is introduced in the form of a prefer-

ential flow path with a width wt1. An exterior piping system is connected to the inlet

and outlet, which have the width wt2. The design dimensions of the micromodel are

provided in Table 4.1.

The micromodels (Figure 4.1-b) were fabricated using standard photolitho-

graphic techniques. The six replicas of the designed pore geometry were printed on

a single photomask. Then, an SU-8 negative photo-resistant material was coated

onto a 4-inch diameter silicon wafer. The cell base was made from the hydrophobic

polydimethylsiloxane (PDMS) material“baked” in an oven for over 12 hours at

75oC (Figure 4.1-b). To make the wetting properties of the cell’s glass top the same as
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PDMS Coating
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(a)

(b)
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Figure 4.1: (a) Pore Structure. Pore spaces are shown in black, and the solid phase is

in white; (b) Three-dimensional configuration.

that of the PDMS base, the glass was also coated with a thin layer of PDMS. To achieve

chemically-stable hydrophobic interior surfaces, the assembled cells are placed for an

additional 48 hours in an oven at 200oC .

4.2.2 Experimental design

The fluids were injected and removed from a micromodel using a piping system

shown in Figure 4.2. To perform drainage and imbibition phases of the experiment,

glass syringes (1 mL Glass Syringe, Hamilton) containing the wetting fluid (hexade-

cane) and the non-wetting fluid (DI-water) were used. A series of valves were used to

enable and disable flow paths during these phases (Figure 4.2-c). This experimental

design allowed for a smooth switching from the drainage to the imbibition phase
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Table 4.1: Micromodel Dimensions

Symbols (Figure 4.1) Length (mm)

a ×b × c 5×18×5

h 0.03

wn 0.1

wt1 ∼ 0.4−0.5

wt2 ∼ 0.1

without cross- contamination, while preventing formation of air bubbles. A precision

syringe pump (NE-4002X, New Era Pump System) was used to produce a constant

injection rate.

To conduct an experiment, a micromodel was placed horizontally on a micro-

scope stage (Prior Scientific Instruments LTD.) to minimize the effect of gravity. Fluid

displacement was visualized by a microscope (Nikon Eclipse-2000TiE) with a 4× mag-

nifying lens and a 3.23µm spatial resolution. Light is provided by a high-intensity light

source (Nikon Intensilight C-HGFIE), and images are recorded using a monochrome

digital charge-coupled device (CCD) camera. All devices are connected to a computer,

and the recording speed, exposure time, and shutter time are set by the imaging soft-

ware NIS-Elements (Nikon). Before the start of each experiment, the micromodel was

first saturated with the wetting fluid (hexadecane). Then, during the drainage phase,

the non-wetting fluid (DI water) is injected for 15 s. Subsequently, the piping system
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Drainage Phase

(a)

(c)

Chip

(b)

Imbibition Phase

A

B
C

Figure 4.2: (a) Illustration of the piping system; (b) Realization; (c) Flow path in dif-

ferent phases of the experiment.

is switched for imbibition, and the wetting fluid is injected until the steady state is

reached.

Table 4.2 includes the properties of both fluids, prescribed injection velocity,

and the resulting viscosity ratio (M =µnw /µw ) and capillary number (C a =µnwU /σ).

The static contact angle (θ)) between the two fluids and PDMS surface was measured

in the cell inlet (Figure 3) from an auxiliary experiment where wetting fluid was injected

for a short period of time. The measured values of θ are between 16o to 18o , with an
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averaged value of 16.8o .

Figure 4.3: Definition of the Non-wetting/wetting fluid and contact angle.

Table 4.2: Wetting (hexadecane) and non-wetting (DI water) fluid properties

Property Value

non-wetting fluid viscosity (µnw ,cP ) 1.02

wetting fluid viscosity (µw ,cP ) 3.34

surface tension (σ,mN /m) 52.00

contact angle (θ,deg ) 16.79

injection velocity (U ,m/s) 9.24×10−4

log (M) −0.51

log (C a) −4.74

4.3 Experimental results

Figure 4.4 shows the results of five experiments in one of the cells (cell D). The

first column displays fluids distribution at the drainage cycle end, and the second

column displays fluids distribution at the imbibition cycle end. In all experiments at
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Figure 4.4: Five repetitions (first, second, third, forth, and fifth rows, respectively) of

drainage (first column) and imbibition (second column) in the microcell D.

the drainage cycle end, we observe a similar displacement pattern with the injected

non-wetting fluid moving through the “preferential flow path” and forming small “side
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Figure 4.5: The second repetition in cell A (first row), cell B (second row), cell C (third

row), cell E (forth row), and cell F (fifth row) of drainage (first column) and imbibition

(second column).
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Figure 4.6: Interfacial length at the end of the drainage (left) and imbibition (right)

cycles obtained in the experiments and numerical simulations.
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Figure 4.7: Saturation at the end of the drainage (left) and imbibition (right) cycles

obtained in the experiments and numerical simulations.

fingers.” The main difference between the experiments is the location and size of the

side fingers. The displacement patterns at the imbibition cycle end are completely dif-

ferent in these experiments, with different volume of the non-wetting fluid becoming

trapped in different locations. Figure 4.5 shows the drainage and imbibition patterns

observed in five different cells. As in Figure 4.4, here the fluid distribution is more

repeatable at the drainage cycle end and less repeatable at the imbibition cycle end.
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Figures 4.6 and 4.7 show the interface length (in mm) and saturation of the

non-wetting fluid at the end of the drainage and imbibition cycles observed in different

experiments in all six cells. It is evident that variability in the experiments is higher

across different cells than within individual cells, which we attribute to the small

deviations in the cells’ pore geometry from the design geometry that stems from

manufacturing defects.

,ݔሺ′ܣ ሻݕ

,ݔሺ′ܣ ሻݕ

,ߦሺܣ ሻߟ

Master plane

Experimental
results

ܲሺߦ, ሻߟ

Figure 4.8: Left: Definition of the master plane and the mapping process; Right:

p(ξ,η) of all the experimental results.

To quantify variability in drainage experiments, we divide the domain in a

lattice with indices ξ and η, map the fluid distributions at the end of the drainage cycle,

and construct a histogram p(ξ,η) of a non-wetting fluid occupying each lattice point

(Figure 4.8). The histogram shows that the largest variability between the experiments

is in the size of the side fingers.
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4.4 Numerical simulations

To understand the source of variability observed in the experiments, we model

them using the software package STAR-CCM+. STAR-CCM+ employs a finite volume

discretization on unstructured grids and the volume of fluid method to implicitly track

the interface between two fluids. Previous studies (e.g., [327, 362]) have demonstrated

the accuracy of STAR-CCM+ for pore-scale modeling in complex pore geometries.

4.4.1 Deterministic two- and three-dimensional simulations

It is common to assume that flow in (three-dimensional) microfluidic cells

can be accurately described by the two-dimensional Navier-Stokes equations, given

that the cell depth is much smaller than the smallest pore throat. To test this as-

sumption for the studied system, we simulate the experiment with a fully resolved

three-dimensional model and the corresponding depth-averaged two-dimensional

model. The fluids distributions obtained from these simulations are shown in Figures

4.9 and 4.10, respectively.

The two dimensional simulations have 37,000 elements, and the three di-

mensional simulation has 150,000 elements. In both two- and three-dimensional

simulations, the time step is 1e-5 sec.

We see the same general pattern in the simulations as in the experiments,

i.e., the non-wetting fluid follows the same preferential path as in the experiments.

However, we can also see some qualitative differences. In the three-dimensional sim-
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ulation, the non-wetting fluid completely displaces wetting fluid in the preferential

path during the drainage cycle, which is close to what we observe in the experiments.

