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Simulating thermal stratification and modeling outlet

water temperature in reservoirs with a data-mining

method

Shima Soleimani, Omid Bozorg-Haddad, Motahareh Saadatpour

and Hugo A. Loáiciga
ABSTRACT
This paper simulates the thermal stratification of the Karkhe Reservoir, Iran, with the CE-QUAL-W2

model for the period 1981–1995. The simulation of reservoir water quality requires meteorological,

hydrological, chemical, and discharge time series to accurately predict the temperature of water

releases from the reservoir. Outlet water temperature of the Karkhe Reservoir is calculated using the

CE-QUAL-W2 model and the simulated outlet water temperature is thereafter modeled with the

library for support vector machines (LIBSVM) data-mining model. Simulation results show thermal

stratification in the Karkhe Reservoir occurs once a year. In addition, the data-mining model is a good

surrogate model for the CE-QUAL-W2 model for estimating water temperature at different outlet

levels in the reservoir. The root-mean square, mean absolute error and Nash-Sutcliffe criteria are

used to assess the performance of the data-mining method. The LIBSVM model was found to be a

suitable surrogate model for the main simulation model, and can be linked to optimization models

with which to calculate reservoir operational rules for thermal control.
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INTRODUCTION
The thermal stratification of lakes and reservoirs implies a

change in the temperature at different depths in the lake or

reservoir, and occurs because of the change in density with

temperature. Thermal stratification develops two layers

called epilimnion and hypolimnion separated by a layer of

rapid temperature changes calledmetalimnion. The hypolim-

nion layer consists ofwater that is generally denser and colder

than water in the epilimnion layer. Thermal stratification and

heat budget significantly affect the water quality and ecologi-

cal characteristic of lakes and reservoirs (Wetzel ; Wang

et al. ), contaminant transport and hydrodynamic mixing

in reservoir and lakes (Fischer et al. ; Kennedy et al. ),
downstream irrigation area of reservoirs (Yang et al. ),

and aquatic environment of lakes and reservoirs (Hanna

et al. ). For instance, hypolimnion layers in stratified

reservoirs contain anoxic water with poor quality which

might contain dissolved iron, manganese, sulfide,

ammonium, and phosphate (Dortch ). Rising water

temperature in water reservoirs increases the speed of

chemical and biological reactions, which have a strong influ-

ence on reservoir nutrient cycling and initial productivity

(Sahoo & Schladow ).

Elci () considered the mixing and thermal stratifica-

tion effects in the Tahtali reservoir in Turkey using

mailto:obhaddad@ut.ac.ir
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multivariate analyses on qualitative data of the reservoir.

Wei et al. () developed a three-dimensional hydrodyn-

amic simulation model and considered the effects of

reservoir inflow temperature on thermal structure in a reser-

voir located in south China. Yang et al. () simulated the

thermal stratification effects on downstream irrigation area

of the Xiahushan reservoir in China with a three-dimen-

sional hydrodynamic model, environmental fluid dynamics

code (EFDC). Wang et al. () used a three-dimensional

hydrodynamic simulation model (ELCOM) to consider

the effects of local climate and hydrologic conditions on

the thermal stratification in the Liuxihe Reservoir, China.

Kerimoglu & Rinke () estimated the response of the

Bautzen reservoir, Germany, to different combinations of

external factors such as the hydrological regime, water

level fluctuation, dewatering depth and meteorological vari-

ables with the one-dimensional DYRESM model. Lugg &

Copeland () assessed the impacts of the location, quan-

tity, and extent of cold-water pollution (CWP) in the

downstream Murray-Darling basin in Australia. Bermudez

et al. () considered the impacts of a pumped-storage

hydroelectric power plant on the reservoirs’ thermal stratifi-

cation. Gelda & Effler () linked the CE-QUAL-W2

simulation model to an evolutionary optimization algorithm

and showed that using selective withdrawal can decrease

the epilimnion and metalimnion in the reservoir. All the

models applied in the cited studies were solved based on

differential equations and numerical methods called phys-

ically based models.

Data-mining methods can be applied as surrogates of

physically based models to reduce the computational

burden. Data mining is a process for selecting, identifying,

and modeling based on large databases searched to discover

relations among data providing useful results for database

analysts (Giudici ). There are many data-mining

methods such as linear and nonlinear regression, Kriging

method, artificial neural network (ANN), genetic program-

ming (GP), multilayer perceptron (MLP), and support

vector machine (SVM). Xiang & Jiang () applied least-

squares support vector regression (LSSVR) method to pre-

dict water quality in the Liuxi River located in China.

