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  • Hold down the shift key while simultaneously using arrow keys to select the block of text, if necessary.
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CD4+ Group 1 InnateQ:1; 2; 3 Lymphoid Cells (ILC) Form a
FunctionallyQ:4; 5 Distinct ILC Subset That Is Increased in
Systemic SclerosisQ:6; 7

Florence Roan,*,†,1 Thomas A. Stoklasek,*,1 Elizabeth Whalen,* Jerry A. Molitor,‡

Jeffrey A. Bluestone,x Jane H. Buckner,* and Steven F. Ziegler*

Innate lymphoid cells (ILC) are a heterogeneous group of cellular subsets that produce large amounts of T cell–associated cytokines

in response to innate stimulation in the absence of Ag. In this study, we define distinct patterns of surface marker and cytokine

expression among the ILC subsets that may further delineate their migration and function. Most notably, we found that the subset

previously defined as group 1 ILC (ILC1) contains CD4+ CD82, CD42 CD8+, and CD42 CD82 populations. Although all ILC1

subsets shared characteristics with Th1 cells, CD4+ ILC1 also demonstrated significant phenotypic and functional heterogeneity.

We also show that the frequencies of CD4+ ILC1 and NKp44+ group 3 ILC, but not CD42 ILC1 or group 2 ILC, are increased in

the peripheral blood of individuals with systemic sclerosis (SSc), a disease characterized by fibrotic and vascular pathology, as well

as immune dysregulation. Furthermore, we demonstrate that CD4+ and CD42 ILC1 are functionally divergent based on their IL-

6Ra expression and that the frequency of IL-6Ra expression on ILC is altered in SSc. The distinct phenotypic and functional

features of CD4+ and CD42 ILC1 suggest that they may have differing roles in the pathogenesis of immune-mediated diseases,

such as SSc. The Journal of Immunology, 2016, 196: 000–000.

I
nnate lymphoid cell (ILC) subsets that mirror Th cells in their
effector cytokine profiles have recently emerged as central
players in homeostatic and inflammatory conditions. Long-

lived tissue-resident group 2 ILC (ILC2) constitutively produce
IL-5 and play varied roles in maintaining immune and metabolic
homeostasis (1–4); group 3 ILC (ILC3) maintain the integrity of
the intestinal barrier, in part through production of IL-22 (5, 6).
ILC2 and ILC3 can also express MHC class II and may act as
APCs in the initiation of inflammation or in the maintenance of
tolerance (7–10). In keeping with the functional parallels between
ILC and Th cell subsets, group 1 ILC (ILC1) appear to be im-
portant in coordinating type 1 inflammatory responses (11, 12),

ILC2 are required in numerous models of type 2 immunity (13–
16), whereas ILC3, like Th17 and Th22 cells, are central players
in IL-17– and/or IL-22–driven inflammation (17, 18).
In human studies, alterations in ILC frequencies in a number of

diseases suggest that these innate populations may play key roles in
the pathogenesis of human autoimmunity (19–27). How ILC
subsets affect disease susceptibility, development, and progression
remains undefined. However, in multiple sclerosis and psoriasis,
treatments that decreased patients’ clinical severity scores also
correlated with normalization of ILC frequencies (19, 21, 27). In
psoriasis, increased frequencies of NKp44+ ILC3 during active
disease, as well as normalization of these frequencies with treat-
ment, occurred in the skin and peripheral blood. These studies
indicate that systemic alterations in ILC subsets occur in auto-
immunity and may present an important target for disease therapy.
The regulation and function of these ILC populations, as well as
the degree to which they parallel or differ from T cells, may have
significant implications for the efficacy and side effect profile of
novel therapeutic approaches.
We performed a comprehensive analysis of human peripheral

blood ILC subsets and describe novel ILC1 populations that ex-
press CD4 and CD8a. Although these newly described ILC1
populations shared some characteristics with Th1 cells, CD4+

ILC1, in particular, were potent producers of TNF-a, GM-CSF,
and IL-2 and showed considerable diversity in their chemokine
and cytokine receptor expression. Our data illustrate that ILC1
cannot be thought of simply as innate equivalents of Th1 cells. We
also show that peripheral blood CD4+, but not CD42, ILC1 fre-
quencies are altered in systemic sclerosis (SSc), a complex and
poorly understood autoimmune disease characterized by fibrotic
and vascular pathology. These data demonstrate a previously un-
appreciated heterogeneity in human peripheral blood ILC1 and
suggest a role for ILC in the pathogenesis of SSc.
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Materials and Methods
Abs and reagents

