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ABSTRACT OF THE THESIS

Long-Term Dynamics and Special Solutions of Lunar Orbiters

by

Jeet A. Patel

Master of Science in Engineering Science (Aerospace Engineering)

University of California San Diego, 2022

Professor Aaron J. Rosengren, Chair

New transportation, communication, and logistic infrastructures are being planned and

developed for cislunar space in the Earth-Moon system. Cislunar trajectories encompass all of

the orbits revolving around the Earth (circumterrestrial) and Moon (circumlunar), as well as

those about the Earth-Moon Lagrange point (libration-point orbits) and the various paths between

the Earth and Moon (trans-lunar trajectories and transfers). The scope herein is limited to the

circumlunar class of orbits, thereby omitting discussions on near-Earth trajectories from low-

Earth orbits to the geosynchronous regime, as well as lunar transfers and libration-point orbits.

This thesis investigates the long-term dynamics of lunar orbiters, with a particular emphases

on special solutions (e.g., frozen and resonant orbits) that have been uncovered in the literature.

xi



NASA’s General Mission Analysis Tool (GMAT) is used to provide high-fidelity orbit integrations

and dynamical maps, which serve to validate previous analytical and semi-analytical results as

well as explore more completely the neighboring phase space.

xii



Introduction

In the 1960’s, the Moon came to the forefront of space exploration during the Space Race

between the Soviet Union and the United States. The Soviet Union’s Luna program, totaling

24 missions, led to the first spacecraft to escape Earth’s gravity and the first to orbit another

planetary body, among many other astonishing achievements. Almost simultaneously, the U.S.

was launching its own missions with the Pioneer program [1]. From 1958 to 1966, most of these

missions failed, with some small success involving reaching the Moon via impact, lunar flybys,

and returning images from outer space. On 31 March 1966, Luna 10 was launched and a few

days later on 3 April 1966, it became the first lunar artificial satellite after orbit insertion [1].

Soon after, Lunar Orbiter I became the first NASA spacecraft to orbit the moon on 14 August

1966. A few years later, with mostly successful missions following from both the Soviet Union

and the U.S., Apollo 11 famously landed the first humans on the Moon on 20 July 1969.

After the Apollo and the Luna probes of the early 1970’s, there had been a comparative

lull in further exploration of the Moon, with the Luna 24 sample return in 1976 representing the

last lunar mission for a decade and a half. The first robotic lunar probe since 1976, Japan’s Hiten

spacecraft, employed a new ballistic capture trajectory, based on weak-stability-boundary theory

[2], that used solar perturbations to enable the probe to be temporary captured into circumlunar

orbit. This novel low-energy transfer ushered in a new era of space-mission design that was

no longer simply predicated on Keplerian motion [3]. The GRAIL Earth-Moon transit was

based on this notion of space-manifold dynamics, as was the low-energy trajectories for the two

ARTEMIS spacecraft [4].

Whereas modern lunar transfers and libration-point orbits, including the “halo orbit”

1



planned for the Lunar Gateway and that currently being used by the CNSA’s lunar relay satellite

[5], Queqiao, are specific applications of the gravitational n-body problem, circumlunar orbits are

mainly governed by the perturbed two-body problem, in which the effects of the non-spherical

gravity field and third-body perturbations on Moon satellites are often treated in a Hamiltonian

formulation (see, e.g.,[6–9]). Given that significant future lunar missions are scheduled or

proposed by over a dozen nations or organizations to be launched in this decade, the need for

improved understanding of the long-term orbital dynamics about the Moon becomes paramount.

Despite the earliest attempts to characterize the motion of lunar satellites [10–18], which

placed emphasis on the construction of analytical, semi-analytical, and numerical theories

that were valid in idealized situations or on short mission timescales, our knowledge about

the averaged (i.e., long-period and secular) dynamics of circumlunar orbits is still incomplete

[19–26]. This Thesis focuses on such long-term dynamics of orbits around the Moon with a

particular focus on special solutions to the averaged equations of motions; namely, frozen and

Sun-synchronous (resonant) orbits.

2



Chapter 1

Problem Statement

1.1 Astrodynamics of Lunar Orbiters

The dynamics of a satellite orbiting around Moon is best described by the perturbed

two-body problem, which models the deviations from purely Keplerian (two-body) motion. The

problem is most readily stated in Cartesian coordinates as r̈rr =−(µ/r3)rrr+aaad , where −(µ/r3)rrr

is the primary (Keplerian) acceleration and aaad is the vector sum of perturbing accelerations

due to the gravity of external “third” bodies, non-sphericity of the Moon’s gravitational field,

solar radiation pressure (SRP), etc. [9, 27]. Rectangular coordinates, which, being in continual

rapid change as functions of time, do not clearly disclose the characteristic features of the

satellite’s motion: accordingly, analytical and semi-analytical formulations consist in regarding

the perturbed orbits as ellipses whose elements, shown in Figure 1.1, continually change [28].

The Lagrange planetary equations (LPEs) describing the time-variation of the classical orbital

elements under conservative perturbations are given by [28, 29]

da
dt

=
2

na
∂R

∂M
, (1.1)

de
dt

=
1

na2e

(
(1− e2)

∂R

∂M
−
√

1− e2 ∂R

∂ω

)
, (1.2)

di
dt

=
1

na2
√

1− e2

(
cot i

∂R

∂ω
− csc i

∂R

∂Ω

)
, (1.3)
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dΩ

dt
=

csc i

na2
√

1− e2

∂R

∂ i
, (1.4)

dω

dt
=

√
1− e2

na2e
∂R

∂e
− cot i

na2
√

1− e2

∂R

∂ i
, (1.5)

dM
dt

= n− 2
na

∂R

∂a
− 1− e2

na2e
∂R

∂e
, (1.6)

where R is the disturbing function and is related to the perturbing acceleration by aaad = ∂R/∂ t.

Nonsingular formulations of the LPEs exist [30], which are free of the mathematical singularities

associated with circular or equatorial orbits that plague the classical equations.

The perturbing forces in astrodynamics can be distinguished as either conservative or

non-conservative and as gravitational or non-gravitational. Conservative forces do not change

the total energy of the system, on average, whereas non-conservative forces are dissipative [31].