They predicted chemical oxygen demand (COD) and DO

with an integrated algorithm consisting of the LSSVR

method and the particle swarm optimization (PSO)
om http://iwaponline.com/aqua/article-pdf/68/1/7/526450/jws0680007.pdf
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algorithm. Raghavendra & Deka () reviewed the appli-

cation of support vector regression (SVR) in hydrology.

There have not been, to our knowledge, reported appli-

cations of the SVM method to modeling outlet water

temperature in reservoirs even in recent investigations.

This study simulates outlet temperature in a reservoir with

the combined application of water-quality simulation with

the CE-QUAL-W2 model and data mining with the

LIBSVM, a variant of the SVM method. LIBSVM serves

as the data-mining method for its capacity to model complex

and non-linear water-quality dynamics present in the phys-

ically based model CE-QUAL-W2. The LIBSVM yields

substantial reductions in the computational burden of

water-temperature modeling while preserving predictive

accuracy.
MATERIALS AND METHODS

The CE-QUAL-W2 model and the SVM method are briefly

summarized in this section. The statistical criteria used to

evaluate the LIBSVM method’s performance are also

defined in this section.

CE-QUAL-W2 model

A physically based hydrologic model consists of a math-

ematical description of surface and subsurface processes,

external and internal boundary conditions, and initial con-

ditions (Furman ). Physically based models have been

applied in numerous studies to address a wide range of

water-quality questions (McCuen ; Rango & Martinec

; Montanari & Grossi ; Mendoza et al. ). The

CE-QUAL-W2 model is a two-dimensional water quality

and hydrodynamic simulation model developed by the

U.S. Army Corps of Engineers’ Waterways Experiment

Station (WES). The temporal and spatial changes of water

surface level and water temperature are modeled using

CE-QUAL-W2 version 3.71 (Cole & Wells ). The

required model data consist of reservoir geometric data,

initial temperature conditions, boundary conditions (time

series of meteorological, hydrological, water quality,

released reservoir discharge, and hydraulic and kinetic par-

ameters). The reasons for choosing the CE-QUAL-W2
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version 3.71 are: (1) the model simulates flow, water level,

horizontal and vertical velocities, water temperature, ice

cover, and the concentrations of constituents such as ammo-

nia, nitrate, phosphate; (2) in case of thermally stratified

reservoirs the model allows reservoir operators to define

water release from multiple floating or fixed elevational out-

lets that access waters at several depths with distinct

temperature; and (3) it allows the operators to set priority

allocations for each outlet to optimize water releases.
Support vector machine

SVM is a machine-learning system based on constrained

optimization theory (Vapnik et al. ; Vapnik ). The

SVM method has been applied in many fields of inquiry suc-

cessfully. SVM regression determines a relational function

between dependent or output variables (y) and independent

or input variables (x). The relational function, f(x), is

obtained by the SVM model trained on a data set.
Structural risk minimization principle

The structural risk minimization principle guides the SVM

search for an optimal function, f(x), by minimizing the

norm of differences, L(y) and f(x) between predicted

values (y, the output or dependent variables) and observed

ones (x, the input or independent variables). The minimiz-

ation relies on the risk function R, defined as follows:

R ¼
ð
L(y, f(x)dP(x, y) (1)

in which R is risk function, and P(x,y) is the probability dis-

tribution function, which is unknown. Therefore, the

expected risk function R written below is used instead:

Remp ¼ 1
l

Xl
i¼1

L(y, f(x)) (2)

where Remp is the empirical risk and l is the number of train-

ing data. Vapnik () proposed a structural risk

minimization inductive principle to minimize Remp in the

SVM method, which is explained below.
://iwaponline.com/aqua/article-pdf/68/1/7/526450/jws0680007.pdf
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Application of the SVM method in function estimation

Vapnik (Vapnik et al. ; Vapnik ) proposed a risk

function called ε-insensitive to solve regression problems.

The function is shown in Equation (3):

L(y, f(x)) ¼ jy� f(x)jε ¼
0 ifjy� f(x)j � ε

jy� f(x)j � ε otherwise

�
(3)

This risk function ignores risks that are smaller than ε

and considers risk values according to ξ ¼ jy� f(x)j � ε or

data in which the difference between observed values and

estimated values exceeds the threshold ε. Bold font

expresses vector values in the adopted notation.