Abs used for flow cytometric analyses and cell sorting included the fol-
lowing: CCR10 PE (6588-5), CD117 (104D2) BV421/BV605/PE-Cy7,
CD11c (3.9) FITC, CD123 (6H6) FITC, CD126 (UV4) biotin, CD127
(A019D5) BV650, CD130 (AM64) PE, CD14 (HCD14) FITC, CD16 (3G8)
FITC/BV421, CD27 (O323) biotin, CD28 (CD28.2) BV421, CXCR3
(G025H7) BV421/PE-Cy7, CXCR5 (J252D4) BV421, CD19 (HIB19)
FITC, CCR4 (L291H4) PerCP-Cy5.5/A647, CCR5 (HEK/1/85a) A647,
CCR6 (G034E3) BV605, CCR7 (G043H7) BV421, CRTH2 (BM16) PerCP-
Cy5.5/A647/BV421, CCR9 (L053E8) A647, CD3 (UCHT1) A700/BV421/
FITC, NKp44 (P44-8) PE, CD34 (581) FITC, CD4 (OKT4) A700/BV605/
BV785, CD45 (HI30) BV510, CD45RO (UCHL1) A700, CD45RA (HI100)
BV421, CD56 (HCD56) A700/BV605, CD62L (DREG-56) PE, CD8a
(RPA-T8) A700, CD94 (DX22) FITC, cutaneous lymphocyte Ag (CLA;
HECA-452) biotin, FcεRIa (AER-37) FITC, GATA3 (TWAJ) PE, GM-
CSF (BVD2-21C11) PE, granzyme A (CB9) A700, granzyme B (GB11)
A647, IFN-g (4S.B3) BV785, IL-13 (JES10-5A2) PE, IL-17A (BL168)
A647, IL-2 (MQ1-17H12) A647, IL-22 (22URTI) PE-Cy7, TNF-a
(MAb11) PE-Cy7, perforin (dG9) PE, T-bet (4B10) A647/PE-Cy7, and
TCRab (IP26) PE (all from BioLegend); CD117 (104D2) PE-Cy7, CD2
(RPA-2.10) allophycocyaninQ:8 , CD45 (HI30) e450, eomesodermin (Eomes;
WD1928) PE, and Fixable Viability Dye eFluor 780 (all from eBio-
science); and streptavidin PE and PE-Cy7, phospho-STAT1 (4a) PE, and
phospho-STAT3 (4/P-STAT3) PerCp-Cy5.5 (all from BD Biosciences).

Complete RPMI medium (cRPMI) used for stimulations and resus-
pension included RPMI 1640Q:9 (Sigma), 50 U/ml penicillin/50 mg/ml
streptomycin, 10 mM HEPES, 1 mM sodium pyruvate, 13 MEM
NEAA, 2Q:10 mM L-glutamine (all from Life Technologies), and 1 or 10%
human serum (HS; Omega Scientific). FACS buffer included 13 PBS/1%
BSA (w/v) with or without 0.5% sodium azide (w/v) (both from Sigma).
MACS buffer was composed of 13 HBSS (HyClone)/5% FBS (Sigma)/20
mM HEPES/Pen-Strep/2 mM EDTA (Sigma). Sort buffer included 13
HBSS/2.5% FCS/Pen-Strep/20 mM HEPES.

Human subjects

Fresh whole blood and frozen PBMC from control subjects were obtained
from healthy individuals who were participants in the Benaroya Research
Institute (BRI) Healthy Control Registry and Biorepository without a self-
reported personal history of autoimmunity. Matched controls that were
compared with SSc patients also did not have a self-reported family history
of autoimmunity. Frozen PBMC from SSc patients were obtained from
subjects in the BRI Rheumatic Diseases Registry and Biorepository. Control
and SSc cohorts were matched for age and gender in all studies. Frozen cord
blood cell samples were from subjects in the BRI Control Biorepository.
Protocols for the collection and use of samples in the BRI registries and
Biorepositories were reviewed and approved by the BRI Institutional Re-
view Board.

Isolation of PBMC

Human PBMCwere isolated from peripheral blood by centrifugation over a
Ficoll-Paque Plus (GE Healthcare) gradient. Previously frozen PBMC were
quick thawed; prewarmed cRPMIwith 10%HS and then 1%HSwere added
drop-wise to wash the cells.

Cell staining, flow cytometry, and cell sorting

Cells were stained with Fixable Viability Dye eFluor 780 (eBioscience) and
then stained for surface markers for 25 min at room temperature (RT). Cells
were then fixed with 2% paraformaldehyde (EMS)/PBS for 20 min at 4˚C or
fixed and permeabilized for intracellular/intranuclear staining. For intra-
cellular cytokine staining, cells were permeabilized using BD Cytofix/
Cytoperm, according to the manufacturer’s instructions, and then stained
in 13 BD Fix/Perm buffer for 25 min at RT. For intranuclear staining, cells
were fixed with 4% paraformaldehyde for 10 min at RT and permeabilized
with ice-cold (220˚C) methanol (Sigma) for 15 min on ice. Intranuclear
staining was then performed in Foxp3 buffer (eBioscience) for 45 min at
RT. All flow cytometry data were acquired on a BD LSR II or BD Fortessa,
and analyses were performed using FlowJo v10.

For cell sorting, freshly isolated PBMCwere lineage depletedwith FITC-
conjugated Ab (anti-CD3, CD14, CD19, CD16, CD94, CD11c, CD123) and
anti-FITC beads (Miltenyi Biotec), according to the manufacturer’s in-
structions, with minor modifications. Twenty microliters of beads/107 cells
were used in most experiments. After staining with viability dye and
surface markers, cells were sorted on a BD FACSAria II using a 70-mm
nozzle and collected into Eppendorf tubes containing cRPMI/10% HS.