On the other hand, in the two-dimensional simulation, large “lenses” of the wetting

fluid are left behind. No such lenses are observed in the experiments. Figures 4.6 and

4.7 show the interface length and saturation of the non-wetting fluid at the end of the

drainage and infiltration cycles calculated from the two- and three-dimensional simu-

lations. In the three-dimensional simulation, the interface length agrees better with

the mean length in the experiments than the interface length in the two-dimensional

simulation. The same is true for the saturation results at the drainage cycle end. The

two-dimensional model does slightly better than the three-dimensional model in

predicting saturation at the imbibition cycle end. Still, given the large variability of

the imbibition displacement patterns in the experiments, this easily could be a co-

incidence. Therefore, we conclude that the three-dimensional model describes the

experimental results more accurately than the two-dimensional model. We should

note that both the two- and three-dimensional models predict significantly larger

volumes of the wetting fluid trapped in the “corners” of the preferential path during

drainage than observed in the experiments. We attribute this to the fact that, because

of the manufacturing defects, the corners in the cells are not as sharp as designed (and

modeled in the simulations).
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(a) (b)

Figure 4.9: Three-dimensional simulation of (a) drainage and (b) imbibition with

constant injection velocity 9.24×10−4 m/s.

(a) (b)

Figure 4.10: Two-dimensional simulation of (a) drainage and (b) imbibition with con-

stant injection velocity 9.24×10−4 m/s.

4.4.2 Stochastic two-dimensional simulations

Variability in different experiments in the same cells can be attributed to small

variations in the injection rate of syringe pumps. To test this hypothesis, we simulate

the experiment with a randomly varying injection rate. We conduct two sets of five

simulations with the coefficient of variance of the injection rate set to 0.05 (Figure

4.11) and 0.1 (Figure 4.12).

The coefficient of variance (CV) of 0.05 corresponds to the pump accuracy (the

syringe pump used in this study has a regular accuracy ±1 ∼ 5% based in the flow rate).

Because of the high computational cost of the three-dimensional model, we only use

the two-dimensional model in this study. Both figures show the same pattern as in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.11: Two-dimensional simulation of (left column) drainage and (right col-

umn) imbibition with random injection velocity with mean 9.24×10−4 m/s and

CV=0.05. Different rows are different realizations.

the experiments. During drainage, the non-wetting fluid saturates the preferential

path and forms side fingers, which vary in different (stochastic) simulations. At the

imbibition cycle end, there is very high variability in the amount and location of

the trapped non-wetting phase. Figures 4.6 and 4.7 show the interface length and

saturation of the non-wetting fluid at the end of the drainage and infiltration cycles
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.12: Two-dimensional simulation of (left column) drainage and (right col-

umn) imbibition with random injection velocity with mean 9.24×10−4 m/s and

CV=0.1. Different rows are different realizations.

calculated from the stochastic simulations. Figure 4.13 shows CV of the interface

length at the end of the drainage and imbibition cycles obtained in experiments and

stochastic simulations. We can see that CV differs for each experimental cell. For the

drainage cycle, the CVs obtained from stochastic simulations are within the range of

CVs observed in the experiments. For imbibition, the simulations overestimate CV. The
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Figure 4.13: Coefficient of variance of the interface length at the end of drainage (left)

and imbibition (right) cycles observed in the experiments and computed from the

stochastic simulations.

simulations with different CVs of the injection rate result in approximately the same

CV of the interface length. It is also important to note that the mean interface length

and saturation obtained from the stochastic simulations differs from the “mean-field”

interface length and saturation obtained from the two-dimensional deterministic

simulation. Our results also show that the mean of stochastic simulations agrees

better with the average behavior observed in the experiments than the results of the

two-dimensional deterministic simulation.

The capillary number in the experiments (and the previously presented simula-

tions) is C a = 1.82×10−5. It is known that instability of immiscible flow increases with

the decreasing Ca. In Figure 4.14, we show the results of five stochastic simulations

with C a = 1.82×10−3, which is 100 times larger than in the experiments. The fluid

distribution at the displacement cycle end is nearly the same in all simulations. On

the other hand, the fluids distribution at the imbibition cycle end significantly varies

between simulations, even for this relatively large Ca.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.14: Two-dimensional simulation of (left column) drainage and (right col-

umn) imbibition with random injection velocity with mean 9.24×10−1 m/s and

CV=0.1. Different rows are different realizations.

The “point-wise” histogram of the non-wetting fluid distribution at the drainage

cycle end, obtained from the stochastic simulations, is shown in Figure 4.15. As in
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Figure 4.15: Top: p(ξ,η) of simulation with variance of 0.05; Bottom: p(ξ,η) of simu-

lation with variance of 0.1.

Figure 4.16: Contour lines with p = 0.9, p = 0.7, p = 0.5.
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Figure 4.17: Contour lines comparison between the deterministic simulations with

the experimental results with different p values.

the experiments, variability in the stochastic simulations is mainly in the side fingers

size. Experiments also exhibit variability in the fluids distribution in the preferential

flow path, including breakup and detachment from the solid grains of the non-wetting

fluid in some simulations. Unexpectedly, the variability is more pronounced in the

simulations with the smaller variance of the injection rate.

In Figure 4.16, we compare the contour lines of simulation and experimen-

tal histograms for several p values. There is a significant difference between the

simulation and experimental p = 0.9 contour lines. Contour lines corresponding

to p = 0.5 and 0.7 agree within 5% for the side fingers at the lower part of the do-

main, but they disagree for the upper side fingers. A similar comparison (Figure 4.17)

between the deterministic simulations and experimental results shows that the three-

dimensional simulation predicts the experimental results more accurately than the

two-dimensional simulation.
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4.5 Conclusions

Our experimental and computational studies were conducted for the low cap-

illary number C a = 1.82× 10−5. Improvement of reproducibility was shown with

experiments performed using the same cell in the drainage phase. Large variability

was observed when comparing experiments using different replicas of the same design.

Even greater variation in the experimental results were noted at the imbibition cycle

end.

Numerical simulations using the same parameters as the experiments were

performed in the exact same geometry both in two and three dimensions. To reveal

the impact of fluctuations in the pumping flow rate, we simulated the flow both

deterministically and statistically. We found that the deterministic three-dimensional

model is more accurate than the two-dimensional model.

Randomly varying (in time) the injection rate quantitatively captured the vari-

ability observed in the experiments. The average behavior of stochastic simulations

was in better agreement from the corresponding deterministic simulation and better

agrees with the average behavior observed in the experiments.

For the larger capillary number (C a = 1.82×10−3), we observed nearly zero

variability in the results of stochastic numerical simulations of the drainage cycle,

suggesting that the drainage experiments could be “reproducible” for higher Ca. Vari-

ability in the imbibition results remain high, even for this relatively large Ca. To

confirm our conclusion that higher Ca is needed to obtain reproducible experimental
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results, additional experimental studies are needed.

Ling, B., Bao, J., Oostrom, M., Battiato, I., Tartakovsky, A., (2016), ’Modeling

variability of porescale multiphase flow experiments’. Advanced Water Resource, Sub-

mission code: ADWR-2016-349.



Chapter 5

Conclusions

This dissertation leads to the following major conclusions:

1. We show that by means of perturbation theory and asymptotic analysis, a set of

upscaled equations describing mass transport in a coupled channel-porous ma-

trix system can be derived, and an analytical expression relating the dispersion

coefficient with the properties of the surface, namely porosity and permeability,

can be achieved by perturbative expansion and homogenization method. Our

analysis in Chapter 2 shows that impact of surface effective properties on the

dispersion coefficient strongly depends on the magnitude of Péclet number, i.e.,

on the interplay between diffusive and advective mass transport. Additionally,

we demonstrate different scaling behaviors of the dispersion coefficient for thin

or thick porous matrices.

