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Information-Theoretic Approaches for Sensor Selection
and Placement in Sensor Networks for Target Localization

and Tracking
Hanbiao Wang, Kung Yao, and Deborah Estrin

Abstract: In this paper, we describes the information-theoretic ap-
proaches to sensor selection and sensor placement in sensor net-
works for target localization and tracking. We have developed a
sensor selection heuristic to activate the most informative candi-
date sensor for collaborative target localization and tracking. The
fusion of the observation by the selected sensor with the prior tar-
get location distribution yields nearly the greatest reduction of the
entropy of the expected posterior target location distribution. Our
sensor selection heuristic is computationally less complex and thus
more suitable to sensor networks with moderate computing power
than the mutual information sensor selection criteria. We have also
developed a method to compute the posterior target location distri-
bution with the minimum entropy that could be achieved by the
fusion of observations of the sensor network with a given deploy-
ment geometry. We have found that the covariance matrix of the
posterior target location distribution with the minimum entropy
is consistent with the Cramer-Rao lower bound (CRB) of the tar-
get location estimate. Using the minimum entropy of the posterior
target location distribution, we have characterized the effect of the
sensor placement geometry on the localization accuracy.

Index Terms: Information theory, sensor networks, sensor place-
ment, sensor selection, target localization and tracking.

I. INTRODUCTION

The emerging sensor networks could revolutionize a wide
range of applications including target localization and tracking
[1]. Multi-sensor data fusion is one of the key technologiesto
exploit the huge potential of sensor networks [2]. Information-
theoretic concepts not only provide guidance to minimize the
consumption of sensor resources for a given information gain
requirement through selective sensor activation but also provide
guidance to maximize the information gain of a given set of
sensors through intelligent sensor configuration. Information-
theoretic sensor management has been shown to be able to
greatly improve the cost-effectiveness of multi-sensor data fu-
sion [3]–[10].

The existing information-theoretic sensor selection ap-
proaches are not optimized for computational complexity re-
quired by the moderate/low computational powers of sensor net-
works. In this paper, we describe a sensor select heuristic that
is nearly as effective as the mutual information based sensor
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selection in the sense that the selected sensor observationre-
sults in the maximum average information gain. Our sensor
selection heuristic is computationally much less complex and
thus more suitable to sensor networks with moderate comput-
ing power than the mutual information sensor selection criteria.
Much of the existing work on the information-theoretic sensor
configuration is mostly about adaptive control of advanced sen-
sors such as radars and cameras [11]–[12]. In this paper, we
describe an information-theoretic method to analyze the effect
of the sensor placement geometry on the posterior target local-
ization distribution that is produced by multi-sensor datafusion.
An earlier version of our sensor selection heuristic has appeared
in [9]. An earlier version of our sensor placement strategy has
apeared in [10]. In this paper, we will discuss these two re-
lated problems in a coherent and unified framework based on
Bayesian information fusion and information theory.

The rest of this paper is organized as follows. Section II
reviews the recursive Bayesian estimation for target localiza-
tion and tracking and discusses different measures of the esti-
mation error of a target location distribution. Section IIIde-
scribes our sensor selection heuristic and compares it to the mu-
tual information based sensor selection. Section IV describes
our information-theoretic approach to analyze the effect of the
sensor placement geometry on localization accuracy. Section V
concludes this paper.

II. DATA FUSION FOR LOCALIZATION

In this section, we review the recursive Bayesian estimation
for target localization and tracking and discuss differentmea-
sures of the target location estimation error.

In the recursive Bayesian estimation for target localization
and tracking [13]–[14], both the sought target location andthe
sensor observations are modeled as stochastic processes, and the
posterior target location distribution conditioned on sensor ob-
servations is computed recursively from additional sensorob-
servations step by step. LetX andx denote the target location
random variable and its realization value, respectively. Let Zj

andzj denote the sensor observation random variable and its re-
alization value that are incorporated into the data fusion in step
j. The posterior target location distribution is incrementally up-
dated by one sensor observation at a time,

p(x|Z1 = z1, · · · , Zj = zj)

= Cp(zj |x,Z1 = z1, · · · , Zj−1 = zj−1)

× p(x|Z1 = z1, · · · , Zj−1 = zj−1)

whereC is a normalization constant. For simplicity, from now
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Fig. 1. Incremental update of the target location distribution by a DOA
sensor denoted by the square through the recursive Bayesian esti-
mation.

on, we will usep(x|z1, · · · , zj) as the shorthand forp(x|Z1 =
z1, · · · , Zj = zj). The above update equation is applied to the
target location random variableX in stepj. By then,z1, · · · , zj

are all already known as the specific realization values of the
random variablesZ1, · · · , Zj . WhenZ1, · · · , Zj are condition-
ally independent with one another conditioned onX, the above
equation is simplified to

p(x|z1, · · · , zj) = Cp(zj |x)p(x|z1, · · · , zj−1).

The incremental update of the target location distribution
by a direction-of-arrival (DOA) sensor through the recursive
Bayesian estimation is illustrated in Fig. 1. The upper sub-
figure of Fig. 1 shows the prior target location distribution
p(x|z1, · · · , zj−1) denoted by the oval image. The beam image
originating from the DOA sensor is the target location distri-
bution based only on this sensor’s observation,p(x|zj), which
represents the new information provided by this sensor. We have
assume a Gaussian DOA observation model with a standard de-
viation of 2 degrees. The lower sub-figure of Fig. 1 shows the
posterior target location distributionp(x|z1, · · · , zj) denoted by
the round image. The true target location is denoted by marker
+. The posterior target location distribution has much smaller
estimation error than the prior target location distribution.