Such forces generally arise from gravitational effects due to the shape and mass distribution of

the central body (e.g., planetary oblateness) and the presence of “third” bodies, such as the Earth

and Sun in the case of a lunar orbiter. Another minor perturbation considered in this work is that

of solar radiation pressure, which, although non-gravitational in nature, can be appropriately

modeled as conservative under a reasonably accurate formulation (i.e., adopting the cannonball

approximation, which treats the spacecraft as a sphere with constant optical properties, and

ignoring the eclipsing of the finite-size solar disk by the solid Moon). Conservative perturbative

forces can be characterized by a disturbing function R and, accordingly, modeled using the

LPEs. Non-conservative forces, on the other hand, result from atmospheric drag or discontinuous

SRP, and cause energy dissipation. Given that the Moon has a very tenuous atmosphere, causing

an otherwise negligible effect on the motion of a lunar orbiter, this work considers only the

conservative perturbations arising from the lunar gravity field, the Earth and Sun (treated as

distant third body point masses), and continuous solar radiation pressure. It should be noted that

SRP causes only minor effects on satellites of low area-to-mass ratio and thus more precisely

modeling this non-gravitational perturbation, which requires specific details on the spacecraft’s

4



i

ω
Ω

periapsis

ascending
node

ê

ê⊥
ĥ

m1

reference
plane

reference
direction

orbit

x̂

ŷ

ẑ

(a) Orientation of the orbital plane in space, described by the three Euler angles: inclination
i, longitude of the ascending node Ω, and argument of periapsis ω .

ê⊥

ê
f

r

ae

a

b

m1

m2

periapsisapoapsis

(b) Geometry of the ellipse of eccentricity e, semi-major axis a, and semi-minor
axis b = a

√
1− e2.

Figure 1.1. Geometrical description of the classical orbital elements (a,e, i,Ω,ω,τ). The time
since periapsis passage, τ , cannot be displayed, but is linked to the satellite’s true anomaly f
through Kepler’s equation: M = n(t − τ) = E − esinE, where E is the eccentric anomaly (see,
e.g., [27], for more details). The unit vectors ĥhh and êee are the orientation-defining integrals of the
two-body problem and can be specified using the Euler angles relative to an inertial frame [29].
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optical properties and shape, is out of scope. The discriminating and peculiar features in the

problem of a lunar satellite must be taken into account in the study of the averaged orbital

dynamics. Thus, while few gravitational harmonics and a simple modeling of the Earth’s

gravitational field provides sufficiently accurate results for orbits above, say, two planetary radii,

disturbances due to mass concentrations below the lunar surface, or mascons, lead to important

short-term effects for circular, polar, low-altitude orbiters and an accurate modeling requires the

full potential plus the third-body effects [21, 32].

Perturbed Keplerian motion is a multiscale problem [33], in which the (osculating)

orbital elements evolve slowly when compared to the change with time t, whose fast evolution

is determined by the rate of variation of the mean anomaly M. This bears out the notion of

separation of perturbing effects into periodic and secular variations and the distinction between

fast and slow time variables. The basic idea in orbit-averaging methods is to obtain approximate

equations for the system evolution that contain only slowly changing variables by exploiting the

presence of a small dimensionless parameter ε that characterizes the size of the perturbation

[6, 7]. The tacit assumption is that the perturbing forces are sufficiently weak so that these

approximate averaged equations of motion can be used to describe the secular and long-period

orbital evolution [33]. The perturbation equations, relating the time variation of the orbit

parameters to the perturbing accelerations, are nonlinear first-order differential equations of the

general form

α̇αα = εggg(ααα, t), (1.7)

where ggg(ααα, t) is assumed to be T -periodic in t. Equation 1.7 is trivially solved when ε = 0,

yielding the classical elements ααα = (a,e, i,Ω,ω,τ) in the unperturbed problem. The method of

averaging consists in replacing Equation 1.7 by the averaged autonomous system

˙̄ααα = ε ḡgg(ᾱαα), (1.8)

6



ḡgg(ᾱαα) =
1
T

∫ T

0
ggg(ααα, t)dt, (1.9)

in which the average is performed over time, and it is understood that ααα in the integrand is to

be regarded as a constant during the averaging process. A characteristic feature of the classical

LPEs is that the disturbing function can be averaged prior to application to the system [29]. The

averaged disturbing function is defined as

R̄(ααα) =
1

2π

∫ 2π

0
R(ααα,M)dM, (1.10)

where the averaging is performed over the mean anomaly through the transformation t = M/n

(the orbit period T = 2π/n, where n =
√

µ/a3 is the orbital mean motion), while keeping the

remaining orbital elements constant.

Due to the Moon’s irregular internal structure and complex mass distribution, the effects

of the lunar gravitational potential cannot be described with a small number of terms, as in the

case for Earth satellites [32]. As a result of the localized gravitational anomalies, the spherical

harmonic model, which exhibits a slow convergence as the orbit radius approaches the Moon’s

surface, requires an overabundance of gravity-field coefficients to properly described them. As

an example, for a local anomaly whose angle subtends 1 degree, a 180th order expansion would

be required. These local mass concentrations (mascons), shown in Figure 1.2, are defined as

“localized regions of higher than average density that produce measurable gravity anomalies

[32].” Such anomalies result because mascons have an average density of 3.3 g
cm3 whereas the

Moon in general has a density of 3 g
cm3 . Mascons, typically found along the equator in lunar seas

on the near side of the Moon, constitute only 0.03 percent of the Moon’s total mass yet can have

a significant long-term impact on low-altitude, lunar orbiters.

Cislunar space in general has some interesting qualities that separate it from the dynamical

environments around other celestial bodies [34]. Apart from a free-return trajectory being

possible and the Moon being tidal-locked with the Earth due to respective matching of its sidereal

7



Figure 1.2. This figure illustrates the distribution of mascons across the lunar surface. These
high density regions cause gravitational anomalies that must be taken into account, particularly
for low-altitude orbits. (Image credit: NASA / JPL-Caltech)

rotational period and orbital mean motion, there are a few other considerations that must be

understood in order to analyze lunar orbiters [14, 35]. The lunar orbital plane is inclined relative

to the ecliptic plane at 5.9◦ and it regresses around the pole of the ecliptic with a period of 18.6

years. For long-term, Earth-satellite dynamics, a reasonable approximation is to assume that the

lunar orbital plane lies in the ecliptic and to subsequently average over its nodal precession [36].

This simplification cannot be made in the case of lunar orbiters, as the Moon’s nodal motion

causes the fundamental reference direction, used to define the satellite orbit Euler angles, to

change [9].

8



1.2 Special Orbital Solutions for Artificial Lunar Satellites

While seminal work conducted in the Luna and Apollo era centered around uncovering the

main perturbing effects on lunar satellite orbiters and on specific mission applications [10, 11, 13–

18, 37, 38], current directions are focused on finding long-term stable orbits throughout all of

circumlunar space [21, 22, 32, 39, 40]. Frozen orbits correspond to equilibria for the averaged

equations of motion, or, as [41] noted, for a dynamical system fabricated to represent the averaged

orbital behavior of the satellite. Such secular equilibria, under various dynamical environments,

have attracted a lot of attention in Earth-satellite missions [41–43] and planetary satellite and

small-body orbiters [9, 44, 45]. In near-Earth space, where the dominant perturbations arise from

planetary oblateness, the existence of frozen orbits is attributed to the dynamical balancing of

the secular effects of the even zonal harmonics with the long-periodic perturbations of the odd

zonal harmonics [42]. These types of orbits with stationary perigee and eccentricity, on average,

are of special interest because they minimize altitude variations using only the natural dynamics.

