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ABSTRACT

Objective: Predicting daily trends in the Coronavirus Disease 2019 (COVID-19) case number is important to sup-

port individual decisions in taking preventative measures. This study aims to use COVID-19 case number his-

tory, demographic characteristics, and social distancing policies both independently/interdependently to predict

the daily trend in the rise or fall of county-level cases.

Materials and Methods: We extracted 2093 features (5 from the US COVID-19 case number history, 1824 from

the demographic characteristics independently/interdependently, and 264 from the social distancing policies in-

dependently/interdependently) for 3142 US counties. Using the top selected 200 features, we built 4 machine

learning models: Logistic Regression, Naı̈ve Bayes, Multi-Layer Perceptron, and Random Forest, along with 4

Ensemble methods: Average, Product, Minimum, and Maximum, and compared their performances.

Results: The Ensemble Average method had the highest area-under the receiver operator characteristic curve

(AUC) of 0.692. The top ranked features were all interdependent features.

Conclusion: The findings of this study suggest the predictive power of diverse features, especially when com-

bined, in predicting county-level trends of COVID-19 cases and can be helpful to individuals in making their daily

decisions. Our results may guide future studies to consider more features interdependently from conventionally

distinct data sources in county-level predictive models. Our code is available at: https://doi.org/10.5281/zenodo.

6332944.

Key words: COVID-19, machine learning, county-level case number trend prediction, demographic characteristics, social

distancing policies
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LAY SUMMARY

Predicting the Coronavirus Disease 2019 (COVID-19) daily trend is important to support individual decisions in taking preven-

tative measures. This study aims to utilize COVID-19 case number history, population demographic characteristics, and so-

cial distancing policies to predict the trend in the rise or fall of county-level cases in the United States, with a unique aspect

of using predictors from data sources that are conventionally not seen to be combined with each other. Using the top 200

selected features among 2093 ones for 3142 US counties, we built 4 machine learning models, along with 4 ensemble meth-

ods, and compared their performances. We achieved relatively reasonable prediction and calibration results across all con-

structed models, with comparatively negligible runtimes. Our feature analysis showed the most impactful predictors to be

features derived from combining independent ones. The findings of this study suggest the importance of diverse features in

predicting county-level trends of COVID-19 cases within the United States when they are combined across traditionally dis-

tinct domains. Our results may guide future studies to consider more diverse features in predictive models.

INTRODUCTION

With the prevalence of the Coronavirus Disease 2019 (COVID-19),

it is critical to understand the pandemic’s pattern and characteristics

to design effective prevention methods. Among various research

tasks such as risk classification1–4 and medical image analysis,5–7

COVID-19 case prediction is crucial because it can impact how the

government decides on mitigation methods and how medical work-

ers plan for the distribution of healthcare resources. A recent re-

view8 showed that the state of the pandemic can worsen when

precautions are undervalued; thus, case prediction can aid in locat-

ing the appropriate level of precautions. In practice, various global-,

country-, and state-level COVID-19 case predictions and feature im-

portance analyses have been executed.3,9–11

To account for more granular variations, county-level COVID-

19 case number prediction is especially important for local mitiga-

tion of COVID-19. However, predicting case numbers accurately

could be challenging. For example, a recent Least Absolute Shrink-

age and Selection operator (LASSO) regression model provided

moderate correlation (Pearson’s correlation coefficient¼0.49) for

cases by county.12 Another spatio-temporal vector autoregressive

model had mean absolute error (MAE) between 10% and 16% for

most affected counties.13 Besides, a study showed that linear regres-

sion and Multi-Layer Perceptron models resulted in MAE scores

ranging from 0.35 to 0.58.14

To the best of our knowledge, available models either focus on

predicting the count of infection (the number of reported cases)

rather than the trend of infection (the net change of cases over some

window of time) or use data at different levels of granularity.