One of the advantages of the recursive Bayesian estimation is
that we can stop updating the posterior target location as soon
as the estimation error is no larger than allowed. There are sev-
eral different measures of the estimation error of the posterior
target location distribution. One estimation error measure is the
root-mean-square error (RMSE) of the target location random

variableX in stepj

RMSE(X) =

√

E(‖x − xt‖2) (1)

wherext is the true target location,E(·) is expectation w.r.t.
the posterior target location distributionp(x|z1, · · · , zj), ‖ · ‖ is
theL2 norm. In stepj, z1, · · · , zj are all already known as the
specific realization values of the random variablesZ1, · · · , Zj .
In practice, the true target locationxt is usually unknown. In
this paper, we assume the target location estimation is unbiased

xt = E(x)

whereE(·) is expectation w.r.t.p(x|z1, · · · , zj). Another esti-
mation error measure is the covariance matrix of the target loca-
tion random variableX in stepj

COV (X) = E((x − E(x))2) (2)

whereE(·) is expectation w.r.t.p(x|z1, · · · , zj). Yet, another
estimation error measure is the Shannon entropy [15] that mea-
sures the uncertainty of the posterior target location distribution
in stepj

H(X|Z1 = z1, · · · , Zj = zj) = −E(ln p(x|z1, · · · , zj)) (3)

whereE(·) is expectation w.r.t.p(x|z1, · · · , zj). Again, in step
j, z1, · · · , zj are all already known as the specific realization
values of the random variablesZ1, · · · , Zj . A large entropy of
the posterior target location distribution indicates a large estima-
tion error of the target location.

To sort posterior target location distributions in the order of
the estimation error, we need a scalar measure of the estimation
error. Since the covariance matrix of the posterior target location
distribution is a matrix and not a scalar, it is not a proper measure
to sort the target location distributions. Both the RMSE andthe
Shannon entropy are scalar and thus can be used to sort posterior
target location distributions. Because the Shannon entropy is a
core component of the well-established information theory, we
choose to use the Shannon entropy to quantify the uncertainty
reduction (or information gain) of the target location distribution
due to the additional sensor observation. To be brief, we will use
the term entropy to denote the Shannon entropy from now on.

III. SENSOR SELECTION HEURISTIC

In this section, we describes our sensor selection heuristic in
detail. Section III-A formulates the sensor selection problem
in the sensor networks for target localization and trackingand
reviews the mutual information based sensor selection. Sec-
tion III-B defines our sensor selection heuristic. Section III-C
describes the relation between the entropy difference usedin
our sensor selection heuristic and the mutual information.Sec-
tion III-D validates our sensor selection heuristic using simu-
lations. Section III-E compares the computational complexity
of our sensor selection heuristic to that of the mutual informa-
tion based sensor selection. Section III-F discusses the potential
discrepancy in selection decision between our sensor selection
heuristic and the mutual information based sensor selection.
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A. Sensor Selection Problem

A greedy strategy has been used for sensor selection in sen-
sor networks for target localization and tracking [7]–[8].This
strategy selects the currently unused sensor whose observation
is expected to result in the maximum entropy reduction of the
posterior target location distribution. The observation of the se-
lected sensor is incorporated into the target location distribution
using recursive Bayesian estimation [13]–[14]. The greedysen-
sor selection and the recursive information fusion repeat until
the entropy of the posterior target location distribution is less
than or equal to the desired level. Thus, the entropy of the tar-
get location distribution is incrementally reduced to the desired
level without consumption of more sensor resources than neces-
sary. The core problem of the greedy sensor selection approach
is how to efficiently evaluate the expected entropy reduction at-
tributable to each candidate sensor without actually retrieving
sensor data.

The sensor selection problem is formulated as follows. Given
1. the prior target location distribution:p(x);
2. the set of candidate sensors for selection:S;
3. the locations of candidate sensors:xi,∀i ∈ S;
4. the observation models of candidate sensors:p(zi|x),∀i ∈

S;
the objective is to find the sensorî whose observationZî min-
imizes the expected conditional entropy of the posterior target
location distribution

î = arg min
i∈S

H(X|Zi).

Equivalently, the observation of sensorî maximizes the ex-
pected reduction of the target location entropy

î = arg max
i∈S

(H(X) − H(X|Zi)).

H(X)−H(X|Zi) is one expression ofI(X;Zi), the mutual in-
formation between the target locationX and the predicted sen-
sor observationZi,

I(X;Zi) =

∫

p(x, zi) ln
p(x, zi)

p(x)p(zi)
dxdzi (4)

wherep(x, zi) = p(zi|x)p(x) andp(zi) =
∫

p(x, zi)dx. Thus,
the observation of sensorî maximizes the mutual information
I(X;Zi),

î = arg max
i∈S

I(X;Zi). (5)

Sensor selection based on (5) is the maximum mutual in-
formation criterion described in [7]–[8]. The target location X
could be three-dimensional. The sensor observationZi could
be two-dimensional (e.g., the direction to a target in a three-
dimensional space is two-dimensional). Thus,I(X;Zi) could
be a complex integral in the joint state space(X,Zi) of
five dimensions. The computational complexity of evaluating
I(X;Zi) could be more than that of the capability of the low-
end sensor nodes. If the observationZi is related to the target
locationX only through the sufficient statisticsZ(X), then

I(X;Zi) = I(Z(X);Zi).