Accordingly, they reduce station-keeping requirements and maintain the relative configuration of

clusters of satellites [43].

Although the frozen-orbit definition is tied to the averaged equations of motion, these

stationary solutions when recast in osculating space can also be identified as periodic orbits

in the meridian plane of the satellite, and as quasi-periodic in the three-dimensional space

[46]. The direct computation of frozen, periodic orbits can thus be performed directly from the

non-averaged equations, and, when accounting for other perturbations, can be done using an

optimization routine. Explicit analytical solutions, nevertheless, form the starting point for the

numerical optimization process. Lunar frozen orbits, in particular, have been investigated by

[1, 9, 23, 47–52]. The Moon’s complex gravity field makes finding frozen orbits or quasi-frozen

orbits more difficult than in the case for the Earth [32], where only a zonal harmonics model

can be used for low-altitude orbits. In contrast to the Earth, where the second degree-and-order

gravity field coefficient (C22) is roughly three orders-of-magnitude smaller than the dynamical

9



oblateness (J2 =C20), these coefficients differ by a factor of about 10 for the Moon [8, 9, 53]. The

tesseral harmonics in the lunar potential, coupled with significant Earth third-body perturbations,

thus destroy the frozen-orbit conditions of the zonal-only problem.

Given that the Earth’s mass is more than 80 times that of the Moon, Earth perturbations

on circumlunar orbits are also much more dominant than those caused by the Moon on circum-

terrestrial orbits [54]. The Laplace radius is the critical distance at which the Laplace plane lies

halfway between the primary body’s equatorial and orbital planes [55, 56]: it is thus the distance

where the effects of oblateness and third-body forces are equal [14, 36, 57–59]. The Laplace

radius for lunar satellites occurs at an altitude of just below 2300 km, whereas for Earth orbiters,

the Laplace radius is at a geocentric altitude of nearly 42,700 km (i.e., nearly 7000 km above

the geostationary belt). There exist three mutually perpendicular planes of equilibrium for the

gravitational motion of bodies under the perturbing action of a distant third-body and from the

oblateness of the central body: the classical Laplace plane, characteristic of satellite systems

[36], and the remaining two planes discovered by [57] and treated recently in great detail by

[55, 59]. [55] defines the Laplace equilibria to be orbits in which the secular evolution due to the

quadrupole potential of these gravitational perturbations is zero. Laplace equilibria exist for both

circular and eccentric orbits in three planes: the classical, orthogonal, and polar Laplace planes.

The orbit poles of the circular Laplace equilibria lie along three orthogonal directions, two of

them in the principal plane defined by the central body’s rotation pole and orbit pole, and the

remaining in the direction orthogonal to this plane. Their stability was investigated by [58] and

[59], and subsequently studied independently by [55]. Circular orbits in the classical Laplace

plane are generally stable, circular orbits in the orthogonal Laplace plane are always unstable,

while those in the polar Laplace plane, which cross over the pole, are stable at small distances

where the oblateness perturbation dominates and are unstable otherwise. The Laplace equilibria

have not, hitherto, been investigated for lunar satellite orbits and are a central topic of this work.

While there is an abundance of literature exploring lunar frozen orbits and other secular

equilibria, there is a comparative lack of comprehensive analysis and results stemming from a full-
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scale gravity model. As lunar gravitational harmonics are extremely important for circumlunar

orbits at low altitudes, this becomes a major area of interest for future research as parking orbits

and lunar hoppers will be an important part of the Artemis accord. Earlier studies have adapted

simplified models or poorly estimated gravity-field coefficients; however, with the recent the

GRAIL mission, the lunar potential has been mapped more accurately than ever, prompting

detailed investigation and validation of special orbital solutions uncovered in earlier analytical,

semi-analytical, and numerical analyses.
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Chapter 2

Methodology

2.1 Orbital Parameter Space of Previous Lunar Satellite
Missions

As a systematic study of the entire parameter space represents a formidable task with

significant computational requirements, we first map the orbital distributions in semi-major axis,

eccentricity, and inclination of all previous lunar satellite missions. Their orbits in inertial space

are shown in Figure 2.1, with their respective ground-tracks, overlaid on a Mercator projection

of the lunar surface, given in Figure 2.2. Figures 2.3 and 2.4 show the respective (a,e, i) used by

these satellites, which permitted us to narrow the scope of orbital parameter space considered

in this study. Orbits of low altitude and eccentricity were used more frequently, but, otherwise,

there are no recognizable patterns, as is the case for Earth satellites.

2.2 Analysis of Existing Results

Figure 2.5 seeks to obtain an idea of the differences present between the analytical

formulations from literature and the those of numerical integration. As the analytical formulations

are done with ideal conditions and simplifications in mind, there will be a noticeable amount of

inaccuracy. Figure 2.5 illustrates that although these variations are small initially, they begin to

grow substantially at higher altitudes. The analytical formulations were taken with the goal of

matching the results from [14] in mind.

12



Figure 2.1. The initial orbits of historical lunar satellites, plotted using GMAT with data obtained
from https://nssdc.gsfc.nasa.gov/. Note that both Ω and ω were artificially set to zero for
visualization purposes, thereby showcasing the (a,e, i) distributions.

Figure 2.2. The ground-tracks of historical lunar satellite orbits over one orbital period, plotted
using GMAT with data obtained from https://nssdc.gsfc.nasa.gov/.
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Figure 2.3. A three-dimensional representation of the distribution of semi-major axis, ec-
centricity, and inclination for all previous lunar satellite mission. Data taken from https:
//nssdc.gsfc.nasa.gov/.

For the J2 perturbations, it can be noted that the analytical solution seems to overestimate

the rate relative to the numerical solution. The relative error between the analytical and numerical

solution for this case seems to be the greatest in regards to the other curves. The relative error

between the two seems to grow as the orbital radius increases as well.

For the nodal regression due to 3rd body perturbations due to the Earth, the relative error

between the two appears to slowly grow as the semi-major axis increases. The numerical solution

also appears to display increasingly oscillatory and diverging behaviour as the orbital radius

increases. This is to be expected as the lunar orbiter would begin feeling much more gravitational

forces the closer it gets to Earth [27]. The lunar orbiter would also be closer to leaving the

Moon’s hill sphere, which is much smaller than that of Earth.

For the nodal regression due to the 3rd body perturbations due to the sun, the difference

between the analytical and numerical solution appears to be the least out of the three groups. The
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(a) Chronological orbital element distributions of lunar satellite missions.

(b) Distribution of (a,e, i) for historical missions.

