Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Title
SOME CALCULATOR PROGRAMS FOR PARTICLE PHYSICS

Permalink

https://escholarship.org/uc/item/6zn9s6c6

Author

Wohl, C.G.
Publication Date
1982

disclaimer

SOME CALCULATOR PROGRAMS FOR PARTICLE PHYSICS

Charles G．Wohl
Lawrence Berkeley Laboratory University of California
Berkeley，CA 94720

January 1982

This work was supported by the Director，Office of Energy Research， Office of High Energy and Nuclear Physics，Division of High Energy Physics of the U．3．Department of Energy under Contract Number W－7405－ENG－48．

The ELLIPSE, DALITZ RECTANGULAR, and CM progiams work as given on the HP-19C and HP-29C, while the other programs need changes from the following list. In storage-register addresses and in $R C L$ and STO statements:

Also:

- Eor	RCL(i) read	RCL i		
- "	STO(i)	"	STO i	
- "	DSZ I	"	DSZ	IHP-19C, -29C
- "	ISZ I	"	ISZ	

In the LEGENDRE program, change step 32 to RCL $\cdot 0$, and make R, not R_{0}, the storage register for a_{0}.

The write-uf, for each program tells what the program does and how to run it, discusses any limitations or special cases or pitfalls, and gives an example or two to test that the program is stored properly and that its operation is understood. The examples have all been rechecked from the final typescript on an HP-97 and, with the necessary changes, on an HP-29C.

LEGENDRE

The LEGENDRE program calculates the values of the Legendre polynomial series

$$
A(x)=c \sum_{n=0}^{N} a_{n} P_{n}(x)
$$

at $x=x_{0}, x_{0}+\Delta x, x_{0}+2 \Delta x, \cdots$. The input data are the values of x_{0}, $\Delta x, N(<10)$, the overall normalization constant C, and the expansion coefficients a_{n}.

The method used is of interest. The straightforward way to calculate $A(x)$ is to start ait the bottom of the ladder of Legendre polynomials with P_{0} and P_{1}, use the standard recursion relation to climb to higher rungs, and accumulate the products $a_{n} P_{n}$ along the way. Suppose, however, we define a new set of (x-dependent) coefficients c_{n} recursiveiy by

$$
c_{n}=a_{n}+\left(\frac{2 n+1}{n+1}\right) \times c_{n+1}-\left(\frac{n+1}{n+2}\right) c_{n+2}
$$

and work downward from c_{N}, with $c_{N+1}=c_{N+2}=0$. This leads to the remarkable result that

and so the need to accumuiate $a_{n} P_{n}$ terms and keep track of the sum along the way is eliminated. This method, which was discovered by C.W. Clenshaw, is widely applicable to the summation of series of or.thogonal polynomials; see, for example, p. ll of F.S. Acton, Numerical Methods that Hork (Harper and Row, New Ycrk, 1970). ine recursion relation for the new coefficients is of course related to that for the orthogonal polynomials, and has to be worked out separately for each case. In general, the two lowest coefficients (here c_{0} and c_{1}) are involved in the final sum, but for Legendre polynomials the result is particularly simple.

To run the program, store the data in the indicated registers and start with a GSB 0 command. After some seconds, the value of x
is displayed briefly, and then $A(x)$ is displayed and the program stops. For easy access, x is at this point in the Y register. Thereafter, the stored value of x is incremented by Δx and $A(x)$ is calculated for the new value each time R/S is pressed.

To test the program, zero the registers and then set $a_{9}=1$, $N=9, x_{0}=1, \Delta x=-0.25$, and $C=1$. This input generates $P_{9}(x)$ at $x=1.0,0.75,0.5, \ldots$. The first few results are:

$$
\begin{array}{rlr}
\mathbf{x}= & 1.0 & P_{9}=1.000000001 \\
& 0.75 & 0.310331851 \\
& 0.5 & -0.267898560 \\
& 0.25 & 0.176824421 \\
& 0.0 & 0.000000000
\end{array}
$$

These results agree perfectly with B-place tables of P_{9} in chap. B of M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972). Some error is to be expected in the ninth place, as in $P_{9}(1)$ above, but this far exceeds normal requirements of accuracy.

Program: LEGENDRE

ASSOCIATED LEGENDRE

The ASSOCIATED LEGENDRE program calculates the values of the first-associated Legendre polynomial series

$$
B(x)=c \sum_{n=1}^{N} b_{n} P_{n}^{1}(x)=-c \sqrt{1-x^{2}} \sum_{n=1}^{N} b_{n} d P_{n} / d x
$$

at $x=x_{0}, x_{0}+\Delta x, x_{0}+2 \Delta x, \cdots(|x| \leqslant 1)$. The input data are the values of $x_{0}, \Delta x, N(<10)$, the overall normalization constant c, and the exparsion coefficients b_{n}. Note the minus sign in the definition of P_{n}. Angular distributions are sometimes expanded with a sign convention opposite to the above, the remedy for which is to make C negative.