The SVM method assumes the relation between input

and output variables is nonlinear. A space called feature

space is developed by a nonlinear mapping function that lin-

earizes the relation between variables. The linear relation

between input and output variables in the feature space is

defined by Equation (4):

f(x) ¼ 〈w, ϕ(x)〉þ b (4)

in which x and f (x) are input and output of training data,

respectively, w is the weighting vector, ϕ(x) is a nonlinear

function that maps the data from main space to feature

space, and b is a bias factor. The norm 〈:, :〉 denotes the

inner product of vectors.

The structural risk minimization is written in terms of

the optimization problem (5):

Minimize
1
2

wk k2þ C
Xl
i¼1

(ξi þ ξ�i )

subject to

yi � 〈w, xi〉� b � εþ ξi
〈w, xi〉þ b� yi � εþ ξ�i
ξi, ξ

�
i � 0

8><
>:

(5)

in which wk k2 is the Euclidean norm value, i is the input

variable counter, ξ and ξ� represent the penalties applied

to the objective function considering the value of ε. C is a

constant parameter that determines the wk k2 value in

terms of the complexity of the risk function.



Figure 1 | The SVM method’s flowchart.
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The procedure for solving problem (5) relies on the

Lagrange form of the objective function, which is shown

in Equation (6):

L ¼ 1
2

wk k2þC
Xl
i¼1

(ξi þ ξ�i )�
Xl
i�1

(ηiξi þ η�i ξ
�
i )

�
Xl
i¼1

αi(εþ ξi � yi þ 〈w, xi〉þ b)

�
Xl
i¼1

α�
i (εþ ξ�i � yi þ 〈w, xi〉þ b)

inwhich η(�), α(�) � 0

(6)

in which L is Lagrange function, η(�)i and α(�)
i are the

Lagrange multipliers for the ith input (η(�)i represents ηi or

η�i (with or without star), analogous notational symbolism is

used for α(�)
i ). Partial derivatives of L are taken with respect

to w, b, ξ, and ξ�, the resulting expressions are set to equal

to zero and solved for the unknown Lagrange parameters:

@wL ¼
Xl
i¼1

(α�
i � αi) ¼ 0 (7)

@bL ¼ w�
Xi
i¼1

(αi � α�
i )xi ¼ 0 (8)

@ξ(�)L ¼ C � α(�)
i � η(�) ¼ 0 (9)

There is lack of information about the choice of non-

linear mapping function ϕ(x). Accordingly, a kernel

function is defined that expresses the feature space linearly

mapped from the main space. A kernel function is given

by Equation (10):

K(xi, x) ¼ 〈ϕ(xi)
0, ϕ(x)〉 x ∈ X (10)

where K is a kernel function. The kernel function in

Equation (10) is used to construct the relational function:

f(x) ¼
Xl
i¼1

(α�
i � αi)K(xi, x)þ b (11)

The kernel function can be selected from linear,

polynomial, sigmoid, and radial basis (RBF), and MLP
om http://iwaponline.com/aqua/article-pdf/68/1/7/526450/jws0680007.pdf
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functions. This study applies the RBF kernel, which is

given by:

K(xi, x) ¼ exp � xi � xk k2
2σ2

 !
(12)

in which σ is the RBF kernel function coefficient. Figure 1

depicts the SVM method’s flowchart. The LIBSVM model

is a variant of the SVM method. It is implemented in this

study as a data-mining model (Chang & Lin ).
Determination of the LIBSVM model parameters

The LIBSVM model parameters are ε, which expresses the

ε-insensitive risk function, C (expresses functional capa-

bility), and the kernel function coefficient σ that appears

in the RBF kernel function, Equation (12). These parameters

can be obtained by sensitivity analysis resorting to the trial

and error method which is commonly applied based on

prior knowledge of the analyst (Vapnik ).
Evaluation of the LIBSVM model performance

The skill of the LIBSVM model to predict the outlet water

temperature in reservoirs with variable level is herein

measured with the root mean square (RMSE), the mean

absolute error (MAE), and the Nash-Sutcliffe coefficient

(NS). The criteria are defined in Equations (13) to (15)
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(Wang et al. ; Orouji et al. ):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

(yCEt � yLIBt )
2

vuut (13)

MAE ¼ 1
T

XT
t¼1

jyCEt � yLIBt j (14)

NS ¼ 1�

PT
t¼1

(yCBt � yLIBt )
2

PT
t¼1

(yCEt � yLIBt )
2

(15)

in which yCEt and yLIBt are outlet water temperature calcu-

lated with the CE-QUAL-W2 and LIBSVM models,

respectively. yCEt and yLIBt are the average outlet water temp-

erature from the CE-QUAL-W2 and LIBSVM models,

respectively, T is the total number of time steps, and t is
Figure 2 | The methodology’s flowchart.