If Z(X) has fewer dimensions thanX, thenI(Z(X);Zi) is less
complex to compute thanI(X;Zi). In the above special sce-
nario, I(Z(X);Zi) has been proposed to replaceI(X;Zi) to
reduce the complexity of computing the mutual information in
[7]. In this paper, we describe an alternative entropy basedsen-
sor selection heuristic. In general, the entropy based sensor se-
lection heuristic is computationally much simpler than themu-
tual information based approaches. However, the observation of
the sensor selected by the heuristic would still yield on average
the greatest or nearly the greatest entropy reduction of thetarget
location distribution as will be shown in Section III-D.

B. Sensor Selection Heuristic

In our studies of sensor selection for localization, we have
observed that the reduction of the localization uncertainty at-
tributable to a sensor largely depends on the difference of two
quantities, namely, the entropy of the noise-free sensor obser-
vation, and the entropy of that sensor observation model corre-
sponding to the true target location. The noise-free sensorobser-
vation assumes that no error is introduced into the sensor obser-
vation. The sensor observation model corresponding to the true
target location is the probability distribution of the sensor obser-
vation conditioned on the true target location. Loosely speaking,
our sensor selection heuristic selects the candidate sensor with
the maximum entropy difference described above.

Let Zv
i denote the noise-free observation of sensori. Because

Zv
i assumes no randomness in the process of observation re-

garding the target location,Zv
i is a function of the target location

X and the sensor locationxi

Zv
i = f(X,xi). (6)

In (6), because the target locationX is a random variable, the
noise-free sensor observationZv

i is a random variable although
the sensor locationxi is a deterministic quantity. Since the
noise-free sensor observationZv

i usually has less dimensions
than the target locationX, the distribution of the noise-free sen-
sor observationZv

i is usually the geometric projection of the
target location distributionp(x) onto the observation perspec-
tive of sensori

P (Zv
i ≤ zv

i ) =

∫

· · ·

∫

f(x,xi)≤zv
i

p(x)dx (7)

where the observation perspective of sensori largely depends on
the sensor locationxi.

In practice, the subset of the state space of the target location
X and the noise-free sensor observationZv

i with the non-trivial
probability density can be discretized into a grid for numerical
analysis. Any probability density function value larger than a
given threshold is considered as non-trivial. The discreterepre-
sentation ofp(zv

i ) can be computed as follows.
1. LetX be the set of the target location grid values with the

non-trivial probability density.
2. Let Z be the set of the noise-free sensor observation grid

values of the non-trivial probability density.
3. For each grid pointzv

i ∈ Z, initialize p(zv
i ) to zero.
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Fig. 2. A DOA sensor’s noise-free observation about the target location.

4. For each grid pointx ∈ X , determine the corresponding
grid point zv

i ∈ Z using (6), and update its probability as
p(zv

i ) = p(zv
i ) + p(x).

5. Normalizep(zv
i ) to make the total probability ofZ to be1.

After the noise-free sensor observation distributionp(zv
i ) is

computed, the noise-free sensor observation entropyH(Zv
i ) can

be computed using (3).
The numerical computation of the noise-free observation dis-

tribution p(zv
i ) for a DOA sensor is illustrated in Fig. 2. In the

upper sub-figure of Fig. 2, the target location distributionis de-
noted by the image color, and the DOA sensor location is de-
noted by the square. The subset of the target location state space
with the non-trivial probability density is discretized into a grid
of 400 × 400. The true target location is denoted by marker
+. The lower sub-figure of Fig. 2 shows the discrete probabil-
ity distribution of the DOA sensor’s noise-free observation in
the granularity of2◦. Marker× denotes the probability of the
noise-free DOA observation in the interval of[36◦, 38◦], which
is the summation of the probability of all target locations inside
the sector delimited by the36◦ line and the38◦ line in the upper
sub-figure of Fig. 2.

The observation model of sensori is p(zi|x
t) when the tar-

get is actually atxt. The sensor observation model incorporates
observation error from all sources, including the noise corrup-
tion to the signal used to observe the target, the signal modeling
error in the estimation algorithm used by the sensor, the inaccu-
racy of the sensor hardware, and so on. The amount of uncer-
tainty in the sensor observation model may depend on the target
location. Since the true target location is unknown during the
process of target localization and tracking, we have to use an es-

timated target location to approximate the true target location in
order to determine the sensor observation model. For a single-
modal target location distributionp(x) that has a single peak,
we can use the maximum likelihood estimatex̂ of the target lo-
cation to approximate the true target location, and the entropy of
the approximate sensor observation model is

H(Zi|X = x̂) = −

∫

p(zi|x̂) ln p(zi|x̂)dzi. (8)

For a multi-modal target location distributionp(x) with more
than one peaks, namely,̂x(m), m = 1, · · · ,M , the entropy
of the observation model of sensori can be approximated as
a weighted average as follows.

H(Zi|X = x̂) =

M
∑

m=1
p(x̂(m))H(Zi|X = x̂(m))

M
∑

m=1
p(x̂(m))

(9)

whereH(Zi|X = x̂(m)) = −
∫

p(zi|x̂
(m)) ln p(zi|x̂

(m))dzi.
For simplicity, from now on, we will useH(Zi|x̂) as the short-
hand forH(Zi|X = x̂).

We have repeatedly observed that the incorporation of the
sensor observation with a larger entropy differenceH(Zv

i ) −
H(Zi|x̂) yields on average a larger reduction in the uncer-
tainty of the posterior target location distribution. Thus, the en-
tropy differenceH(Zv

i ) − H(Zi|x̂) can sort candidate sensors
into nearly the same order as the mutual informationI(X;Zi).
Specifically, the sensor with the maximum entropy difference
H(Zv

i ) − H(Zi|x̂) also has nearly the maximum mutual infor-
mationI(X;Zi). Hence we propose to use the entropy differ-
enceH(Zv

i ) − H(Zi|x̂) as an alternative to the mutual infor-
mationI(X;Zi) for selecting the most informative sensor. For-
mally, the entropy based sensor selection heuristic is as follows.
1. Compute the entropy differenceH(Zv

i ) − H(Zi|x̂) for the
set of candidate sensorsS.