The method used here (see the LEGGENDRE write-up) is to define a new set of coefficients d_{n} recursively by

$$
a_{n}=b_{n}+\left(\frac{2 n+1}{n}\right) \times d_{n+1}-\left(\frac{n+2}{n+1}\right) d_{n+2}
$$

and work downward from $\mathrm{a}_{\mathrm{N}^{\prime}}$ with $\mathrm{a}_{\mathrm{N}+1}=\mathrm{a}_{\mathrm{N}+2}=0$. This leads to

$$
\sum_{n=1}^{N} b_{n} P_{n}^{1}=-d_{1} \sqrt{1-x^{2}}
$$

and so again the need to keep track of a partial sum alorg the way is eliminated.

To run the program, store the data in the indicated registers and start with a GSB 0 command. After some seconds, the value of x is displayed briefly, and then $B(x)$ is displayed and the program stops. For easy access, x is at this point in the Y register. Thereafter, the stored value of x is incremented by Δx and $B(x)$ is calculated for the new value each time R/S is pressed. If x is outside the range -1 to +1 , Error is displayed.

To test the program, zero the registers and then set $b_{9}=1$, $N=9, x_{0}=1, \Delta x=-a .25$, and $C=1$. This input generates $p_{9}^{1}(x)$ at $x=1.0,0.75,0.5, \cdots$. The first few results are:

$$
\begin{array}{rlr}
x= & 1.0 & P_{9}^{1}=0.000000000 \\
& 0.75 & 0.478134503 \\
& 0.5 & -0.626763685 \\
& 0.25 & 1.827987321 \\
& 0.0 & -2.460937500
\end{array}
$$

These results agree perfectly with those obtained using 7-place tables of $\mathrm{dP}_{9} / \mathrm{dx}$ in chap. B of M . Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972). In fact, they are almost certainly accurate to eight places, but some error is to be expected in the ninth place.

Program: ASSOCIATED LEGENDRE

Step	Keys	Step	Keys	Regi	ters
*O1	LBL 0	31	RCL C	R_{1}	b_{1}
02	0	32	$\cos ^{-1}$	R_{2}	b_{2}
03	ENTER	33	sin	R_{3}	b_{3}
24	ENTER	34	X	R_{4}	b_{4}
05	RCL B	ذ	RCL C	R_{5}	b_{5}
06	STO I	35	PAUSE	R_{6}	b_{6}
*07	LBL 1	37	$x+y$	R_{7}	b_{7}
08	1	38	RCL A	R_{8}	b_{8}
09	+	39	x	R_{9}	b_{9}
10	1/x	40	R/S	R_{A}	c
11	1	41	RCL D	R_{B}	N
12	+	42	RCL C	R_{C}	$\mathrm{x}_{0}(\rightarrow \mathrm{x})$
13	x	43	+	R_{D}	Δx
14	CHS	44	STO C	\boldsymbol{R}_{I}	used
15	$x \neq y$	45	GT0 0		
16	RCL I	*46	LBL 2		
17	$1 / x$	47	$x \neq y$		
18	2	48	RCL I		
19	+	49	GTO i		
20	RCL C				
21	x				
22	$x \neq y$				
23	ENTER				
24	R +				
25	x				
26	+				
27	RCL (i)				
29	-				
29	DSZ I				
30	GTO 2				

CONFIDENCE and EVEN N and POISSON

The CONFIDENCE program calculates confidence levels for the X^{2} probability distribution with N degrees of freedom. The calculation is much shorter when N is even than when it is odd, so there is a short program, EVEN N, for that case (CONFIDENCE handles any N). CONFIDENCE may also be used to get confidence levels for the Gaussian (or normal) and the Poisson probability distributions, but for the Poisson case there is a much shorter program, pOISSON.

Figure 1 shows now the confidence levels will be defined here.
(a) The confidence level $\mathrm{CL}\left(\mathrm{X}_{0}^{2}, \mathrm{~N}\right)$ for the X^{2} probability distribution $P_{N}\left(X^{2}\right)$ with N degrees of freedom is the probability that a X^{2} greater than X_{0}^{2} would be obtained.
(b) The confidence level $\mathrm{CL}_{g}\left(\mathrm{X}_{0}\right)$ for the Gaussian probability distribution $P(X)$ is the probability that a result more than X_{0} standard deviations from the mean would be obtaired; this is related to CL($\left.V_{0}^{2}, \mathrm{~N}\right)$ by

$$
\mathrm{CL}_{\mathrm{g}}\left(\mathrm{X}_{0}\right)=\mathrm{CL}\left(\mathrm{X}_{0}^{2}, 1\right)
$$