://iwaponline.com/aqua/article-pdf/68/1/7/526450/jws0680007.pdf
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the time step counter. The flowchart of the SVM approach

herein developed is shown in Figure 2.
CASE STUDY

The Karkhe Reservoir is the sixth largest earthen reservoir in

the world and the largest earthen reservoir in Iran. The

catchment area of the Karkhe River is approximately

about 44,000 km2. It is located between 46�570–49�100 east-

ern longitudes and 31�480–34�580 northern latitudes. The

reservoir volume equals 5 × 109 m3, its length equals

64 km, and its surface area equals 162 km2 at normal

water pool (220 m above sea level). The average and maxi-

mum depth of the reservoir are 61.8 and 117 m,

respectively, and the maximum and minimum elevation of

the reservoir are 230 and 113 m above sea level, respect-

ively. The reservoir has three outlets. One is a longitudinal



Figure 3 | Plan view of Karkhe Reservoir model segmentation (scale 1:15,000).
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outlet whose outlet water temperature is not considered in

this study, one agricultural outlet and one hydropower

outlet located at 163 and 181 m above sea level, respectively.

The reservoir supplies water for 180,000 hectares of agricul-

tural land and domestic water for cities located in

Khozestan province. Therefore, the reservoir is strategic

for supplying reliable and high-quality water for irrigation

and municipal consumption. According to field obser-

vations the reservoir is affected by eutrophication and is

susceptible to thermal stratification. In recent years, the

reservoir has exhibited algal blooms and water quality degra-

dation. The reservoir average retention time is estimated

about 0.74 years. The relative long retention time causes

increasing nutrient load and water quality degradation,

which call for detailed modeling, monitoring, and assess-

ment of thermal stratification formation in the reservoir

(Afshar & Saadatpour ; Saadatpour et al. ).

CE-QUAL-W2 set up

The set up of the CE-QUAL-W2 model involves: (1) specify-

ing reservoir geometry; (2) adding component structures in

the reservoir; (3) adding meteorological and hydrological

data; (4) defining the simulation time period and time

step; and (5) calibrating and verifying the model.

In previous research, the Karkhe Reservoir was

described with 66 longitudinal segments each 1,000 m

long (Figure 3), and up to 55 vertical layers depending on

water depth, layers’ thicknesses ranging from 2 to 5 m in

each segment (Figure 4) (Afshar & Saadatpour ; Saadat-

pour et al. ). The same description is applied in this

study. Reservoir components include a reservoir spillway,

one longitudinal outlet, one agricultural oulet, and one

hydropower outlet located at 163 and 181 m above sea

level; two proposed outlets located at 120 and 140 m

above sea level used to simulate water releases blending

waters from different levels. Figure 4 specifies the reservoir’s

minimum and maximum elevations and the outlet

elevations. Meteorological, hydrological, and water quality

data were obtained from previous studies of the Karkhe

system project by the Mahab Qods Consulting Engineers

Company and the Meteorological Organization (Iran). Ther-

mal stratification and outlet water temperature were

simulated for the 15-year period 1981–1995. The first
om http://iwaponline.com/aqua/article-pdf/68/1/7/526450/jws0680007.pdf
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simulation day is September 19th, 1981, and the last day is

September 15th 1995. The minimum and maximum simu-

lation time steps are equal to one second and one hour,

respectively. The CE-QUAL-W2 model was calibrated and

verified by Afshar et al. ().
Implementation of the LIBSVM model

The implementation steps of the LIBSVM model are

depicted in Figure 2. Using the LIBSVM model as a surro-

gate model for CE-QUAL-W2 model for water-quality

simulations requires careful choice of the input variables.

The input variables having the greatest impact on system

response must be chosen so that the LIBSVM model’s pre-

dictive skill is accurate.

