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ABSTRACT OF THE THESIS

Generative Models for Particle Clouds and Anomaly Detection

by

Steven Adam Tsan

Master of Science in Computer Science

University of California San Diego, 2024

Professor Javier Duarte, Chair
Professor Hao Su, Co-Chair

In high energy physics (HEP), there has been persistent interest in leveraging generative

machine learning to model the structure of jets: the collection of particles generated from particle

collisions. Being able to model the distribution of jet data enables downstream tasks such as

anomaly detection, improving our search methodologies for rare and new physics. Traditionally,

jet modeling has been performed on 2D jet-image representations; however, extending 3D point

clouds to jet data has led to the much more natural “particle cloud” representation, where jets

are modeled as a set of particles in momentum-space [31]. In this thesis, I present two such

generative machine learning methods for modeling jets by their particle cloud representations,
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one using a graph-based autoencoder model and one using diffusion models.
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Introduction

One of the primary motivations behind the development of the CERN Large Hadron

Collider (LHC) was to search for new physics that may explain experimental observations left

unaddressed by the standard model (SM) and expand our understanding of phenomena such as

gravity and dark matter. The search for beyond the SM (BSM) physics has had limited success

at the LHC possibly because current methods rely too heavily on hypothesized BSM signatures

that may not reflect the true nature of the new physics. To address this, there has been a growing

interest in employing unsupervised machine learning models that can search for new physics

independent of underlying signature assumptions.

In Chapter 1 we will explore a design of autoencoders for the aforementioned purpose.

Autoencoders have useful applications in high energy physics in anomaly detection, particularly

for jets—collimated showers of particles produced in collisions such as those at the CERN Large

Hadron Collider. We explore the use of graph-based autoencoders, which operate on jets in

their “particle cloud” representations and can leverage the interdependencies among the particles

within a jet, for such tasks. Additionally, we develop a differentiable approximation to the energy

mover’s distance via a graph neural network, which may subsequently be used as a reconstruction

loss function for autoencoders.

In Chapter 2 we will explore the use of diffusion models for particle cloud generation.

Diffusion models have gained significant traction as one of the most powerful generative models

available, and current work indicates they may also have potential for anomaly detection based

on their ability to be used for likelihood estimation [61]. However, diffusion models have

traditionally suffered from slow inference speeds; accordingly, this thesis will explore techniques
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for fast diffusion models such as Point Straight Flow [66] and progressive distillation [55] for

particle cloud generation.
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Chapter 1

Particle Graph Autoencoders and Differ-
entiable, Learned Energy Mover’s Dis-
tance

1.1 Introduction

One of the primary motivations behind the development of the CERN Large Hadron

Collider (LHC) was to search for new physics that may explain experimental observations left

unaddressed by the standard model (SM) and expand our understanding of phenomena such

as gravity and dark matter. The search for beyond the SM (BSM) physics has had limited

success at the LHC possibly because current methods rely too heavily on hypothesized BSM

signatures that may not reflect the true nature of the new physics. To address this, there has been

a growing interest in employing unsupervised machine learning (ML) models that can search for

new physics independent of underlying signature assumptions. For example, autoencoders, ML

models that learn to map data down to a compressed encoding of its most salient features and

then reverse such encodings back to their original form, have been employed for unsupervised

anomaly detection [3,14,15,23,34,44]. Autoencoders learn to accurately reconstruct data similar

to what is seen during its training; however, anomalous signals rare or absent in the training data

may not be accurately reconstructed—a property that can be used to detect them.

We propose particle graph autoencoders (PGAEs) based on graph neural networks
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(GNNs) [20, 56] for unsupervised detection of new physics in multijet final states at the LHC.

By embedding particle jet showers as a graph, GNNs are able to exploit particle-to-particle

relationships to efficiently encode and reconstruct particle-level information within jets. We posit

that this can improve the capacity of autoencoders to learn a compressed representation of a jet

and consequently help identify anomalous BSM multijet signal events from LHC data. We also

develop and validate a differentiable, learned approximation to an important distance metric,

the energy mover’s distance [35], using a GNN, dubbed EMD-GNN, which has the potential

to be used as both a loss function to train a PGAE as well as a metric by which to judge how

anomalous a jet is.