(c) The confidence level $\mathrm{CL}_{\mathrm{p}}\left(\mathrm{n}_{0}, \overline{\mathrm{n}}\right)$ for the Poisson probability distribution $P_{\bar{n}}(n)$ with mean \bar{n} is the probability that a value of n greater than n_{o} would be obtained; this is related to $\mathrm{CL}\left(\mathrm{X}_{0}^{2}, \mathrm{~N}\right)$ by

$$
C L_{p}\left(n_{0}, \bar{n}\right)=1.0-\operatorname{CL}\left(x_{0}^{2}, N\right)
$$

with $x_{0}^{2}=2 \bar{n}$ and $N=2 n_{0}+2$.
The equations used to calculate $C L\left(\chi_{0}^{2}, N\right)$ are as follows. When N is even,

$$
\operatorname{CL}\left(x_{0}^{2}, N\right)=\sqrt{2 \pi} Z\left(x_{0}\right)\left(1+\sum_{n=1}^{N^{\prime}} \frac{x_{0}^{2 n}}{2 \cdot 4 \cdot 6 \cdots(2 n)}\right)
$$

where $Z\left(x_{0}\right)=\left(2 \pi \exp x_{0}^{2}\right)^{-\frac{1}{2}}$ and $N^{\prime}=(N-2) / 2$. When N is odd,

$$
C L\left(x_{0}^{2}, N\right)=C L_{g}\left(x_{0}\right)+2 z\left(x_{0}\right) \sum_{n=1}^{N "} \frac{x_{0}^{2 n-1}}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}
$$

Figure 1
where $N^{\prime \prime}=(N-1) / 2$. There is no closed expression for $C L_{g}\left(X_{0}\right)$. Fcr $x_{0} \geqslant 2$, a truncated continued fraction has been used:

$$
\mathrm{CL}_{\mathrm{g}}\left(x_{0}\right)=2 \mathrm{z}\left(x_{0}\right)\left(\frac{1}{x_{0}+} / \sqrt{x_{0}+} / \frac{2}{x_{0}+} / \frac{3}{x_{0}+} / \cdots / \frac{19}{x_{0}+20 / 6}\right)
$$

For $x_{0}<2$, the equation used is

$$
C_{g}\left(x_{0}\right)=1.0-2 z\left(x_{0}\right) \sum_{n=1}^{\infty} \frac{x_{0}^{2 n-1}}{1 \cdot 3 \cdot 5 \cdots(2 n-1)},
$$

where "infinity" is reached when the last term added to the series is smaller than 10^{-9}. For $\mathrm{N}>1$, the early terms of the series here are cancelling terms of the series in the equation at the bottom of p. 10. Account is taken of the fact that for very large N or very small χ_{0}^{2} the "infinite" series can be shorter than the finite one.

To run CONFIDENCE or EVEN N, store X_{0}^{2} and N in the indicated registers and start the program with a GSB 0 command. When it stops, the confidence level is displayed. The range of x_{0}^{2} covered is $0.0<x_{0}^{2} \leqslant 460.5 ; C L(0.0, N)$ is of course 1.0 , and when x_{0}^{2} exceeds 450.5 there is an overflow.

To run POISSON, store n_{0} and $\overline{\mathrm{n}}$ as indicated, press GSB 0 , and see the confidence level when the program stops. It is easy with a few trials to home \therefore n on a value of \bar{n} that for a given n_{0} produces a confidence level of, say, 0.95.

Following are some examples, with approximate running times. The starred examples test all the parts of CONFIDENCE, and they at least should be tried.

CL(0.04, 1)	0.841480581	$=\mathrm{CL}_{g}(0.2)$	(7 sec)
$\mathrm{CL}(3.61,1)$	$=0.05 \% 433120$	$=\mathrm{CL}_{\mathrm{g}}(1.9)$	(19 sec)
CL ($4.00,1$)	$=0.045500263$	$=\mathrm{CL}_{\mathrm{g}}(2.0)$	(17 sec)
CL (25.0, 1)	$=0.000000573$	$=\mathrm{CL}_{\mathrm{g}}(5.0)$	(17 sec)
* CL(3.61, 9)	$=0.935159132$		(24 sec)
* CL(25,0, 9)	$=0.002971180$		(21 sec)
CL (2.00, 2)	$=0.367879441$	$=1.0-\mathrm{CL}_{\mathrm{p}}(0,1.0)$	(2 sec)
* CL(50., 50)	$=0.473398469$	$=1.0-\mathrm{CL}_{\mathrm{p}}(24,25.0)$	$(26 \mathrm{sec})$

For $\mathrm{N}=1$, there are 15 -place tables or $(1-C L / 2)$ in chap. 26 of M . Abramowitz and I. Stegun, Handbock of Mathematical Functions (Dover, New York, 1972). For all N , there are 9-place tables of (1 - CL) in H.L. Yarter, New Tables of the Incomplete Gamma-Function Ratio and cf Percentage Points of the Chi-Square and Bea Distributions flerospace Research Laboratories, U.S. Air Sorce, 1964). Comparisons show that for $N=1$ the absolute eiror from the program never exceeds 1×10^{-9}. For $\mathbb{N}<100$, the absolute error rarely exceeds 1×10^{-9}, but for $\mathrm{N}>100$ absolute errors as large as 3×10^{-9} have been found.