Figure 2.4. Historic lunar satellite mission orbits in the semi-major axis, eccentricity, and
inclination parameter space.
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Figure 2.5. A comparison of the analytical and numerical results for orbit precession. The
orbit precession over the course of a day were taken for lunar satellites experiencing the forces
mentioned earlier. These results were taken for initial conditions involving a varying semi-major
axis of [2000:10:14000]. The eccentricity was set to 0.05 and the inclination to 5 degrees. The
Ω and ω were not mentioned in the literature and were set to 0. This figure sought to replicate
the results of [14]

magnitude of the perturbations are also much smaller and therefore grow much more slowly as

the orbital radius increases. This is to be expected as the ratio of the lunar orbiter’s orbital radius

to that of the distance from the sun is extremely small and the changes are relatively microscopic.

The numerical solution begins to display the same oscillatory behavior as the E3B curves.

As noted earlier, the Moon’s oblateness is much less than the Earth’s. The rather extreme

oblateness difference arises due to the fact that the Earth rotates at the angular velocity of about

360◦/day, in contrast to the Moon, which rotates at the relatively stolidly angular rate of about

360◦/(27.32 days), giving the Moon a much more spherical shape. Accordingly, the oblateness-

induced orbital precession for lunar satellite is comparatively less (see, e.g., Figure 3.3). For

circumterrestrial orbits, this perturbation has been depended upon to cause near polar orbits

to precess about a degree/day and therefore provide Sun-synchronous orbits that are attractive
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for many remote-sensing applications. For the Moon, however, imposing the Sun-synchronous

condition is not as attractive for lunar mapping missions as the resulting resonant orbits do not

pass sufficiently near the lunar poles. The precession of the line of nodes due to oblateness (J2

effect only), averaged over an orbital period, is given by the classical result:

Ω̇ =−3
2

J2

(
R
p

)2

ncos i, p = a
(
1− e2) , n =

√
µ

a3 . (2.1)

A Sun-synchronous orbit requires that

Ω̇ =

(
27.32

365.25

)
360 = 26.9266 (degrees/lunar day).

That is, e.g., for a semi-major axis a = 1837.63 km, eccentricity e = 0, lunar equatorial radius

R = 1737.63 km, lunar gravitational constant µ = 4902.78 km3/s2, lunar second zonal harmonic

coefficient J2 = 0.00020433, then the orbit inclination i = 144.8218◦. Thus, near-polar orbits are

not attainable when accounting for Moon oblateness alone. Accordingly, additional perturbations,

including SRP, acting in concert will be investigated to produce desirable Moon-sensing mission

orbits.

dΩ

dt
=− 3

16
µ ′ cos(i)(2−3sin2(i′))

na′3(1− e2)
1
2 (1− e′2)

3
2
(2+3e2) (2.2)

The figures below were produced in GMAT starting with a set of initial conditions after

which the spacecraft was propagated for a period of 100 days. Both simulations used the same

epoch and force model. For the force model, only the J2 effect and 3rd body perturbations from

the Earth were accounted for in the simulation. The initial conditions used were [a, e, i, Ω,

ω , ν] = [4000, 0.3, 87, 237.35, 69, 63.62] for Figure 2. The semi-major axis and inclination

were both chosen from the solutions and literature in order to create a model of an orbit that

lacks nodal precession. The other elements were chosen almost arbitrarily. For Figure 3, the
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initial conditions used were [a, e, i, Ω, ω , ν] = [8000, 0.3, 40, 237.35, 69, 63.62]. This time, the

semi-major axis and inclination were chosen to create an orbit that had a purposeful exaggerated

nodal precession.

Figure 2.6. (Left) The GMAT display for an orbit located in the Laplace plane. In this orbit, the
perturbations that would originally shift the RAAN are all near zero. This can be seen as there
is no ”width” to the orbit, showing that it does not precess. One can note, however, that the
semi-major axis and eccentricity still change due to 3rd body effects. (Right) The GMAT display
for an orbit which experiences a relatively large magnitude of perturbations. The RAAN drift
is clearly seen as the orbit appears to have ”width” and precesses. There is a change in the
semi-major axis and eccentricity as well. This type of orbit would require large amounts of
stationkeeping and therefore would not be economic nor realistically sustainable.
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Figure 2.7. The same orbits as above were run, with the exception being the settings in the GMAT
propagator were changed as to increase the truncation and create a higher fidelity model. The
degree and order of the calculations for the zonal harmonics were also increased. The frozen
orbit displays no change, displaying the robustness of the system. However, the unstable orbit
sees relatively massive changes in node precession. This is to be expected as there were more
zonal harmonics at play and therefore more perturbations if the orbit is not oriented in a stable
manner.

2.3 NASA’s General Mission Analysis Tool

For the purpose of this thesis in particular, GMAT was an invaluable tool for the simulation

of lunar orbits through numerical propagation. The software made possible the testing of a

multitude of analytical theories along with results from a plethora of papers. The testing of ana-

lytical theories allowed for comparison and error estimation between theory and actual numerical

simulation. This type of analysis would be useful for the future runs as numerical simulations

are time consuming and require an assortment of resources whereas analytical expressions can

be calculated with shorter time requirements. The comparison allows one to know which future

runs could opt for faster calculations from the theory and which runs would require a more

robust numerical simulation. Running orbit simulations also proved valuable as it allowed for

the verification of results from previous papers which are used throughout this thesis. The

verification of these results gives confidence in the validity of the program being used. This helps
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in the creation of new results as there is a degree of certainty that the new results will be accurate

due to the validation of the results from the literature.

GMAT’s propagators offer a high degree of accuracy and fidelity which can be toggled depending

on the settings desired by the user. The propagators used in the propagations of this thesis used

a 89th order Runge Kutta solver and defined a truncation accuracy to the 10−11 degree. The

step sizes in the integration could also be defined and were varied depending on the trade-off of

accuracy desired and time allowed. The propagators call a set of predefined force models that

define the physics of the simulation being run. The plethora of possible settings for these force

models were perfectly compatible with the forces present in the orbits that were to be simulated.

The force models had options for changing the primary body, selecting any amount of outside

point masses to simulate third body effects, allowing for atmospheric drag, and including solar

radiation pressure. The force models could also define the degree and order of the gravity field

to use for the central body. Due to the multitude of gravitational harmonics at play on the Moon,

this was beneficial for selecting the desired truncation on these harmonics. Simulations involving

J2 could be run with just as much ease as a 64x64 simulation of the gravitational field. Albeit

one would take exponentially more time to run. The force models also allow the use to define

the set of gravity field data being used. For the missions run for this thesis, the LP165P data file

was used as it includes much more robust calculations from more recent lunar probes.