1.2 Related Work

Autoencoders in HEP

A number of different autoencoder models have been studied for application in searching

for new physics at the LHC [14, 15, 23, 44]. One major drawback of many of these studies is

the use of vector- or image-based representations of HEP data, which aren’t well-suited to the

sparsity and irregular geometry typical data produced at the LHC. We propose instead to use

the more natural set-based “particle cloud” [50] representation for particles in a jet, which is

inherently sparse and agnostic to the underlying geometry, and operate on this representation

using GNNs.

Graph networks

GNNs are powerful, expressive networks that can operate on particle clouds and respect

permutation invariance (for graph-level outputs) and covariance (for edge- and node-level

outputs) [10]. Due to this they have been steadily gaining prominence in HEP [56]. Notable

examples include the dynamic graph convolutional neural network (DGCNN) [65], which has

been used for calorimetry in a high-granularity calorimeter [30] and jet identification [50], as

well as the interaction network [6] and its generalization to “graph networks” [5], which have
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been used for jet identification [45,46] and particle tracking [18,30]. Other network architectures,

GravNet and GarNet, have been studied for calorimetry [28, 49].

GNNs for anomaly detection in HEP have not yet been fully explored. However, recent

work [3] develops an autoencoder-based strategy to facilitate anomaly detection for boosted jets,

using a symmetric decoder that simultaneously reconstructs edge features and node features.

Latent-space discriminators are used isolate W bosons, top quarks, and exotic hadronically-

decaying exotic scalar bosons from QCD multijet background. This work expands on that by

performing a realistic resonance search using the PGAE model.

1.2.1 Reconstruction loss functions

Since the inputs and outputs are sets, a reconstruction loss needs to address the assignment

problem, i.e. find a one-to-one correspondence between the two sets of nodes. For a permutation-

equivariant model, such as the presently considered GNN, the mean-squared error (MSE) is a

standard choice because the order is preserved between the inputs and outputs. The Chamfer

loss [4, 22, 67] is permutation invariant, but has been found to be suboptimal [34]. Finally,

the energy mover’s distance (EMD) [35], related to the Earth mover’s distance [25, 47, 54],

is a desirable loss, which quantifies the difference between jets through optimal transport as

the minimum “work” required to rearrange one jet into another by movements of transverse

momentum between the particles in each jet. Finding the EMD is a linear program [47], the exact

solution to which is not efficiently differentiable, which limits its use directly as a loss function

for training with backpropagation. Thus, instead we develop a GNN-based approximation of the

EMD, “EMD-GNN”, which may be used in the future as a differentiable loss function. Others

have studied alternative approximations to the Earth or energy mover’s distance to improve

computability [13, 17, 21].
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1.3 Network Architectures

PGAE

In the PGAE model, we represent input jets as fully-connected graphs where each

constituent particle is represented as a node, and with edges between each pair of nodes. When

encoding and decoding, the graph structure of the data remains the same, but the node features,

initially the particle’s three-momentum p = (px, py, pz), have their dimensionality reduced during

the encoding phase. We note the model can be expanded to consider additional particle-level

information, such as particle type, electromagnetic charge, and pileup probability weight [7].

For the encoder and decoder, we use the edge convolution layer from Ref. [65], which performs

message passing along the edges and aggregation of messages at the nodes of the graphs.

The PGAE model is constructed using the PyTorch Geometric library [24]. The node

features inputted to the encoder are first processed by a batch normalization layer [29]. The

encoder itself is a single DGCNN layer, built from a fully connected neural network φe with

layers of sizes (32,32,2) and rectified linear activation unit (ReLU) activation functions [1]. The

network takes in as input (pi, p j − pi), where pi (p j) is the three-momentum for particle i ( j)

and i ̸= j. The final layer produces a two-dimensional message vector from each pair of distinct

particles. These message vectors are aggregated (using a mean function) for each receiving

particle using

hi =
1

|N (i)| ∑
j∈N (i)

φe(pi, p j − pi) , (1.1)

where N (i) is the neighborhood of particles connected to the i-th particle, which corresponds to

all other particles in this case. This summed message h⃗i is the bottleneck or encoded represen-

tation for the i-th particle. The decoder is also a DGCNN layer, containing a network φd with

layers of sizes (32,32,3) and ReLU activation functions after all but the final layer. The input is

a 3-dimensional vector representing (hi,h j −hi) and the output is intended to reconstruct each

particle’s momentum. We note that the architecture itself is covariant under permutations of the

input particles and applicable to variable-size jets.
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EMD-GNN

The input to the EMD network is a pair of jets, represented in a single graph in a similar

format to the PGAE’s input, but with an extra binary channel per node to differentiate which jet

it belongs to: +1 (−1) for the first (second) jet.