Program: CONFIDENCE

Step	Keys	Si̇ep	Keys	Step	Keys	Reg	ters
*01	LBL 0	31	2	61	$x \nmid y$	R_{1}	x_{0}^{2}
02	RCL 2	32	0	62	$x>y$?	R_{2}	N
03	STO I	33	STO I	63	GTO 5	R_{3}	used
04	1	34	6	64	1	R_{4}	used
*05	LBI 1	*35	LBL 3	65	STO I	R_{I}	used
06	RCL I	36	RCL I	66	RCL 4		
07	2	37	$x \neq y$	67	ABS		
08	-	38	\div	68	CHS		
09	$x<0$?	39	RCL 3	*69	L.BL 6		
10	GTO 2	40	+	70	2		
11	STO I	41	DSZ I	71	π		
12	$x=0$?	42	GTO 3	7.7	\div		
13	GTO 7	43	1/x	73	\sqrt{x}		
14	RCL 1	44	RCL 4	74	x		
15	\div	45	+	75	ENTER		
16	\div	46	GT0 6	*76	LBL 7		
17	1	*47	LBL 4	77	R+		
18	+	48	RCL 3	78	RCL 1		
19	GT0 1	49	STO-4	79	2		
*20	LBL 2	*50	LBL 5	80	\div		
21	+	51	ISZ I	81	e^{x}		
22	RCL	52	ISZ I	82	\div		
23	\sqrt{x}	53	RCL 1	83	RCL I		
24	STO 3	54	x	84	+		
25	\div	55	RCL I	85	RTN		
26	STO 4	56	\div				
27	RCL 1	57	STO-4				
28	4	58	EEX				
29	$x>y$?	59	CHS				
30	GT0 4	60	9				

Program: EVEN N

Step	Keys	Registers	Step	Keys	Registers
*O1	LBL 0	$R_{1} \quad \mathrm{x}_{0}^{2}$	*01	LBL 0	$R_{1} \quad n_{0}$
02	RCL 2	$R_{2} \quad \mathrm{~N}$	02	RCL 1	$R_{2} \quad \overline{\mathrm{n}}$
03	STO I	$R_{I} \quad$ used	03	STO I	$R_{I} \quad$ used
04	1		04	1	
*05	LBL 1		05	ENTER	
06	DSZ I		06	ISZ I	
07	DSZ I		*07	LBL 1	
08	GTO 2		08	DSZ I	
09	RCL 1		09	GTO 2	
10	2		10	RCL 2	
11	\div		11	e^{x}	
12	e^{x}		12	\div	
13	\div		13	-	
14	RTN		14	RTN	
*15	LBL 2		*15	LBL 2	
16	RCL 1		16	RCL 2	
17	RCL I		17	RCL I	
18	\div		18	\div	
19	x		19	x	
20	1		20	i	
21	+		21	GTO 1	
22	GT0 1				

TWO BODY and CM
In the 2 -body reaction $a+b \rightarrow 1+2$, let m_{i} be the mass of particle i and let P_{a} be the momentum of particle a in the inertial frame in which particle b is at rest (the lab frame). The four masses and F_{a} are the input data for the TWO BODY program, which calculates the following quantities:

$$
\begin{aligned}
s= & c \cdot m . \text { energy squared } \\
E= & \text { c.m. energy } \\
p= & \text { initial-state c.in. momentum } \\
p^{\prime}= & \text { final-state c.m. momentum } \\
\Delta t=\Delta u= & \text { range of 4-momentum transfer squared } \\
t_{0}\left(t_{\pi}\right)= & 4 \text {-momentum-transfer squared between particles a } \\
& \text { and } 1 \text { when } 1 \text { is produced at } 0^{\circ}\left(180^{\circ}\right) \text { in the c.m. } \\
u_{0}\left(u_{\pi}\right)= & 4-\text { tomentum-transfer squared between particles a } \\
& \text { and } 2 \text { when } 2 \text { is produced at } 0^{\circ}\left(180^{\circ}\right) \text { in the c.m. }
\end{aligned}
$$

$C M$ is a shorter program that uses $P_{a} . m_{a}$, and m_{b} as inf at to calculate s, E, and p.

To run TWO BODY, store the four masses =nd P_{a} in the indicated rec $\cdot s t e r s$, and start the program with a GSB 0 command. When it stops, the calculated quantities are in the storage registers (u_{n} is dis`.ayed). If Error appears when the program is started, then P_{a} may be below the threshold for the reaction. In some cases, however, P_{a} can be too low without such notice being given.

To run $C M$, store P_{a}, m_{a}, and m_{b} in the indicated registers, and start the program with a GSB 0 commanc. When it stops, s, E, and p are in the storage registers (p is displayed).

As a test example, consider $\pi^{+} \mathrm{p}^{+} \mathrm{K}^{+} \Sigma^{+}$scattering at $4 \mathrm{GeV} / \mathrm{c}$. Ther, in units of GeV or $\mathrm{GeV} / \mathrm{c}$ or GeV^{2}, the input numbers are $\mathrm{P}_{\mathrm{a}}=$ $4.0, m_{a}=0.1396, m_{b}=0.9383, m_{1}=0.4937$, and $m_{2}=1.1894$, and the output numbers are $s=8.411, E=2.900, p=1.294, F^{*}=1.146, \Delta t=$ $\Delta u=5.934, t_{0}=-0.019, t_{\pi}=-5.953, u_{0}=+0.101$, and $u_{\pi}=-5.834$.