In vitro cultures

CD4+ and CD42 ILC1 were sorted from freshly isolated PBMC as de-
scribed above, and ∼10,000 cells were added to a single well in a 96-well
round-bottom plate coated with irradiated mouse embryonic fibroblasts
(R&D Systems) and cultured for 7 d in cRPMI/10% HS with 20 ng/ml IL-2
(BioLegend) and 20 ng/ml IL-7 (BioLegend). Cells were stained with
Fixable Viability Dye eFluor 780 (eBioscience) and then stained for sur-
face markers and analyzed by flow cytometry.

rIL-6 and PMA/ionomycin stimulation

Stimulations were performed with 5 ng/ml rIL-6 (BioLegend) in cRPMI at
37˚C/5% CO2 for 20 min after a 30-min rest (10 3 106 cells/ml in cRPMI/
1% HS; 37˚C/5% CO2) and staining with viability dye and surface
markers. PMA/ionomycin stimulations were performed in cRPMI/10% HS
with 50 ng/ml PMA (Sigma), 750 ng/ml ionomycin (Sigma), and 10 mg/ml
brefeldin A (Sigma) for 6 h at 37˚C/5% CO2.

RNA sequencing

ILC subsets were sorted as described above, and 2000 cells from each
population were used to prepare cDNA using a SMARTer Ultra Low RNA
Kit v2 (Clontech). A Nextera XT kit was used for library construction, and
sequencing was performed on an Illumina HiSeq2500. Analysis was per-
formed using the R package, DESeq2, and a false-discovery rate, 0.05 was
considered significant. The sequences presented in this article have been
submitted to the National Center for Biotechnology Information Gene
Expression Omnibus under accession number GSE69596 Q:11.

Statistics

Statistical analyses were performed using Prism with the two-tailed un-
paired Mann–Whitney test. The p values , 0.05 were considered signifi-
cant.

Results
CD4+, CD8+, and double-negative populations are present in
peripheral blood ILC1

Like their Th1, Th2, and Th17/Th22 Th cell counterparts, ILC
subsets are categorized based on their expression of specific
transcription factors and effector cytokines: ILC1 express T-bet and
IFN-g; ILC2 express GATA-3 and type 2 effector cytokines, such
as IL-13 and IL-5; and ILC3 express RORgt and the cytokines IL-
22 and/or IL-17 (28). Under this nomenclature, NK cells and
lymphoid tissue inducers are considered ILC1 and ILC3, respec-
tively. To better define the relative frequencies of ILC1, ILC2, and
ILC3 in human peripheral blood, we first characterized the overall
composition of ILC subsets by flow cytometry in a cohort of
healthy subjects. Our gating strategy for the identification of pe-
ripheral blood ILC is shown in Fig. 1A F 1. Although all ILC subsets
express CD127 (IL-7Ra) but are negative for lineage-specific
surface markers for T cells, B cells, monocytes, and dendritic
cells, they can be further divided into groups by their differential
expression of c-kit and CRTH2. Only ILC2 express CRTH2;
within the CRTH22 population, ILC1 are c-kit2, whereas ILC3
are c-kit+. In control subjects, very few peripheral blood ILC3
express NKp44. To exclude mature NK cells, we gated on CD562

ILC1 in our analyses (29). Lack of expression of CD16, perforin,
and granzyme B in CD562 ILC1 further confirmed that these cells
are distinct from mature NK cells (Supplemental Fig. 1), consis-
tent with previous reports for ILC1 (29, 30). We were surprised to
find that the peripheral blood ILC1 compartment contained CD4+

CD82, CD42 CD8+, and CD42 CD82 populations (referred to as
CD4+, CD8+, and double-negative [DN] ILC1, respectively),
whereas the ILC2 and ILC3 subsets did not express CD4 or CD8a
(Fig. 1B). Although ILC subset frequencies varied considerably
within a cohort of healthy controls (Table I T 1), ILC frequencies were
stable within an individual over time (Supplemental Fig. 2A).
CD4+ ILC1 constituted more than half of peripheral blood ILC1 in
the majority of healthy controls. In addition, ILC subset fre-
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quencies from fresh PBMC were comparable to frequencies fol-
lowing freeze-thawing (Supplemental Fig. 2B).
Further examination of ILC1 revealed that, like a recently de-

scribed CD4+ CD32 innate-like T cell population (31), CD4+

ILC1 expressed intracellular CD3ε, although we detected little or
no expression of surface or intracellular TCRab on any peripheral
blood ILC (Fig. 1C, 1D). Furthermore, intracellular CD3ε was
present in CD4+ ILC1, as well as in a large percentage of all ILC1
subsets, but not in ILC2 or ILC3.
We next evaluated surface CD3ε and TCRab expression on

sorted CD4+ and CD42 ILC1 after a 7 d culture with irradiated
feeder cells, IL-2, and IL-7 (Fig. 1E). The vast majority of sorted

cells remained CD3ε2 and TCRab2, indicating that they are not
activated T cells or NKT cells with low expression of TCR. A
small percentage of CD3ε+ TCRab+ cells were present in both
CD4+ and CD42 ILC1 cultures, although it is unclear whether
there was preferential expansion or survival of a small number of
contaminating T lymphocytes or whether some ILC1 can indeed
upregulate surface CD3 and TCR. It is interesting to note that a
small percentage of cultured CD42 ILC1 expressed surface CD3ε
in the absence of TCRab. In addition, a fraction of CD42 ILC1
upregulated CD56 postculture, suggesting that this marker may
not distinguish between conventional NK cells and other ILC1.