Among those using county-level data,12–14 previously mentioned

performance metrics are not necessarily strong. Hence, it is practical

to consider relaxing the prediction task from case number to case

trend, which is a directional forecast of whether the number of cases

would rise or fall, to provide an intuitive guidance for people to

make their daily decisions. Several county-level COVID-19 case

trend studies use features such as demographic characteristic (eg,

age, gender, and ethnicity),15 government interventions (eg, social

distancing policies that affect peoples’ movements and behav-

iors),16,17 and other features12–14 independently in their models,

without considering that infection may spread in a more comprehen-

sive, community-oriented manner. On the other hand, the combina-

tion of these features (eg, male living in a county whose policy

dictates that restaurant occupancy limit is up to 25) can take the

relationships between different types of data that are previously pre-

cluded from being combined with each other into account. There-

fore, a model that both uses features from a wide range of data

sources not conventionally associated, and combines such features

to quantify their possible intercorrelation, could potentially provide

more insights into how those relationships may impact the trend in

county-level COVID-19 case numbers.

OBJECTIVE

This study aims to use (1) daily case number history, (2) demo-

graphic characteristics, and (3) social distancing policies both inde-

pendently (ie, originally collected data), and interdependently (ie,

derived from combining independent features), to predict whether

the next day would see an increase (positive classification) or de-

crease (negative classification) in the number of COVID-19 cases

relative to the previous date.

MATERIALS AND METHOD

To construct such a predictive model, we first collected and prepro-

cessed the 3 types of data (ie, daily case number history, demo-

graphic characteristics, and social distancing policies) into

independent and interdependent features. Then, we used these fea-

tures in 4 machine learning algorithms: Logistic Regression, Naı̈ve

Bayes, Multi-Layer Perceptron, and Random Forest, followed by the

ensemble of these algorithms in 4 ways (Average, Product, Mini-

mum, and Maximum of the predicted distributions for the positive

class). The overall process is shown in Figure 1, and the details of

our methodology are described in the following subsections.

Data
We collected data from 3142 counties in the United States.18 The 3

types of publicly available data in our predictive models are as

follows:

1. County-level daily confirmed cases. Intuitively, the history of

county-level COVID-19 case numbers may contain patterns

helpful to predict future trend.10,13,19,20 We used the US county-

level case data from the COVID-19 Data Repository18 prepared

by the Center for Systems Science and Engineering (CSSE) at

John Hopkins University (JHU) for its completeness and trust-

worthiness. The data were collected from sources including the

European Centre for Disease Prevention (ECDC), the United

States Centers for Disease Control and Prevention (CDC), and

the BNO News. We used the confirmed cases data for the 3142

counties from June 4, 2020, to May 17, 2021, for a total of 348

days.

2. Demographic characteristics information. Differences in demo-

graphic characteristics such as age, sex, and race can affect the

likelihood of exposure to COVID-19.9,12–14,19,20 The county-

level demographic characteristics data were collected from the

U.S. Census Bureau, latest available as of July 1, 2019.21 We
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used 304 variables, derived from 16 population characteristics

and 19 distinct age groups, with the first age group being the to-

tal of all age groups (0–85þ), and most of the other groups being

in 4-year increments (eg, 0–4, 5–9, . . ., 85þ), as demonstrated in

Table 1. Of the 16 population characteristics, 2 were the total

male and the total female population. The other 14 population

characteristics were 7 male/female pairs of race/ethnicity charac-

teristics. We chose these demographics because they have been

found to be more susceptible to COVID-19 transmission.22–24

Due to the fact that we chose 7 most relevant pairs of races/eth-

nicities out of 35 pairs available from the data source,21 with

some possible overlap between race and ethnicity, the total male/

female population values (Nos 1 and 2 in Table 1) are not the

sums of all male population and female population values (Nos

3–16 in Table 1).

3. State social distancing policies. Changes in social distancing poli-

cies such as gathering limits, or business/restaurant policies to re-

strict or enable people’s movements can also impact COVID-19

incidences.25,26 Therefore, we used the COVID-19 Data Reposi-

tory from the Kaiser Family Foundation (KFF)27 to include this

information. This data set contains state-level and structured

records, which can be mapped to county-level and includes the

state social distancing policy actions for all 50 states, and there-

fore all 3142 counties in the United States as of a specific date.