2. Select sensor̂i such that

î = arg max
i∈S

(H(Zv
i ) − H(Zi|x̂)).

We will see that our sensor selection heuristic is computation-
ally much simpler than the mutual information based sensor se-
lection in Section III-E

C. Relation to Mutual Information

In this subsection, mathematical analysis reveals that theen-
tropy differenceH(Zv

i )−H(Zi|x̂) can reasonably approximate
the mutual informationI(X;Zi). As a result, it is reasonably ef-
fective to use the entropy differenceH(Zv

i )−H(Zi|x̂) to select
the sensor with the maximum mutual informationI(X;Zi). The
mutual informationI(X;Zi) has another expression, namely,
H(Zi) − H(Zi|X). We will show thatH(Zv

i ) andH(Zi|x̂)
can reasonably approximateH(Zi) andH(Zi|X), respectively.

H(Zi) is the entropy of the predicted sensor observation dis-
tribution, p(zi) =

∫

p(zi|x)p(x)dx. The predicted sensor ob-
servation distributionp(zi) becomes the noise-free sensor ob-
servation distributionp(zv

i ) when the sensor observation model
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Fig. 3. Scenario of sensor selection for localization using DOA sensors
exclusively.

p(zi|x) is deterministic without any uncertainty. The uncer-
tainty in the sensor observation modelp(zi|x) makes the pre-
dicted sensor observation entropyH(Zi) larger than the noise-
free sensor observation entropyH(Zv

i ). When the sensor obser-
vation modelp(zi|x) has only a small amount of uncertainty, the
noise-free sensor observation entropyH(Zv

i ) closely approxi-
mates the predicted sensor observation entropyH(Zi).

H(Zi|X) is actually the entropy of the sensor observation
model averaged over all possible target locations,

H(Zi|X) = −

∫

p(x, zi) ln p(zi|x)dxdzi

=

∫

p(x){−

∫

p(zi|x) ln p(zi|x)dzi}dx

=

∫

p(x)H(Zi|x)dx.

Whenp(x) is a single-modal distribution,H(Zi|x̂) is defined
in (8), which is the entropy of the sensor observation model
for the most likely target location estimatêx. Whenp(x) is a
multi-modal distribution,H(Zi|x̂) is defined in (9), which is
the entropy of the sensor observation model averaged over all
target locations with local maximum likelihood. When the en-
tropy of the sensor observation modelH(Zi|x) changes slowly
with the target locationx, H(Zi|x̂) can reasonably approximate
H(Zi|X).

Since H(Zv
i ) and H(Zi|x̂) can reasonably approximate

H(Zi) and H(Zi|X), respectively, the entropy difference
H(Zv

i ) − H(Zi|x̂) can reasonably approximate the mutual in-
formationI(X;Zi) = H(Zi) − H(Zi|X). Such approxima-

Fig. 4. Scenario of sensor selection for localization using range sensors
exclusively.

tion is very close whenH(Zi|x̂) is small relative toH(Zv
i ) and

the entropy of the sensor observation modelH(Zi|x) changes
slowly with the target locationx. Thus the entropy difference
H(Zv

i )−H(Zi|x̂) sorts sensors into approximately the order of
the mutual informationI(X;Zi). As a result, the sensor with
the maximum entropy differenceH(Zv

i ) − H(Zi|x̂) probably
also has the maximum mutual informationI(X;Zi). Thus the
entropy differenceH(Zv

i )−H(Zi|x̂) is a reasonable alternative
to the mutual informationI(X;Zi) for sensor selection. The
correlation between the entropy differenceH(Zv

i ) − H(Zi|x̂)
and mutual informationI(X;Zi) will be further explored using
simulations in Section III-D.

D. Validation of Sensor Selection Heuristic

This subsection evaluates our sensor selection heuristic rela-
tive to the mutual information based sensor selection usingsim-
ulations. The Gaussian noise model has been widely assumed
for sensor observations in many localization and tracking algo-
rithms, e.g., the Kalman filter [16]. As a starting point, we as-
sume the Gaussian sensor observation models in the evaluative
simulations for simplicity. The simple Gaussian sensor obser-
vation models assumed here are not accurate especially when
sensors are very close to the target. To avoid the problem of the
over-simplified sensor observation models in the simulations,
we only analyze sensors with some middle distance range to
the target. The heuristic will be evaluated further under more
realistic sensor observation models in the future.

Four scenarios of sensor selection for localization have been
studied. Three of them involve DOA sensors, range sensors, and
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Fig. 5. Scenario of sensor selection for localization using TDOA sensors
exclusively.

time-difference-of-arrival (TDOA) sensors exclusively as shown
in Figs. 3–5, respectively. In each of these scenarios, 500 can-
didate sensors of different combination of location and obser-
vation standard deviation are considered. Another scenario in-
volves all these three types of sensors mixed together as shown
in Fig. 6. In this scenario, we have considered 100 candidate
sensors with randomly assigned observation type, location, and
observation standard deviation. In every sensor selectionsce-
nario, both the entropy differenceH(Zv

i ) − H(Zi|x̂) and the
mutual informationI(X;Zi) are evaluated and compared for
all candidate sensors.