FIGURE 1. CD4+, CD8+, and DN populations in the ILC1 subset. (A) Gating for peripheral blood ILC subsets: after gating on lymphocytes (FSClow

SSClow), singlets, and live CD45+ cells, total ILC were defined as Lin2 CD127+. Lineage markers included CD3ε, CD19, CD14, CD123, CD11c, FcεRIa,
CD34, CD94, 6 CD16Q:14 . Within total ILC, ILC2 were defined as CRTH2+, ILC1 were defined as CRTH22 c-kit2 CD562, and ILC3 were defined as

CRTH22 c-kit+. A small fraction of ILC3 was NKp44+. (B) ILC subsets in fresh and frozen PBMC from control subjects were assessed for expression of

CD4 and CD8a. Flow plots are from a single representative individual (n. 20). (C) ILC subsets from fresh and frozen PBMC were assessed for surface (s)

and intracellular (ic) TCRab and CD3ε. CD3ε was also included in the lineage markers in these analysesQ:15 . (D) TCRab and CD3ε MFI in ILC subsets (n =

10). (E) Sorted CD4+ and CD42 ILC1 populations were cultured with irradiated feeder cells, IL-2, and IL-7 for 7 d. Live cells were analyzed for surface

expression of CD3ε, TCRab, and CD56 by flow cytometry. Flow plots are from a single individual (n = 2)Q:16 . **p , 0.0001, two-tailed unpaired Mann–

Whitney test.
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These data demonstrate that the ILC1 subset contains distinct
populations characterized by CD4 and CD8a surface expression,
though the shared expression of intracellular CD3ε in ILC1 sug-
gests a lineage relationship among the ILC1 populations that may
be distinct from ILC2 and ILC3.

CD4+ ILC1 demonstrate phenotypic and functional
heterogeneity, although all ILC1 subsets share features with
CD4+ Th1 cells

Effectors of type 1 inflammation, such as CD4+ Th1 cells, CD8+

T cells, and NK cells, are characterized by IFN-g production,
expression of the chemokine receptor CXCR3, and expression of
the transcription factors T-bet and/or Eomes (32–35). To examine
whether all ILC1 populations shared a type 1 phenotype, we first
delineated the expression of T-bet and Eomes and contrasted this
with the expression of the Th2-associated factor GATA-3 by flow
cytometry. As expected, GATA-3 was expressed in ILC2 but was
low or absent in ILC1 and ILC3 (Fig. 2A F 2). Although CD4+ ILC1
expressed T-bet, but not Eomes, CD42 ILC1 coexpressed Eomes
and T-bet, most prominently in the CD8+ ILC1 population
(Fig. 2B, 2C). All ILC1 subsets also expressed CXCR3, although
CD8+ ILC1 contained the highest percentage of CXCR3+ cells
(Fig. 2B, 2C).
To evaluate cytokine production from ILC1, we sorted ILC

subsets from control subjects and analyzed intracellular cytokine
production after PMA/ionomycin stimulation by flow cytometry.
CD8+ and DN ILC1 were analyzed together as CD42 ILC1 be-
cause of the lower frequency of these cells compared with CD4+

ILC1 in most individuals and the dominant Th1-type phenotype in
both of these populations. CD4+ and CD42 ILC1 produced IFN-g
but little or no IL-13, IL-17A, or IL-22 (Fig. 3A F 3). Within CD4+

Table I. Composition of peripheral blood ILC

Subset Frequency (%; Mean 6 SD [Range])

Within Total Live CD45+ Lymphocytes
Total ILC 0.08 6 0.05 (0.02–0.24)

Within Total ILC (Lin2 CD127+)
ILC1 21.7 6 12.2 (5.2–71.8)
ILC2 31.7 6 14.1 (4.7–57.0)
ILC3 33.9 6 14.4 (7.8–64.5)
NKp44+ ILC3 2.5 6 2.7 (0.3–13.7)
CD4+ ILC1 12.3 6 6.2 (5.7–25.8)
CD42 ILC1 7.4 6 3.0 (2.9–13.3)

ILC subset frequencies were determined by flow cytometry from previously
frozen PBMC of healthy control subjects (n = 39 for total ILC, ILC1, ILC2, ILC3
and NKp44+ ILC3; n = 20 for CD4+ and CD42 ILC1).

FIGURE 2. Gradient of Th1 phenotype in ILC1 subsets. ILC subsets in fresh or frozen PBMC from control subjects were analyzed for transcription

factor and CXCR3 expression. (A) T-bet and GATA-3 expression in ILC subsets (gray line = isotype control; black line = transcription factor). Graphs show

representative staining from n = 5–9 subjects. (B) T-bet, Eomes, and CXCR3 expression in CD4+, CD8+, and DN ILC1 by flow cytometry. Flow plots are

from a single representative individual from a total of n = 5–9 subjects for each stain set. (C) Frequency of T-bet+, Eomes+, and CXCR3+ cells in CD4+,

CD8+, and DN ILC1 (n = 4–5). *p , 0.05, **p , 0.0001, two-tailed unpaired Mann–Whitney test.
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ILC1, IFN-g production was largely restricted to CXCR3+ cells
(Fig. 3B). CD4+ ILC1 were also potent producers of TNF-a, GM-
CSF, and IL-2 (Fig. 3). To varying degrees, all other ILC subsets
were also capable of producing TNF-a, GM-CSF, and IL-2
poststimulation (Fig. 3, Supplemental Fig. 3). Effector cytokine
expression in peripheral blood ILC2 and ILC3 was consistent with
previous reports (Supplemental Fig. 3) (30).
Although the CD4+, CD8+, and DN ILC1 populations that we

describe shared numerous features with Th1 cells, CD4+ ILC1
expressed lower levels of Th1-associated factors than did CD42

ILC1 and showed substantial functional heterogeneity. Coex-
pression of T-bet and Eomes in CD8+ ILC1 suggests that this
subset shares more similarities with NK cells than do other ILC1
subsets. These data indicate that ILC1, particularly CD4+ ILC1,
do not fit strictly into a Th1 paradigm.