We obtained the state policy records from April 4, 2020 to May

17, 2021 to cover the whole period of our case number history

(ie, June 4, 2020 to May 17, 2021). These records were updated

during policy changes (which did not occur daily); therefore, we

selected 6 policies that were most consistent/present throughout

the period and merged policy statuses with the same meanings as

demonstrated in Table 2.

Data preprocessing
Our data preprocessing steps for the 3 types of data are summarized

below. Each type was collected for the 3142 counties in the United

States.

1. Case summaries. We defined the Label for each county as “0” if

the value of daily case change was less than or equal to zero and

defined the Label as “1” otherwise (Figure 2A). For instance, us-

ing July 10, 2020 as the label date, 1817 counties would be la-

beled as “0” and 1325 counties would be labeled as “1” (ie, the

positive rate is 42.17%). Using these historical cumulative cases,

we calculated the numbers of daily cases and daily case changes

to extract 5 case summary features as defined in Table 3 and

shown in Figure 2B.

2. Demographic characteristics. We used the 304 independent de-

mographic characteristics features (Figure 3C) and created 304 *

5 (the case summary features shown in Table 3)¼1520 interde-

pendent demographic characteristic features (Figure 3D) to rep-

resent the relationship between case summaries and

demographic characteristics.

3. Social distancing policies. From the 6 policies defined in Table 2,

we cleaned the 54 policy statuses by manually merging statuses

with the same meanings (eg, “>25 Prohibited” and

“Limit�25”), resulting in 44 distinct policy statuses. To fill in

Figure 1. Overview of our predictive modeling pipeline. In this example, features created from case number history, demographic characteristics, and state dis-

tancing policies are input into predictive models to predict daily case change as increase or decrease for San Diego County. Our model will include all 3142 coun-

ties in the United States.

Table 1. County-level population statistics

No. Official code Definition Example value

1 TOT_MALE Total Male Population 103 970

2 TOT_FEMALE Total Female Population 99 195

3 WA_MALE White Male Population 77 429

4 WA_FEMALE White Female Population 74 066

5 BA_MALE African American Male Pop-

ulation

5656

6 BA_FEMALE African American Female

Population

5349

7 IA_MALE American Indian and Alaska

Native Male Population

1315

8 IA_FEMALE American Indian and Alaska

Native Female Population

1311

9 AA_MALE Asian Male Population 9662

10 AA_FEMALE Asian Female Population 8852

11 NA_MALE Native Hawaiian and Other

Pacific Islander Male Pop-

ulation

675

12 NA_FEMALE Native Hawaiian and Other

Pacific Islander Female

Population

642

13 H_MALE Hispanic Male Population 46 734

14 H_FEMALE Hispanic Female Population 44 745

15 HWA_MALE Hispanic, White Male Popu-

lation

41 496

16 HWA_FEMALE Hispanic, White Female Pop-

ulation

39 777

Note: There are 16 county-level population statistics extracted from the

U.S. Census Bureau in 2019.21 The 16 population statistics for San Diego

County age group 0–4 are shown in this table.
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policy statuses for dates without records in the data set, implying

days without policy status changes, we used the most recent pol-

icy. Then, we used one-hot encoding28 to encode categorical var-

iables with categorical values into new features, whose

numerical values can be “0” representing absent or “1” repre-

senting present. The “Emergency Declaration” policy was the

only policy with 2 status options “Yes” and “No.” Therefore,

we use dummy coding29 to extract only one feature, “Emergency

Declaration is Yes,” with value “1” if emergency is declared or

“0” otherwise. We extracted a total of 44 policy status features

(Figure 4E). We also created 44 * 5 (the case summary features

shown in Table 3)¼220 interdependent policy status features to

represent the relationship between case summaries and policy

statuses (Figure 4F).

In total, we extracted 5 (case summaries)þ304 (independent de-

mographic characteristics)þ1520 (interdependent demographic char-

acteristics)þ44 (independent policy statuses)þ220 (interdependent

policy status)¼2093 features. We then normalized all features, and se-

lected the top 200 using Gain Ratio30,31 (which can handle features

with many distinct values) to focus on the most relevant features.