2. Our analysis shows the possibility of controlling the dispersion coefficient, i.e.

113
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transversal mixing, by either active (i.e. changing the operating conditions) or

passive mechanisms (i.e. controlling matrix effective properties) for a given

Péclet number. By elucidating the impact of matrix porosity and permeability

on solute transport, our upscaled model lays the foundation for the improved

understanding, control and design of microporous coatings with targeted macro-

scopic transport features.

3. We run a series of pore-scale transport experiments on polydimethylsiloxane

(PDMS) micromodels with surfaces patterned with different microstructures

(e.g. pillars and riblets) to test the hypothesis that such micromodels can be

used as benchmark experiments for validation of flow and transport models in

coupled channel/matrix systems. Temporal and spatial high resolution data are

collected at the pore scale, and used to calculate averaged (continumm-scale)

quantities. The latter, in the form of tracer benchmark experiments, are used

in conjunction with the theoretical models developed in the first part of the

thesis to determine effective geometrical properties of the micropattern (i.e. its

effective medium representation). Our approach (i) provides an alternative way

of measuring permeability of micropatterned surfaces while circumventing the

difficulty of achieving precise measurements of pressure gradient in micromod-

els using tranditional methods, (ii) supports the hypothesis that micropattened

surfaces can be represented as effective media, and experiments on patterned

microchannels employed as benchmarks for coupled fracture/matrix systems.
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The latter result is confirmed for both permeable (arrays of cylinders) and nearly

impermeable (transverse riblets) microstructures.

4. Lack of reproducibility is a notorious and intrinsic challenge of multiphase

transport in porous media experiments due to the inherently unstable nature of

multiphase flow dynamics. In the second part of the thesis, we investigate the re-

producibility of multiphase flow experiments in porous media and the possible

use of microfluidic data for validation of pore-scale multiphase numerical codes.

Specifically, we perform a set of drainage and imbibition experiments in six iden-

tical microfluidic cells. We observe significant variations in the experimental

results, which are smaller during the drainage stage and larger during the imbi-

bition stage. We are able to improve the overall reproducibility by introducing

heterogeneity in the pore structure at a length scale larger than the characteristic

length scale associated to sub-pore scale roughness, which controls unstable

displacement in perfectly regular (homogenous) pore-structures.

5. Finally, we establish a general framework to quantify the variability in multiphase

flow experiments. By means of image recognition techniques and stochastic

analysis, we propose a phase map at the pore-scale which shows the pointwise

experimental probability that any given point be occupied by a certain (wetting

or nonwetting) fluid. Computational simulations are then conducted using

commercial software STAR-CCM+ both with constant and randomly varying

injection rates. Stochastic simulations are able to capture the experimental
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variability and appear to be a more appropriate framework to describe unstable

pore-scale displacement in multiphase transport.



Appendix A

Derivation of the upscaled equations

A.1 Asymptotic Expansion

Substituting (2.26) into (2.24a) and (2.24b) leads to
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f
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and
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respectively. Given α< 1/2, we collect terms of like-power of ε as follows,
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Equations (A.3a) and (A.3c) leads to a cascade of equations for the unknown functions

c(i )
j . Specifically, for c(i )

f and c(i )
m we obtain
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and
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respectively. Expanding the interface conditions (2.22) yields,

[c(0)
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m +εc(2)

m ]y=0, (A.6)
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Matching like-powers of ε in (A.7) leads to∂c(1)
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The cascade of equations (A.4) and (A.5) subject to the boundary conditions

(A.6) and (A.8) can be solved iteratively.

A.2 Order O (
p
ε): c (1)

f and c (1)
m solutions

Integrating equation (A.4a) with respect to y gives
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where the integration constant M1 is determined by using the no flux condition (2.20)

and the velocity profile (3.7a),
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and A and B are defined in (2.9). Integration of (A.10) yields to
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By postulating 〈c(1)
f 〉 = 0 [216], we can solve for M2,

M2 =−
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)
. (A.13)



120

Inserting (A.13) and (A.11) in (A.12), leads to
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where

M(y) = Ψ

24
y4 + A

6
y3 + B

2
y2 +M1 y +M2. (A.15)

Similarly, double integration of (A.5b) yields to a solution for c(1)
m in the following form,
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E and F are defined in (2.9) and N1 and N2 are integration constants. Constant N1 is

determined by imposing the boundary condition (2.20),
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Equations (A.16), (A.18) and (A.19) fully define c(1)
m .

A.3 Order O (ε): c (2)
f and c (2)

m solutions

Inserting (A.14) into (A.4b), we obtain
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which provides an equation for c(2)
f . Averaging (A.20) gives
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Subtracting (A.21) from (A.20) yields
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where the boundary term can be rewritten using (A.9). This leads to
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Integration in y gives
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where K1 is an integration constant. Using the no-flux boundary condition at y = 1

(2.20), while observing that
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Integrating (A.24) in y once more leads to
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Finally,
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A similar procedure leads to
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A.4 Upscaled Equations

Applying the averaging operator to (A.1) and (A.2) while accounting for the

third boundary condition (2.20), leads to

∂
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respectively, since 〈c(1)
j 〉 = 〈c(2)

j 〉 = 0 and 〈c j 〉 = 〈c(0)
j 〉 with j = { f ,m}. In order to close

(A.30) and (A.31), the nonlocal advective terms and the boundary terms ought to be

expressed in terms of macroscale quantities. Averaging (A.4c) leads to
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since 〈c(1)
f 〉 = 0. Inserting (A.14) in (A.30) while accounting for (A.32) gives
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Similarly, for the matrix we obtain

∂〈cm〉
∂t

+ε−1/2〈um〉∂c(0)
m

∂ξ
+ε−α 〈um N〉

Dmy

∂2c(0)
m

∂ξ2

= εαDmx
∂2〈cm〉
∂ξ2

−εα−1/2 Dmy

h

[
∂c(1)

m

∂y

]
y=0

−εα−1 Dmy

h

[
∂c(2)

m

∂y

]
y=0

, (A.34)

The last step to close (A.33) and (A.34) is to determine the boundary flux terms
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where N ′ = dN /dy and [N ′]y=0 = N1, see (A.17). Therefore,
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Combining (A.36) with (A.8) gives∂c(1)
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Similarly, for the matrix
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From (A.28) we obtain
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At the interface y = 0, continuity of concentration (A.6) imposes
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m

∂y

]
y=0

=− 3D f

φεDmy

(〈
c f

〉−〈cm〉) (A.42)

A similar relation can be found for the channel∂c(2)
f

∂y


y=0

= 3φDmy

εhD f

(〈
c f

〉−〈cm〉) . (A.43)

Inserting (A.37), (A.38) (A.41) and (A.43) into (A.33) and (A.34) gives

∂
〈

c f
〉

∂t
+ 1p

ε

〈
u f

〉 ∂〈
c f

〉
∂ξ

+ ε−α

D f

〈
u f M

〉 ∂2
〈

c f
〉

∂ξ2
(A.44)

= εαD f
∂2

〈
c f

〉
∂ξ2

−εα−1pεφε−αN1
∂〈cm〉
∂ξ

−εα−1 3φDmy

εh

(〈
c f

〉−〈cm〉) ,

and

∂〈cm〉
∂t

+ 1p
ε
〈um〉 ∂〈cm〉

∂ξ
+ ε−α

Dmy
〈um N〉 ∂

2 〈cm〉
∂ξ2

(A.45)

= εαDmx
∂2 〈cm〉
∂ξ2

+ M1

φh
p
ε

∂
〈

c f
〉

∂ξ
+εα−1 Dmy

h

3D f

φεDmy

(〈
c f

〉−〈cm〉) .
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Rescaling the axis back to the physical coordinate x, multiplying both sides by ε1−α

and using the Péclet number definition, we obtain the macroscopic equations (3.6a)

and (3.6b).