ILC subsets are characterized by differential surface marker
expression

Because CD4+ ILC1 demonstrated phenotypic and functional
characteristics distinct from CD42 ILC1 and had a lower fre-
quency of cells expressing the Th1-associated factors T-bet,
CXCR3, or IFN-g, we were interested in whether chemokine re-
ceptors and activation markers might be able to further define
functionally distinct CD4+ ILC1 populations. Differential patterns
of chemokine receptor expression are important in
determining lymphocyte migration to specific tissues and lymph
nodes, and they can also be used to identify specific T cell subsets
(36–42). Therefore, to provide some insight into potential func-
tional differences among these ILC subsets, we performed a de-
tailed examination of ILC chemokine receptor expression profiles
(Fig. 4A F 4, Table II ;T2).
Consistent with a Th1 phenotype, ILC1 had the highest fre-

quency of CXCR3-expressing cells; however, CD4+ ILC1, which
had a lower frequency of CXCR3+ cells than CD42 ILC1, dem-

FIGURE 3. CD4+ and CD42 ILC1

cytokine production. Fresh PBMC

were prepared from peripheral blood,

lineage depleted using a MACS col-

umn, stained for ILC surface markers,

and flow sorted for CD4+ and CD42

ILC1 subsets (n = 3) (A) or CXCR3+

and CXCR32 populations within the

CD4+ and CD42 ILC1 subsets (n = 3)

(B). The sorted populations were

stimulated with PMA/ionomycin/

brefeldin A for 6 h and then examined

for intracellular cytokine expression

by flow cytometry.
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onstrated the highest level of heterogeneity in chemokine receptor
expression. A higher frequency of CD4+ ILC1 than CD42 ILC1
expressed CLA, a skin-homing receptor, and a significant per-
centage of CD4+, but not CD42, ILC1 expressed CCR4, CCR10,
and CXCR5. Of particular note, the coexpression of CCR7 and
CD62L on a high frequency of all ILC1 populations distinguished
ILC1 from ILC2 and ILC3, which expressed CD62L but not
CCR7.

ILC2, like Th2 cells, were nearly all CCR4+. ILC2 also had the
highest frequency of cells positive for CCR4, CCR6, and CCR9,
chemokine receptors important in homing to barrier surfaces of
the skin, lung, and gut (43, 44). ILC3 were very heterogeneous in
their chemokine receptor expression; however, other than CD62L,
CLA was the most frequently expressed surface receptor on ILC3
of the chemokine receptors and adhesion molecules examined.

FIGURE 4. Distinct chemokine re-

ceptor and costimulatory marker expres-

sion on ILC subsets. (A) Fresh PBMC

from control subjects were isolated from

peripheral blood and rested for 1 h at 37˚

C/5% CO2 and chemokine receptor ex-

pression was analyzed on ILC subsets by

flow cytometry. Flow plots are from a

single representative individual (n = 5–7).

(B) ILC subsets from fresh or frozen

PBMC were examined for their activa-

tion marker and CD45RO expression by

flow cytometry. Flow plots are from a

single representative individual (n . 10).
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As with the chemokine receptors, we found substantial het-
erogeneity in the expression of costimulatory markers among the
different peripheral blood ILC subsets (Fig. 4B, Table II). The
majority of all ILC1 subsets expressed CD28, CD27, and CD2,
costimulatory markers that are constitutively expressed on T cells
(45–47). In contrast, ILC2 expressed CD28, but not CD27 or CD2,
whereas a fraction of ILC3 expressed CD2 and CD28 but not
CD27. Interestingly, we found that ILC1, but not ILC2 or ILC3,
expressed CD45RO, a marker used to identify memory
T lymphocyte subsets (Fig. 4B, Table II) (48). When we examined
ILC subsets in cord blood, all ILC subsets were present and
expressed similar patterns of CD28 compared with adult PBMC,
yet CD45RO was low to absent in cord blood ILC (Supplemental
Fig. 4).
These data suggest unique functions or migratory patterns for

CD4+ ILC1 compared with other ILC1 populations, but the sim-
ilarities in CCR7, costimulatory marker, and CD45RO expression
in ILC1 suggest common modes of regulation among the ILC1
subsets.

CD4+ ILC1 coexpress IL-6Ra and gp130 and respond to IL-6

To further examine factors that may differentially regulate the ILC
subsets, we examined whether these subsets were responsive to IL-
6, a cytokine that is thought to be important in autoimmune disease
pathogenesis (49). Only CD4+ ILC1 had a high frequency of cells
expressing both IL-6Ra and gp130 (Fig. 5AF 5 , 5C). In some indi-
viduals, ILC2 also had substantial expression of IL-6Ra, although
the majority of IL-6Ra+ ILC2 did not coexpress gp130. Impor-
tantly, IL-6 responsiveness, as measured by STAT-3 and STAT-1
phosphorylation after IL-6 stimulation, paralleled the frequency of
IL-6Ra and gp130 coexpression on the various ILC subsets
(Fig. 5B, 5C). Thus, compared with other ILC subsets, CD4+ ILC1
are uniquely IL-6 responsive.