Classifiers
We adopted 4 individual classifiers as follows:

• Logistic regression (LR). We used a multinomial logistic regres-

sion model with a ridge estimator to guard against overfitting by

penalizing large coefficients.31 To tune this ridge hyperpara-

meter, our search space was [101, 10�, . . ., 10�10].

Table 2. State social distancing policies

No. Official code Definition Example value

1 RESTAURANT Restaurant Limits Open

2 STAY_HOME Stay at Home Order Statewide

3 GATHERINGS Large Gatherings Ban Limit>50

4 TRAVELER_QUARANTINE Mandatory Quarantine for Travelers All Air Travelers

5 BUSINESS_CLOSURES Nonessential Business Closures New Business Closures or Limits

6 EMERGENCY_DECLARATION Emergency Declaration Yes

Note: There are 6 state social distancing policies, each with different policy statuses (eg, “Open” for “RESTAURANT”), extracted from the Kaiser Family

Foundation (KFF) COVID-19 Data Repository.27

Figure 2. Case summary features. In this example, the daily cases from July 5, 2020 to July 10, 2020 for San Diego, California (SD) and Autauga County, Alabama

(AC) are displayed. (A) The label is computed using the daily case change on July 10, 2020. The label for SD is “0” (ie, “decrease”) and the label for AC is “1” (ie,

“increase”). (B) Case summary features are computed using the daily cases and daily case change from July 5, 2020 to July 9, 2020. Taking this time range for

SD for example, the sum of cases is 2706, the number of cases on the last day (ie, July 9, 2020) before prediction day is 560, the number of positive daily case

change is 2, the number of negative case change is 2, and the last daily case change (ie, between July 9, 2020 and July 8, 2020) is 296.

Table 3. Case summary features

No. Feature name Definition Example value

1 CASE_SUM Sum of daily cases 139

2 CASE_LAST_DAY Case number on

last day

83

3 CHG_POS_DAYS Sum of positive

daily case

changes

3

4 CHG_NEG_DAYS Sum of negative

daily case

changes

1

5 CHG_LAST_DAY Daily case change

on last day

62

Note: The “Case Sum” and “Case Last Day” features are defined using the

numbers of daily cases, and the “Change Positive Days,” “Change Negative

Days,” and “Change Last Day” ones are defined using the numbers of daily

case changes.

4 JAMIA Open, 2022, Vol. 5, No. 3



• Naı̈ve Bayes (NB). We used a Bayesian probabilistic classifier.32

We tuned hyperparameters for the use of the kernel density esti-

mator or use of supervised discretization, which can both be

used to handle numeric attributes, or use of neither.31

• Multilayer perceptron (MLP). We used a feed-forward neural

network that is trained using back propagation.31 We tuned

hyperparameters for the learning rate, momentum rate, number

of epochs to train through, presence of learning rate decay,

Figure 3. Demographic characteristics features. The total male population from 0 to 4 years old in 2019 for San Diego, California (SD) and Autauga County, Ala-

bama (AC) is displayed. (C) There are 304 independent features for demographic characteristics (eg, “2019 Total Male Population for Ages 0–4”), which represent

16 population statistics for 19 age groups, summing to 304 demographic characteristics. (D) Interdependent features combine case summaries and demographic

characteristics.

Figure 4. Distancing policy status features. The state distancing policy statuses as of July 7, 2020 for San Diego, California and Autauga County, Alabama are dis-

played. (E) Independent features for policy status represent each policy status after one-hot encoding. (F) Interdependent features represent case summaries if a

policy status is present.

JAMIA Open, 2022, Vol. 5, No. 3 5



number of nodes on each layer, and number of consecutive

increases of error allowed before training terminates. Our

search space consisted of learning rate=[0.1, 0.3, 0.5], momen-

tum rate=[0.1, 0.2, 0.5], number of epochs=[100, 500, 1000],

learning rate decay=[present, absent], and number of consecu-

tive errors=[15, 20].
• Random forest (RF). We used random forest, which is a combi-

nation of decision trees.33 We tuned hyperparameters for the

size of each bag, number of iterations, and number of attributes

to randomly investigate. Our search space consisted of bag

size=[50, 60, 70, 80, 90, 100], iterations=[10, 50, 100, 150,

200, 250, 500, 1000], and number of attributes=[0, 1, 5, 10,

15, 20].