In the upper sub-figures of Figs. 3–6, the image color depicts
the prior target location distributionp(x). The subset of the
state space of the target locationX with the non-trivial prob-
ability density is enclosed by the solid rectangle. The truetarget
location is denoted by marker+. Sensors are uniformly ran-
domly placed outside the dotted rectangle. The squares, circles,
and triangles denote DOA sensors, range sensors, and TDOA
sensors, respectively. All TDOA observations are relativeto a
common reference sensor denoted by marker×. The size of
the sensor marker in the upper sub-figure of Fig. 6 indicates the
observation standard deviationσ that is randomly chosen to be
2, 4, 8, 16, or 32. The lower sub-figures of Figs. 3–6 show
the plot of the mutual informationI(X;Zi) vs entropy differ-
enceH(Zv

i ) − H(Zi|x̂) of all candidate sensors. Each marker
denotes(H(Zv

i ) − H(Zi|x̂), I(X;Zi)) pair evaluated for one
candidate sensor.σ is the standard deviation of the Gaussian
observation model assumed for candidate sensors.

In all sensor selection scenarios, the entropy difference

Fig. 6. Scenario of sensor selection for localization using DOA sensors,
range sensors, and TDOA sensors together.

H(Zv
i )−H(Zi|x̂) correlates very well with the mutual informa-

tion I(X;Zi) . Thus, the entropy differenceH(Zv
i )−H(Zi|x̂)

can sort all candidate sensors into nearly the same order as
the mutual informationI(X;Zi) does. The sensor with the
maximal entropy differenceH(Zv

i ) − H(Zi|x̂) selected by the
heuristic always has the maximum or nearly the maximal mu-
tual informationI(X;Zi). The larger is the mutual information
I(X;Zi), the more consistent will be the decision between these
two sensor selection criterion. Only when the mutual informa-
tion I(X;Zi) is very small, such correlation starts to show small
dispersion as shown in Figs. 4 and 5. A sensor observationZi

with very small mutual information with the target locationX is
expected to contribute very small amount of uncertainty reduc-
tion to the the target location distribution.

E. Complexity of Sensor Selection Heuristic

In this subsection, we analyze the computational complex-
ity of our sensor selection heuristic and compare it to that of
the mutual information based sensor selection. The compu-
tational complexity of these two sensor selection criterion de-
pends on the number of dimensions of the target locationX and
the sensor observationZi. We use the DOA sensor based three-
dimensional target localization and tracking as an exampleto
compare the computational complexity of these sensor selection
criterion. The target locationX is three-dimensional. Both the
noise-free DOA observationZv

i and the noisy DOA observa-
tion Zi are two-dimensional. We assume that all random vari-
ables are discretized for numerical computation. Specifically,
the three-dimensional target location subspace with non-trivial
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probability density is discretized into a grid ofn × n × n. The
scope of DOA observations with non-trivial probability density
is also discretized into a grid ofn × n. We assume there are
K candidate sensors for selection.K is usually a small number
relative ton.

Our sensor selection heuristic evaluates the entropy difference
H(Zv

i ) − H(Zi|x̂) of all candidate sensors for selection and
then selects the sensor with the maximum entropy difference.
As shown in Section III-B,p(zv

i ) can be computed fromp(x)
with costO(n3). As shown in (3),H(Zv

i ) can be computed
from p(zv

i ) with costO(n2). As shown in (8) and (9),H(Zi|x̂)
can be computed fromp(zi|x̂) with costO(n2). Thus, the cost
to compute the entropy differenceH(Zv

i ) − H(Zi|x̂) for one
candidate sensor isO(n3). Thus, the total cost for our heuristic
to select one out ofK candidate sensors isO(n3).

The mutual information based sensor selection evaluates the
mutual informationI(X;Zi) of all candidate sensors for selec-
tion and then select the one with the maximum mutual informa-
tion. As shown in (4), the mutual informationI(X;Zi) can be
directly computed fromp(x) andp(zi|x) with cost ofO(n5).
Thus, the total cost to select one out ofK candidate sensors is
O(n5). As we mentioned early in Section III-A, the computa-
tional cost of mutual informationI(X;Zi) could be reduced in
some special scenarios. In general, however, our sensor selec-
tion heuristic is computationally much simpler than the mutual
information based approaches.

F. Dispersion of Correlation with Mutual Information

As pointed out in Section III-D, there is a little dispersion
in the correlation between the entropy differenceH(Zv

i ) −
H(Zi|x̂) and the mutual informationI(X;Zi) when the mu-
tual information is very small. Such dispersion can be seen in
the convex part of the plot of the entropy differenceH(Zv

i ) −
H(Zi|x̂) vs the mutual informationI(X;Zi) in Figs. 4 and 5.
Very small mutual informationI(X;Zi) indicates that the sen-
sor observationZi on average can only reduce very little uncer-
tainty of the target locationX. Thus, there might be a discrep-
ancy in selection decision between our sensor selection heuristic
and the mutual information based sensor selection if and only if
no candidate sensor is very informative. However, our simula-
tions have shown that there is very little degradation in selection
decision made by our sensor selection heuristic even if no can-
didate sensor is very informative.