A small set of genes distinguishes CD4+ and CD42 ILC1
transcriptional profiles

Although CD4+ ILC1 exhibited substantial heterogeneity in sur-
face marker expression, we were interested in determining
whether there was a core transcriptional profile that distinguished
CD4+ ILC1 from CD42 ILC1. To address this question, we per-
formed RNA sequencing (RNAseq) on peripheral blood CD4+ and
CD42 ILC1 isolated from three healthy control subjects. We
found that a total of 66 genes was differentially expressed between
CD4+ and CD42 ILC1, with 50 genes that were upregulated and
16 that were downregulated in CD4+ ILC1 compared with CD42

ILC1 (Fig. 6 F 6). A variety of cellular processes was represented by
these differentially expressed genes; only a small number was
immune-regulatory genes (50, 51). Of these immune-related
genes, CD4, CD8a, CD8b, and CRTAM are also differentially
expressed between CD4+ and CD8+ T lymphocytes (52). In ad-
dition, the IL-18R subunit IL18R1 and AICD genes were
expressed more highly in CD4+ ILC1. Although the best charac-
terized role for AICD is in B cell class switching, several reports
also suggest that it is involved in innate antiviral immunity (53).
These data indicate that a small set of genes does differentiate
CD4+ from CD42 ILC1.

Peripheral blood ILC subset frequencies are altered in SSc

To apply these phenotypic analyses to a systemic disease, we chose
to examine ILC subset frequencies in SSc, an autoimmune disease
in which vascular dysfunction and fibrosis of the skin and other
organs lead to substantial morbidity and mortality (54). Although
there is clearly immune dysregulation in SSc, the mechanisms
involved in disease pathogenesis are poorly understood. Type 2
inflammatory cytokines, particularly IL-13, are thought to be
central drivers of fibrosis in SSc, although Th17 and Th22 cells
have also been implicated in SSc disease pathogenesis (55–58).
When we compared ILC subset frequencies in PBMC from pa-
tients with SSc with those from age- and gender-matched control
subjects, we were surprised to find that, although ILC2 frequen-
cies were not significantly different, ILC1 and NKp44+ ILC3
frequencies were increased and NKp442 ILC3 frequencies were
decreased in SSc relative to the total peripheral blood ILC (Lin2

CD127+) population and total live CD45+ lymphocytes (Fig. 7A F 7).
Analyses of some of the subjects shown in Fig. 7A included
staining for CD4. In this cohort, we found that the enrichment of
ILC1 in SSc was primarily attributable to changes in CD4+ ILC
(Fig. 7B). These data examining CD4+ and CD42 ILC1 were
confirmed in a second age- and gender-matched cohort, which
demonstrated increased frequencies in CD4+ and CD42 ILC1 in
SSc within the total ILC population but significant increases only
in CD4+ ILC1 within total live CD45+ lymphocytes (Fig. 7B).
Expression patterns of the costimulatory markers CD2, CD27, and
CD28 in ILC subsets from SSc were similar to those seen in
controls (Fig. 7C).
Because IL-6 signaling has been implicated in inflammation and

fibrosis in SSc (56, 59–61), we also investigated IL-6Ra expres-
sion on ILC subsets in the peripheral blood of SSc patients
compared with age- and gender-matched controls. Interestingly,
we found a decrease in the percentage of CD4+ ILC1 coexpressing