Additionally, we used ensemble to combine the outputs of the 4

classifiers described above, because ensemble methods have been

empirically shown to improve discrimination capability.34,35 We

adopted 4 ensemble methods with different combination rules for

the predicted distributions for the positive class: Average, Product,

Minimum, and Maximum. Average sums each input classifiers’ pre-

dicted distribution, while Product multiplies the predicted distribu-

tion; both normalize the results at the end. Minimum computes the

input classifiers’ lowest predicted distribution, and Maximum com-

putes the highest predicted distribution.31,36

Decision threshold
To estimate the “ideal” decision threshold, we started by assessing

the relative harm and benefit for individuals37 when predicting the

next day change in case numbers. We first estimated the case change

in all US counties (D) as the “onset of viral outbreak” (Dþ) or “pre-

pandemic” (D�), and a typical individual’s decision (A) to take pre-

ventative measures such as self-isolation or quarantine (Aþ) or not

(A�).37,38 Combinations of these states (U[Dþ Aþ], U[D� Aþ],

U[Dþ A�], and U[D� A�]) gives an estimation on the effect on a

typical individual’s well-being such as fear and anxiety in response

to the case change. Following, we estimated net benefit B¼U[Dþ
Aþ]—U[Dþ A�],37 which is the value of self-isolating or

quarantining (ie, given that the number of cases is predicted to in-

crease) vs not doing so, in the presence of a positive net case change.

We adopted the regression model coefficient of fear or anxiety pre-

dicting preventative behaviors (0.13) during the onset of viral out-

break,38 and inverted it to estimate the net benefit of preventative

measures on fear or anxiety when case number did increase (ie, on-

set of viral outbreak). That is, the net benefit B¼1/0.13¼7.69. Sim-

ilarly, we estimated the net harm H¼U[D� A�]—U[D� Aþ],37

which is the value of not self-isolating or quarantining (ie, given that

the number of cases is predicted to decrease) vs doing so, in a pres-

ence of a negative net case change, using the model coefficient of

fear or anxiety predicting preventative (�0.06) during the pre-pan-

demic period.38 Note that this coefficient of �0.06 compared

“taking preventive measures” with “not doing so,” and thus was the

opposite of computing the net harm. Therefore, we used 0.06 in-

stead, and calculated our estimated net harm H¼1/0.06¼16.67. Fi-

nally, to estimate the “ideal” decision threshold T¼H/(HþB),37

we used the estimated H and B values from above to obtain

T¼0.68.

Validation and evaluation
We performed validation based on the COVID-19 historical case

numbers to tune the hyperparameters for the classifiers (Figure 5).

Because the transmissibility of COVID-19 in adults ceases after 10

days from symptom onset,39 we selected 10 days for both the valida-

tion phase (to tune the hyperparameters of each classifier) and evalu-

ation phase (to evaluate the models with the best-performed

hyperparameters identified in the validation phase). We evaluated

the discrimination using full Area-Under the receiver operator char-

acteristic Curve (AUC), sensitivity, specificity, precision, and accu-

racy, the best-tuned hyperparameters, the training/test time, and the

important features learned by the LR classifier. We calculated sensi-

tivity, specificity, precision, and accuracy using our estimated

“ideal” decision threshold of 0.68. For all ensemble methods, we

used the best-tuned hyperparameters found from each of the 4 clas-

sifiers’ search space. We implemented our algorithm using Java and

the Waikato Environment for Knowledge Analysis (WEKA) li-

brary.31,40 To conduct the experiments, we used a UCSD Campus

Amazon Web Services (AWS) Virtual Machine (VM) with 2 vCPUs,

8 GB RAM, and 100 GB SSD hard disk.

RESULTS

Discrimination
We predicted the change in daily case numbers for all 3142 counties,

with AUC results shown in Figure 6. No counties had missing fea-

tures or missing labels of case trends. All single classifiers: LR, RF,

MLP, and NB, had average AUC values ranging from 0.665 to

0.683. All ensemble methods had average AUC values ranging from

0.682 to 0.692, with the Ensemble Average having the highest aver-

age AUC of 0.692. The Ensemble Maximum had the highest average

specificity of 0.735 and precision of 0.806. The Ensemble Product

had the highest average sensitivity of 0.693 and accuracy of 0.640.