We model the dispersion of the correlation between the en-
tropy differenceH(Zv

i )−H(Zi|x̂) and the mutual information
I(X;Zi) using a uniform distribution bounded by a parallelo-
gram where a candidate sensor could assume any(H(Zv

i ) −
H(Zi|x̂), I(X;Zi)) pair within the parallelogram with uniform
probability. As illustrated in Fig. 7, the geometry of the par-
allelogram is defined by three parameters, namely,a, b, and
c. Parametera is the variation scope of the entropy differ-
enceH(Zv

i ) − H(Zi|x̂) of the candidate sensors considered
in the current selection decision-making. Parameterc indicates
the variation scope of the mutual informationI(X;Zi) of the
candidate sensors considered in the current selection decision-
making. Parameterb describes the magnitude of dispersion
of the correlation between the entropy differenceH(Zv

i ) −
H(Zi|x̂) and the mutual informationI(X;Zi). We choose this

Fig. 7. Correlation dispersion between the entropy difference H(Zv
i
) −

H(Zi|x̂) and the mutual information I(X; Zi) modeled by a uniform
distribution bounded by a parallelogram.

dispersion model for simplicity. As the first order approxima-
tion, this dispersion model does capture the major featuresof
the correlation dispersion revealed by simulations in Section III-
D, and help to reveal some major characteristics of the impact
of the correlation dispersion on the performance of our sensor
selection heuristic.

Fig. 7 shows a typical dispersion scenario where no candidate
sensor is very informative. The mutual informationI(X;Zi)
of the candidate sensors varies from0 bit to 1 bit. Correspond-
ingly, the entropy differenceH(Zv

i ) − H(Zi|x̂) of the candi-
date sensors changes from−2 bit to 0 bit. The disperse of the
correlation betweenH(Zv

i ) − H(Zi|x̂) and the mutual infor-
mationI(X;Zi) is 0.1 bit. Given the above dispersion scenario,
we run10, 000 simulations. In each simulation, 8 candidate sen-
sors randomly assume their(H(Zv

i )−H(Zi|x̂), I(X;Zi)) pairs
within the specified dispersion range. In each simulation, we
identify both the sensor with the maximum entropy difference
and the sensor with the maximum mutual information. Fig. 7
also shows one particular realization of the simulations. Eight×
markers are uniformly randomly distributed inside the parallel-
ogram denote candidate sensors. Our sensor selection heuristic
selects the rightmost sensor that is enclosed by a square marker.
The mutual information based approaches select the uppermost
sensor that is enclosed by a diamond-shaped marker. The right-
most sensor happens also to be the uppermost sensor in this sim-
ulation.

For the dispersion shown in Fig. 7, with87.8% chance, the
sensor selected by our sensor selection heuristic also has the
maximum mutual information. Even when our sensor selec-
tion heuristic fails to select the sensor of the maximum mu-
tual information, the mutual information of the selected sen-
sor is on average only about0.026 bit less than the maximum
mutual information. On average, the mutual information of
the sensor selected by our sensor selection heuristic is about
0.026(1 − 87.8%) = 0.0032 bits less than the maximum mu-
tual information when there is dispersion in the correlation be-
tween the entropy differenceH(Zv

i )−H(Zi|x̂) and the mutual
informationI(X;Zi). Overall, our sensor selection heuristic in-
troduces very little degradation to the quality of the sensor select
decision even when no candidate sensor is very informative.
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IV. STRATEGY FOR SENSOR PLACEMENT

In Section III, we have described a computationally efficient
strategy to select the most informative sensor from a given a
sensor network deployment. In this section, we describe a strat-
egy of sensor placement to minimize the localization uncer-
tainty given the region where the target needs to be localized and
tracked. Section IV-A describes a method to compute the poste-
rior target location distribution with the minimum entropygiven
a sensor placement geometry. Section IV-B uses the minimum
entropy of the posterior target location distribution to character-
ize the dependency of the localization uncertainty on the sensor
placement geometry and the sensor observation type. Such de-
pendency characteristics provide guidance to choose the optimal
sensor placement geometry to minimize the localization uncer-
tainty in a given region.

A. Min-Entropy Location Distribution

Given the deployment ofN sensors to localize a target at lo-
cation xt, the estimation error in the posterior target location
distributionp(x|Zi = zi, 1 ≤ i ≤ N) depends on the sensor ob-
servation valueszi, 1 ≤ i ≤ N as shown in (1), (2), and (3). In
other words, given the same senor network deployment and the
same true target locationxt, all three estimation error measures,
namely the RMSE, the covariance, and the entropy of the poste-
rior target location, can vary greatly with different realization of
the sensor observation. One way to remove the randomness in
the error measures of the posterior target location estimation is
to use the lower bound of the posterior localization error tocom-
pare the localization capability of two sensor networks with dif-
ferent deployment geometry. The CRB is widely used in anal-
ysis of the lower bound of unbiased estimators [17]–[19]. The
minimum covariance matrix of the posterior target locationdis-
tribution is the CRB if the target location estimation is unbiased

COV (X|Zi = zi, 1 ≤ i ≤ N)

≥− {E(∂2[ln p(zi, 1 ≤ i ≤ N |x)]/∂x2)}−1

whereE(·) is expectation w.r.t. the sensor observation models
p(zi, 1 ≤ i ≤ N |x). As we pointed out in Section II, only
scalar measures of the estimation error can be directly sorted
into an order. Because the CRB is a matrix and not a scalar, the
CRB can not be directly sorted into any order. The CRB of the
target location estimation was converted into the RMSE of the
target location estimation to compare the localization capability
of multiple sensor networks of different deployment geometry
in [20]. Because the covariance matrix does not fully describe a
distribution, the conversion from the CRB to the RMSE can not
be accurate when the distribution itself is unknown. We choose
the minimum entropy of the posterior target location distribu-
tion over the lower bound of the RMSE of the posterior target
location distribution to compare the localization capability of
different sensor network deployment because the entropy has
deep roots in the well-established information theory.