εPe

(
∂
〈

c f
〉

∂t
+〈

u f
〉 ∂〈

c f
〉

∂x

)
= ε2D?

f

∂2
〈

c f
〉

∂x2
−φ

[
εPeN1

∂〈cm〉
∂x

+ 3Dmy

εh

(〈
c f

〉−〈cm〉)] ,

(A.46)

where

∂
〈

c f
〉

∂t
+〈

u f
〉 ∂〈

c f
〉

∂x
+ ε1−α

D f

〈
u f M

〉 ∂2
〈

c f
〉

∂x2
(A.47)

= ε1+αD f
∂2

〈
c f

〉
∂x2

−φN1
∂〈cm〉
∂x

−εα−1 3φDmy

εh

(〈
c f

〉−〈cm〉) ,

leads to:

∂
〈

c f
〉

∂t
+〈

u f
〉 ∂〈

c f
〉

∂x
= ε1+αD f

∂2
〈

c f
〉

∂x2
(A.48)

−ε
1−α

D f

〈
u f M

〉 ∂2
〈

c f
〉

∂x2
−φN1

∂〈cm〉
∂x

−εα−1 3φDmy

εh

(〈
c f

〉−〈cm〉) ,

Multiply ε1−α on both sides:

ε1−α∂
〈

c f
〉

∂t
+ε1−α 〈

u f
〉 ∂〈

c f
〉

∂x
= ε2D f

∂2
〈

c f
〉

∂x2
(A.49)

−ε
2−2α

D f

〈
u f M

〉 ∂2
〈

c f
〉

∂x2
−ε1−αφN1

∂〈cm〉
∂x

− 3φDmy

εh

(〈
c f

〉−〈cm〉) ,

Substitute the definition of Pe:

εPe
∂
〈

c f
〉

∂t
+εPe

〈
u f

〉 ∂〈
c f

〉
∂x

= ε2D f
∂2

〈
c f

〉
∂x2

(A.50)

−Pe2 ε
2

D f

〈
u f M

〉 ∂2
〈

c f
〉

∂x2
−εPeφN1

∂〈cm〉
∂x

− 3φDmy

εh

(〈
c f

〉−〈cm〉) ,
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D?
f = D f −Pe2 I f

D f
, (A.51)

with

I f =
〈

u f M
〉= ˆ 1

0
u f (y)M(y)d y (A.52)

With a similar procedure, we will have the upscaled equation for the matrix:

εPe

(
∂〈cm〉
∂t

+〈um〉∂〈cm〉
∂x

)
= ε2D?

m
∂2〈cm〉
∂x2

+ 1

φ

[
εPe

M1

h

∂〈c f 〉
∂x

+ 3D f

ε
(〈c f 〉−〈cm〉)

]
,

(A.53)

where:

D?
m = Dmx −Pe2 Im

Dmy
, (A.54)

and:

Im = 1

h

ˆ 0

−h
um(y)N (y)dy, (A.55)

Im = 1

h

(
Im,0 − Im,−h

)
, (A.56)
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and

Im,0 = E 2

2λ3
− 2EΨ

λ5
− E N?

1

λ2
+ E N2

λ
− F 2

2λ3
− F N?

1

λ2
− F N2

λ
, (A.57)

Im,−h = E 2

2λ3
e−2λh − EF h

λ2
− EΨ

2λ2

(
h2

λ
+ 2h

λ2
+ 2

λ3

)
e−λh (A.58)

+E N?
1

(
−h

λ
− 1

λ2

)
e−λh + E N2

λ
eλh − EF h

λ2

− F 2

2λ3
e2λh − FΨ

2λ2

(
−h2

λ
+ 2h

λ2
− 2

λ3

)
eλh

+F N?
1

(
h

λ
− 1

λ2

)
eλh − F N2

λ
eλh − EΨ

λ5
e−λh + FΨ

λ5
eλh

− Ψ2

6λ4
h3 −ΨN?

1

2λ2
h2 +ΨN2

λ2
h,

N?
1 = N1 −

(
E

λ
− F

λ

)
, (A.59)

(A.60)



Appendix B

Thin Fracture Solution

B.1 Tang et al.’s solution

Several analytical solution have been developed since 1980s. In this project,

we present one developed by Tang and et al. [1981]. Tang’s solution assumed a semi-

infinite pore matrix and a single fracture embeds inside.

B.1.1 Equations and Boundary Conditions

Equation for the fracture, No radioactive reaction/decaying, No absorbtion on

solid wall, use q
2 as the correction for one-sided pore matrix:

∂c f

∂t
+U

∂c f

∂z
−D f

∂2c f

∂z2
+ q

2b
= 0 (B.1)
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c f is concentration inside the fracture. U is the inlet velocity. D f is the effective

diffusion coefficient in the fracture. q is the flux. Equation for the pore-matrix:

∂cm

∂t
−Dm

∂2cm

∂x2
= 0 (B.2)

cm is concentration inside the fracture. Additionally:

D f =UαL +D∗ (B.3)

Dm = τD∗ (B.4)

q =−θDm

[
∂cm

∂x

]
x=b

(B.5)

(B.6)

αL is dispersivity. D∗ is molecular diffusion coefficient. θ is porosity. τ is tortuosity.

Boundary conditions are:

c f (0, t ) =C0 (B.7)

c f (∞, t ) = 0 (B.8)

c f (z,0) = 0 (B.9)

cm(b, z, t ) = c(z, t ) (B.10)

cm(∞, z, t ) = 0 (B.11)

cm(x, z,0) = 0 (B.12)
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B.1.2 Dimensionless Form

Define scales:

C0 : Concentr ati on (B.13)

L : Leng th (B.14)

T : T i me (B.15)

Pull out the order of magnitude for each term, inside the fracture:

C0

T

∂c̃ f

∂t̃
+ UC0

L

∂c̃ f

∂z̃
− D f C0

L2

∂2c̃ f

∂z̃2
− θDmC0

2bL

[
∂ ˜cm

∂x̃

]
x̃=b/L

= 0 (B.16)

the last term on left hand side will be substituted later. For matrix:

C0

T

∂ ˜cm

∂t̃
− DmC0

L2

∂2 ˜cm

∂x̃2
= 0 (B.17)

and dimensionless boundary conditions are:

c̃ f (0, t̃ ) = 1 (B.18)

c̃ f (∞, t̃ ) = 0 (B.19)

c̃ f (z̃,0) = 0 (B.20)

c̃m(b/L, z̃, t̃ ) = c̃(z̃, t̃ ) (B.21)

c̃m(∞, z̃, t̃ ) = 0 (B.22)

c̃m(x̃, z̃,0) = 0 (B.23)
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After erasing the tilde, and using simplified notation we will have the equations need

to be solved (coupled with the boundary conditions above):

C0

T
∂t c f +

UC0

L
∂zc f −

D f C0

L2
∂zzc f −

θDmC0

2bL

[
∂cm

∂x

]
x=b/L

= 0 (B.24)

C0

T
∂t cm − DmC0

L2
∂xxcm = 0 (B.25)

B.1.3 Solve the concentration for matrix

Start from equation (B.25), rearrange:

L2

τD∗T
∂t cm −∂xxcm = 0 (B.26)

Laplace transformation:

L [∂t cm] =
ˆ ∞

0
e−st cm(x, z, t )d t

denote:

L
[

f
]= f

we will have:

L [∂t cm] = scm − cm(x, z,0)

use boundary condition:

L [∂t cm] = scm
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and Laplace transform doesn’t affect spacial derivatives, we will have:

L2

τD∗T
scm −∂xxcm = 0 (B.27)

by using the associated polynomial:

λ2 − L2

τD∗T
s = 0

λ=±
√

L2

τD∗T
s

therefore, the physical solution will be:

cm =C1exp

−
√

L2

τD∗T
s · (x − b

L
)


use the boundary condition, we can have:

cm = c f exp

−
√

L2

τD∗T
s · (x − b

L
)


where c f is the Laplace transformation of c f .