The key variables governing surface heat exchange and

reservoir thermal stratification in a reservoir are air tempera-

ture, dew point temperature, cloud cover, wind velocity,

thermal inflow and outflow fluxes, water depth, and water

volume (Edinger ; Afshar & Saadatpour ). An



Figure 4 | Vertical view of Karkhe Reservoir model with depth layers.

Table 1 | Scenarios of combinations of individual withdrawal fractions at several outlets

Scenario number

Outlet water level (m above sea level)

120 140 163 181

1 1.00 0.00 0.00 0.00

2 0.00 1.00 0.00 0.00

3 0.00 0.00 1.00 0.00

4 0.00 0.00 0.00 1.00

5 0.33 0.33 0.33 0.00

6 0.50 0.00 0.00 0.50

7 0.50 0.50 0.00 0.00

8 0.00 0.15 0.30 0.55

9 0.50 0.00 0.50 0.00

10 0.00 0.25 0.00 0.75

11 0.00 0.00 0.50 0.50

12 0.33 0.00 0.33 0.33

13 0.00 0.55 0.30 0.15

14 0.00 0.33 0.33 0.33

15 0.00 0.75 0.00 0.25

16 0.00 0.50 0.00 0.50

17 0.15 0.30 0.00 0.55

18 0.00 0.50 0.50 0.00
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information-theoretic approach based on the mutual infor-

mation (MI) concept proposed by Tourassi et al. () is

applied herein to select the most significant variables

among the cited governing variables to simulate Karkhe

reservoir outlet water temperature and reduce the compu-

tational burden of the LIBSVM method (Saadatpour et al.

). The MI quantifies the ‘amount of information’

gained about outlet water temperature through other vari-

ables such as air temperature, cloud cover, and so on.

Complex cause-and-effect relations govern feedbacks and

time delays on large reservoir thermal responses. Therefore,

appropriate time delays must be added to the input data.

Moreover, the application of fractional withdrawals at var-

ious outlets must be taken into account in the LIBSVM

input data to model outlet water temperature due to the

withdrawals from different elevations in a lake.

The training (calibration) and testing input data of the

LIBSVM model are obtained from inputs and outputs of

18 defined operational scenarios based on the authors’

knowledge from simulations with the CE-QUAL-W2

model. This led to choosing the results of 12 and 6 oper-

ational scenarios among the 18 scenarios as training and

testing data, respectively. Training and testing scenarios

were chosen based on random selection (Liu & Motoda

). The withdrawal fractions at each outlet for different

operational scenarios are listed in Table 1. Moreover, the

LIBSVM model’s performance is evaluated for two different

structural states defined as follows: (1) the LIBSVM method

is trained by operating scenarios 1 through 12, and tested
://iwaponline.com/aqua/article-pdf/68/1/7/526450/jws0680007.pdf
nia, Santa Barbara (UCSB) user
with operating scenarios 13 through 18 for all the simulated

years (1981–1995); (2) the LIBSVM method is trained with

operating scenarios 1 through 12, and tested with operating

scenarios 13 through 18 for similar months (12 months)

during the simulation period (1981–1995).
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RESULTS

The present study has the two main goals of: (1) simulating

reservoir water temperature (both outlet water temperature

and internal reservoir water temperature); and (2) imple-

menting the LIBSVM model to estimate outlet water

temperature at several outlet levels of the reservoir.
Simulating thermal stratification

The thermal stratification of Karkhe Reservoir was simu-

lated with the CE-QUAL-W2 model for the period 1981–

1995. Figure 5 shows vertical water temperature profiles

in seasons of 1982, 1985, 1988, 1991, and 1994, which

displays that thermal stratification begins in spring in

every year of simulation (1981–1995). The surface of the

reservoir warms up with the onset of spring and the den-

sity of the upper layer decreases. This prevents vertical

mixing in the reservoir. The calculated water temperature

on May 17th of all the simulation years in the lowest and

highest layers averaged 14.18 �C and 26.66 �C, respectively.

This implies a temperature difference of 12.48 �C over

88 m of depth. With the onset of summer, the water sur-

face continues to warm up and the vertical temperature

gradient increases. The surface water temperature on

August 15th of all the simulation years in the lowest and

highest layers averaged 14.18 �C and 33.58 �C, respectively,

producing a temperature difference equal to 19.39 �C over

88 m of depth. With the onset of autumn, the epilimnion,

metalimnion and hypolimnion layers become clearly deli-

neated by November 13th of all years. The depths of the

epilimnion and hypolimnion layers in this season are

approximately 17 and 35 m with temperatures equal to

25.50 �C and 15 �C, respectively. Autumn exhibits the stee-

pest thermal slope of the metalimnion layer among all

seasons. The surface layer cools with advancing autumn.