GMAT also allows for multiple simulations to be done in each run. Each run can have anywhere

from 1 to 1000 spacecraft being propagated. Each of these can start with different initial condi-

tions and can be affected by different sets of force models. The initial conditions cover the range

of all the orbital elements and epochs. This allows for the comparison of changes caused by

different settings in the orbit regime and was useful for the objectives of this thesis. The inertial

frame from which the orbital elements are referenced can also be changed and in general, GMAT

allows for the user to select from an array of different orbit coordinate frames. Once the runs are

completed, GMAT creates report files which can be easily interpreted by MATLAB and processed

for comparison and visualization purposes. The data in the generated report files can be in any
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format and can include different kinds of variables that pertain to the simulations run ranging

from Keplerian orbital elements, Cartesian elements, and time elapsed.

Figure 2.8. A GMAT simulation visualizing multiple orbits propagated from the same epoch with
different initial conditions. The semi-major axis was the only orbital element varied and it is
apparent as the circumference of the orbit paths gets larger. The ground tracks for all the orbits
are also plotted. This change cannot be seen, however, as the ground tracks cannot physically
visualize semi-major axis changes.
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2.4 Dynamic Modeling

2.4.1 New Data

While there is an abundance of literature exploring lunar frozen orbits, there is a no-

ticeable lack of comprehensive analysis and results stemming from a full-scale gravity model

[60]. As gravitational anomalies are extremely important for lunar orbits at low altitudes, this

becomes a major area of interest for future research as parking orbits and lunar hoppers will be

an important part of the Artemis plan. Older studies haven’t used very accurate gravity fields,

however with JPL’s Gravity Recovery and Interior Laboratory (GRAIL), the lunar gravity field

has been mapped more accurately than ever.

2.4.2 Gravity Potential Derivation

One major focus of this thesis is the orbital perturbation caused by the nonspherical shape

of the Moon. In order to properly asses the long-term behavior of a lunar satellite, there must be

an accurate description of the gravitational field of the attracting body. Due to the conservative

nature of gravity itself, the gravitational field of the Moon can be represented by a potential

function. This is usually done by using a mass integral definition and integrating infinitesimal

mass elements over the attracting body in order to obtain the potential at a point a fixed distance

away [32].
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Figure 2.9. Illustration of the parameters being used to derive the potential function from [32]

This potential can be defined as

U(r,φ ,λ ) =
∫

Body
dU = G

∫
Body

dm
R

= G
∫

Vbody

ρ(r,φ ,λ )dV
R

(2.3)

Where:

R defines the distance between the mass element and the exterior point p.

ρ is the density of the body.

V is the volume of the body.

The 1
R term can be expanded in a Legendre polynomial series, ultimately resulting in the

traditional form of the gravity potential which is defined as:
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µ

r

{
1+

∞

∑
n=2

n

∑
m=0

(
R
r

)n

Pn,msin(φ)

[
Cn,mcos(mλ )+Sn,msin(mλ )

]}
(2.4)

Where:

n declares the degree of the gravity model and m declares the order.

φ is the selenocentric latitude of the satellite.

λ is the selenocentric latitude of the satellite.

Pn,m is the normalized associated Legendre function of degree n and order m.

Cn,m and Sn,m are the normalized selenopotential coefficients.
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2.4.3 Lunar Gravity Models

The coefficients Cnm and Snm are usually determined empirically using tracking satellites

orbiting the central body. These values are in turn used to create complete lunar gravity models

that define the contributions to the potential field from the non-spherical shape of the Moon [32].

A spherical model is used for the harmonics with the advantage being that it provides a simple

analytical approach as the short period effects are averaged out [32]. Additionally, the spherical

models are much more accessible and time efficient than mascon models. Mascon models are

more appropriate for localized tests and thus a spherical model will suffice for most research.

Naturally, the reduction in computation times allows time for optimization routines to achieve the

most efficient orbits [32]. There are three types of harmonic coefficients defined by the values of

the n and m subscripts. For zonal coefficients, the order m = 0. (Cn0 = −Jn). These coefficients

serve to help define the axially symmetric potential of the Moon, which for this scenario happens

to be its spin axis [32]. The coefficients are independent of the longitude as they are only defined

by the latitude. For a large amount of cases, (including the Earth), this coefficient alone would

suffice. However, due to the slow spin of the Moon, the gravity potential is not solely dependent

on the zonal terms and the longitudinal considerations must be made. These considerations

can be defined by sectorial and tesseral harmonics. For sectorial and tesseral harmonics, the

order n = m ̸= 0 and the order n ̸= m and both ̸= 0, respectively. Sectorial harmonics describe

the potential along longitudes, placing zero values at the meridians whereas tesseral harmonics

describe the potential along both longitudes and latitudes, placing zero values at the parallels of

latitude as well [32]. After assignment of the Cnm and Snm terms, the individual harmonic terms

are superpositioned to completely define the potential.

The physical significance of each of the harmonics can be illustrated by interpreting the

coefficients as surface deviations from a perfectly homogeneous sphere. For example, the J2

term is usually associated with the oblateness, usually seen as an equatorial “bulge”. Due to

centrifugal force, this oblateness is common among rotating bodies. The C22 terms describes

25



the ellipsoidal shape of the body and the J3 coefficient describes the triaxial shape of the body,

otherwise known as a “pear-like” shape. As the degree of the gravitational terms increases,

the description from the gravity potential becomes more localized. The moon has a complex

density structure, and thus, requires higher order approximations for accurate results. For zonal

harmonics, the degree of the term is correlated to the number of lobes in the equipotential

surface [32]. For sectorial and tesseral harmonics, the order represents the number of lobes on a

horizontal cross section. The figures below were taken from [32] as they provide a very clear

description of how the approximations model the central body.

Figure 2.10. Illustration of the Zonal, Sectorial, and Tesseral harmonics. The second figure
provides a physical visualization of a few harmonic coefficients with only order increases. Notice
the increase in lobes with higher orders.
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Figure 2.11. Physical visualization of the C22 C33 bodies.

Figure 2.12. Physical visualization of the C31 C54 bodies.

The values of these gravitational coefficients are calculated through data taken from lunar

satellites using radar and laser-ranging to obtain information [32]. Before more modern lunar
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missions like GRAIL, there was not a complete model of the gravity field of the Moon. All

effects of the lunar gravity field had not been accounted for in the gravity model and only some

regions of the Moon had been properly researched. In the present, thanks to recent missions,

there are better gravity models available to the public with higher degree and order models of the

gravity field. Better instruments and newer technology have also made it possible to accurately

assess the gravitational field and calculate more accurate field data as opposed to methods used

in the past. Due to limitations of models in the past, papers had not been previously able to

properly assess the gravitational potential of the Moon and this thesis seeks to generate new data

and both correct and expand on previous results.