The EMD network itself is a GNN that utilizes three DGCNN layers, each one using

two-layered fully connected networks with ReLU activations and batch normalization. For each

DGCNN layer the graph structure is dynamically recomputed with edges directed to each node

from its 16-nearest-neighbors in feature space. A softplus activation is applied to the final output.

To ensure a symmetric distance metric, the network is inputted both permutations of the

input jets and the predicted EMD value is the average of the network outputs. We also utilize a

symmetric loss function consisting of the MSE between the predicted and true EMD value, plus

the MSE between the predicted EMDs for the two inputs.

1.4 Experiments

Datasets

The dataset [33] comes from the LHC Olympics (LHCO) 2020 challenge and consists of

a collection of simulated particle collisions divided up across three “black boxes” (BB) and one

background QCD dijet events sample, each with one million particle collision events. Two of the

black boxes (1 and 3) were injected with anomalous signals, while one (2) had no anomalous

signals injected. In addition, we also use a R&D dataset from the LHCO [32], which has similar

QCD events plus an additional 100,000 injected signal events with labels1.

For input to the PGAE, we process the events using pyjet [51] to cluster R = 1 anti-kT

jets [11, 12], selecting only the leading two jets by transverse momentum per event, and then

representing each jet as a vector of its constituents’ three-momenta p = (px, py, pz), with array

format (Nparticles,3). We also require each jet to have pT > 200GeV. We train the autoencoders

on the processed background dataset, and then evaluate them on the black boxes. For the EMD-

1Both datasets have been released under the CC-BY 4.0 license.
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GNN, we use the same LHCO background data for training, but represent each particle in a jet

by its relative (pT,η ,φ), forming all possible unique pairs of jets from 1,000 total events. The

true EMD value is computed with the EnergyFlow library [35], which bases its computation

on the Python Optimal Transport library [25]. The dataset is randomly partitioned into training

(80%), validation (10%), and testing samples (10%).

PGAE+MSE Results
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Figure 1.1. Comparison of input and reconstructed distributions of a sample particle feature
px (top left) for the models trained with PGAE, evaluated on a test set. ROC curve on the
R&D dataset for the PGAE model (top right), and the result of a resonance search using the
dijet invariant mass performed on BB 1 (bottom). For the search on BB 1, outlier jets have a
reconstruction loss in the top 30% and outlier events are required to have two outlier jets.

Training details for both the PGAE and EMD networks can be found in App. 1.6.
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Figure 1.1 (left) shows a comparison of input and reconstructed features for the models trained

with PGAE evaluated on a test set. We see that the PGAE trained using a MSE loss performs

well at reconstructing particles features. Although the model does not perfectly reconstruct the

(double) peak in the center of the feature distributions, for the purpose of anomaly detection, this

may not be a problem as long as non-outliers are reconstructed well enough that they have a

lower reconstruction loss compared to actual outliers.

For anomaly detection we first study our algorithm on the R&D dataset. As the truth

information is provided, we construct a receiver operating characteristic (ROC) curve to deter-

mine the effectiveness of the PGAE to identify a signal (W′ → XY, X → qq, and Y → qq with

mW′ = 3.5TeV, mX = 500GeV, and mY = 100GeV) that it did not observe during training. As

seen in Fig. 1.1 (center), the PGAE is capable of correctly identifying anomalies.

To evaluate the model’s performance on unlabeled data, we perform a resonance search in

the dijet invariant mass mjj, computed from the two leading jets per event, using a variable-width

mass binning [57] in the range from 2659GeV to 6099GeV. We perform this dijet resonance

search in BB 1, which contains a resonant dijet signal at mjj ≈ 3.8TeV. We require both of

the jets to be “outliers,” which we define as having a reconstruction loss exceeding a threshold

corresponding to the 70% quantile of the loss distribution on the evaluation dataset. We note that

because our algorithm is jet-focused, it is straightforward to generalize this search to multijet

events. To predict the background in the signal-enriched outlier region, we use the shape of the

data in the background-enriched nonoutlier region. We perform a maximum-likelihood fit to the

ratio of the nonoutlier-to-outlier dijet mass distribution with a fourth-order polynomial to derive

a transfer factor (TF) and take the nonoutlier data distribution weighted by the TF as an estimate

of the expected background in the outlier region. To derive the observed significance with the

simplified background prediction, we use the bump hunter (BH) algorithm [16, 63] to look for

resonances in windows spanning two to five bins. With the MSE model in BB 1, we identify a

possible resonance around 3.7TeV with a global significance of 2.8σ , which is consistent with

the injected dijet resonance mass.
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Comparison to other LHCO Contributions