Important features
The top 10 features with the highest absolute learned coefficients for

LR were all interdependent features, shown in Table 4A. All 200

features with their learned coefficients for LR along with the inter-

cept are shown in Supplementary Appendix Table A1. The 6 fea-

tures that combined case summary data and social distancing policy

data included Traveler’s Quarantine policy, Gathering limits, and

Restaurant limits. The remaining 4 features that combined case sum-

mary data and demographic characteristics mostly included Total or

White Alone Males, and one for Black Alone Females. In addition,

these top predictors all feature populations of higher age groups,

ranging from 50 to 79 years.

Meanwhile, among the top 10 important features in the RF

model (Table 4B, with all 200 feature results shown in Supplemen-

tary Appendix Table A2), there is one interdependent feature of case

summary/social distancing policy, which is the case last day value

with emergency declaration. The other 9 are interdependent features

of case summary/demographics. In particular, the populations of

American Indian and Alaska Native males and females, and Native

Hawaiian and Other Pacific Islander males and females are spread

out among different age groups, with a higher concentration to-

wards the upper range of 50þ.

Execution time
As for the evaluation training times, MLP took the longest time of

441.788 s and NB took the least time of less than 1 s. With regards

to the evaluation testing times, all classifiers each took less than 1 s,

with MLP taking the longest time of 0.80 s and LR taking the least

time of 0.018 s. The evaluation testing times for all ensemble meth-

ods were also negligible.
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Hyperparameters
For LR, the best hyperparameter value found was “ridge¼101.”

For NB, the best hyperparameter values found were “presence of

kernel density estimator¼false” and “presence of supervised dis-

cretization¼true.” For MLP, the best hyperparameter values found

were “learning rate¼0.1,” “momentum rate¼0.2,” “number of

epochs¼500,” “presence of learning rate decay¼false,” “number of

nodes on each layer=(attributesþclasses)/2,” and “number of con-

secutive errors¼15.” For RF, the best hyperparameter values found

were “bag size¼100,” “number of iterations¼10,” and “number

of attributes¼10.”

Calibration
We also calibrated our best model (ie, the Ensemble Average) to pro-

vide individuals with a more precise probability of case changes,

allowing them to make better decisions in taking preventative meas-

ures.41 We applied the Isotonic Regression function40,42 to the pre-

dicted scores from the Ensemble Average calculated from May 16,

2021, and evaluated our calibrated model using features calculated

from May 17, 2021 (the last date of our data set). To understand

the effectiveness of calibration, we computed the Hosmer and Leme-

show (H-L) test43 from the calibrated prediction scores and the

labels. Specifically, we used H-L H-statistic for equal intervals,

Figure 5. Data splitting for model validation and evaluation. In the validation phase using April 28, 2021 to May 7, 2021 test dates, we execute a grid search to find

the best hyperparameters values, which are then used in the models during the evaluation phase using May 8, 2021 to May 17, 2021 test dates.

Figure 6. The average full area-under receiver operator characteristic curve (AUC) scores with 95% confidence interval (CI) for individual and ensemble classifiers.

AUC scores are represented by the bars and CIs are displayed by the line ranges.

JAMIA Open, 2022, Vol. 5, No. 3 7



bins¼10, ranging from 0.65 up to 0.70, and with an increment of

0.05. We chose the range (0.65, 0.70) to include neighboring predic-

tion scores from our estimated “ideal” decision threshold of 0.68,

calculated in “Decision threshold.” The P-value of the calibrated

model was 0.791, indicating that our best model Ensemble Average

is well-calibrated (P>0.1) after calibration.