2.4.4 Gravity Field Approximations

It should be noted that although the lunar gravity field is quite complex, running calcula-

tions at low degrees and orders can still be quite effective in terms of approximating the field and

understanding the orbit dynamics. In the case of a lunar low altitude satellites (LLAS) where the

gravitational harmonics are most important, many research papers have noticed that including

solely the J2 and C22 terms achieves a good approximation of the field and have minor differences

between their higher degree and order counterparts. [8, 9, 32, 53, 60–62]. In most cases, terms

can be applied when they directly affect the parameters being researched. (Meyer 1994) looks at

lifetimes of lunar orbits and includes the J5 term in their model as it contributes the most to alti-

tude decay in a LLAS. (De Saedeleer 2006 and Tzriti 2010) noticed that the inclusion of the C22 is

necessary for most orbits as it directly plays a part in the parameters of a frozen orbit as it affects

the critical inclination. (Tzirti 2010) notes that 3rd degree gravity harmonics are important in the

long term stability of the orbit as it causes chaotic regions to appear as well as significant changes

in the secular behavior of the orbit. The 3rd degree lunar gravity terms are most important at an

altitude above 2000 km. (Carvalho 2006 and Tzirti 2010) note that the J5 and C31 terms are also

noticeable to LLAS as they noticeably change the variation of eccentricity and directly affect the

lifetime of the orbit. If one uses solely first and second order, the variation of e over time is not
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Gravitational Harmonic Coefficients
Harmonic Co-
efficients

Eccentricity Inclination Ascending
Node

Argument of
Periapsis

J2 No No Yes Yes
J3 Yes No No No
J5 Yes No No No
C22 No Yes Yes Yes
C31 Yes No No Yes

present [62]. The J3 term (parllactic) changes the eccentricity of a circular orbit and may cause

large variations if the orbit is sufficiently large [61]. (Carvalho 2010) notes that for LLAS in the

polar regions, the J2 and C22 terms dominate and are of utmost importance. (Singh 2020) notes

that an increase in the degree of the gravity model does not affect ω significantly, and thus it is not

necessary if that orbital element is of interest. However, it is noted that the variation of the degree

causes significant changes in the prediction accuracy of the apoapsis and periapsis altitudes [60].

The paper also notes that with more elliptical orbits, the variation in altitude accuracy becomes

less significant and eventually converges [60]. In contrast to a 50x50 or higher gravity field,

these approximations save time and allow for more efficient analysis and perhaps better solutions.

2.4.5 Time Scale Dependency

Time scales are also an important factor for proper orbit analysis. Each of the orbital

elements display different behavior and oscillates throughout time with different periods. In order

to properly understand the evolution, changes must be recorded, and oscillations secularized at

proper time scales. For third body considerations, the long period motion should be fairly long

in comparison to the period of the disturbing body [61]. The semi-major axis and men motion

of a lunar satellite are usually constant in long period motion and do not need to be considered

when selecting the proper harmonics. e has long period variations, usually in the realm of years

[9]. The inclination on the other hand is characterized by large medium-period variations [9]. ω

and Ω have secular drifts that are larger than the periodic variations [9]. These variations will be
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present or absent depending on the harmonics used so it is important to take into consideration

which evolutions will be important for the orbit at hand.

2.4.6 Initial Condition Dependency

The initial conditions of an orbit are also of vital importance to the not only the validity

but the evolution of an orbit as well [32]. Differing initial conditions can cause large variations

in the oscillation of orbital elements and ultimately affect the lifetime of the orbit itself. It is

necessary to have longer orbit lifetimes for both tracking and intermediary transfer purposes [32].

For example, lunar satellites with inclined orbits of more than 39.23 degrees with respect to the

Earth’s orbital lane experience considerable growth of eccentricity [62]. This can be attributed

to the Earth causing a Kozai resonance causing the eccentricity to grow [62]. In general, the

Earth’s eccentricity and inclination have a vital influence on the variation of the inclination and

eccentricity of the satellite itself. Another example involves the critical semi-major axis, which

is the region where the perturbations of J2, C22, and 3rd body have the same magnitude. The

location of the critical semi-major axis is entirely dependent on the longitude of the ascending

node [62]. When using 2nd order theory, the eccentricity is directly affected by the initial

inclination. (Carvalho 2010) shows a slow increase in temporal variation of eccentricity in

satellites with larger inclinations. Additionally, as more and more gravity harmonic terms are

considered, the orbital element variations become increasingly sensitive to the initial conditions

[62].

2.4.7 Critical Inclination

Another parameter to consider in terms of both initial conditions and frozen orbits is the

critical inclination. The critical inclination describes the inclination at which there is zero apogee

drift for an elliptical orbit. (Orlov 1954) was the first to notice interesting orbit behavior at a

certain inclination and the classical critical inclination was found by (Szebehely 1989) and is

63.26. The critical inclination depends on a variety of factors including the which gravitational
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harmonics are being used for the gravity field and which force models are used along with the

argument of periapsis and ascending node. (De Saedeleer 2006) showed that when the C22 term

is considered, the critical inclination becomes 39.14 regardless of initial conditions, whereas for

solely J2, the critical inclination is the classic value [53]. The orbit behaves differently based on

where its inclination is situated relative to the critical inclination. Below the critical inclination,

small eccentricities produce small amplitudes of variations, whereas above the critical inclination,

the same can be said for highly eccentric orbits [62]. The argument of periapsis liberates when

the initial inclination is higher than critical and circulates when lower [62]. The properties of

critical inclinations are not set in stone nor are they high fidelity. In reality, the time evolution

of the inclination causes variations in the argument of periapsis, in which the term critical

inclination is no longer valid. As a work around, (Tzirti 2010) uses a quasi-critical inclination

instead for solution in which the argument of pericenter liberates. It should also be noted that

these dynamics are also highly dampened when the rotation of the moon is taken into account

and motion returns to regular [8, 53].

2.4.8 Areas for Errors

All of the aforementioned theory is essential to the accurate modeling of lunar orbits. In

order to properly use approximation, there must be a deep understanding of the lunar environment.

Although the variation of orbital elements for one revolution may be small, there is certainly

a compounding effect as time progresses if left unchecked. The size of the errors calculated

with approximations can be estimated from the magnitudes of the quantities that were ignored

during the development of said formulas [10]. The errors also grow as the distance from the

central body increases. For moon satellite orbits, the basic factor determining the error in the

approximation is the largest value of the perturbing acceleration and the long revolution periods

resulting from calculating only the first approximation in the motion of the perturbing body [10].

When accounted for, the errors can be dissipated and approximation methods can be used for a

wide range of satellite orbits [10].
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2.4.9 Third Body Considerations

As mentioned previously, the Earth plays a role in the behavior and parameters of a lunar

satellite orbit as well. However, unlike gravitational harmonics, the third body effects from

the Earth are negligible at low altitudes. Said third body effects become noticeable around a

semi-major axis of 3000km and above, defining the range of lunar high altitude satellites (LHAS)

[53]. From an semi-major axis of 3000km all the way to the hill sphere of the Moon, the third

body effects from the earth can no longer be ignored and become more and more apparent,

causing stronger instabilities and instilling chaotic regions for some orbit inclinations [8, 53]. At

a distance 4000km from the Moon, the Earth’s perturbing effect is much greater than those of

harmonic and solar causes [14]. The Earth’s perturbing effect becomes of the order of 1/10 of the

central acceleration [14]. At this point, an orbit would likely not be stable and would be grossly

disturbed. Finally, the Moon has a hill radius of 58,000 km, at which the Earth’s gravitational

forces eventually take over. In general, adding Earth third body effects creates larger variations

in the inclination amplitude and frequency [8]. Third body effects also have the greatest effect on

eccentricity for initial eccentricities around 0.707 and high inclination satellite orbits. They are

dependent on the average value of ω as well [32]. Earth third body effects also play an important

role in the lifetimes of lunar orbits as they change the eccentricity and can cause premature

crashes.