Step	Keys	Step	Keys	Step	Keys	Step	Keys
*01	LBL 0	31	GSB 2	61	-	*01	LBL 0
02	RCL 0	32	-	62	GSB 2	02	RCL 0
03	RCL 2	33	\sqrt{x}	63	-	03	RCL 1
04	RCL !	34	STO 8	64	CHS	04	+P
05	RCL 0	35	\times	65	RTN	05	RCL 2
06	GSB 2	36	4	*66	LSL 2	06	+
07	+	37	x	67	x^{2}	07	x^{2}
08	\sqrt{x}	38	STO 9	68	$x \ddagger y$	Oc	RCL 0
09	+	39	CHS	69	x^{2}	09	x^{2}
10	GSB 2	40	RCL 1	70	RTM	10	-
11	-	41	GSB 1			11	ST0 3
12	ST0 5	42	STO A			12	\sqrt{x}
13	\sqrt{x}	43	+			13	ST0 4
14	ST0 6	44	STO B			14	RCL 0
15	\div	45	R+	Registers		15	$x \neq 9$
16	RCL 2	46	RCL 2			16	\div
17	X	47	GSB 1	R_{0}	P_{a}	17	RCL 2
18	STO 7	48	STO C	${ }_{R}{ }_{1}$	m_{a}	18	x
19	RCL 3	49	$+$	R_{2}	m_{b}	19	STO 5
20	RCL 4	50	STO D	R_{3}	m_{1}	20	RTN
21	RCL 3	51	RTN	R_{4}	m_{2}		
22	GSB 2	*52	LBL 1	R_{5}	s		
23	-	53	RCL 7	R_{6}	E	Registers	
24	RCL 5	54	GSB 2	R_{7}	P		
25	+	55	+	R_{g}	p^{\prime}	R_{0}	P_{a}
26	RCL 6	56	\sqrt{x}	R_{9}	$\Delta t=\Delta u$	${ }^{R_{1}}$	ma_{a}
27	\div	57	RCL D	R_{A}	t_{0}	R_{2}	m_{b}
28	2	58	-	R_{B}	t_{π}	R_{3}	s
29	\div	59	RCL 7	${ }^{R} C$	u_{0}	R_{4}	E
30	STO D	60	RCL B	R_{D}	u_{π}	R_{5}	P

ESTIMATES OF RADIATION DOSES IN TISSUE AND ORGANS AND RISK OF EXCESS CANCER IN THE SINGLE-COUGSE RADIOTHERAPY PATIENTS 1,2 TREATED FOR ANKYLOSING SPONDYLITIS IN ENGLAND AND WALES

LEL--13999
DE82 008423
Jacob I. Fabrikant, M.D., Ph. D. ${ }^{3,4}$ Lawrence Berkeley Laboratory, Donner Laboratory University of California, Berkeley Berkeley, California
and
John T. Lyman, Phi. Division of Biology and Medicine Lawrence Berkeley Laboratory University of California Berkeley, CA 94720

${ }^{1}$ Presented at Scientific Session, Third International Symposium of Radiation Protection-Advances in Theory and Practice, Inverness, Scotland, June 6-11, 1982.
${ }^{2}$ Supported by the Office of Health and Environmental Research of the U.S. Department of Energy under contract No. W-7405-ENG-48.
$3_{\text {Professor of Radiology, University of California School of Medicine, }}$ San Francisco, California.

4 Mailing address: Donner Laboratory, University of California, Berkeley, California 94720.

XBL 8112-1669

Figure 2
registers; for a decay $a+1+2$, set $m_{b}=0$. Start the program with a GSB 0 command. When it stops, the values of $\gamma B e_{1}, \gamma P^{\prime}, P^{\prime}, E$ (the total c.m. energy), and $\cos \theta$ will be in the storage registers, with $\cos \theta=+1$. The components $P_{1 \| l}$ and P_{11} for this value of $\cos \theta$ will be in the x and y registers. Each time R/S is pressed, the value of $\cos \theta$ is decreased by 0.1 and the program stops with the corresponding components of \vec{P}_{1} in the X and Y registers:

$$
(X, Y)=\left(\mathrm{P}_{1 \|}, \mathrm{P}_{11}\right)
$$

When $\cos \theta$ eventually goes below -1 , Error is displayed. Then, to obtain the half ellipse for \vec{P}_{2}, interchange m_{1} and m_{2} in the registers (i.e., now consider particle 2 to be particle l), and start over with a GSB 0 command. If Error appears when the program is started, then P_{a} may be beiow the threshold for the reaction. Error also appears if $\mathrm{P}_{\mathrm{a}}=0$.

The $+P$ key changes the rectangular coordinates $P_{1 l l}$ and P_{11} in the X and Y registers to the polar coordinates P_{1} and θ_{1}, where θ_{1} is the lab angle at which particle 1 is produced. After the first pass through the program has been made, the lab angle ϑ_{2}, corresponding to any c.m. angle θ may be found by storing the valus of $(\cos \theta+0.1)$ in the R_{g} register, then pressing R / S, then $\rightarrow P: \theta_{1}$ is in the Y register.