DISCUSSION

Findings
Our overall AUCs averaging to approximately 0.68 indicate that

our prediction task of county-level case trends is still nontrivial.

While this AUC may not be sufficient to influence policy makers, it

is helpful to individuals, as the use of a discrimination threshold

based on the average net harm/benefit to a typical individual sug-

gests that our predictions can aid residents of a county in assessing

their motivation to take conservative measures. The top 10 LR-

ranked features, as well as the top 10 RF-ranked features, revealed

the benefits of integrating case data with demographic characteris-

tics and social distancing policy, given that all 20 previously men-

tioned features are interdependent ones derived from conventionally

distinct data sources. It is seen across 2 methods of identifying im-

portant features (coefficient values for Logistic Regression and fea-

ture importance indices for Random Forest) that interdependent

factors may have a strong influence on COVID-19 trend. Further-

more, out of the selected 200 features, 16 used social distancing pol-

icies and 183 used demographic characteristics, while the last

feature of “Case Last Day” used a case summary alone. This agrees

with existing studies that policies and demographics can affect

Table 4. (A) Feature analysis results using logistic regression (LR) and (B) feature analysis results using random forest (RF)

(A) Feature description Coefficient Case

summaries

Demographic

characteristics

Social distancing

policies

1 Change Last Day value if Mandatory Quarantine for Trav-

elers applies to certain states

75.425 X X

2 Case Last Day value if Mandatory Quarantine for Travelers

applies to certain states

�32.003 X X

3 Case Last Day value if Large Gatherings Ban is limited to

less than or equal to 25 people

31.933 X X

4 Change Last Day value if Large Gatherings Ban is limited to

less than or equal to 25 people

27.137 X X

5 Case Last Day value for total Male population ages 75–

79 years

17.653 X X

6 Change Last Day value if Restaurant Limits Policy is Open

with Service Limits

�8.276 X X

7 Case Sum value for White alone Male population ages 50–

54 years

8.067 X X

8 Case Sum value for total Male population ages 65–69 years �7.407 X X

9 Change Last Day value for Black or African American alone

Female population ages 65–69 years

6.770 X X

10 Case Last Day value if Large Gatherings Ban >50 Prohib-

ited

6.127 X X

(B) Feature description Importance index Case

summaries

Demographic

characteristics

Social distancing

policies

1 Case last day value for American Indian and Alaska Native

alone Male population ages 85 years or older

0.534 X X

2 Case last day value for Native Hawaiian and Other Pacific

Islander alone Female population ages 50–54 years

0.531 X X

3 Case last day value for Native Hawaiian and Other Pacific

Islander alone Male population ages 50–54 years

0.528 X X

4 Case last day value for American Indian and Alaska Native

alone Female population ages 65–69 years

0.518 X X

5 Case last day value for Native Hawaiian and Other Pacific

Islander alone Male population ages 55–59 years

0.507 X X

6 Case last day value for Native Hawaiian and Other Pacific

Islander alone Female population ages 0–4 years

0.491 X X

7 Case last day value for Native Hawaiian and Other Pacific

Islander alone Female population ages 70–74 years

0.490 X X

8 Case last day value for American Indian and Alaska Native

alone Male population ages 70–74 years

0.487 X X

9 Case last day value if Emergency Declaration is declared 0.485 X X

10 Case last day value for American Indian and Alaska Native

alone Male population ages 75–79 years

0.483 X X

Note: (A) The features, extracted from data on the last date in the evaluation phase, are ordered by the absolute values of their coefficients. The data type used

to create each feature is marked with a “X.” (B) The features are ordered by their importance indices.
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COVID-19 transmissibility.44–47 Demographic characteristic of spe-

cific subgroups such as White Alone Males, Black Alone Females,

American Indian and Alaska Native, Native Hawaiian and Other

Pacific Islander, and higher age groups, as well as social distancing

policies involving quarantine rules, gathering sizes, and declaration

of emergency are the most impactful features for our prediction

task. This presence of minority groups in our top features may alert

policy makers to investigate further the impact of COVID-19 on mi-

nority populations.