Table II. Peripheral blood ILC surface marker expression

Surface Marker CD4+ ILC1 CD42 ILC1 ILC2 ILC3

CCR6 30.4 6 9.4 (17.3–44.1) 18.5 6 6.6 (7.9–26.2) 58.7 6 14.4 (43.1–83.7) 20.0 6 7.3 (12.8–28.7)
CXCR3 39.9 6 9.3 (24.9–51.9) 66.8 6 7.4 (53.3–74.5) 0.8 6 0.5 (0.3–1.8) 34.1 6 18.3 (14.3–65.5)
CCR4 39.0 6 12.0 (24.4–62.2) 7.6 6 3.3 (4.5–14.1) 78.4 6 8.3 (64.6–88.9) 12.8 6 5.8 (6.9–21.3)
CCR10 17.6 6 11.4 (6.3–41.4) 5.3 6 2.1 (3.5–9.7) 8.6 6 5.6 (3.5–19.5) 29.3 6 10.1 (14.6–43.7)
CLA 29.2 6 15.7 (17.0–54.3) 17.5 6 6.3 (11.6–28.2) 26.0 6 9.7 (15.6–39.1) 39.3 6 10.8 (25.7–52.8)
CCR9 7.4 6 3.4 (2.1–11.7) 15.5 6 4.7 (10.3–21.7) 30.0 6 9.7 (17.0–41.1) 5.8 6 1.9 (3.6–9.0)
CCR5 8.2 6 3.8 (3.5–14.1) 21.0 6 12.4 (6.2–37.5) 10.7 6 8.9 (5.78–28.6) 1.9 6 1.5 (0.4–4.5)
CXCR5 15.8 6 7.1 (8.1–27.9) 2.5 6 0.6 (1.6–3.5) 0.5 6 0.7 (0.1–2.0) 1.5 6 0.4 (1.0–2.1)
CD62L 63.1 6 11.1 (47.7–78.8) 57.9 6 18.3 (32.4–77.0) 88.5 6 15.4 (54.6–98.7) 81.9 6 17.3 (55.7–93.9)
CCR7 74.1 6 15.3 (43.1–93.3) 55.7 6 15.7 (36.7–73.3) 1.0 6 0.8 (0–2.4) 2.7 6 2.4 (0.5–7.5)
CD2 99.5 6 0.6 (98.7–100) 87.7 6 9.3 (71.6–94.1) 1.1 6 0.8 (0.3–2.2) 48.3 6 10.0 (31.2–55.7)
CD27 85.9 6 7.7 (75.2–94.3) 88.4 6 8.0 (74.8–94.1) 0.7 6 0.4 (0.2–1.2) 1.8 6 0.6 (0.8–2.3)
CD28 99.1 6 0.8 (97.8–100) 72.0 6 7.3 (62.4–82.4) 85.4 6 6.7 (78.9–95.3) 13.9 6 8.1 (6.9–27.3)
CD45RO 68.0 6 14.0 (44.6–92.4) 31.0 6 16.7 (7.8–64.5) 5.6 6 6.2 (1.3–28.1) 2.8 6 2.7 (0.9–12.7)

The frequency (%) of surface markers on ILC subsets are expressed as the mean 6 SD (range) for chemokine receptors and adhesion molecules (n = 5–7), costimulatory
molecules (n = 5), and CD45RO (n = 20). Representative flow plots are shown in Fig. 4.
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IL-6Ra and gp130 in SSc and a decrease in IL-6Ra mean fluo-
rescence intensityQ:12 (MFI) on CD4+ ILC1 in SSc compared with
controls (Fig. 7D).

Discussion
Through a comprehensive evaluation of chemokine receptors,
adhesion molecules, costimulatory markers, and cytokines
expressed by human peripheral blood ILC, we characterized dis-
tinct patterns within the ILC subsets that may further delineate their
migration and function. Of particular note, we discovered a pre-
viously unappreciated heterogeneity in the ILC1 subset, which
included CD4+, CD8+, and DN populations. We were surprised to
find that CD4+ and CD42 ILC1, but not ILC2 or ILC3, expressed
significant levels of intracellular CD3ε, suggesting a develop-
mental relationship among the ILC1 populations that may be
distinct from ILC2 and ILC3. Previous work demonstrated that
NKp442 ILC3 have the capacity to differentiate into NKp44+

ILC3 or ILC1 in vitro, depending on the cytokine milieu (30).
Whether the ILC1 subsets that we describe are distinct from those
that differentiate from ILC3 remains unclear.
Some NK cells also express intracellular CD3 components (62–

64); however, the cell subsets in our analyses are distinct from
classic NK cells based on a lack of CD16, CD56, perforin, and

granzyme B expression (29). Unlike CD4+ ILC1, CD8+ ILC1 had
high frequencies of Eomes and T-bet coexpression, suggesting that
they may share significant phenotypic and functional character-
istics with NK cells. In contrast to CD8+ and DN ILC1, which
displayed prominent Th1-like phenotypes, a substantial percent-
age of CD4+ cells lacked CXCR3, T-bet, and IFN-g expression.
Interestingly, CD4+ ILC1 were more potent producers of TNF-a,
GM-CSF, and IL-2 and also included populations expressing
CCR4, CCR10, and CXCR5. Given these phenotypic and func-
tional differences between CD4+ and CD42 ILC1, CD4+ ILC1
may represent a distinct subset, whereas DN and CD8+ ILC1 are
likely more related to one another. A re-examination of these
different ILC1 populations that incorporates functional analyses
beyond the Th1 paradigm may better define conditions in which
ILC1 are simply a source of IFN-g, as well as when they may
modulate inflammatory responses through other pathways.
Comparisons of ILC1 with ILC2 and ILC3 also highlighted other

phenotypic features that were distinct among these populations.
Only the ILC1 subsets express the T cell memory marker CD45RO.
In addition, a large percentage of CD4+ and CD42 ILC1 coex-
pressed CD62L and CCR7, which was absent on ILC2 and ILC3.
In this manner, the ILC1 subsets closely resemble central memory
T lymphocytes in phenotype (65). CCR7 is involved in the traf-

FIGURE 5. High frequency of IL-

6Ra expression on CD4+ ILC1. Fresh

or frozen PBMC were analyzed for

IL-6Ra and gp130 expression on ILC

subsets (A) and phosphorylation of

STAT-1 and STAT-3 following a 20-

min stimulation with 5 ng/ml of IL-6

(B). Flow plots are representative

stains from n . 5 subjects for each

stain set. (C) gp130+/IL-6Ra+ fre-

quencies, IL-6Ra MFI, and post-

stimulation p–STAT-1 and p–STAT-3

frequencies in ILC subsets from fresh

PBMC (n = 5/stain set). *p , 0.05,

**p , 0.01, two-tailed unpaired

Mann–Whitney test.
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ficking of certain T cell subsets to secondary lymphoid organs; the
expression of the CCR7 ligands CCL19 and CCL21 on non-
hematopoietic cells in the lymph node allows colocalization of
CCR7+ T cells and activated dendritic cells to more efficiently
initiate an immune response (66, 67). Although other ILC subsets

are also present in lymphoid organs, such as the tonsils (68),
CCR7 expression on ILC1 may suggest that this population is
more actively recruited to lymphoid organs, or preferentially lo-
calized to lymph node T cell areas, where they may be more in-
timately associated with activated dendritic cells and T cells.