This lowers the temperature difference between the epilim-

nion and metalimnion layers causing vertical mixing.

Complete vertical mixing develops through February 16th

of all years. In the winter season of all simulated years,

the difference between the lowest and highest layer is

almost 1.2 �C over 88 m of depth. Thermal stratification

does not occur during winter.
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Figure 5 establishes that Karkhe Reservoir is subjected

to strong thermal stratification which prevents vertical

mixing in the reservoir. Therefore, applying selective with-

drawal to counter thermal stratification is necessary.

Application of the LIBSVM model

The input data to the LIBSVM model are a ten-day average

of air temperature, wind speed, heat flux input (obtained by

multiplying reservoir inflow discharge by inflow water temp-

erature), water surface level of the reservoir with an average

three-month lag from the current condition (average lag of 1,

2 and 3 months), reservoir outflow, and reservoir withdra-

wal fractions (at elevations equal to 120, 140, 163, and

181 m). These variables were selected as the most important

input variables to the LIBSVM model based on MI criteria

results reported by Saadatpour et al. (). Selection of

the variables, averaging time intervals, and time lags are

based on prior knowledge and sensitivity analyses (Saadat-

pour ; Saadatpour & Afshar ; Saadatpour et al. ).

Structural state 1

The ε, C and σ LIBSVM model parameters were obtained

based on sensitivity analysis shown in Table 2. Accordingly,

the RMSE and number of iterations were captured for differ-

ent sets of LIBSVM parameters. According to Table 2 the

RMSE decreases and the number of iterations increases

with decreasing σ, which leads to an increase of the model

run time. In addition, the RMSE value decreases and the

number of iterations increases with increasing C. The best

value of ε equals 0.075. The optimal ε, C, and σ which mini-

mize the RMSE and the number of iterations were equal to

0.075, 500, and 0.0006, respectively. Figure 6 portrays the

calculated outlet water temperature with LIBSVM and the

CE-QUAL-W2 models for corresponding to scenarios 9

and 14 as training and testing scenarios, respectively.

Structural state 2

TheLIBSVMmodel parameterswere obtained from sensitivity

analysis and are listed inTable 2. For allmonths except Septem-

ber these are ε, C, and σequal to 0.075, 5000, and 0.006,

respectively, and for September they are equal to 0.75, 5000,



Figure 5 | Vertical water temperature profiles in several seasons of years: (a) 1982, (b) 1985, (c) 1988, (d) 1991, (e) 1994.
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and 0.006, respectively. Figure 7 depicts the outlet water temp-

erature obtained fromCE-QUAL-W2 and LIBSVMmodels for

April and September obtained from Scenario 9 and 14 as the

training and testing scenarios, respectively.

Figures 6 and 7 demonstrate the LIBSVM performance

in modeling outlet water temperature was excellent for the
://iwaponline.com/aqua/article-pdf/68/1/7/526450/jws0680007.pdf
nia, Santa Barbara (UCSB) user
two structural states of the model. Moreover, the accuracy

of the model in approximating maximum and minimum

outlet water temperature is also good for each of two model-

ing states.

Figure 7(b) shows that in 1978 through 1990 the

difference between outlet temperature predicted with the



Table 2 | Sensitivity analysis of LIBSVM parameters for structural state 1

ε C σ RMSE (
�
C) Number of iterations

0.075 50,000 0.06 0.2739 10,000,000

0.0750 5,000 0.06000 0.283 2,753,779

0.0750 5,000 0.00600 0.420 1,276,493

0.0750 50,000 0.00060 0.484 2,959,564

0.0750 5,000 0.00060 0.490 192,499

0.0750 500 0.00060 0.494 31,644

0.0075 5,000 0.00060 0.515 346,312

0.7500 5,000 0.00060 0.568 27,912

0.0750 500 0.00006 0.573 52,883

0.0750 50 0.00060 0.938 10,798
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CE-QUAL-W2 and LIBSVM models is larger than in other

years. The input variables to the LIBSVM model consist of

time series data that vary substantially within a specified

month through different years. Therefore, the input data

for September of the years 1987 through 1990 were differ-

ent from the input data of this same month in other years

because of natural or man-made changes in data series.