As a test example, consider $\pi^{+} p \rightarrow \mathrm{~K}^{+} \Sigma^{+}$scattering at $3 \mathrm{GeV} / \mathrm{c}$. The input numbers, in $\mathrm{GeV} / \mathrm{c}$ or GeV , are $\mathrm{P}_{\mathrm{a}}=3.0, \mathrm{~m}_{\mathrm{a}}=0.1396, \mathrm{~m}_{\mathrm{b}}=$ $0.9383, m_{1}=0.4937$, and $m_{2}=1.1894$. Start the program with a GSB 0 command, and it stops with $P_{1 \|}=2.659 \mathrm{GeV} / \mathrm{c}, \mathrm{P}_{11}=0.0 \mathrm{GeV} / \mathrm{c}$, $\gamma B e_{1}=1.231 \mathrm{GeV}, \mathrm{Yp}^{\prime}=1.427 \mathrm{GeV} / \mathrm{c}, \mathrm{p}^{\prime}=0.926 \mathrm{GeV} / \mathrm{c}, \mathrm{E}=2.557$ GeV , and $\cos \theta=1.0$. Press R / S and the program stops with $P_{1 \|}=$ $2.516 \mathrm{GeV} / \mathrm{C}, P_{11}=0.404 \mathrm{GeV} / \mathrm{C}\left(P_{1}=2.548 \mathrm{GeV} / \mathrm{C}, \theta_{1}=9.113^{\circ}\right)$, and $\cos \theta=0.9$.

Program: E:LIPSE

Step	Keys	Step	Keys	Registers
*01	LBL 0	31	RCL 3	$R_{0} \quad \mathrm{P}_{\mathrm{a}}$
02	RCL 0	32	GSR 2	$R_{1} \quad \mathrm{ma}_{\mathrm{a}}$
03	RCL 2	33	-	$R_{2} \quad \mathrm{mb}_{\mathrm{b}}$
04	RCL 7	34	CHS	$R_{3} \quad \mathrm{~m}_{1}$
05	RCL 0	35	\sqrt{x}	$R_{4} \quad \mathrm{~m}_{2}$
06	GSB 2	36	STO $\times 6$	$\mathrm{R}_{5} \quad \mathrm{rbe}_{1}$
07	+	37	STO 7	$R_{6} \quad \mathrm{YP}^{\prime}$
08	\sqrt{x}	38	1	$R_{7} \quad \mathrm{P}^{\prime}$
09	+	39	STO 9	$R_{8} \quad \mathrm{E}$
10	STO 6	* 40	LBL 1	$R_{9} \quad \cos \theta$
11	GSB 2	41	RCL 7	
12	-	42	RCL 9	
13	STO 8	43	$\cos ^{-1}$	
14	\div	44	\sin	
15	RCL 4	45	x	
16	RCL 3	46	RCL 6	
17	GSB 2	47	RCL 9	
18	-	48	\times	
19	x	49	RCL 5	
20	+	50	+	
21	2	51	R/S	
22	\div	52	-	
23	STO 5	53	1	
24	$x \neq y$	54	STO-9	
25	\div	55	GTO 1	
26	RCL 8	*56	LBL 2	
27	\sqrt{x}	57	x^{2}	
28	STO 8	58	$x \neq y$	
29	STO 06	59	x^{2}	
30	x	60	RTN	

DALITZ RECTANGULAR

The DALITZ RECTANGULAR program calculates coordinates of points on the boundary of the rectangular Dalitz plot for the decay of a particle or system of mass M into three particles having masses m_{1}, m_{2}, and m_{3}. The x and y coordinates of the plot are m_{12}^{2} and $m_{13}{ }^{2}$, where $m_{i j}$ is the invariant mass of the system of particles i and j.

Let $\mathrm{m}_{12}^{2}+$ and $\mathrm{m}_{12}^{2}+$ be the smallest and largest values that m_{12}^{2} attains anywhere on the boundary. The values of m_{12}^{2} for which boundary coordinates $\left(\mathrm{m}_{12}^{2}, \mathrm{~m}_{13}^{2}\right.$) are going to be calculated are

$$
m_{12}^{2}+, \quad m_{12}^{2} \psi+\Delta, \quad m_{12}^{2} \psi+2 \Delta, \quad \cdots, \quad m_{12}^{2} \psi
$$

where Δ is a step size in $m_{12^{\prime}}^{2}$ (If, however, $m_{1}=m_{2}=0$, see below.) This sequence repeats over and over, first for points along the upper boundary (the boundary on which m_{13}^{2} is larger), then for points along the lower boundary, then back to the upper boundary, and so on.