Many algorithms proposed for the 2020 LHCO [34] performed similar evaluations on the

R&D and BB 1 dataset. Bump hunting in latent space [8] implemented a VAE that incorporates

an invariant mass embedding in its latent space. This method obtained an AUC of 0.915 for

an event-level discriminant on the R&D dataset. Another algorithm combined a generative

adversarial network (GAN) based autoencoder (AE) with the BH algorithm and achieved an

AUC of about 0.90 on the R&D dataset. They also performed a dijet resonance search on

BB 1, estimating a signal in the 3000–3600GeV range. Another contribution used regularized

likelihoods with manifold-learning flows [9] to construct an anomaly score, which achieved an

AUC of 0.7882 for their best performing model. Tag N’ Train [2] achieved an AUC of 0.918

on the full R&D dataset, and detected a dijet resonance in BB 1 around 3800GeV with a local

significance of 4σ . The deep ensemble anomaly detection method obtained an AUC of 0.96

using boosted decision trees, though we note that they performed semisupervised training on the

R&D dataset compared to our fully unsupervised training.

In comparison to our application of the PGAE, many of the other LHCO proposals

achieved a higher AUC on the R&D dataset. However, because our discriminant is per jet,

the discriminant values from multiple jets may be combined to achieve a better event-level

discrimination. Moreover, many of the analysis methodologies are independent of the anomaly

detection algorithm itself, thus are complementary to and can be integrated with our PGAE

approach.

EMD-GNN Performance

As shown in Fig. 1.2, the EMD-GNN can learn to approximate the EMD between real jets

with a very high degree of accuracy, with a −0.003% relative difference between the predicted

and true EMD on average, and a standard deviation of 1.6%. This indicates the potential to use

this architecture to define a differentiable loss function for particle graph reconstruction.
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Figure 1.2. Correlation between EMD-GNN’s EMD prediction and the true EMD (left) and
relative difference between corresponding true and predicted EMD (right) for the testing dataset
composed of random pairs of jets.

1.5 Summary

We demonstrated that particle graph autoencoders (PGAEs) are effective at reconstruction

of QCD background jets and, by extension, anomaly detection of anomalous jet signals. Good

discrimination between background and signal jets was observed on the LHC Olympics (LHCO)

R&D dataset, which provides labels. Moreover, using this algorithm, a dijet resonance was

identified in the correct mass range in the LHCO Black Box 1 dataset with a global significance of

2.8σ . Additionally, we show that a graph neural network (GNN) can be used to approximate the

energy mover’s distance (EMD) and therefore potentially be used as a differentiable, permutation-

invariant loss function. Future work will investigate optimizing the PGAE with the EMD-GNN

as its loss function.

Broader Impact

Our PGAE demonstrates the potential of unsupervised anomaly detection through particle

graph representations of jets. As jet representations shift towards this particle cloud based format,

permutation invariant loss functions such as the EMD become increasingly important. However
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approximations of EMD are known for their extremely large time complexity, as such, our

EMD-GNN serves as an effective and differentiable alternative for approximating EMD. In

general, GNNs are becoming increasingly prevalent in many fields, including areas in which they

may have harmful impacts on human welfare, to which this work may potentially contribute.

1.6 PGAE+MSE and EMD-GNN Training

For training the PGAE, we use a batch size of 256, early stopping with a patience of 10

epochs, and an initial learning rate of 0.01. Additionally we employ a learning rate scheduler

that lowers the learning rate by a factor of 0.1 after every 4 epochs where the validation loss does

not improve, with the minimum learning rate set by this process being 10−6. We use MSE as the

loss in our experiments with the PGAE.

To train the EMD-GNN, we use the same training hyperparameters as the PGAE except

for the batch size, which we set to 128. Both models were trained on Nvidia GTX 1080Ti GPUs.

The PGAE model requires about 5 days to train, and the EMD-GNN model takes about 20 hours.