[
∂cm

∂x

]
x=b/L

=−
√

L2

τD∗T
s · c f (B.28)

B.1.4 solve concentration in fracture

use equation (B.24) rearrange:

L2

T D f
∂t c f +

U L

D f
∂zc f −∂zzc f −

θDmL

2bD f

[
∂cm

∂x

]
x=b/L

= 0

Laplace transform:

L2

T D f
sc f +

U L

D f
∂zc f −∂zzc f −

θDmL

2bD f

[
∂cm

∂x

]
x=b/L

= 0
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use equation (B.28):

L2s

T D f
c f +

U L

D f
∂zc f −∂zzc f +

θDmL

2bD f

√
L2s

DmT
· c f = 0

rearrange:

∂zzc f −
U L

D f
∂zc f −

[
θL2

2bD f

√
Dm s

T
+ L2s

T D f

]
· c f = 0

associated polynomial:

λ2 − U L

D f
λ−

[
θL2

2bD f

√
Dm s

T
+ L2s

T D f

]
= 0

simply:

λ1,2 =
U L
D f

±
√(

U L
D f

)2 +4

[
θL2

2bD f

√
Dm s

T + L2s
T D f

]
2

solution will be like:

c f =C2eλ1z +C3eλ2z

physical solution cannot go to infinity, the positive root is droped:

c f =C3eλ2z

which is:

c f =C3exp


 U L

2D f
−

√√√√(
U L

2D f

)2

+ θL2

2bD f

√
Dm s

T
+ L2s

T D f

 · z


to get the constant of integration, we perform Laplace transform on boundary condi-

tion, note that:

L [1] = 1

s
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therefore:

c f (0, s) = 1

s

substitute into the solution, we will have:

c f =
1

s
exp


 U L

2D f
−

√√√√(
U L

2D f

)2

+ θL2

2bD f

√
Dm s

T
+ L2s

T D f

 · z


which is:

c f =
1

s
exp

[
U L

2D f
· z

]
exp

−
√√√√(

U L

2D f

)2
(

1+ 2θD f

bU 2

√
Dm s

T
+ 4D f s

TU 2

)
· z



c f =
1

s
exp

[
U L

2D f
· z

]
exp

−(
U L

2D f

)√√√√(
1+ 2θD f

bU 2

√
Dm s

T
+ 4D f s

TU 2

)
· z



c f =
1

s
exp

[
U L

2D f
· z

]
exp

−(
U L

2D f

)√√√√√
1+ 4D f

TU 2

 p
s

2b
θ
p

Dm T

+ s

 · z

 (B.29)

at this point, the only thing left for us is to inverse Laplace transform this expression

back to time domain. This form is same as the dimensional form on the paper without

any substitution for the groups of parameters. Before proceeding, we may define some

parameters as following:

ν= U L

2D f
(B.30)

β2 = 4D f

TU 2
(B.31)

A = 2b

θ
p

DmT
(B.32)

then:

c f =
1

s
exp (νz)exp

[
−νz

{
1+β2

(p
s

A
+ s

)}0.5
]

(B.33)
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B.1.5 Inverse Laplace transform

Let’s perform the inverse Laplace transform still with equation (B.33), note

there is a square root inside the exponential function we can get rid of it with:

p
π

2
exp

(−2χ
)= ˆ ∞

0
exp

(
−ξ2 − χ2

ξ2

)
dξ

let:

−2χ=−νz

{
1+β2

(p
s

A
+ s

)}0.5

χ= νz

2

{
1+β2

(p
s

A
+ s

)}0.5

then, we have:

exp

[
−νz

{
1+β2

(p
s

A
+ s

)}0.5
]
= 2p

π

ˆ ∞

0
exp

−ξ2 −

[
νz
2

{
1+β2

(p
s

A + s
)}0.5

]2

ξ2

dξ

2p
π

ˆ ∞

0
exp

−ξ2 −
ν2z2

[
1+β2

(p
s

A + s
)]

4ξ2

dξ

the solution becomes:

c f =
2p
π

1

s
exp (νz)

ˆ ∞

0
exp

−ξ2 −
ν2z2

[
1+β2

(p
s

A + s
)]

4ξ2

dξ (B.34)

c f =
2p
π

1

s
exp (νz)

ˆ ∞

0
exp

(−ξ2)exp

(
−ν

2z2

4ξ2

)
exp

[
−ν

2z2

4ξ2
β2

(p
s

A
+ s

)]
dξ

apply inverse Laplace operator:

c f (z, t ) = 2p
π

exp (νz)

ˆ ∞

0
exp

(−ξ2)exp

(
−ν

2z2

4ξ2

)
L −1

{
1

s
exp

[
−ν

2z2

4ξ2
β2

(p
s

A
+ s

)]}
dξ
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Also we can see:

L −1 {
exp [(−s ·C ) ·F (s)]

}=L −1 [F (t −C )] ·U (t −C )

with Heaviside step function U (t −C ). So:

c f (z, t ) = 2p
π

exp (νz)

ˆ ∞

0
exp

(−ξ2)exp

(
−ν

2z2

4ξ2

)
L −1

{
1

s
exp

[
−ν

2z2β2

4ξ2

p
s

A
− ν2z2β2

4ξ2
s

]}
dξ

c f (z, t ) = 2p
π

exp (νz)

ˆ ∞

0
exp

(−ξ2)exp

(
−ν

2z2

4ξ2

)

L −1


exp

[
−ν2z2β2

4ξ2 A

p
s
]

s
exp

[
−ν

2z2β2

4ξ2
s

]dξ

The last piece of information if from a magical book: p.245, Tables of Integral Trans-

forms Vol.I, by Harry Bateman, 1954 McGraw-Hill Book. Gives:

L −1
[

exp(−pa
p

s)

s

]
= er f c

(
1

2

p
ap
t

)

Now we can have the final answer:

c f (z, t ) = 2exp (νz)p
π

ˆ ∞

0
exp

(
−ξ2 − ν2z2

4ξ2

)
er f c


ν2z2β2

4ξ2 A

2

√
t − ν2z2β2

4ξ2

U (t − ν2z2β2

4ξ2
)dξ

For the lower limit:

t > ν2z2β2

4ξ2
⇒ ξ>

√
ν2z2β2

4t

c f (z, t ) = 2p
π

exp (νz)

ˆ ∞

l
exp

(−ξ2 −K
)

er f c

(
Kβ2

2A
√

t −Kβ2

)
dξ (B.35)
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with:

l =
√
ν2z2β2

4t
, K = ν2z2

4ξ2

The most complete form (without no defined variables) with Dm = τD∗ and D f =

αLU +D∗:

c f (z, t ) = 2p
π

exp

(
U L

2D f
z

)ˆ ∞

l
exp

(
−ξ2 − U 2L2z2

16D2
f ξ

2

)
er f c


L2z2θ

2bTUξ2

√
Dm
D f√

t − L2z2

4T D f ξ
2

dξ (B.36)



Appendix C

Derivation of the upscaled equations

using flux model

C.1 Velocity

C.1.1 fracture

Assumptions:

• 2D Stoke’s flow;

• Velocity component (u f ) is fully developed in x;

• pressure variation in y-direction is small: P f ∼ f (x).