Store the four masses and the step size Δ in the indicated registers (Δ in fact need not be chosen until after the first pass is made through the program, when ${ }_{12}^{2}+$ and $m_{12}^{2} 4$ are available). Start the program with a GSB 0 command. When it stops, the values of $\mathrm{m}_{12}^{2}+$ and $m_{12}^{2}+$ will be in the indicated registers, and the coordinates ($\mathrm{m}_{12}^{2} \mathrm{~m}_{13} \mathrm{~m}_{2}$) of the leftmost point of the boundary will be in the x and Y registers. From then on a new boundary point is obtained each time R / S is pressed:

$$
(X, Y)=\left(m_{12}^{2}, m_{13}^{2}\right)
$$

The step size Δ, or the current value of m_{12}^{2} (in R_{5}), or the boundary one is on (± 1 in R_{B}) may be changed at any time (Δ should not be made negative). No error message is given if M is less than ($m_{1}+m_{2}+m_{3}$).

There is a special case. If $m_{1}=m_{2}=0$, then $m_{12}^{2} \downarrow$ is zero, and to avoid a division by zero the program skips the first in the sequence of m_{12}^{2} values given above (i.e., the sequence becomes $\Delta, 2 \Delta$, *., $\mathrm{m}_{12}^{2} \uparrow$). In this case, a nonzero value of Δ does need to be stored before the first pass is made. Now the upper and lower
boundaries end at the points $\left(0, \mathrm{~m}^{2}\right)$ and $\left(0, \mathrm{~m}_{3}^{2}\right)$, and the segment of the m_{13}^{2} axis between these points is part of the boundary.

As a test example, consider the decay of a $3-\mathrm{GeV}$ system into $\bar{K}^{-0} \pi^{-} \mathrm{p}$. The input masses, in Gev, are $\mathrm{M}=3.0, \mathrm{~m}_{1}=0.4977, \mathrm{~m}_{2}=$ 0.1396 , and $m_{3}=0.9383$. After the GSB 0 command, the program stops with the coordinates $(0.406,7.252$) - here and below the units are Gev^{2}. The values of $\mathrm{m}_{12}^{2}+$ and $\mathrm{m}_{12}^{2} \uparrow$ are 0.406 and 4.251 , which suggests that a reasonable value of Δ, at least to start with, mighr be 0.2. Storing this and pressing R/S gives the coordinates (0.606, 8.179). Pressing R / S again gives the coordinates (0.806, 8.119). Another test is to set $M=1.0, m_{1}=m_{2}=m_{3}=0$, and $\Delta=0.2$. The boundary is the triangle with vertices at $(0,0),(1,0)$, and $(0,1)$.

Program: dalitz rectangular

Step	Keys	Step	Keys	Step	Keys
*01	L.BL 0	31	x	61	2
02	RCL 1	32	-	62	\div
03	RCL 2	33	RCL 9	63	$\mathrm{STO}+9$
04	+	34	GSB 6	64	GSB 6
05	x^{2}	35	RCL 5	65	ABS
06	ST0 6	36	R/S	66	\sqrt{x}
07	RCL 0	*37	LBL 3	67	RTN
08	RCL 3	38	RCL 7	* 68	LBL 6
09	-	39	RCL 5	69	x^{2}
10	x^{2}	40	$x=y ?$	70	$x \geqslant y$
12	ST0 7	41	CTO 1	71	x^{2}
12	1	42	RCL 4	72	-
13	STO 8	43	+	73	RTN
*14	LBL 1	44	$x \neq y$		
25	RCL 6	45	$x>y$?		
*16	LBL 2	46	GTO 4		
17	ST0 5	47	1		
18	$x=0$?	48	CHS		
19	GTO 3	49	STO $\times 8$		
20	0	*50	LBL 4	Regis	ers
21	STO 9	51	R +	R_{0}	M
22	RCL 3	52	GTO 2	R_{1}	m_{1}
23	RCL 0	* 53	LBL 5	R_{2}	m_{2}
24	RCL 3	54	GSB 6	R_{3}	m_{3}
25	GSB 5	55	RCL 5	R_{4}	Δ
26	RCL 1	56	+	R_{5}	m_{12}^{2}
27	RCL 2	57	ABS	R_{6}	$\mathrm{m}_{12}^{2}+$
28	RCL 1	58	RCL 5	R_{7}	$\mathrm{ma}_{12}^{2}{ }^{\text {¢ }}$
29	GSB 5	59	\sqrt{x}	R_{8}	± 1
30	RCL 8	60	\div	R_{9}	used

DALITZ TRIANGULAR

The DALITZ TRIANGULAR program calculates coordinates of points on the boundary of the nomalized triangular Dalitz plot for the decay of a particle or system of mass M into three particles having masses m_{1}, m_{2}, and m_{3}. Let T_{i} be the kinetic energy of particle i in the rest frame of $M, Q=\left(T_{1}+T_{2}+T_{3}\right)$ be the total kinetic energy released by the decay, and $t_{i}=T_{i} / Q$ be the fraction of Q taken up by particle i. Then the fractions t_{1}, t_{2}, and t_{3} are the distances measured inward from the base, left-hand side, and right-hand side of an equilateral triangle whose altitude is unity. Figure 3(a) shows a schematic of the plot, and fig. 3 (b) shows some loundaries drawn using the program. Each boundary touches each side of the circumscribing triangle at one point. A boundary has a sharp corner where it touches a side if the particle whose kinetic energy is measured from that side has a mass of zero.