2.4.10 Sun Synchronous Lunar Orbits

For the ARTEMIS lunar missions, a particular area of interest is the possibility of a

Lunar Sun Synchronous Orbit (LSSO). An LSSO would provide an invaluable asset to not only

the current ARTEMIS missions, but future missions as well. Due to its nature as a LSSO, the

entirely of the moon could be imaged with proper illumination. The images could provide an

updated visual database of the dark side of Moon and support new research on the selenography.

The satellite could provide essential selenographical information and tracking services for all
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ground-based operations. In order to achieve this, the satellite would have to precess so that it’s

Ω is always situated on the vector pointing to the sun.

Looking at the figures, it is clear to see that the physically possible orbits are unable to

achieve the necessary nodal precession even remotely. Although the rates are calculated from

analytic theory, it is not necessary to run simulations to replicate this result as the values are not

close enough to motivate further study. Since the gravity harmonics and 3rd body perturbations

cannot alone provide the necessary satellite nodal precession, taking advantage of solar radiation

pressure may be an option. A proper area to mass ratio could perhaps give the push needed to

reach the necessary value for nodal precession. A satellite which aims to maximize this ratio is

known as a high area-to-mass ratio (HAMR) object.
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Chapter 3

Results and Discusion

The results are presented in an ”atlas” of dynamical stability maps for different orbital

regions of interest. GMAT simulations were run for a grid of initial conditions of Ω and inclination.

A meshgrid containing inclination = [0:6:180] and Ω = [0:12:360] was used for all of the

following. The first three plots were done for the J2 perturbation effect.

Figure 3.1. A phase space graph of the eccentricity perturbations caused by the J2 effect. The
initial conditions used were [a, e, i, Ω, ω , ν] = [2000, 0.05, 0-180, 0-360, 45, 0]. The orbit was
simulated for a period of 30 days.
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The semi-major axis of 2000km was chosen are gravitational harmonics are much more

noticeable closer to the central body’s surface. The eccentricity was chosen to simulate a near

circular orbit as most parking orbits close to the surface are of this nature. The argument of

periapsis and mean anomaly are arbitrary. As expected, since the oblateness coefficient is not

theoretically responsible for changes in the eccentricity, the magnitude of the perturbations are

virtually 0.

Figure 3.2. A phase space graph of the inclination perturbations caused by the J2 effect after a
period of 30 days. The initial conditions used were [a, e, i, Ω, ω , ν] = [2000, 0.05, 0-180, 0-360,
45, 0].

There are some very small, although noticeable changes in the inclination, with most

occurring at the equator around Ω values of 90 degrees and 270 degrees. From the literature, this

is expected as the oblateness does not directly affect the inclination.
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Figure 3.3. A phase space graph of the ascending node perturbations caused by the J2 effect
after a period of 30 days. The initial conditions used were [a, e, i, Ω, ω , ν] = [2000, 0.05, 0-180,
0-360, 45, 0].

As expected, the J2 coefficient has a direct effect on the ascending node. According to

the analytical solution, which has a cosine term being a function of inclination, the perturbations

should be cancelled around inclinations of 90 degrees. This certainly holds true as there are no

perturbations around that area. The highest perturbations seem to occur around inclination at the

equator and ascending node values of 360 and 180 degrees. Note that the borders of the phase

space are all 0. This was done post processing as GMAT was returning unrealistic values, which in

turn was causing an unscaled phase space map. The next group of plots were done for the C22

perturbations.
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Figure 3.4. A phase space graph of the eccentricity perturbations caused by the C22 gravity
harmonics after a period of 30 days. The initial conditions used were [a, e, i, Ω, ω , ν] = [2000,
0.05, 0-180, 0-360, 45, 0].

Once again, as expected, the gravity harmonics cause negligible changes in the eccentric-

ity and not important with the low orders and degrees. However, it will be see later in the paper

that there exists a certain point in the approximation of the gravity field at which eccentricity

changes become apparent and can no longer be ignored over longer periods of time.
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Figure 3.5. A phase space graph of the inclination perturbations caused by the C22 gravity
harmonics after a period of 30 days. The initial conditions used were [a, e, i, Ω, ω , ν] = [2000,
0.05, 0-180, 0-360, 45, 0].

Unlike the J2 harmonics, those of C22 have a noticeable effect on the inclination. This was

predicted by theory as well. The biggest changes seem to occur around the range of 60 degrees

and 120 degrees. The inclination changes are large enough to warrant exponential changes due

to gravity effects in the long run.
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Figure 3.6. A phase space graph of the ascending node perturbations caused by the C22 gravity
harmonics after a period of 30 days. The initial conditions used were [a, e, i, Ω, ω , ν] = [2000,
0.05, 0-180, 0-360, 45, 0].

As expected from the theory, there are changes to be expected caused by the C22 har-

monics. Similar to those of J2, the biggest changes occur around inclinations of 0 degrees and

180 degrees and ascending nodes of 260 degrees. Unlike the J2 perturbations, however, the C22

harmonics create massive changes to the ascending node over the period of 30 days. The next

group contains plots from Earth third body effects.
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Figure 3.7. A phase space graph of the eccentricity perturbations caused by the Earth third body
effects after a period of 30 days. The initial conditions used were [a, e, i, Ω, ω , ν] = [4000, 0.05,
0-180, 0-360, 45, 0]. Unlike the initial conditions for the gravity harmonics, a semi-major axis of
4000km was used. Since third body perturbations are almost negligible in comparison to those
of the gravity harmonics at low altitudes, a higher altitude was chosen. Papers such as [14] and
[8] state that Earth third body effects begin to dominate the gravity harmonics around 4000km.
For this reason, that exact semi-major axis was chosen.

As expected from the theory, third body effects are directly responsible for eccentricity

changes, and in turn, for the lifetimes of orbits. It can be confidently predicted that as the

semi-major axis initial condition were increased, the perturbations would grow exponentially.

As the theory predicts, chaotic regions would eventually appear, making the orbit extremely

unstable.
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Figure 3.8. A phase space graph of the inclination perturbations caused by the Earth third body
effects after a period of 30 days. The initial conditions used were [a, e, i, Ω, ω , ν] = [4000, 0.05,
0-180, 0-360, 45, 0].