FIGURE 6. A small number of genes are differentially expressed in CD4+ versus CD42 ILC1. RNAseq was performed on peripheral blood CD4+ and CD42 ILC1

from three healthy control subjects. The fold change, expressed as Log2(FC), of genes with a false-discovery rate , 0.05Q:17 using DESeq2 was considered significant.
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Recently, a distinct subset of memory CD4+ T lymphocytes was
described that migrates from the skin to draining lymph nodes in a
CCR7-dependent manner and then re-enters the peripheral circu-
lation, which allows this subset to provide help to distal lymphoid
and cutaneous tissues (69). It is interesting to speculate that a
similar scenario may exist for ILC1. Distinct patterns of expres-
sion of the costimulatory markers CD2, CD27, and CD28 also
suggest that ILC1 may differ from ILC2 and ILC3 in how they are
activated, as well as in the cell types with which they interact.

An examination of peripheral blood ILC in SSc, a disease with
prominent fibrotic features, revealed that ILC1 and NKp44+ ILC3
were increased in frequency, whereas NKp442 ILC3 were de-
creased in subjects with SSc. Additionally, the increase in ILC1
frequencies was primarily attributable to changes in CD4+ ILC1,
which express lower levels of T-bet and IFN-g than CD42 ILC1.
This is of particular interest because T-bet–deficient mice display
increased sensitivity to the bleomycin-induced dermal sclerosis
model of SSc in a T cell–independent manner (70). In light of

FIGURE 7. Altered ILC subset frequencies in SSc. (A) Frozen PBMC from gender- and age-matched controls and SSc subjects were thawed, stained for ILC

subsets, and then analyzed by flow cytometry using the gating strategy outlined in Fig. 1A (n = 38/cohort). (B) A subgroup of the subjects examined in (A)

designated “1st cohort,” included analyses of CD4 expression, and these data on CD4+ and CD42 ILC1 frequencies were replicated in a second cohort of age-

and gender-matched control and SSc subjects (n = 19 - 20 per cohort). (C) ILC subset expression of CD2, CD27 and CD28 was examined on previously frozen

PBMC from SSc subjects. Histograms are representative staining from n = 5 subjects. (D) ILC subset expression of IL-6Ra and gp130 was examined on

previously frozen PBMC samples from control and SSc subjects (n = 20/cohort). The p values were determined using two-tailed unpaired Mann–Whitney tests.
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numerous studies in mouse models and in humans that implicate
TNF-a and GM-CSF in the pathogenesis of several autoimmune
diseases (71, 72), it is also intriguing that multiple ILC subsets can
produce these cytokines and that CD4+ ILC1 appear to be more
potent producers of TNF-a and GM-CSF than are CD42 ILC1.
CD4+ ILC1 were also the most responsive to IL-6, another

cytokine that is thought to play an important role in autoimmunity
(49). IL-6 and soluble IL-6Ra were reported to be elevated in SSc
(56, 59, 61, 73, 74). However, we were surprised to find that the
frequencies of CD4+ ILC1 expressing IL-6Ra were decreased in
SSc. Although these data suggest that increased IL-6 signaling in
CD4+ ILC1 may not be critical to SSc pathogenesis, CD4+ ILC1,
as well as ILC2, which can also express significant levels of IL-
6Ra, may serve as sources of soluble IL-6Ra, which can amplify
IL-6 responses in inflammatory conditions (75). IL-6Ra was
shown to be downregulated upon T cell stimulation; thus, de-
creased IL-6Ra expression on ILC in SSc could also result from
increased ILC activation during disease (76).
Because SSc is a very heterogeneous disease that may involve

distinct pathogenic mechanisms in early versus late disease, it will
be important to understand how ILC frequencies change in dif-
ferent stages and subsets of disease. We defined important phe-
notypic and functional features of ILC subsets in the peripheral
blood. More in-depth analyses of how the ILC populations that we
describe may differ from those in tissue will better define their roles
in autoimmune disease pathogenesis and help to establish whether
ILC2 are functionally different in SSc.
Currently, tocilizumab, an anti–IL-6R mAb, and abatacept

(CTLA4-Ig), which blocks interactions between CD28 and CD80
or CD86, have shown promise in small studies (77–79), and both
are in clinical trials for SSc. The differential expression of IL-6Ra
and CD28 on ILC subsets suggests that not all ILC will be affected
by these biologics to the same degree. Dysregulation of the innate
immune compartment may be an important process that underlies
the development of autoimmunity; thus, the ability of these ther-
apies to appropriately target innate cells, such as ILC, is likely to
have an important impact on therapeutic efficacy. Evaluation of
how ILC subsets change during therapy, as well as whether
changes in these subsets correlate with clinical response, will give
insight into the mechanisms of disease and therapeutic efficacy
and may aid the design of the next generation of biologicsQ:13 .
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