1.7 Acknowledgements
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Chapter 2

Diffusion Models for 3D Particle Cloud
Generation

2.1 Introduction

Diffusion models have emerged as a powerful generative model rivaling GANs in image

[19] and point cloud [41] tasks. While early diffusion model designs [19, 27, 41] were hampered

by their considerably slow sampling process, recent methodologies have vastly sped up the

sampling speeds [40, 55, 60, 66]. Large amount of data collection and high computation costs

dissuade the usage of slow models for simulating particle data in the field of HEP. Therefore,

this chapter will discuss fast sampling diffusion models for particle cloud generation.

2.2 Background

Diffusion Models

Diffusion models are a class of generative models that learn how to generate samples

by iteratively denoising an initial Gaussian noise. The Denoising Diffusion Probabilistic Model

(DDPM) model originates from [58] and was popularized by [27], which showed that it had good

results on 2D image synthesis tasks. [19] introduced a wide range of optimizations such that the

DDPM model could rival state-of-the-art GANs on image synthesis. Advances such as Latent

Diffusion Models (LDMs) [52], which perform diffusion over the latent space of samples passed

through an autoencoder, have both sped up training diffusion models and vastly improved their

13



results in tasks such as shape completion and image synthesis. Beyond 2D datasets, DDPMs have

also seen impressive results for 3D generative tasks such as 3D point cloud generation [41, 68]

and text-to-3D synthesis [48]. These papers have largely tackled tasks on dense data like image

and shape datasets, where convolutional neural networks (CNNs) like UNet [53], which underlies

most diffusion models as the denoising neural network [19,27,52], are highly effective. However,

particle clouds are a sparse data representation where any jet can only be represented by a finite

set of particles generated from a particle collision [31], making traditional CNN-based diffusion

models less effective [26]. Recent papers tackling diffusion models for particle cloud generation

have opted for using attention [64] based architectures [36, 43].

Fast Diffusion Models

Diffusion models generate samples by mapping noisy samples at arbitrary noise-levels to

lower noise-levels. Starting from pure Gaussian noise, samples would therefore be generated

by sequential mappings to increasingly lower noise-levels. Achieving high quality samples

from diffusion models require a long iterative sampling procedure, often taking 1000 steps or

more when the denoising begins from pure Gaussian noise [19, 27]. Progressive distillation for

diffusion models [55] was proposed in order to reduce the many sampling steps required for

high quality samples to only a few steps. Using a “parent” diffusion model that has learned to

denoise across many noise-levels, progressive distillation [55] will teach a “student” model to

learn to denoise at every other noise-level in the sequence that the “parent” model has learned

the mappings for, effectively halving the number of steps needed to generate a sample. This

student can then be distilled into yet another student model using the same pattern. Repeating

this training pattern can create a model that can perform the diffusion model’s sampling process

in just a few steps. However, every time the model is distilled the quality of generated samples

will degrade.

While progressive distillation was able to generate high quality samples in only a few

steps, single-step sampling severely underperformed [55]. [66] proposed Point Straight Flows
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(PSF), a modification to diffusion modeling that generates high quality samples in just a single

step by also utilizing model distillation. PSF trains a diffusion model and then performs several

steps inspired by rectified flows (reflow), a technique to simplify the transport trajectory in

normalizing flow models [38, 39]. Reflow [39] enables the PSF model to be distilled down

without the large quality degradation in the samples seen with progressive distillation [55],

though generating samples through a few steps would still outperform one step. Consistency

models [60] are another proposed model that can sample with one step and is also based on

distilling down a diffusion model. But whereas progressive distillation taught a student model

the mappings at discrete noise-levels from a parent model, consistency models learn the mapping

over the continuous range of a trained diffusion model’s generation trajectory formed by an

ODE [59]. This chapter will focus on the efficacy of PSF for fast particle cloud generation.

2.3 Methodology

Dataset

We train the model described in Fig. 2.1 using the gluon particle cloud dataset provided

by [31]. The dataset is a collection of particle clouds with a dimensionality of [N, 30, 3], where

N is the number of jets in the dataset, 30 is the maximum number of particles in a jet, and the 3

is the particle features: the relative 3-momentum (ηrel , φ rel , prel
T ).

Model Architecture

As seen in Fig. 2.1, our model is composed of a linear layer with embedding dimension

of 64, followed by 8 attention blocks using the GAPT model from [31, 37], then 2 more linear

layers with 64 and 3 embedding dimensions. The very first linear layer embeds the features of

the particle cloud x. The output of this linear layer is then added to a random amount of noise at

noise-level t, set by a sinusoidal embedding as is performed in [19]. The noised input is then

passed through the remaining series of attention blocks and linear layers, generating an output

with the same dimension as the original particle cloud.
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Figure 2.1. The diffusion model is an attention model architecture trained on particle clouds
x modified with varying noise-levels t. x comes with information on each particles relative
3-momentum (ηrel , φ rel , prel

T ).