Start from the equation of Stokes’ Flow for x-direction:

∂P f

∂x
=µ

(
∂2u f

∂x2
+ ∂2u f

∂y2

)
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based on the assumptions listed, we can have the equation for velocity in the fracture:

dP f

d x
=µd 2u f

d y2
(C.1)

Dimensionless form:

dP f

d x
= µU

b2

d 2ũ f

d ỹ2
(C.2)

Neglect the tilde and let:

Ψ f =
b2

µU

dP f

d x
(C.3)

Ψ f =
d 2u f

d y2
(C.4)

Notice (C.4) is separable, therefore, the general solution can be written as:

u f (y) = Ψ f

2
y2 + Ay +B , y ∈ [0,1] (C.5)

C.1.2 matrix

Assumptions:

• Darcy-Brinkman;

• Velocity component (um) is fully developed in x;

• pressure variation in y-direction is small: Pm ∼ f (x).

Darcy-Brinkman equation for x-direction(1949,H.C.Brinkman):

∂Pm

∂x
=−µe

k
um +µ

(
∂2um

∂x2
+ ∂2um

∂y2

)
(C.6)
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where, k is the permeability. Apply the assumptions the dimensionless form can be

written as:

dPm

d x
=−µeU

k
um + µeU

b2

d 2um

d y2
(C.7)

d 2um

d y2
− b2

k
um = b2

µeU

dPm

d x
(C.8)

Let:

β=
√

b2

k
, Ψm = b2

µeU

dPm

d x
(C.9)

then:

d 2um

d y2
−β2um =Ψm (C.10)

This is a 2-order, constant coefficient, inhomogeneous ODE. We can write the solution

as the sum of general solution for the homogeneous problem and the particular

solution. Simply:

um = Eeβy +Fe−βy −Ψm

β2
, y ∈ [−h,0] (C.11)

where h = H/b, H is the depth of the matrix.

C.1.3 Symmetric top wall, pinned bottom wall

In consideration of symmetric profile, we can apply the boundary condition:

• Top wall:

du f

d y

∣∣∣
y=1

= 0 (C.12)

⇒Ψ f + A = 0 (C.13)
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• Interface, 0th order continuity (continue in velocity):

u f (0+) = um(0−) (C.14)

⇒B = E +F −Ψm

β2
(C.15)

• Interface, 1st order continuity (continue in shear stress):

du f

d y

∣∣∣
y=0+

= dum

d y

∣∣∣
y=0−

(C.16)

⇒A = Eβ−Fβ (C.17)

• Bottom wall, no slip:

um(−h) = 0 (C.18)

⇒Ee−hβ+Fehβ−Ψm

β2
(C.19)

solved:

A =−Ψ f

B = 2

Ψm
β2 + Ψ f

β

1+e2βh
−Ψ f

β
−Ψm

β2

E =
Ψm
β2 + Ψ f

β

1+e2βh
−Ψ f

β

F =
Ψm
β2 + Ψ f

β

1+e2βh

(C.20)

(C.21)

(C.22)

(C.23)
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C.2 Solute Transport

C.2.1 fracture

Advection-Diffusion Equation:

∂C f

∂t
+u f

∂C f

∂x
= D f

(
∂2C f

∂x2
+ ∂2C f

∂y2

)
(C.24)

We can extract the order of magnitude of each term.In the following equation, all the

variables are dimensionless but for simplicity, we keep the notations the same:

C

T

∂C f

∂t
+ UC

L
u f

∂C f

∂x
= D f C

L2

∂2C f

∂x2
+ D f C

b2

∂2C f

∂y2
(C.25)

Namely:

b2

D f T

∂C f

∂t
+ Ub2

D f L
u f

∂C f

∂x
= b2

L2

∂2C f

∂x2
+ ∂2C f

∂y2
(C.26)

Let: ε= b
L , Pe f = Ub

D f
we will have:

b2

D f T

∂C f

∂t
+εPe f u f

∂C f

∂x
= ε2∂

2C f

∂x2
+ ∂2C f

∂y2
(C.27)

For the time scale, we have 2 choices. 1) select the diffusion time scale Tdi f ,y = b2

D f
or

Tdi f ,x = L2

D f
; 2) select the advection time scale T = Tad v = L

U , then:

εPe f
∂C f

∂t
+εPe f u f

∂C f

∂x
= ε2∂

2C f

∂x2
+ ∂2C f

∂y2
(C.28)

We study the regime where the longitudinal diffusion is negligible compared with the

advection and the transversal diffusion. Therefore we select the advection time scale.
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We rescale the x-direction by:

x = ε0.5ξ (C.29)

Here, δ is some real value. Therefore:

∂

∂x
= ∂

∂ξ

∂ξ

∂x
= ε−0.5 ∂

∂ξ
(C.30)

∂2

∂x2
= ∂

∂ξ

∂ξ

∂x

(
ε−0.5 ∂

∂ξ

)
= ε−1 ∂

2

∂ξ2
(C.31)

Expand C f :

C f (ξ, y, t ) =C (0)
f (ξ, t )+ε0.5C (1)

f (ξ, y, t )+εC (2)
f (ξ, y, t )+ . . . (C.32)

Substitution will give us:

εPe f
∂C f

∂t
=εPe f

∂C (0)
f

∂t
+ε1.5Pe f

∂C (1)
f

∂t
+

∞∑
n=2

Pe f ε
0.5n+1

∂C (n)
f

∂t
(C.33)

εPe f u f
∂C f

∂x
=pεPe f u f

∂C (0)
f

∂ξ
+εPe f u f

∂C (1)
f

∂ξ
+ε1.5Pe f u f

∂C (2)
f

∂ξ
(C.34)

+
∞∑

n=3
ε0.5+0.5nPe f u f

∂C (n)
f

∂ξ

ε2∂
2C f

∂x2
=ε

∂2C (0)
f

∂ξ2
+ε1.5

∂2C (1)
f

∂ξ2
+

∞∑
n=2

ε1+0.5n
∂2C (n)

f

∂ξ2
(C.35)

∂2C f

∂y2
=0+p

ε
∂2C (1)

f

∂y2
+ε

∂2C (2)
f

∂y2
(C.36)

+
∞∑

n=3
ε0.5n

∂2C (n)
f

∂y2

Solve it up to the order of ε1.5 and unknowns are: C (0)
f (ξ, t ), C (1)

f (ξ, y, t ), C (2)
f (ξ, y, t ).

For O(
p
ε):

Pe f u f

∂C (0)
f

∂ξ
=
∂2C (1)

f

∂y2
(C.37)
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For O(ε):

Pe f

∂C (0)
f

∂t
+Pe f u f

∂C (1)
f

∂ξ
=
∂2C (0)

f

∂ξ2
+
∂2C (2)

f

∂y2
(C.38)

For O(ε1.5):

Pe f

∂C (1)
f

∂t
+Pe f u f

∂C (2)
f

∂ξ
=
∂2C (1)

f

∂ξ2
(C.39)

C.2.2 Matrix

Advection-Diffusion Equation:

∂Cm

∂t
+um

∂Cm

∂x
= Dm

(
∂2Cm

∂x2
+ ∂2Cm

∂y2

)
(C.40)

Apply dimensional analysis similar as did for the fracture:

C

T

∂Cm

∂t
+ UC

L
um

∂Cm

∂x
= DmC

L2

∂2Cm

∂x2
+ DmC

b2

∂2Cm

∂y2
(C.41)

here we keep b as the vertical length scale. This gives:

b2

DmT

∂Cm

∂t
+ Ub2

DmL
um

∂Cm

∂x
= b2

L2

∂2Cm

∂x2
+ ∂2Cm

∂y2
(C.42)