To avoid actually having to plot in triangular coordinates, the boundary poirts are calculated using a rectangular system having its origin at the center of the base: the vertical coordinate is t_{1} and the horizontal coordinate is $\left(t_{2}-t_{3}\right) / \sqrt{3}$. Let $t_{1}+$ be the largest value that t_{1} attains anywhere on the boundary. The values of t_{1} for which boundary coordinates are going to be calculated are

$$
0, \Delta, 2 \Delta, \cdots, t_{1}^{+},
$$

where Δ is a step size in t_{1}. (If, however, $m_{2}=m_{3}=0$, see below.) This sequence repeats over and over, first for points along the right side of the boundary, then for points along the left side, then back to the right side, and so on.

Store the four masses and the step size Δ in the indicated registers (a value of 0.05 or 0.1 for Δ is about right), and start the program with a GSB 0 command. When it stops, the values of $t_{1} \uparrow$ and Q will be in the indicated registers, and the coordinates ($\left.t_{1},\left(t_{2}-t_{3}\right) / \sqrt{3}\right)$ of the lowermost point of the boundary will be in the X and Y registers. From then on a new boundary point is obtained

Figure 3
each time R/S is pressed:

$$
(X, y)=\left(t_{1},\left(t_{2}-t_{3}\right) / \sqrt{3}\right)
$$

The step size Δ, or the current value of t_{1} (in R_{5}), or the koundary one is on ($t: 1$ in R_{8}) may be changed at any time (Δ should not be made negative). No error message is given if M is less than ($m_{1}+m_{2}+m_{3}$). There is a special case. If $m_{2}=m_{3}=0$, then to avoid a division by zero the program skips the last in the sequence of t_{1} values given above. In this case, the upper boundary of the plot is the horizontal line segment at $t_{1}=t_{1} \uparrow$ that crosses from one side to the other of the circumscribing triangle.

As a test example, consider $K^{0}+\pi^{ \pm} \mu^{\mp} v$ decay. The input masses, in GeV, are $M=0.4977, m_{1}=0.1396, m_{2}=0.1057$, and $m_{3}=0$; and set $\Delta=0.05$. When, after the GSB 0 command, the program stops, the coordinates of the first point to be plotted are (0.0, -0.170); and $t_{1}^{*}=0.466$ and $Q=0.2524 \mathrm{GeV}$. Press R / S and the next coordinates are ($0.05,-0.040$). Press it again, and the coordinates are ($0.10,+0.020$). Another test is to set $\mathrm{M} \neq 0$ and $\mathrm{m}_{1}=\mathrm{nn}_{2}=\mathrm{m}_{3}=0$. Then $t_{1}{ }^{4}=0.5, \Omega=\mathrm{M}$, and the boundary is the triangle with vertices at the centers of the sides of the circumscribing triancl 2.

Program: DALITZ TRIANGULAR

Step	Keys	Step	Keys	Step	Keys	Step	Keys
*01	LBL 0	31	RCL 1	61	-	91	ABS
02	RCL 0	32	GSB 5	62	-	92	\sqrt{x}
03	RCL 1	33	STO A	63	RCL 7	93	RTN
04	-	34	GSB 5	64	3		
05	STO 7	35	$x=0$?	65	\sqrt{x}		
06	RCL 2	36	GTO 3	66	X		
07	RCL 3	37	STO B	67	\div		
08	+	38	RCL 2	6	RCL 5		
09	STO-7	39	x^{2}	69	R/S		
10	+	40	RCL 3	*70	LBL 3		
11	RCL 0	41	x^{2}	71	RCL 6		
12	2	42	-	72	RCL 5		
13	x	43	RCL B	73	$x=y$?		
14	\div	44	\div	74	GTO 1		
15	STO 6	45	ST0 $\times 9$	75	RCL 4		
16	1	46	+	76	+		
17	ST0 8	47	RCL 2	77	$x \neq y$		
*18	LBL 1	48	2	78	$x>y$?	Regis	ters
19	0	49	X	79	GT0 4	R_{0}	M
*20	LBL 2	50	GSB 5	80	1	R_{1}	m_{1}
21	STO 5	51	RCL A	81	CHS	R_{2}	m_{2}
22	RCL 7	52	X	82	STO $\times 8$	R_{3}	m_{3}
23	x	53	RCL 8	*83	LBL 4	R_{4}	Δ
24	RCL 1	54	x	84	R \downarrow	R_{5}	${ }^{\text {b }}$
25	+	55	RCL 9	85	GTO 2	R_{6}	$\mathrm{t}_{1}+$
26	RCL 0	56	+	*86	LBL 5	R_{7}	Q
27	$x \neq y$	57	RCL B	87	x^{2}	R_{8}	± 1
28	-	58	\div	88	$x \neq y$	R_{9}	used
29	STO 9	59	RCL 2	89	x^{2}	R_{A}	used
30	LAST x	60	RCL 3	90	-	R_{B}	used