As expected, Earth third body effects do have a noticeable effect on the inclination.

The behavior is similar to that of the J2 effect where there are ”ovals” in the phase space

where the biggest magnitudes occur. For this particular case, the biggest magnitudes occur at

inclinations around the equator and ascending nodes at values of 180 degrees and360 degrees.

The magnitudes themselves should warrant attention and will only get bigger with an increase in

the semi-major axis, ultimately leading to unstable properties.

41



Figure 3.9. A phase space graph of the ascending node perturbations caused by the Earth third
body effects after a period of 30 days. The initial conditions used were [a, e, i, Ω, ω , ν] = [4000,
0.05, 0-180, 0-360, 45, 0].

There are two hot-spots where large changes occur at the equator at ascending node

values of 0 degrees and 270 degrees. At an inclination of 90 degrees, there no ascending node

perturbations and most of phase has relatively minimal values. Similar to previous results, the

boundaries are zeroed out. The next group of plots were done for a high fidelity 64x64 gravity

field.
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Figure 3.10. A phase space graph of the eccentricity perturbations caused by gravity harmonic
effects after a period of 30 days. For this case, a large 64x64 degree and order expansion was
used to obtain a detailed map of the gravity harmonics. The initial conditions used were [a, e, i,
Ω, ω , ν] = [2000, 0.05, 0-180, 0-360, 45, 0].

Similar to the previous gravity harmonic phase spaces, the semi-major axis for this space

was 2000km to be able to measure the full effect close to the surface. Unlike the previous two,

however, there are noticeable changes in eccentricity for this case. The biggest magnitudes occur

at on a prograde equatorial orbit. Although there are relatively large perturbations for the whole

equatorial range, the biggest occur between initial ascending nodes of 160 degrees and 340

degrees.
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Figure 3.11. A phase space graph of the inclination perturbations caused by gravity harmonic
effects after a period of 30 days. For this case, a large 64x64 degree and order expansion was
used to obtain a detailed map of the gravity harmonics. The initial conditions used were [a, e, i,
Ω, ω , ν] = [2000, 0.05, 0-180, 0-360, 45, 0].

Similar to previous cases dealing with inclination, there are noticeable inclination in-

creases which occur in oval-like shapes. There are a greater number of these regions and they

occur around ascending nodes of 100 degrees and 290 degrees. For the inclinations, these regions

occur at the equator and at inclinations of 50 degrees and 130 degrees. There are also greater

magnitude of inclination changes than the previous cases.
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Figure 3.12. A phase space graph of the ascending node perturbations caused by gravity
harmonic effects after a period of 30 days. For this case, a large 64x64 degree and order
expansion was used to obtain a detailed map of the gravity harmonics. The initial conditions
used were [a, e, i, Ω, ω , ν] = [2000, 0.05, 0-180, 0-360, 45, 0].

In this case, the perturbations look to be the greatest in similar areas as the previous runs.

In comparison to previous cases, the perturbations are much greater and magnitude and could be

in consideration for building an LSSO. The boundaries are zeroed out as well as certain regions

exhibiting unrealistic values. The next group of plots investigate the combined effect of a 64x64

field along with Earth third body effects.

45



Figure 3.13. A phase space graph of the eccentricity perturbations caused by gravity harmonic
effects as well as Earth third body effects after a period of 30 days. For this case, a large
64x64 degree and order expansion was used to obtain a detailed map of the gravity harmonics.
Additionally, Earth third body effects were taken into consideration. The initial conditions used
were [a, e, i, Ω, ω , ν] = [3000, 0.05, 0-180, 0-360, 45, 0].

This time, the semi-major axis has a value of 3000km which was chosen as the average

from both types of perturbations so the satellite would have an altitude where both types are

apparent. Interestingly, however, in this case the perturbations are nearly negligible. Most occurs

at inclinations of 90 degrees which can be most likely attributed due to Earth third body effects.
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Figure 3.14. A phase space graph of the inclination perturbations caused by gravity harmonic
effects as well as Earth third body effects after a period of 30 days. For this case, a large
64x64 degree and order expansion was used to obtain a detailed map of the gravity harmonics.
Additionally, Earth third body effects were taken into consideration. The initial conditions used
were [a, e, i, Ω, ω , ν] = [3000, 0.05, 0-180, 0-360, 45, 0].

There are noticeable inclinations perturbations for nearly the entire map, with the more

stable area being around the equator. It would be important to keep these changes in mind as

over long periods of time, these changes will only intensify and ultimately accumulate into large

changes in the orbit shape. This, as has been noted earlier in the paper, will cause increasing

areas of instability.
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Figure 3.15. A phase space graph of the ascending node perturbations caused by gravity
harmonic effects as well as Earth third body effects after a period of 30 days. For this case,
a large 64x64 degree and order expansion was used to obtain a detailed map of the gravity
harmonics. Additionally, Earth third body effects were taken into consideration. The initial
conditions used were [a, e, i, Ω, ω , ν] = [3000, 0.05, 0-180, 0-360, 45, 0].

Similar to previous cases, the inclination of 90 degrees looks to be an area for equilibrium.

However, differently from those previous cases, the biggest magnitudes occur at the equator at

initial ascending nodes of 150 degrees and 360 degrees. This can most likely be attributed to the

part Earth third body effects play on creating different chaotic regions from the solely harmonic

case.
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Chapter 4

Conclusions and Future Work

Long-term orbiter lifetimes will be an important factor in the efficacy of future human

habitation of the Moon. Throughout the thesis, it has been clear that optimizing these lifetimes

will require meticulous calculation of orbital perturbations and proper selection of orbital initial

conditions. After comparison of the simulations with predicted models from the literature, most

of the results agree with what has been calculated analytically. The dynamic stability charts

indicate higher magnitudes of perturbations for the corresponding perturbing forces and orbital

elements than previously thought. Possibly some of the most important results are those from the

C22, 64X64, and 64x64 + Third Body runs. The C22 run verifies the higher order gravitational

anomaly existence and cements the need for more robust models. The 64x64 run does more of

the same, and gives an approximation of the sheer magnitudes of perturbations that can be felt.

The 64x64 + Third Body case shows how the combination of the dynamics can ultimately result

in a destructive effect in the magnitude of perturbations. It should be noted that the orbital space

studied in particulate produced destructive properties with the summation of different models,

and that a large amount of orbits will display dangerously constructive properties. This work

can certainly be expanded upon further.The test case simulations run are only a fraction of all

possible cases. The Earth third body cases can be run at higher altitudes, where their forces may

be more present. The simulations could be run for longer periods of time, where one would

be able to notice their behavior develop along longer portions of time. Sun-synchronous orbits
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could also be explored further with GMAT runs exploring differing precessions due to varying

realistic area-to-mass ratios. There is certainly room for improvement and further exploration in

the case of lunar orbiters.
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