The LIBSVM identified fitting functions for each particu-

lar scenario. The performance of the LIBSVM to model

outlet temperature in some years was not as good as in

other years. The LIBSVM model predictions exhibit

some error, but, generally, the predictive performance
Figure 6 | Calculated outlet water temperature with CE-QAUL-W2 and the LIBSVM models durin

training and testing cases, respectively.

om http://iwaponline.com/aqua/article-pdf/68/1/7/526450/jws0680007.pdf
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of the model for outlet water temperature is excellent

overall.

The LIBSVM model performance based on statistical

criteria is listed in Table 3, in which Max Error was the

maximum difference between obtained the CE-QUAL-W2

and the LIBSVM model outputs. Table 3 lists the maximum

values of the RMSE, MAE, and Max Error being equal to

0.76 �C, 0.65 �C, and 4.80 �C, respectively, and the mini-

mum value of the NS is 0.92 for both structural states. It

shows that both structural states had excellent perform-

ance modeling outlet water temperature. The averaged

value of RMSE, MAE, Max Error, and NS for structural

state 2 are 0.41 �C, 0.30 �C, 1.88 �C, and 0.96, respectively.

Comparing the averaged statistical results of structural

state 2 to the statistical results of structural state 1 estab-

lished the LIBSVM model’s excellent performance in

predicting outlet water temperature for each of two struc-

tural states.

The run times for calculating outlet water temperature

with CE-QUAL-W2 and LIBSVMmodel were about 20 min-

utes and less than two minutes, respectively. The LIBSVM

model calculations were about 10 times faster than those

for the CE-QUAl-W2 model. Evidently, the LIBSVM

model exhibited accurate and relatively rapid performance

for extracting optimal selective withdrawal rules for thermal

control of the environmental demand.
g all the simulated years (1981–1995) corresponding to Scenarios (a) 9 and (b) 14 serving as



Figure 7 | Calculated outlet water temperature obtained from CE-QUAL-W2 and LIBSVM models corresponding to (a) April months of Scenario 9, (b) September months of Scenario 9, (c)

April months of Scenario 14, and (d) September months of Scenario 14 during simulated years. The April and September calculations represent the training and testing results,

respectively, in (a), (b), (c), and (d).
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CONCLUDING REMARKS

This research simulated the thermal stratification in the

Karkhe Reservoir in the period 1981–1995 employing the

CE-QUAL-W2 model. The LIBSVM model was applied as

a surrogate of the CE-QUAL-W2 model to approximate

outlet water temperature of the reservoir. The application

of LIBSVM reduces the computational time, and the

number of input data needed for simulation purposes.

Results demonstrated the run time of the LIBSVM model

was approximately 10 times shorter than the run time of

CE-QUAL-W2 model in this study. The simulation of reser-

voir thermal stratification showed a stratification cycle
://iwaponline.com/aqua/article-pdf/68/1/7/526450/jws0680007.pdf
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during each simulated year, in which the thermal stratifica-

tion began in spring and complete vertical mixing

occurred in the mid-winter of all the simulated years. The

statistical results of the data-mining model performance

measured the capacity of the LIBSVM model to approxi-

mate outlet water temperature, with the minimum and

maximum values of the NS criteria equaling 0.92 and 0.99,

respectively. These encouraging results indicate the

LIBSVM model can be used instead of the more complex

CE-QUAL-W2 model and be coupled with an optimization

model to calculate operating policies at reservoir outlets to

control outflow temperature from the reservoir. The trained

algorithm performed well in predictions for Karkhe



Table 3 | LIBSVM model performance based on statistical criteria for two different struc-

tural states for testing data

Structural
state

Months of
simulated years

RMSE

(�C)
MAE

(�C)
Max Error

(�C) NS

1 All months 0.49 0.25 4.80 0.99

2 January 0.18 0.13 1.03 0.97

2 February 0.09 0.07 0.41 0.99

2 March 0.09 0.07 0.50 0.98

2 April 0.35 0.22 2.10 0.95

2 May 0.37 0.27 1.33 0.98

2 June 0.44 0.33 2.55 0.98

2 July 0.40 0.30 1.77 0.99

2 August 0.65 0.45 2.80 0.98

2 September 0.74 0.65 3.07 0.99

2 October 0.76 0.47 3.71 0.93

2 November 0.52 0.35 2.36 0.92

2 December 0.30 0.34 0.97 0.96
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Reservoir. Such performance would have to be evaluated in

other reservoirs.
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