As shown in (3), the entropy of the posterior target location
distributionH(X|Zi = zi, 1 ≤ i ≤ N) is a function of sensor
observationszi, 1 ≤ i ≤ N . Formally,

H(X|Zi = zi, 1 ≤ i ≤ N) = g(z1, · · · , zN ) (10)

whereg(·) is a complex multi-variate function. LetHmin be the
minimum entropy of the posterior target location distribution.
We can find outHmin by searching throughout the joint state
space of sensor observationszi, 1 ≤ i ≤ N ,

Hmin = min
zi,1≤i≤N

g(z1, · · · , zN )

= g(ẑ1, · · · , ẑN )
(11)

whereẑi, 1 ≤ i ≤ N is the sensor observation that minimizes
entropy of the posterior target location distribution. If the partial
derivatives ofg(·) relative tozi, 1 ≤ i ≤ N are well defined,
(11) implies that

∂g(ẑ1, · · · , ẑN )/∂zi = 0, 1 ≤ i ≤ N. (12)

If the noise-free observation is a critical point of the
sensor observation modelp(z1, · · · , zN |x) and maximizes
p(z1, · · · , zN |x)

{∂p(z1, · · · , zN |x)/∂zi}|zi=zv
i

= 0, 1 ≤ i ≤ N (13)

then the noise-free sensor observation is the min-entropy sensor
observation

ẑi = zv
i , 1 ≤ i ≤ N. (14)

Detail of the proof is in Appendix. Condition in (13) can be sat-
isfied in most of the currently used sensor observation models.

Given the sensor network deployment geometry and the true
target locationxt, the noise-free sensor observationzv

i , 1 ≤ i ≤
N can be computed according to (6). After the noise-free sen-
sor observation is computed, we can compute the min-entropy
posterior target location distribution as

p(x|Zi = zv
i , 1 ≤ i ≤ N)

∝ p(zv
i , 1 ≤ i ≤ N |x)p(x)

∝ p(zv
i , 1 ≤ i ≤ N |x)

where we assume a uniform prior target location distribution
p(x) to represent lack of prior knowledge about the target lo-
cation. The minimum entropyHmin is simply the entropy of
p(x|zv

1 , · · · , zv
N ). We can also compute the covariance matrix

of the min-entropy posterior target location distribution,

COV (X|Zi = zv
i , 1 ≤ i ≤ N)

=

∫

(x − E(x))(x − E(x))T p(x|Zi = zv
i , 1 ≤ i ≤ N)dx

whereT is the transpose operator,E(·) is expectation with re-
spect to the min-entropy posterior target location distribution.
We name such covariance matrix the Bayesian lower bound
(BB) of the target location estimation.

We compare the BB to the CRB through two simulations of
two-dimensional localization using TDOA sensors and range
sensors as shown in Figs. 8 and 9, respectively. For simplicity,
we assume the Gaussian distribution for all TDOA and range ob-
servations. The standard deviationσ = 6 time units is assumed
for TDOA observations. The standard deviationσ = 4 distance
units is assumed for range observations. In the upper sub-figures
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Fig. 8. Comparison of the BB with the CRB in localization using TDOA
sensors.

of Figs. 8 and 9, the image color depicts 9 posterior target loca-
tion distributions of the minimum entropy. Both TDOA sensors
and range sensors are denoted by squares. The lower sub-figures
of Figs. 8 and 9 plot the elements of the BB matrix vs the cor-
responding element of the CRB matrix. In both simulations, the
BB equals the CRB element to element. The consistency be-
tween the BB and the CRB indicates that our method to compute
the min-entropy posterior target location distribution isvalid.

B. Effects of Sensor Placement Geometry

In this subsection, we use the minimum entropy of the pos-
terior target location distribution to characterize the dependency
of the localization uncertainty on the sensor network deploy-
ment geometry and the sensor observation type through simu-
lations. We define the coverage of a sensor network for local-
ization as the region where the target can be relatively accu-
rately located by the sensor network. The localization uncer-
tainty characteristics obtained in this section provides guidance
to identify the coverage of sensor networks and to deploy sensor
networks for the optimal localization accuracy in a given region.
We have considered three types of information provided by sen-
sor observations, including TDOA, the range to the target, and
DOA of the target signal.

In simulations as shown in Figs. 10–13, we consider two-
dimensional localization using a small number of sensors with
Gaussian observation uncertainty for simplicity. Given a sensor
network deployment geometry, we consider the localizationer-
ror lower bound at many different locations. The localization
error lower bound is quantified using the minimum entropy of

Fig. 9. Comparison of the BB with the CRB in localization using range
sensors.

the posterior target location distribution. The spatial variation
of the localization error lower bound indicates where localiza-
tion is more accurate and where not. The upper sub-figures of
Figs. 10, 12, and 13, and both sub-figures of Fig. 11, are the
map views of the spatial variation of the localization errorlower
bound. Sensors are denoted by square markers. The lower sub-
figures of Figs. 10, 12, and 13 show the spatial variation of the
localization error lower bound in detail along profilesAB and
CD that are defined in the corresponding upper sub-figure.

As shown in Fig. 10, if localization is essentially based on the
TDOA information among all sensors, the coverage is the re-
gion inside the convex hull of all sensors used. In the lower
sub-figure of Fig. 10, marker+ denotes the relatively small
lower bound of localization error inside the convex hull cover-
age. The convex hull coverage is true no matter whether TDOA
sensors are evenly placed or not as shown in the upper sub-figure
of Fig. 11. The near-field AML algorithm only indirectly and
partially relies on the time difference information between sen-
sors for localization [21]. However, the convex hull coverage
still holds even for the AML based localization as shown in the
lower sub-figure of Fig. 11. The minimum entropy values in
the lower sub-figure of Fig. 11 are converted from the CRB of
the AML algorithm[22]. Assuming the AML based posterior
target location estimation is Gaussian, the conversion follows
Hmin = 1 + ln(2πσaσb), whereσa andσb are the square roots
of the two eigenvalues of the CRB matrix. This result is consis-
tent with the early findings of the convex hull characteristics of
TDOA based localization in [23].