Still use: ε= b
L , Pem = Ub

Dm
and T = Tad v = L

U we will have:

εPem
∂Cm

∂t
+εPemum

∂Cm

∂x
= ε2∂

2Cm

∂x2
+ ∂2Cm

∂y2
(C.43)

Rescale the axis:

x = ε0.5ξ (C.44)
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Expand Cm :

Cm(ξ, y, t ) =C (0)
m (ξ, t )+ε0.5C (1)

m (ξ, y, t )+εC (2)
m (ξ, y, t )+ . . . (C.45)

Simlarly: For O(ε0.5):

Pemum
∂C (0)

m

∂ξ
= ∂2C (1)

m

∂y2
(C.46)

For O(ε):

Pem
∂C (0)

m

∂t
+Pemum

∂C (1)
m

∂ξ
= ∂2C (0)

m

∂ξ2
+ ∂2C (2)

m

∂y2
(C.47)

For O(ε1.5):

Pem
∂C (1)

m

∂t
+Pemum

∂C (2)
m

∂ξ
= ∂2C (1)

m

∂ξ2
(C.48)

C.2.3 Boundary condition and Interface condition

• Inlet, constant concentration:

C f (0, y, t ) = 1 (C.49)

• Initially 0 everywhere:

C f (ξ, y,0) = 0 (C.50)

Cm(ξ, y,0) = 0 (C.51)

• On symmetric axis, no flux:

∂C f

∂y

∣∣∣
y=1

= 0 (C.52)
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• Bottom wall, no flux:

∂Cm

∂y

∣∣∣
y=−h

= 0 (C.53)

• Continuity of the concentration on the interface:

C f (ξ,0, t ) =Cm(ξ,0, t ) (C.54)

gives:

C (0)
f +ε0.5C (1)

f +εC (2)
f =C (0)

m +ε0.5C (1)
m +εC (2)

m (C.55)

• continuity of the flux on the interface:

[
D f C

b

∂C f

∂y

]
y=0

=
[
φ

DmC

b

∂Cm

∂y

]
y=0

(C.56)

[
∂C f

∂y

]
y=0

=
[
φ

Dm

D f

∂Cm

∂y

]
y=0

(C.57)

gives:

[
∂

∂y

(
C (0)

f +ε0.5C (1)
f +εC (2)

f

)]
y=0

=
[
φ

Dm

D f

∂

∂y

(
C (0)

m +ε0.5C (1)
m −εC (2)

m

)]
y=0

(C.58)

finally:ε0.5
∂C (1)

f

∂y
+ε

∂C (2)
f

∂y


y=0

=
[
ε0.5φ

Dm

D f

∂C (1)
m

∂y
−εφDm

D f

∂C (2)
m

∂y

]
y=0

(C.59)

C.3 General Steps of solving

The equations can be solved in following steps:
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1. Integrate Equation (C.37) with respect to y :

∂C (1)
f

∂y
= Pe f

[ˆ
u f (y)d y +M1(ξ, t )

] ∂C (0)
f

∂ξ
(C.60)

2. Integrate again:

C (1)
f (ξ, y, t ) = Pe f

[ˆ ˆ
u f (y)d yd y +M1(ξ, t )y +M2(ξ, t )

] ∂C (0)
f

∂ξ
(C.61)

let: M(y) = ´ ´ u f (y)d yd y :

C (1)
f (ξ, y, t ) = Pe f

[
M(y)+M1(ξ, t )y +M2(ξ, t )

] ∂C (0)
f

∂ξ
(C.62)

3. No flux on the symmetric axis (y = 1):

∂C (1)
f

∂y

∣∣∣
y=1

= 0 (C.63)

[
M ′+M1(ξ, t )

]
y=1 = 0 (C.64)

we can solve the M1:

M1(ξ, t ) =−M ′
∣∣∣

y=1
(C.65)

Notice it is a constant. We can have:

C (1)
f (ξ, y, t ) = Pe f M

∂C (0)
f

∂ξ
+Pe f M2(ξ, t )

∂C (0)
f

∂ξ
(C.66)

where:

M(y, t ) = M(y)+M1 y and M2(ξ, t )
∂C (0)

f

∂ξ
∼ f (ξ, t ) (C.67)
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4. Take derivative of both sides of equation (C.66) with respect to ξ:

∂C (1)
f

∂ξ
= Pe f M

∂2C (0)
f

∂ξ2
+Pe f

∂

∂ξ

M2

∂C (0)
f

∂ξ

 (C.68)

5. Take derivative of both sides of equation (C.68) with respect to ξ:

∂2C (1)
f

∂ξ2
= Pe f M

∂3C (0)
f

∂ξ3
+Pe f

∂2

∂ξ2

M2

∂C (0)
f

∂ξ

 (C.69)

6. Take derivative of both sides of equation (C.66) with respect to t :

∂C (1)
f

∂t
= Pe f M

∂2C (0)
f

∂ξ∂t
+Pe f

∂

∂t

M2

∂C (0)
f

∂ξ

 (C.70)

7. Substitute into (C.39)

Pe f

Pe f M
∂2C (0)

f

∂ξ∂t
+Pe f

∂

∂t

M2

∂C (0)
f

∂ξ

+Pe f u f

∂C (2)
f

∂ξ
(C.71)

=Pe f M
∂3C (0)

f

∂ξ3
+Pe f

∂2

∂ξ2

M2

∂C (0)
f

∂ξ


Cancel Pe f :

Pe f M
∂2C (0)

f

∂ξ∂t
+ ∂

∂t

M2

∂C (0)
f

∂ξ

+u f

∂C (2)
f

∂ξ
=M

∂3C (0)
f

∂ξ3
+ ∂2

∂ξ2

M2

∂C (0)
f

∂ξ

 (C.72)

8. integrate with respect to ξ (
´ ξ

0 dξ ):

Pe f M
∂C (0)

f

∂t
+
ˆ ξ

0

∂

∂t

M2

∂C (0)
f

∂ξ

dξ+u f C (2)
f =M

∂2C (0)
f

∂ξ2
(C.73)

+ ∂

∂ξ

M2

∂C (0)
f

∂ξ

+ f ∗(y, t )
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We can have:

u f C (2)
f =M

∂2C (0)
f

∂ξ2
−Pe f M

∂C (0)
f

∂t
+ ∂

∂ξ

M2

∂C (0)
f

∂ξ

 (C.74)

−
ˆ ξ

0

∂

∂t

M2

∂C (0)
f

∂ξ

dξ+ f ∗(y, t )

C (2)
f = M

u f

∂2C (0)
f

∂ξ2
−Pe f

M

u f

∂C (0)
f

∂t
+ 1

u f
F (ξ, y, t ) (C.75)

where:

F (ξ, y, t ) = ∂

∂ξ

M2

∂C (0)
f

∂ξ

−
ˆ ξ

0

∂

∂t

M2

∂C (0)
f

∂ξ

dξ+ f ∗(y, t ) (C.76)

9. Take derivative with respect to y :

∂C (2)
f

∂y
=

(
M

u f

)′ ∂2C (0)
f

∂ξ2
−Pe f

(
M

u f

)′ ∂C (0)
f

∂t
+ 1

u f

∂F

∂y
+

(
1

u f

)′
F (C.77)

we will have:

(
M

u f

)′
=
M′u f −Mu′

f

u2
f

,

(
1

u f

)′
=

−Mu′
f

u2
f

(C.78)

From equation (C.64) and (C.12) we know:

M′
∣∣∣

y=1
= 0, u′

f

∣∣∣
y=1

= 0 (C.79)

Therefore we can have:

∂C (2)
f

∂y

∣∣∣
y=1

= 0 if
∂F

∂y

∣∣∣
y=1

(C.80)

which requires:

∂ f ∗

∂y

∣∣∣
y=1

= 0 (C.81)
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10. In order to solve C (0)
f , we average the equation (C.38) over the cross-section

(denote: < •>= ´ 1
0 •d y), gives:

Pe f

∂C (0)
f

∂t
+Pe f

〈
u f

∂C (1)
f

∂ξ

〉
=
∂2C (0)

f

∂ξ2
+

∂C (2)
f

∂y

y=1

y=0

(C.82)

11. on the wall,
∂C (2)

f

∂y

∣∣∣
y=1

= 0:

Pe f

∂C (0)
f

∂t
+Pe f

〈
u f

∂C (1)
f

∂ξ

〉
=
∂2C (0)

f

∂ξ2
−

∂C (2)
f

∂y


y=0

(C.83)

12. Substitute the equation (C.68) and (C.77):

Pe f

∂C (0)
f

∂t
+Pe f

〈
u f Pe f M

∂2C (0)
f

∂ξ2

〉
+Pe f

〈
Pe f

∂

∂ξ

M2

∂C (0)
f

∂ξ

〉
= (C.84)

∂2C (0)
f

∂ξ2
−

(
M

u f

)′ ∂2C (0)
f

∂ξ2
−Pe f

(
M

u f

)′ ∂C (0)
f

∂t


y=0

−
[

1

u f

∂F

∂y
+

(
1

u f

)′
F

]
y=0

∂C (0)
f

∂t
+

〈
u f Pe f M

∂2C (0)
f

∂ξ2

〉
= 1

Pe f

∂2C (0)
f

∂ξ2
(C.85)

− 1

Pe f

(
M

u f

)′ ∂2C (0)
f

∂ξ2
−Pe f

(
M

u f

)′ ∂C (0)
f

∂t


y=0

+Q

where:

Q(ξ, t ) =− 1

Pe f

[
1

u f

∂F

∂y
+

(
1

u f

)′
F

]
y=0

−Pe f

〈
∂

∂ξ

M2

∂C (0)
f

∂ξ

〉
(C.86)

Notice
〈

f (ξ, t )
〉= f (ξ, t ) we will have:

Q(ξ, t ) =− 1

Pe f

[
1

u f

∂F

∂y
+

(
1

u f

)′
F

]
y=0

−Pe f
∂

∂ξ

M2

∂C (0)
f

∂ξ

 (C.87)
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13. Collect terms:

∂C (0)
f

∂t
−

(
M

u f

)′ ∂C (0)
f

∂t


y=0

= 1

Pe f

∂2C (0)
f

∂ξ2
− 1

Pe f

(
M

u f

)′ ∂2C (0)
f

∂ξ2


y=0

(C.88)

−Pe f
〈

u f M
〉 ∂2C (0)

f

∂ξ2
+Q(ξ, t )

which is:

∂C (0)
f

∂t
=

1−Pe2
f

〈
u f M

〉− (
M
u f

)′ ∣∣∣
y=0

Pe f −Pe f

(
M
u f

)′ ∣∣∣
y=0

∂2C (0)
f

∂ξ2
+Q(ξ, t ) (C.89)

Let:

D f =−〈
u f M

〉
(C.90)

and:

D f =−
(
M

u f

)′ ∣∣∣∣
y=0

(C.91)

we will have the equation for the leading order:

∂C (0)
f

∂t
= κ

∂2C (0)
f

∂ξ2
+Q(ξ, t ) (C.92)

with:

κ= 1

Pe f
+Pe f

D f

1+D f
(C.93)

C.4 Calculate dispersion coefficient κ

We need:

D f =−〈
u f M

〉
(C.94)
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we know:

u f =
Ψ f

2
y2 + Ay +B (C.95)

M=
ˆ ˆ

u f (y)d yd y +M1(ξ, t )y = Ψ f

24
y4 + A

6
y3 + B

2
y2 +M1(ξ)y (C.96)

For M1 (equation C.64):

M1 =−Ψ f

6
− A

2
−B (C.97)

Therefore:

M= Ψ f

24
y4 + A

6
y3 + B

2
y2 +

(
−Ψ f

6
− A

2
−B

)
y (C.98)

then:

−D f =
ˆ 1

0

(
Ψ f

2
y2 + Ay +B

)[
Ψ f

24
y4 + A

6
y3 + B

2
y2 +M1 y

]
d y (C.99)

open the first bracket:

−D f =
ˆ 1

0

Ψ f

2
y2

[
Ψ f

24
y4 + A

6
y3 + B

2
y2 +M1 y

]
(C.100)

+Ay

[
Ψ f

24
y4 + A

6
y3 + B

2
y2 +M1 y

]
+B

[
Ψ f

24
y4 + A

6
y3 + B

2
y2 +M1 y

]
d y

multiply all the terms:

−D f =
ˆ 1

0

1

48
Ψ2

f y6 + 1

12
AΨ f y5 + 1

4
BΨ f y4 + 1

2
M1Ψ f y3 (C.101)

+ 1

24
AΨ f y5 + 1

6
A2 y4 + 1

2
AB y3 + AM1 y2

+ 1

24
BΨ f y4 + 1

6
AB y3 + 1

2
B 2 y2 +B M1 y d y
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collect terms with the same order:

−D f =
ˆ 1

0

1

48
Ψ2

f y6+1

8
AΨ f y5 +

(
1

4
BΨ f +

1

6
A2 + 1

24
BΨ f

)
y4 (C.102)

+
(

1

2
M1Ψ f +

1

2
AB + 1

6
AB

)
y3

+
(

AM1 + 1

2
B 2

)
y2 +B M1 y d y

integrate:

−D f =
1

48

1

7
Ψ2

f +
1

8

1

6
AΨ f +

1

5

(
1

4
BΨ f +

1

6
A2 + 1

24
BΨ f

)
(C.103)

+1

4

(
1

2
M1Ψ f +

1

2
AB + 1

6
AB

)
+ 1

3

(
AM1 + 1

2
B 2

)
+ 1

2
B M1

gives:

−D f =
1

336
Ψ2

f +
1

48
AΨ f +

1

5

(
7

24
BΨ f +

1

6
A2

)
(C.104)

+1

4

(
1

2
M1Ψ f +

2

3
AB

)
+ 1

3
AM1 + 1

6
B 2 + 1

2
B M1

open the bracket:

−D f =
1

336
Ψ2

f +
1

48
AΨ f +

7

120
BΨ f +

1

30
A2 + 1

8
M1Ψ f +

1

6
AB + 1

3
AM1 + 1

6
B 2 + 1

2
B M1

(C.105)

substitute M1 we can have these multiplications:

M1Ψ f =−1

6
Ψ2

f −
1

2
AΨ f −BΨ f (C.106)

M1 A =−1

6
AΨ f −

1

2
A2 − AB (C.107)

M1B =−1

6
BΨ f −

1

2
AB −B 2 (C.108)
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then:

−D f =
1

336
Ψ2

f +
1

48
AΨ f +

7

120
BΨ f +

1

30
A2 + 1

8

(
−1

6
Ψ2

f −
1

2
AΨ f −BΨ f

)
(C.109)

+1

6
AB + 1

3

(
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C.4.1 CalculateD f

we need:

D f =−
(
M

u f

)′ ∣∣∣∣
y=0

(C.112)

we know:

D f =−
(
M′u f −u′

f M

u2
f

)
y=0

(C.113)

and:

My=0 = 0 (C.114)

M′
y=0 =−Ψ f

6
− A

2
−B (C.115)

(
u f

)
y=0 = B (C.116)(

u′
f

)
y=0

= A (C.117)



155

therefore:
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