Training and Sampling

Alternative models are trained using the progressive distillation [55] methodology and

PSF methodology [66]. For progressive distillation, an initial diffusion model using the velocity

prediction setting described in [55] is trained to denoise samples over a the continuous noise-level

interval t ∈ (0,1). This initial model is then distilled using progressive distillation, starting with

a distillation down to 512 discrete noise-levels. The PSF model uses the same architecture as

the progressive distillation model but the training is as formulated in Algorithm 1 of [66]. All

training procedures use early stopping with a patience of 15 to determine how long to train.

Sampling from the progressive distillation model uses the DDIM sampling method [55, 59],

whereas sampling from the PSF model is performed by Euler’s method exactly as described

in [66].
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Figure 2.2. Progressive Distillation: Feature distributions of the gluon particles compared
between real gluons and generated gluons from the initial diffusion model used for progressive
distillation. Samples are generated using 1024 DDIM steps. Jet mass is calculated from the
particle features.

2.4 Experiments

To evaluate the models, samples are generated for models trained with both aforemen-

tioned methodologies. The distribution of features for the generated samples are then compared

to the distributions for the original gluons dataset the model was trained on. 177252 particle

clouds padded up to 30 particles per cloud are generated for each comparison (equalling the

amount in the original dataset, and the padding used for training). For the progressive distillation

model, we notice that the quality of the samples significantly degrade as we decrease the number
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Figure 2.3. Progressive Distillation: Feature distributions of the gluon particles compared
between real gluons and generated gluons from the progressively distilled diffusion model for 32
sampling steps. Jet mass is calculated from the particle features. We can see severe degradation
in sample quality compared to the base model sampled in Fig. 2.2. Further distillation causes
significantly worse sample quality.
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Figure 2.4. PSF: Feature distributions of the gluon particles compared between real gluons and
generated gluons from the initial diffusion model used for PSF before reflow and distillation. Jet
mass is calculated from the particle features.

19



0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

Pa
rti

cl
es

1e6 pT

Data
Generated

-0.4 -0.2 0.0 0.2 0.40.0

0.2

0.4

0.6

0.8

1.0

1.2

Pa
rti

cl
es

1e6 eta
Data
Generated

-0.4 -0.2 0.0 0.2 0.40.0

0.2

0.4

0.6

0.8

1.0

1.2

Pa
rti

cl
es

1e6 phi
Data
Generated

0.0 0.2 0.4 0.6 0.8 1.00

10000

20000

30000

40000

Je
ts

Jet Mass
Data
Generated

Figure 2.5. PSF: Feature distributions of the gluon particles compared between real gluons
and generated gluons using single-step sampling from the PSF model. Very little discernable
degradation in sample quality compared to the undistilled model in Fig. 2.4.
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of sampling steps as seen at 32 steps in Fig. 2.3. PSF on the other hand demonstrates significantly

improved performance over progressive distillation, even at just a single-step as seen in Fig. 2.5.

Even compared to the undistilled diffusion model used for PSF seen in Fig. 2.4, the distilled PSF

model still holds up in sample quality with very little noticeable loss in sample quality.

2.5 Conclusion

In this chapter we present distilled diffusion models as an effective way of generating

particle clouds without the massive speed detriment evident in undistilled diffusion models.

While there will be some loss in sample quality with distillation techniques, it is possible to

signficantly reduce this sample quality reduction while still maintaining a significant speed up as

evidenced by the PSF methodology. Anomaly detection using diffusion models in HEP has also

recently been explored in another work [42] using a diffusion model formulated by a variance

preserving SDE [61]. Further testing the potency of diffusion models for anomaly detection

and exploring the effects of faster diffusion models like PSF on the current anomaly detection

methodology may be worth studying.
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T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi, T. Tuuva, M. Besancon, F. Coud-
erc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud,
P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, M. Machet, J. Malcles,
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G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Topsis-Giotis, M. Diamantopoulou,
D. Karasavvas, G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi,
K. Kousouris, I. Papakrivopoulos, I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis,
P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F. A. Triantis,
D. Tsitsonis, M. Csanad, N. Filipovic, G. Pasztor, O. Surányi, G. I. Veres, G. Bencze,
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