As shown in Fig. 12, in contrast to the coverage of the TDOA
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Fig. 10. Spatial variation of localization uncertainty lower bound of a
TDOA sensor network.

sensor networks, the coverage of the range sensor networks not
only includes the area inside the convex hull of sensors, butalso
extends outward to the area enclosed by the arcs. These arcs
have the convex hull edges as diameters. In the lower sub-figure
of Fig. 12, marker+ denotes the relatively small lower bound
of localization error inside the coverage of the range senornet-
works. This result is consistent with the localization error char-
acteristics of range sensors through the CRB analysis in [24].
When four range sensors are unevenly placed, our simulation
indicates that the sensor network coverage is still enclosed by
the arcs associated with the convex hull of sensors.

As shown in Fig. 13, the localization uncertainty characteris-
tics using DOA information is very different from those using
TDOA or range information. Although a target inside the con-
vex hull of DOA sensors is still more accurately located than
a target far from any sensor, the coverage of the DOA sensor
networks is better described as the vicinity of individual DOA
sensors. In the lower sub-figure of Fig. 13, the DOA sensor lo-
cations are denoted by vertical bars. We can clearly see thatthe
relatively small lower bound of localization error is near indi-
vidual DOA sensors. In the simulation as shown in Fig. 13, the
standard deviationσ = 180/r + 0.2r degrees is assumed for
all DOA observations, wherer is the distance between the tar-
get and the DOA sensor. Whenσ changes withr differently,
simulations indicate that the coverage of a DOA sensor network
is still the vicinity of individual sensors, and is similar to that
shown in Fig. 13.

Fig. 11. Spatial variation of localization uncertainty lower bound of an
unevenly placed TDOA sensors (upper) and the AML based local-
ization (lower).

V. CONCLUSION

In this paper, we have treated two related problems in sen-
sor networks for target localization and tracking, namely,the
sensor selection problem and the sensor placement problem in
a coherent and unified framework based on Bayesian informa-
tion fusion and information theory. We have described a sensor
selection heuristic that approaches the quality of the sensor se-
lection decision of the mutual information criteria but hasmuch
less computational complexity than the mutual informationcri-
teria. Our sensor selection heuristic is more suitable to sensor
networks with moderate computing powers than the mutual in-
formation based sensor selections. We have also described a
method to compute the posterior target location distribution with
the minimum entropy. Using the minimum entropy of the poste-
rior target location estimation, we have characterized thelocal-
ization uncertainty of sensor networks with different placement
geometry and observation types. Such localization uncertainty
characteristics provide a strategy to optimize the sensor network
deployment geometry in order to achieve the optimal localiza-
tion accuracy in a given region.

APPENDIX: PROOF OF (14)

According to (3) and (10), the entropy of the posterior target
location distribution is

g(z1, · · · , zN ) =H(X|Zi = zi, 1 ≤ i ≤ N)

= −

∫

p(x|z1, · · · , zN )
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Fig. 12. Spatial variation of localization uncertainty lower bound of a
range sensor network.

× ln p(x|z1, · · · , zN )dx.

Therefore,

∂g(z1, · · · , zN )/∂zi

= − ∂[

∫

p(x|z1, · · · , zN ) ln p(x|z1, · · · , zN )dx]/∂zi

= −

∫

∂[p(x|z1, · · · , zN ) ln p(x|z1, · · · , zN )]/∂zidx

= −

∫

∂p(x|z1, · · · , zN )/∂zi ln p(x|z1, · · · , zN )dx

−

∫

∂p(x|z1, · · · , zN )/∂zidx.

Since
∫

∂p(x|z1, · · · , zN )/∂zidx

= ∂[

∫

p(x|z1, · · · , zN )dx] ∂zi

= ∂[1]∂zi

= 0

∂g(z1, · · · , zN )/∂zi

= −

∫

∂p(x|z1, · · · , zN )/∂zi ln p(x|z1, · · · , zN )dx. (15)

Notice

p(x|z1, · · · , zN ) = Cp(z1, · · · , zN |x)p(x)

Fig. 13. Spatial variation of localization uncertainty lower bound of a
DOA sensor network.

whereC is a normalization constant, then

∂p(x|z1, · · · , zN )/∂zi = Cp(x)∂p(z1, · · · , zN |x)/∂zi.

If the noise-free observationzv
i , 1 ≤ i ≤ N is a critical point of

the sensor observation modelp(z1, · · · , zN |x) and maximizes
p(z1, · · · , zN |x) as described by (13)

{∂p(z1, · · · , zN |x)/∂zi}|zi=zv
i

= 0, 1 ≤ i ≤ N

then

{∂p(x|z1, · · · , zN )/∂zi}|zi=zv
i

= 0, 1 ≤ i ≤ N.

As a result, the right side of (15) is0, and the entropy of the pos-
terior target location distributiong(z1, · · · , zN ) is minimized

{∂g(z1, · · · , zN )/∂zi}|zi=zv
i

= 0, 1 ≤ i ≤ N.

Thus, under the condition as described by (13), the noise-free
observation is the observation value that results in the minimum
entropy of the posterior target location distribution

ẑi = zv
i , 1 ≤ i ≤ N.

This is (14). The proof is complete.
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