In terms of execution time, the average training time was less

than 10 min (using MLP), and the average testing time was at most

around 1 s (using MLP). Both training and testing times are reason-

able, given that the frequency of our prediction is daily. We also

tried to create features using case summaries, the percentage of posi-

tive/negative days over 10 days, to use population statistics such as

population density48,49 and location,50,51 and to adopt demographic

characteristics such as age,46,52 which have been found to impact

COVID-19 transmission. However, we found that including these

features did not significantly improve prediction results.

Limitations
There are few limitations in our study:

a. Policy suggestions. In our models, we predicted the outcome as

an increase or decrease of daily case number (ie, predicting for

the next day) only. We have yet to consult with public-health

policy makers to suggest policies based on our prediction model.

For example, we could try to determine what policy a county

should execute after N days from now. To address these ques-

tions, a change of model to predict county case trend N days

ahead (instead of only 1 day ahead) has yet to be investigated. In

addition, we have yet to consult with public health experts to

perform a “blind assessment” of our prediction.

b. Features. From the census demographic characteristics data set,

we selected 7 of 35 pairs of races/ethnicities. We have yet to use

all pairs of races/ethnicities, such as “being two or more races”

and “Asian alone.” Other potentially useful features that encom-

pass demographic details beyond race/ethnicities and age groups

such as employment percentage and disadvantaged socioeco-

nomic positions,53 mobility status,54 social connectedness

data,55 weather factors,56 clinical features and pre-existing med-

ical conditions,57,58 have yet to be integrated into our current

models.

c. Dataset. The social distancing-related features in our experi-

ments were limited due to lack of consistent and thorough social

distancing policy data sets. Only the 6 policies we chose were

present from April 4, 2020 to May 17, 2021, which was the

timeframe considered, prohibiting us from considering other

policy measures like school/university closure, facemask/vacci-

nation mandates, or measures related to travel that are not

quarantine-based. Overall, we have yet to identify more public

data sets containing consistent social distancing policy informa-

tion with clear statuses.

d. Class imbalance. Given the highly interrelated nature of time se-

ries data, the task of handling prediction class imbalance is not

trivial. We have yet to adopt techniques to handle the imbal-

anced distribution of the 2 predicted classes (“0” and “1”) in

our time series data, such as classic methods of oversampling or

undersampling, weighted penalization, as well as other methods

that are more specifically engineered towards time series.59,60

e. Validation and feature selection. As with the nature of time se-

ries data, the sequential order of sample days need to be consid-

ered, therefore, we adopted a validation scheme similar to the

“evaluation on a rolling forecasting origin.”61 We have yet to

adapt the classic methods such as single/nested k-fold cross vali-

dation in which data are assigned to random groups to validate

our models. Furthermore, other feature selection methods such

as Information Gain,62 CfsSubsetEval,63 and Correlation Attrib-

ute Evaluation63 have yet to be added to our grid search to po-

tentially locate better features.

f. Model type. We did not explore the possible presence of causal

relationships using models such as Temporal Bayesian Net-

works.64 We have yet to include time series forecasting models

such as Autoregressive models (AR),65 and hybrid models such

as SeriesNet,66 along with other complicated models such as

bagging,67 boosting,68 and deep neural networks.69

g. County stratification. We have yet to consult with public health

experts to create “risk groups” by stratifying the counties by

their predicted change of case number, which could consider the

varying degrees in county-level vulnerability to COVID-19

transmission.20

CONCLUSION

Although there are plenty of existing COVID-19 prediction models,

the unique contributions of our study include the following. (1) The

experiment results revealed that predicting the county-level trend of

COVID-19 case numbers is an important yet nontrivial task. (2) By

integrating demographic characteristics and state social distancing

policies, we showed that methods such as Ensemble Average per-

formed best. (3) These results can act as a premise for future studies

to use other types of data, including the possibility to derive interde-

pendent features from combining such data, to predict the change of

pandemic case numbers for each county.
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